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Abstract. Given a subshift � of finite type and a finite set S of finite words, let �〈S〉 denote
the subshift of � that avoids S. We establish a general criterion under which we can bound
the entropy perturbation h(�) − h(�〈S〉) from above. As an application, we prove that
this entropy difference tends to zero with a sequence of such sets S1, S2, . . . under various
assumptions on the Si .
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1. Introduction
Let n be a positive integer and let T be an irreducible n × n matrix with entries in {0, 1}.
This determines a subshift of finite type � defined as the collection of all bi-infinite
strings (xi) on an alphabet of n symbols indexing the rows and columns of T that are
admissible in the sense that the (xi+1, xi) entry in T is equal to 1 for all i ∈ Z. Recall
that the largest eigenvalue, λ, of T is related to the shift entropy of � by λ = eh(�), and
we assume throughout that λ > 1. Let S denote a finite set of finite admissible non-empty
words none of which contains another, and let �〈S〉 denote the subshift of � consisting of
those elements of � in which none of the words in S appear.
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666 N. Ramsey

We are interested in the entropy of the perturbed subshift �〈S〉, and in particular seek
to bound the entropy difference h(�) − h(�〈S〉). In [4], Lind addressed this problem in
the case where S consists of a single word, and proved that the entropy of �〈S〉 approaches
that of � as the length � of the word tends to infinity. He showed, moreover, that the
difference in entropy is of exact order O(λ−�) in the sense that it is bounded above and
below by a constant multiple of λ−�. Lind’s entropy bounds stem from a lower bound on
the correlation polynomial associated to the word in S. Such polynomials were studied by
Guibas and Odlyzko in a series of papers [1–3], where they attribute the original definition
to J. H. Conway.

In [8], the author adapted Lind’s method to the case where S has more than one word.
Here, one can define an |S| × |S| matrix of correlation polynomials analogous to the
correlation polynomial for a single word, and an entropy bound comes down to a certain
lower bound on the determinant of this matrix. Analyzing the size of this determinant
gets complicated as S grows, and we were only able to effectively bound the entropy and
show that it approximates that of � in the case where S consists of two words of length
tending to infinity. The entropy perturbation in this case is shown to be of order at most
O(λ−�) where � is the length of the shorter word. Here again this must be the exact order,
as can be seen by throwing out the longer word and appealing to Lind’s lower bound for
the remaining word of length �. The correlation polynomial determinant seems to be a
very natural quantity in this setting and deserving of further study with an eye towards
adapting Lind’s method more broadly, as it seems to give very sharp bounds. We note also
that Pavlov in [7] has proven a result analogous to Lind’s one-word result in the setting of
multidimensional shifts.

In [5], Miller considered the following related problem: given a finite set S of finite
non-empty words in a finite alphabet, determine whether there exists a infinite word in the
alphabet that avoids S. Note that the ambient shift here is constrained to the full shift, while
the set S is quite flexible. Miller defines

p(t) =
∑
τ∈S

t |τ |

and establishes a simple numerical criterion involving p(t) that ensures that his perturba-
tion is non-empty. In this paper, we adapt Miller’s method to a general subshift of finite
type (SFT) and refine it to get lower bounds on the entropy of �〈S〉, and thus upper bounds
on the entropy perturbation. Our main result is as follows.

THEOREM 1. There exists a constant C > 0 depending only on � such that if k is a positive
integer, every element of S has length at least k, and there exists t ∈ (1, λk) with

r = 1 + kCλ2kp(t1/k/λ)

t
< 1,

then

h(�) − h(�〈S〉) ≤ − log(1 − r)

k
.

This theorem is shown to have consequences for the ‘growing words’ problems
above. A perturbation bound of O(λ−�) seems beyond the method, but we can establish
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O(�−3/4λ−�/8) when S consists of any fixed number of words of minimal length � → ∞.
The method can also be applied to a growing set of words of increasing length with
sufficient control over the growth, as illustrated by the following result. Suppose that
S1, S2, . . . is a sequence of sets as above, let �i denote the minimal length in Si , and
suppose �i → ∞.

THEOREM 2. Suppose there exists κ< λ such that |Si | = O(κ�i ) as i → ∞. Then

h(�) = lim
i→∞ h(�〈Si〉).

2. Parry measure and the weight function w(σ)

Let u and v denote left and right λ-eigenvectors for T normalized so that utv = 1. The
entries of these vectors measure the prominence of the corresponding symbols as a sink
and source in �, respectively. More precisely, ui/

∑
ui is the fraction of paths on the

directed graph associated to T that terminate at i, while vi/
∑

vi is the fraction of paths
that begin at i. In [6], Parry defined a shift-invariant measure of maximal entropy μ on �

that can be characterized on non-empty cylinder sets by

μ([ix1x2 · · · xk−1j ]) = uivj

λk
.

Note that the notation [σ ] only defines a cylinder set up to shifts. Where it is important to
have an actual set to work with (e.g., in defining fσ below) we take σ to begin at coordinate
0 in forming [σ ]. If σ fails to be admissible, then [σ ] is taken to be empty.

Let N(σ , k) denote the number of words η of length k such that ση is admissible. Since
T is irreducible, it follows from Perron–Frobenius theory that there exist positive constants
A, B such that

Aλk ≤ N(σ , k) ≤ Bλk (1)

for all words σ and all k ≥ 1. Let D denote the maximum ratio among the vi .

LEMMA 1. We have

μ([στ ]) ≤ DA−1λ−|τ |μ([σ ])

for all words σ , τ .

Proof. We may assume that στ is admissible, for otherwise the result is trivial. The
explicit description of μ on cylinder sets implies that D is an upper bound for the ratio
among the μ([ση]) as η varies among the words of a given positive length for which ση is
admissible. Thus,

λ|τ |μ([στ ]) ≤ A−1N(σ , |τ |)μ([στ ]) = A−1
∑
η

μ([στ ])

≤ A−1
∑
η

Dμ([ση])

= DA−1μ([σ ])

where the sums are taken over those η with |η| = |τ | and ση admissible.
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Let σ be an admissible word and let [σ ] denote the associated cylinder set. Define a
polynomial-valued function fσ on [σ ] by

fσ (α) =
∑
τ∈S

∑
j

tj

where the inner sum is over j ≥ 0 such that τ occurs in α beginning within σ and ending
j symbols beyond the end of σ :

σ

τ

︸ ︷︷ ︸
j

· · · · · ·α =

Observe that the function fσ is locally constant on [σ ]. We define a weight function on
admissible words by

w(σ) = 1
μ([σ ])

∫
[σ ]

fσ dμ.

Note that the empty word σ0 has cylinder set [σ0] = � and weight 0. Since no element of
S contains another, for each j ≥ 0 there is at most one element of S that ends j symbols
after then of σ , so we may write

w(σ) =
∑
j≥0

μ(Sσ ,j )

μ([σ ])
tj (2)

where Sσ ,j denotes the subset of [σ ] containing an element τ ∈ S that begins in σ and
ends j symbols after the end of σ . Observe that if σ ends in an element of S, then we have
Sσ ,0 = [σ ] and hence w(σ) ≥ 1. In general, the weight w(σ) is a measure of how close σ

is to ending in an element of S. The strategy here is study how w changes as you extend
σ to the right by computing its weighted averages, and then use the results to bound from
below the number of S-free extensions of σ and ultimately the entropy of �〈S〉.

Define

pσ =
∑
τ∈S

μ([στ ])
μ([σ ])

t |τ |.

Lemma 1 furnishes the upper bound

pσ ≤ DA−1
∑
τ∈S

(t/λ)|τ | = DA−1p(t/λ) (3)

which is independent of σ .

LEMMA 2. If σ does not end in an element of S, then

1
μ([σ ])

∑
i

μ([σ i])w(σ i) = w(σ) + pσ

t
.

Proof. Using (2),

1
μ([σ ])

∑
i

μ([σ i])w(σ i) = 1
μ([σ ])

∑
i

∑
j

μ(Sσi,j )t
j . (4)
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An element of Sσi,j has a unique τ ∈ S ending j symbols after σ i and beginning within
σ i. This τ can begin either within σ or at the final symbol i, and accordingly we may
decompose Sσi,j = Aσi,j 	 Bσi,j . Explicitly, the set Aσi,j consists of elements of [σ i]
that contains a word in S beginning within σ and ending j symbols after σ i. The set Bσi,j

consists of elements of [σ i] in which σ is immediately followed by an element of S of
length j + 1. Observe that ⊔

i

Aσi,j = Sσ ,j+1

and ⊔
i

Bσi,j =
⊔
τ∈S|τ |=j+1

[στ ]

are both clear from the definitions. Thus, (4) is equal to
∑
j

(
μ(Sσ ,j+1)

μ([σ ])
+

∑
τ∈S|τ |=j+1

μ([στ ])
μ([σ ])

)
tj = w(σ) + pσ

t
.

Note that the last equality relies on the fact that σ does not end in an element of S, so the
apparently missing μ(Sσ ,0) in the sum on the left vanishes.

3. Bounding entropy
Fix some t > 1 for the moment and let σ be an S-free word with w(σ) < 1. We say that
a word η is good if ση is admissible and every intermediate word between σ and ση

(inclusive) has weight w < 1. In particular, ση is S-free if η is good, since words ending
in an element of S have weight greater than or equal to 1. For a positive integer m, set

G(σ , m) =
⊔

η good
|η|=m

[ση].

LEMMA 3. Suppose (1 + pρ)/t < r < 1 for all words ρ, and let σ be S-free with
w(σ) < 1. We have

μ(G(σ , m))

μ([σ ])
≥ (1 − r)m

for all m ≥ 1.

Proof. Since extensions σ i that end in an element of S have w(σ i) ≥ 1, we have∑
i

μ([σ i])w(σ i) ≥ μ([σ ]) − μ(G(σ , 1)).

Thus,

μ(G(σ , 1))

μ([σ ])
≥ 1 − 1

μ([σ ])

∑
i

μ([σ i])w(σ i) = 1 −
(

w(σ) + pσ

t

)
≥ 1 − r ,

which establishes the case m = 1.
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Suppose the statement holds for some m ≥ 1 and all σ . Observe that

G(σ , m + 1) =
⊔

η good
|η|=m

G(ση, 1).

For good η, the word ση is S-free and has w(ση) < 1, so the base case and induction
hypothesis give

μ(G(σ , m + 1)) =
∑

η good
|η|=m

μ(G(ση, 1)) ≥
∑

η good
|η|=m

(1 − r)μ([ση])

= (1 − r)G(σ , m) ≥ (1 − r)m+1μ([σ ]),

which establishes case m + 1.

PROPOSITION 1. Suppose r = (1 + DA−1p(t/λ))/t < 1. We have h(�) − h(�〈S〉) ≤
−log(1 − r).

Proof. Using (3), we may apply Lemma 3 to the empty word σ0 and conclude
μ(G(σ0, m))/μ([σ0]) ≥ (1 − r)m. The set [σ0] is simply �, but we retain σ0 below
for clarity. If g denotes the number of good η of length m, then by Lemma 1 we have

G(σ0, m)

μ([σ0])
=

∑
η

μ([σ0η])
μ([σ0])

≤ gDA−1λ−m

where the sum is over such η. Thus, we have produced for every m ≥ 1 at least

g ≥ AD−1λm(1 − r)m

words of length m that are S-free, which implies that the entropy of �〈S〉 is at least

lim
m→∞

log(AD−1λm(1 − r)m)

m
= log(λ) + log(1 − r).

Since � has entropy log(λ), this is the desired result.

4. Blocking
The condition r = (1 + DA−1p(t/λ))/t < 1 in Proposition 1 implies t > 1 but also
effectively limits t from above to roughly λ. This in turn bounds r from below, limiting
the direct utility of Proposition 1. The solution is to work with blocks of elements in �.
For each k ≥ 1 let �k denote the SFT on the alphabet of admissible words of length k
in �, where the transition [x1 · · · xk][y1 · · · yk] is admissible in �k if and only if xky1

is admissible in �. Concatenating blocks furnishes a natural bijection �k −→ � that
intertwines the shift map on �k with the kth power of the shift map on �. Accordingly, we
have h(�k) = kh(�).

To use the technique of the previous section, we must translate the collection S of
forbidden words into an equivalent collection Sk of words in �k , that is, one that cuts
out the same subshift under the above bijection. In the process, we will also bound the
associated polynomial
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pk(t) =
∑
ζ∈Sk

t |ζ |.

Let τ ∈ S have length �, suppose that k ≤ �, and write � = kq + s with 0 ≤ s < k

according to the division algorithm. To determine a collection of words in �k that forbids τ

in �, we must consider each of the k ways of tiling over τ by blocks of length k, according
to the k possible positions of the beginning of τ in the first block. Of these k positions, s + 1
require b = 
�/k� blocks to tile over τ . Here, kb − � coordinates remain unspecified by τ ,
which means that we have at most Bλkb−� words to consider at this position by (1). The
remaining k − s − 1 positions require b + 1 blocks to tile over τ and leave k(b + 1) − �

free coordinates.

The total contribution to pk(t) of the words associated to τ is thus at most

(s + 1)Bλkb−�tb + (k − s − 1)Bλk(b+1)−�tb+1.

Assuming that 1 ≤ t ≤ λk , the contribution of τ to pk(t/λ
k) is then at most

(s + 1)Bλ−�tb + (k − s − 1)Bλ−�tb+1 ≤ (s + 1)Bλk−�tb−1 + (k − s − 1)Bλ2k−�tb−1

≤ kBλ2k−�t�/k .

Summing over τ ∈ S, we have

pk(t/λ
k) ≤ kBλ2k

∑
τ∈S

(
t1/k

λ

)|τ |
= kBλ2kp

(
t1/k

λ

)
. (5)

Proof of Theorem 1. The constants A, B, and D depend on the underlying shift � but do
not change upon replacing � by �k . Set C = DA−1B and suppose that

r = 1 + kCλ2kp(t1/k/λ)

t
< 1.

We may apply Lemma 3 as in the previous section but now to �k to create at least
AD−1λkm(1 − r)m words of length m in �k , and thus words of length km in �, that
avoid S. The entropy of �〈S〉 is therefore at least

lim
m→∞

log(AD−1λkm(1 − r)m)

km
= log(λ) + log(1 − r)

k

as desired.

5. Growing words
Let � denote the minimal length of an element of S. Then

p(t1/k/λ) ≤ |S|(t1/k/λ)�
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for t ∈ (1, λk), so we consider

r = 1 + kC|S|λ2k−�t�/k

t
.

This function is minimized at

tmin = λk λ−2k2/�

((� − k)C|S|)k/�

and has minimum

rmin = Ck/�|S|k/��k/�

(
1 − k

�

)k/�−1

λ−k+2k2/�.

Note that tmin ∈ (1, λk) as long as

1 < (� − k)C|S| < λ�−2k . (6)

Let α ∈ (0, 1/2) and set k = �α�
. Simple estimates show

rmin = O(|S|α�αλ−�α(1−2α)).

Since λ�−2k ≥ λ�(1−2α), condition (6) is satisfied as long as

1 < (� − k)C|S| < λ�(1−2α). (7)

Suppose that |S| is bounded as � → ∞. Then (7) holds for � sufficiently large, and we
have rmin → 0. Since − log(1 − x) = O(x) for small x, Theorem 1 gives

h(�) − h(�〈S〉) = O(�α−1λ−�α(1−2α)).

Setting α = 1/4 gives the best such bound, namely O(�−3/4λ−�/8), though we note that
it is possible to improve this result slightly by using more refined estimates for pk in the
previous section.

Now suppose that |S| may be growing but subject to |S| = O(κ�) for some κ < λ. If we
choose α small enough so that κ < λ1−2α , then condition (7) is satisfied for � sufficiently
large. We have

rmin = O(κα��αλ−�α(1−2α)) = O

((
κ

λ1−2α

)α�

�α

)
→ 0

as � → ∞, so we may once again apply Theorem 1 to obtain

h(�) − h(�〈S〉) = O

((
κ

λ1−2α

)α�

�α−1
)

→ 0,

thereby establishing Theorem 2.
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