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INTEGRAL REPRESENTATION OF p-CLASS GROUPS IN
Zp-EXTENSIONS AND THE JACOBIAN VARIETY

PEDRO RICARDO LÓPEZ-BAUTISTA AND
GABRIEL DANIEL VILLA-SALVADOR

ABSTRACT. For an arbitrary finite Galois p-extension LÛK of Zp-cyclotomic number
fields of CM-type with Galois group G = Gal(LÛK) such that the Iwasawa invariants
ñ�K , ñ�L are zero, we obtain unconditionally and explicitly the Galois module structure
of CL

�(p), the minus part of the p-subgroup of the class group of L. For an arbitrary
finite Galois p-extension LÛK of algebraic function fields of one variable over an
algebraically closed field k of characteristic p as its exact field of constants with Galois
group G = Gal(LÛK) we obtain unconditionally and explicitly the Galois module
structure of the p-torsion part of the Jacobian variety JL(p) associated to LÛk.

1. Introduction. Let L be an algebraic number field L. It is said to be of CM-type if
it is a totally imaginary quadratic extension of a totally real field. It is called a cyclotomic
Zp-field if L = L0Q1 where L0 is a finite extension of Q, the field of rational numbers,
Zp is the ring of the p-adic integers and Q1 is the cyclotomic Zp-extension of Q. For an
odd prime p we will denote by LÛK a finite Galois p-extension of Zp-cyclotomic number
fields of CM-type with Galois group G = Gal(LÛK) such that the Iwasawa invariants
ñ�K , ñ�L are zero (a conjecture of Iwasawa states that the p-part of the class group is
divisible. It implies ñ�K = 0 = ñ�L ). Let Ln be the intermediate fields associated to the
extension LÛL0. Let ILn be the group of ideals, PLn the group of principal ideals and CLn

the group of ideal classes of Ln. It is well-known that, if CL(p) denotes the set of p-torsion
elements of CL, then, as groups, CL ≤ lim

�!
CLn , CL(p) ≤ lim

�!
CLn(p) and CL =

L
q CL(q)

where q runs over the rational primes. We also have CL(p) ≤ CL
�(p)ý CL

+(p) and that,
as Zp-modules, CL

�(p) ≤ Rï�L , where CL(p)š := fa j a 2 CL(p), aJ = šag, J denoting
complex conjugation,ï�L is the minus pariantïL of the field L and R := QpÛZp, whereQp

is the field of the p-adic numbers. We have that G acts naturally on the Zp-module CL(p),
so that CL

�(p), the minus part of the p-subgroup of the class group of L, has structure
of Zp[G]-module. Here Zp[G] denotes the group ring with coefficients in Zp. Iwasawa
obtained [7] the Qp[G]-module structure of HomZp

�
CL

�(p)ÒR
�

ZpQp. Using this result,

he gave a new proof of the Kida-Kuzmin formula which, in this context, is analogous to
the Deuring-S̆afarevic̆ formula in theory of algebraic function fields of one variable.

We are interested in the explicit Galois module structure of CL
�(p) as Zp[G]-module.
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The explicit Galois module structure of CL
�(p) is known in some cases. The cases

known before this work are the following: when G is a cyclic group of order p or p2

(Gold-Madan [4]); when LÛK is an extension unramified (Villa-Madan [17]); when the
p-th roots of unity are not present in K (Villa-Madan [18]); when K contains the p-roots
of unity and there exists a unique maximal decomposition group and this is normal in
G (Villa-Madan [18]). This last family has as particular cases: LÛK has a fully ramified
prime or G is a cyclic group.

The following exact sequence of Zp[G]-modules was established in [18]:

0 !

rL
i=1

R[GÛGi]

ReŁ
! R[G]r�1+ï�K ! CL

�(p) ! 0

This sequence determines implicitly the Galois module structure of CL
�(p) and we have

that, as Zp[G]-modules,

(ã) CL
�(p) ≤ R[G]u ý Ω#

0
BBBB@

rL
i=1

R[GÛGi]

ReŁ

1
CCCCA

where u is a nonnegative integer to be determined, Ω# is the dual of the Heller’s loop-space
operation, G1Ò    ÒGr are the decomposition groups of the prime divisors P1Ò    ÒPr of

K ramified in L and ReŁ = f(
P
õ2GÛG1

xõÒ    Ò
P

õ2GÛGr
xõ) 2

rL
i=1

R[GÛGi] j x 2 Rg.

As our first main result in this paper we obtain unconditionally and explicitly the
Galois module structure of CL

�(p) (Theorem 1).
The integer u in (ã) is given in terms of ï�K , the minus ï Iwasawa invariant of K and

the minimum number of generators of the group GÛĤ, where Ĥ is the composite of the
normal closure of the G0

is in G, (Propositions 2 and 4). The decomposition in (ã) of the
second summand in terms of indecomposable modules is given in Propositions 5 and 10.

It has been known since the days of Gauss that there is a strong analogy between the
theory of algebraic functions of one variable and the theory of algebraic numbers. In
fact, Iwasawa laid the foundations of his theory in number fields, in an attempt to find
an analog of the group of divisor classes of degree 0 in algebraic functions. Section 4 is
devoted to algebraic function fields.

Let LÛK be a finite Galois p-extension of algebraic function fields of one variable
with Galois group G = Gal(LÛK) and field of constants k, an algebraically closed field
of characteristic p, where p is an arbitrary rational prime number.

The group G acts naturally on several Zp-modules associated to L. Let JL be the
Jacobian variety associated to L. Then G acts on JL and, by restriction, on pn JL, the group
of points of order dividing pn. Let JL(p) = lim

�!
pnJL the p-torsion part of the Jacobian

variety associated to the function field LÛk. We have that JL(p) is naturally G-isomorphic
to C0ÒL(p), the p-subgroup of C0ÒL, the group of divisor classes of degree 0 of L. It is
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well-known that, as Zp-modules, C0ÒL(p) ≤ RúL , where úL is the Hasse-Witt invariant of
field L.

We are interested in the explicit Galois module structure of JL(p) as Zp[G]-module.
In the classical case, that is, when k is the field of complex numbers, the structure of

the group of divisor classes of degree 0 is given by the classical theorem of Abel and
Jacobi.

The explicit Galois module structure of JL(p) is known in some cases. One of the
cases is when there exists a unique maximal decomposition group and this is normal in
G. This family has as particular cases: when LÛK has a fully ramified prime or when
LÛK is a cyclic extension [18]. In that paper the following Zp[G]-exact sequence was
obtained:

0 !

rL
i=1

R[GÛGi]

ReŁ
! R[G]r�1+úK ! JL(p) ! 0

This sequence determines implicitly the Galois module structure of JL(p). It was proved
that, as Zp[G]-modules,

(å) JL(p) ≤ R[G]v MΩ#

0
BBBB@

rL
i=1

R[GÛGi]

ReŁ

1
CCCCA Ò

where v is a nonnegative integer number to be determined and G1Ò    ÒGr are the
decomposition groups of the prime divisors P1Ò    ÒPr of K ramified in L.

For a finite Galois p-extension LÛK we obtain unconditionally and explicitly the
Galois module structure of JL(p) (Theorem 2).

The integer v in (å) is given in terms of úK the Hasse-Witt invariant of K and the
minimum number of generators of the group GÛĤ, where Ĥ is the composite of the
normal closure of the G0

is in G, (analogue of Propositions 2 and 4). The decomposition
in (å) of the second summand in terms of indecomposable modules is given as in
Propositions 5 and 10.

ACKNOWLEDGMENT. The authors are grateful to Professor A. Weiss for the help they
received from him during the preparation of this work.

2. Notations. We will denote by Fp the finite field with p elements, Cp the cyclic
group of order p, R the field of real numbers, N := f1Ò 2Ò 3Ò   g and N0 := N [ f0g. For
n 2 N we set Wn := fò 2 C j òn = 1g, W(p) :=

S1
n=0 Wpn . We have that R ≤ W(p).

We will denote the disjoint union of the sets X1Ò    ÒXn by
Un

i=1 Xi.
Let G be a finite p-group. For aZp[G]-module M we write M = M(0)ýM(1), where M(0)

isZp[G]-injective and M(1) has no injectiveZp[G]-components. If 0 ! M ! Y ! N ! 0
is a Zp[G]-exact sequence with Y injective then the dual of the Heller’s loop-space
operation is defined by Ω#(M) ≤ N(1).

We denote by MG the set fm 2 M j gm = m 8g 2 Gg, IG := hg � 1 j g 2 Gi �
Z[G] � Zp[G].
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I(M) will denote the only injective Zp[G]-envelope of M, up to isomorphism, and
P(M) will denote the only projective Zp[G]-cover of M, up to isomorphism, if such cover
exists.

For n 2 N, we define the Zp[G]-homomorphism pn: M ! M such that pn(m) = pnm
8m 2 M. We set pn M := ker(pn). Then pnM is the subgroup of elements in M of order
dividing pn.

Let H be a subgroup of G. A subset X of G that contains exactly one element of
each left coset of H in G is called a left transversal of H in G. If X is a left transversal
of H in G and M is a Zp[G]-module, we define the map TrGÛH: MH ! MG such that
TrGÛH(m) =

P
gi2X gim. TrGÛH will be called the transversal trace of H in G.

In general, if A is a G-module then Hn(GÒA) will denote the n-th cohomology group
of G with coefficients in the module A. We write Hn(A) := Hn(GÒA) if the underlying
group G is clear. The trivial cohomology group will be denoted by 0, whether the group
structure of the module A is multiplicative or additive.

3. Integral representation of p-class groups. We will denote by p an odd rational
prime number, LÛK a finite Galois p-extension of cyclotomic Zp-fields of CM-type with
Galois group G = Gal(LÛK) that satisfies ñ�L = 0, ñ�K = 0. We assume W(p) � K. The
case W(p) 6� K has been considered in [18]. Let P+

1Ò    ÒP
+
r be the primes in K+ := K\R

ramified in L+ := L \ R split in K and such that they are non-p primes, that is, P+
i jQ

6= p.

Let M0 := ConK+ jK(P+
1 Ð Ð Ð P+

r ) = P1PJ
1 Ð Ð ÐPrPJ

r where ConK+ jK is the conorm map. Let

S := fP1ÒP2Ò    ÒPrg, and Ŝ := fQ(i)
t j i 2 [[1Ò r]], t 2 [[1Ò gi]]gÒ where Ŝ is the set

consisting of the prime divisors Q(i)
t of L such that Q(i)

t divides the prime divisor Pi

and gi is the decomposition number of the prime divisor Pi. If Q(i)
t 2 Ŝ we define

G(i)
t := fõ 2 G j Q(i)õ

t = Q(i)
t g = Dec(Q(i)

t j Pi) the decomposition group of the prime
divisor Q(i)

t . If t 2 [[1Ò gi]] we set Qi := Q(i)
t and Gi := f õ 2 G j Qõ

i = Qi g = Dec(Qi j Pi).
We will say that Gi is the decomposition group of the prime divisor Pi. If Pi is any of the
previous primes, we define

Hpei

i := ConKjL(Pi) = (Q(i)
1 Ð Ð ÐQ(i)

gi
)pei

where pei is the ramification index and gi is the decomposition number of the prime
Pi in LÛK. Let N :=

Qr
i=1 HiHJ

i . We define PN := f(ã) j ã 2 LŁ, ã � 1 mod N g,
IN := fO j O is divisor of L relatively prime to N g, CN := IN ÛPN the ray class group,
TN := f(ã) j ã 2 LŁ, (ã) is relatively prime to N g.

The Zp[G]-module structure of CL
�(p) is obtained implicitly in [17] and [18]. We

have the Zp[G]-exact sequence [17, p. 332],

0 ! (TN ÛPN )�(p) ! C�
N (p) ! C�

L (p) ! 0

We have that, as groups, (TN ÛPN )�(p) ≤ W(p)t�éK where t =
Pr

i=1 gi, and éK = 1 if
W(p) � K and éK = 0 otherwise.

In [17, Theorem 5] is shown that asZp[G]-modules (TN ÛPN )�(p) ≤
Lr

i=1 R[GÛGi]
(ReŁ)éK

and

in [18, Proposition 3] as Zp[G]-modules C�
N (p) ≤ R[G]r�éK +ï�K .
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We set T :=
Lr

i=1 R[GÛGi]
ReŁ . Since éK = 1 we obtain the Zp[G]-exact sequence [18,

Theorem 1]
0 ! T ! R[G]r�1+ï�K ! CL

�(p) ! 0

Since R[G]r�1+ï�K is an injective Zp[G]-module we obtain that there exists some u ½ 0
such that as Zp[G]-modules [18, Theorem 2],

CL
�(p) ≤ CL

�(p)(0)ýCL
�(p)(1) ≤ R[G]uýΩ#

0
BBBB@

rL
i=1

R[GÛGi]

ReŁ

1
CCCCA = R[G]uýΩ#(T)Ò(1)

where CL
�(p)(0) is the injective part of CL

�(p) and CL
�(p)(1) does not have injective

components. The implicit Zp[G]-module structure of CL
�(p) is given in (1). To find

explicitly the structure of CL
�(p) we will calculate the value of u and we will find

the indecomposable Zp[G]-components of the second summand. Our first step is the
following

PROPOSITION 1. Let c be the minimum natural number such that there exists a Zp[G]-
monomorphismû: T ! R[G]c. Then R[G]c is the injective Zp[G]-envelope of T and there
exists a Zp[G]-exact sequence 0 ! T ! R[G]c ! Ω#(T) ! 0.

PROOF. Let
�
I(T)Ò h

�
be the injective Zp[G]-envelope of T. It follows that R[G]c ≤

I(T) ý W for some Zp[G]-module W. It follows that I(T) ≤ R[G]d for some d � c.
Therefore we have aZp[G]-monomorphismû: T ! R[G]d . Since c is minimum it follows
that d = c. Since p(R[G]cÛT) ≤ Fp[G]c

pT and this module does not have Fp[G]-injective

components, it follows from [11, Lemma 3] that R[G]cÛT does not have Zp[G]-injective
components.

PROPOSITION 2. Let (R[G]cÒ h) be the injective Zp[G]-envelope of T and u 2 N0 such
that CL

�(p)(0) ≤ R[G]u. Then there exists an Fp[G]-exact sequence

0 ! pT
ĥ
! Fp[G]c ! Ω#(pT) ! 0

Furthermore, the integer u is given by u = r � 1 � c + ï�K and c = dimFp

�
( pT)G

�
.

PROOF. Since T is a p-divisible module we obtain the Fp[G]-exact sequence

0 ! pT
ĥ
! Fp[G]c ! pΩ#(T) ! 0

It follows from [9, Proposition 2.11] that Ω#( pT) ≤ pΩ#(T).
Since R[G]c and R[G]r�1+ï�K are injective Zp[G]-modules, we obtain the Zp[G]-exact

sequence
0 ! T ! R[G]r�1+ï�K ! R[G]u ý Ω#(T) ! 0

From Proposition 1 and Schanuel’s Lemma for injective modules we have that

R[G]c ý R[G]u ý Ω#(T) ≤ Ω#(T)ý R[G]r�1+ï�K 
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Therefore u = r � 1 � c + ï�K .
Let c0 := dimFp

�
( pT)G

�
. From the Fp[G]-exact sequence

0 ! ( pT)G ĥ
!

�
Fp[G]c

�G
!

�
pΩ#(T)

�G
Ò

we obtain a Fp[G]-monomorphism ( pT)G f̂
! Fc

p. Thus c0 � c.

We have that (Fp[G]cÒ f̂ ) is the injective Fp[G]-envelope of pT. Therefore c is the
minimum nonnegative integer such that there exists an Fp[G]-monomorphism ĥ: pT !
Fp[G]c.

Since ( pT)G ≤ Fc0
p � Fp[G]c0 , we have that there exists an Fp[G]-monomorphism

ö: ( pT)G ! Fp[G]c0 

Since Fp[G]c0 is an injective Fp[G]-module and the inclusion map i: ( pT)G ! pT
is an Fp[G]-monomorphism, it follows that there exists ö̂: pT ! Fp[G]c0 , an Fp[G]-
homomorphism such that ö = ö̂ Ž i. We have that ö̂ is a Fp[G]-monomorphism because
otherwise if ker(ö̂) 6= (0), then, since Fp is a field of characteristic p and G is a finite p-

group we would have that
�
ker(ö̂)

�G
6= 0. Now,

�
ker(ö̂)

�G
= ker(ö̂)\ ( pT)G = ker(ö) = 0.

Therefore ö̂ is an Fp[G]-monomorphism. Thus c � c0.
We now calculate dimFp

�
( pT)G

�
. Let H1Ò    ÒHr be arbitrary subgroups of G and let

Tt :=
Lt

i=1 R[GÛHi]
ReŁ(t)

, t 2 [[1Ò r]] where ReŁ(t) is the diagonal submodule of
Lt

i=1 R[GÛHi]. We

have that pTt =
Lt

i=1 Fp[GÛHi]
FpeŁ(t)

, where FpeŁ(t) is the diagonal submodule of
Lt

i=1 Fp[GÛHi].

First, we will calculate dimFp

�
(pT1)G

�
.

PROPOSITION 3. Let G be a finite p-group, H an arbitrary subgroup of G, † 2
Hom(GÒCp), Ĥ := hgHg�1 j g 2 Gi the normal closure of H in G, dGÛĤ the min-

imum number of generators of the group GÛĤ. Let ã1: FpeŁ(1) ! Fp[GÛH] be the
Fp[G]-homomorphism given by ã1(x) =

P
õ2GÛH xõ, and let ãŁ1: H1(GÒ FpeŁ(1)) !

H1(GÒ Fp[GÛH]) be the map induced by ã1 on the cohomology groups. Then

(a) dimFp

�
( pT1)G

�
= dimFp

 �
Fp[GÛH]
FpeŁ(1)

�G
!

= dimFp

�
ker(ãŁ1)

�
.

(b) † 2 ker(ãŁ1) if and only if Ĥ � ker(†).
(c) ker(ãŁ1) ≤ Hom(GÛĤÒCp).

(d) dimFp

�
ker(ãŁ1)

�
= dGÛĤ. Therefore dimFp

�
( pT1)G

�
= dimFp

 �
Fp[GÛH]
FpeŁ(1)

�G
!

= dGÛĤ.

PROOF. (a) From the Fp[G]-exact sequence

0 ! FpeŁ(1)
ã1
! Fp[GÛH]

ô
!

Fp[GÛH]
FpeŁ(1)

! 0Ò

we obtain the long exact sequence in cohomology,

0 ! (FpeŁ(1))
G !

�
Fp[GÛH]

�G
! ( pT1)G ! H1(FpeŁ(1)) !

! H1
�
Fp[GÛH]

�
! H1( pT1) ! Ð Ð Ð 
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Since (Fp[GÛH])G ≤ Fp ≤ FpeŁ(1) we have the exact sequence of groups

0 ! FpeŁ(1)
ß3
! FpeŁ(1)

ß2
! ( pT1)G ß1

! H1(FpeŁ(1)) ! Ð Ð Ð 

It follows that ß1 is injective. Then we have the exact sequence of groups

0 ! ( pT1)G ! H1(FpeŁ(1))
ãŁ

1
! H1

�
Fp[GÛH]

�
! Ð Ð Ð 

Since G acts trivially on the module FpeŁ(1), we obtain the exact sequence

0 ! ( pT1)G ß1
! Hom(GÒCp)

ãŁ
1
! H1

�
Fp[GÛH]

�
! Ð Ð Ð 

So, ker(ãŁ1) = im(ß1) ≤ ( pT1)G =
�
Fp[GÛH]
FpeŁ(1)

�G
.

(b) The map ãŁ1: Hom(GÒCp) ! H1(Fp[GÛH]) is given by

ãŁ1(†) = ã1 Ž † + B1
�
GÒ Fp[GÛH]

�
Ò where ã1 Ž †(g) =

X
õ2GÛH

†(g)õ 8g 2 G

We have the following equivalences

† 2 ker(ãŁ1) () ãŁ1(†) = ã1 Ž † + B1
�
GÒ Fp[GÛH]

�
= B1

�
GÒ Fp[GÛH]

�
() ã1 Ž † 2 B1

�
GÒ Fp[GÛH]

�
() 9¢ 2 Fp[GÛH] such that ã1 Ž †(g) = (g � 1)¢Ò 8 g 2 G

From these equivalences it follows that † 2 ker(ãŁ1) ) Ĥ � ker(†). For the opposite
implication we assume that Ĥ � ker(†). We will prove that † 2 ker(ãŁ1). For this, it
suffices to show the existence of an element ¢ 2 Fp[GÛH] such that ã1 Ž†(g) = (g� 1)¢
for all g 2 G.

We set ¢ :=
P
õ2GÛH sõõ 2 Fp[GÛH]. As candidates for the sõ we set sgH := sH �†(g).

The definition of sõ = sgH does not depend on the representative of the class õ. Thus, if
¢ =

P
õ2GÛH sõõ =

P
xH2GÛH

�
sH � †(xõ)

�
õ, where xõ is any representative of the class õ

then ¢ satisfiesã1Ž†(g) = (g�1)¢, for all g 2 G. Therefore† 2 ker(ãŁ1) , Ĥ � ker(†).
(c) Let † 2 ker(ãŁ1) � Hom(GÒCp). We have that † 2 ker(ãŁ1) , Ĥ � ker(†) with

Ĥ� G. Therefore, for each † 2 ker(ãŁ1), there exists a unique †̂ 2 Hom(GÛĤÒCp) such
that †̂(gĤ) = †(g) for all g 2 G. Let ö: ker(ãŁ1) ! Hom(GÛĤÒCp) be given by ö(†) = †̂.
We have that ö is an isomorphism.

(d) Since GÛĤ is a finite p-group we have that HomZ(GÛĤÒCp) ≤

HomZ

�
GÛĤ

Φ(GÛĤ)
ÒCp

�
where Φ(GÛĤ) is the Frattini subgroup of GÛĤ. From (c) and

from [15, Theorem 1.16] it follows that

dimFp

�
ker(ãŁ1)

�
= dimFp

0
@HomZ

0
@ GÛĤ

Φ(GÛĤ)
ÒCp

1
A
1
A = dGÛĤ

Now, we calculate dimFp

�
( pTr)G

�
for r ½ 2.

https://doi.org/10.4153/CJM-1998-061-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-061-8
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PROPOSITION 4. Let G be a finite p-group, H1Ò    ÒHr arbitrary subgroups of G. For
each i 2 [[1Ò r]], let Ĥi := hgHig�1 j g 2 Gi be the normal closure of the subgroup Hi

in G. We set Ĥ := Ĥ1 Ð Ð Ð Ĥr and let dGÛĤ be the minimum number of generators of the

group GÛĤ. Then dimFp

�
( pTr)G

�
= r � 1 + dGÛĤ.

PROOF. For each i 2 [[1Ò r]] we consider the maps ãi: FpeŁi ! Fp[GÛHi] such that
ãi(x) =

P
õ2GÛHi

xõ, where FpeŁi is the diagonal submodule of Fp[GÛHi]. Since the group
G acts trivially on FpeŁi we have that H1(GÒ FpeŁi ) ≤ Hom(GÒCp). Let ãŁi be the map
induced by ãi on the cohomology groups, that is

ãŁi : Hom(GÒCp) ! H1
�
GÒ Fp[GÛHi]

�

such that, for each† 2 Hom(GÒCp), ãŁi (†) = ãiŽ†+B1(GÒ Fp[GÛHi]), whereãiŽ†(g) =P
õ2GÛHi

†(g)õ8g 2 G. We set FpeŁ := FpeŁ(r). We consider the Fp[G]-exact sequence

0 ! FpeŁ
ã
!

rM
i=1
Fp[GÛHi]

ô
!

Lr
i=1 Fp[GÛHi]
FpeŁ

! 0Ò

where (xÒ    Ò x)
ã
! (

P
õ2GÛH1

xõÒ    Ò
P

õ2GÛHr
xõ). Therefore ã = (ã1Ò    Ò ãr). We

obtain the long exact sequence in cohomology,

0 ! (FpeŁ)G ß3
!

� rM
i=1
Fp[GÛHi]

�G ß2
! ( pTr)

G ß1
! H1(GÒ FpeŁ)

ãŁ

!

ãŁ

!
rM

i=1
H1
�
GÒ Fp[GÛHi]

�
! H1( pTr) ! Ð Ð Ð Ò

where for each † 2 Hom(GÒCp) we have ãŁ(†) =
�
ãŁ1(†)Ò    Ò ãŁr (†)

�
. Since the group

G acts trivially on FpeŁ, we obtain the exact sequence

0 ! FpeŁ
ß3
! (FpeŁ)r ß2

! ( pTr)G ß1
! Hom(GÒCp)

ãŁ

!

ãŁ

!
rM

i=1
H1
�
GÒ Fp[GÛHi]

�
! H1( pTr) ! Ð Ð Ð (2)

Since ker(ãŁ) = im(ß1), from (2) we obtain the Fp-exact sequence

0 ! FpeŁ
ß3
! (FpeŁ)r ß2

! ( pTr)
G ß1
! ker(ãŁ) ! 0(3)

Therefore, r = dimFp

�
ker(ß2)

�
+ dimFp

�
im(ß2)

�
= 1 + dimFp

�
ker(ß1)

�
. It follows that

dimFp

�
ker(ß1)

�
= r � 1. From (3) we obtain the Fp-exact sequence

0 ! (FpeŁ)r�1 ! ( pTr)G ! ker(ãŁ) ! 0(4)

Since (FpeŁ)r�1 is Fp-injective, we have that dimFp

�
( pTr)G

�
= r� 1 + dimFp

�
ker(ãŁ)

�
.
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From Proposition 3 (b) it follows that for each i 2 [[1Ò r]] the map † is characterized
by † 2 ker(ãŁi ) , Ĥi � ker(†). Since ãŁ(†) =

�
ãŁ1(†)Ò    Ò ãŁr (†)

�
, we have that

† 2 ker(ãŁ) () † 2 ker(ãŁi ) 8 i 2 [[1Ò r]]Ò

() Ĥi � ker(†) 8 i 2 [[1Ò r]]Ò

() Ĥ = Ĥ1 Ð Ð Ð Ĥr � ker(†)

In a similar fashion, as in the proof of Proposition 3 (c), it can be proven that
ker(ãŁ) ≤ Hom(GÛĤÒCp). Therefore dimFp

�
ker(ãŁ)

�
= dGÛĤ.

PROPOSITION 5. Let LÛK be a finite Galois p-extension of cyclotomic Zp-fields of
CM-type with Galois group G = Gal(LÛK) such that ñ�K = 0, ñ�L = 0. Let H1Ò    ÒHr be
arbitrary subgroups of G. Reordering the indices and taking conjugates, if necessary, let
1 � i1 Ú i2 Ú Ð Ð Ð Ú is�1 Ú is = r be such that

H1Ò    ÒHi1�1 � Hi1

Hi1+1Ò    ÒHi2�1 � Hi2

...

His�1+1Ò    ÒHis�1 � His = Hr

and that the subgroups Hi1 ÒHi2 Ò    ÒHis satisfy the condition: If for 1 � j, k � s, there
exists some g 2 G such that Hg

ij
= gHijg

�1 � Hik , then j = k. Let A2 := fi1Ò i2Ò    Ò isg
and A1 := [[1Ò r]] � A2. Then

rL
i=1

R[GÛHi]

ReŁ
≤
M
i2A1

R[GÛHi]
M

L
i2A2

R[GÛHi]

ReŁA2

Ò

where ReŁA2
:= f(

P
õ2GÛHi1

xõÒ    Ò
P

õ2GÛHis
xõ) 2

L
i2A2 R[GÛHi] j x 2 Rg.

PROOF. For each j 2 [[1Ò s]], we set

Λˆ̊ˆ̧ : R[GÛHij ] ! R[GÛHˆ̊ˆ̧ ]Ò
X

†2GÛHij

a†† !
X

†2GÛHij

a†
X
õ�†

õ2GÛHˆ̊ˆ̧

õÒ

where ˆ̊ˆ̧ 2 [[ij�1 + 1Ò ij � 1]], i0 = 0. We have that Λˆ̊ˆ̧ is a Zp[G]-monomorphism. We set

Λ:
rM

i=1
R[GÛHi] !

Lr
i=1 R[GÛHi]

ReŁ
Ò

(ò1Ò    Ò òij Ò    Ò òr) ! (c1Ò    Ò cr�1Ò cr)Ò

where

ct =
(
òt + Λt(òij ) if t 2 [[ij�1 + 1Ò ij � 1]]
òij if t = ij.
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The map Λ is a Zp[G]-epimorphism and ker(Λ) = D ≤ ReŁA2
, with D �

Lr
i=1 R[GÛHi],

D :=
²�

0Ò    Ò 0Ò
X

†2GÛHi1

x†Ò 0Ò    Ò 0Ò
X

†2GÛHi2

x†Ò 0Ò    Ò 0Ò
X

†2GÛHis

x†
� þþþ x 2 R

¦


In (1), from Proposition 5 it follows that

Ω#

0
BBBB@

rL
i=1

R[GÛGi]

ReŁ

1
CCCCA ≤

M
i2A1

R[G]
R[GÛGi]

M
Ω#

0
BB@
L

i2A2

R[GÛGi]

ReŁA2

1
CCA 

An essential part in the demonstration of the Zp[G]-indecomposability of the module

Ω#
 L

i2A2
R[GÛGi]

ReŁA2

!
is the Fp[G]-indecomposability of the Fp[G]-module

p

 L
i2A2

R[GÛGi]

ReŁA2

!
≤
L

i2A2
Fp[GÛGi]

FpeŁA2

.

If F is a field and X is a finite set, we set X̂ :=
P

x2X x 2 F[X].

PROPOSITION 6. Let G be a finite p-group and let H1Ò    ÒHr be subgroups of G.
Consider the natural action of G on the set S :=

Ur
i=1 GÛHi. Then, as Fp[G]-modules,Lr

i=1 Fp[GÛHi] ≤ Fp

hUr
i=1 GÛHi

i
and, therefore,

Lr
i=1 Fp[GÛHi]
FpeŁ ≤ Fp[S]

FpŜ
as Fp[G]-modules.

PROOF. The mapping û:
Lr

i=1 Fp[GÛHi] ! Fp

hUr
i=1 GÛHi

i
, such that

û
�� X

õ12GÛH1

aõ1õ1Ò Ð Ð Ð Ò
X

õr2GÛHr

aõrõr

��
=

rX
i=1

X
õi2GÛHi

aõiõi

is an Fp[G]-isomorphism.
Kindly, Professor Alfred Weiss supplied the proof that the Fp[G]-module Fp[S]

FpŜ
is

Fp[G]-indecomposable, where S :=
U

i2A2
GÛGi. Moreover, Professor Weiss proves that

the F[G]-module F[S]
FŜ

is an indecomposable F[G]-module, where F is an arbitrary field
of characteristic p, G a finite p-group and S :=

Sr
i=1 GÛHi with Hi arbitrary subgroups of

G subject to the condition that Hg
i = gHig�1 � Hj for some g 2 G , i = j.

PROPOSITION 7 (WEISS). Let G be a finite p-group, F a field of characteristic p, S a
finite set, such that G acts on S, H a subgroup of G acting by restriction on S and B an
F[G]-module. Then

(a) The set S := fX̂ j X is a H-orbit in Sg is an F-base of the module (F[S])H. In
particular, the set S̄ := fX̂ + FŜ j X̂ 2 Sg is F-generator of the module (F[S])H

FŜ
.

(b) Every f 2 EndF[G](B) induces an map f̂ 2 EndF

�
B

IGB

�
given by f̂ (b + IGB) =

f (b) + IGB.
(c) We consider the homomorphism of F-algebras †: EndF[G](B) ! EndF

�
B

IGB

�
such

that †( f ) = f̂ and let A := †
�
EndF[G](B)

�
. Then A

rad(A) ≤
EndF[G] (B)

rad(EndF[G](B)) , where rad(A)
denotes the Jacobson radical of A.

(d) F[S]
FŜ

is an indecomposable F[G]-module if and only if A is a local ring.
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PROOF. (a) Let x =
P

s2S rss 2 (F[S])H . If Xi, i 2 [[1Ò t]] are the H-orbits over S, we
have that x =

Pt
i=i ri

P
s2Xi s =

Pt
i=1 riX̂i. It follows that the set S is an F-generator of

(F[S])H . If
Pt

i=i biX̂i = 0 then bi = 0 8 i 2 [[1Ò t]]. It follows that S is an F-base.
(b) We have that f (IGB) = IG f (B) and IGB � ker(ô Ž f ), where ô is the canonical

projection. So, there exists a unique f̂ 2 EndF[G]

�
B

IGB

�
as is required. Since G acts

trivially on B
IGB , EndF[G]

�
B

IGB

�
≤
�
EndF

�
B

IGB

��G
≤ EndF

�
B

IGB

�
.

(c) From [12, Lemma 2.21], we have that IG is a nilpotent ideal. It follows that
ker(†) = f f 2 EndF[G](B) j f (B) � IGBg is a nilpotent ideal. From [1, Corollary 15.10]
we obtain that ker(†) � rad

�
EndF[G](B)

�
. From [3, Proposition 5.1-iii] it follows that

rad
�

EndF[G](B)
ker(†)

�
≤

rad
�

EndF[G](B)
�

ker(†) . Since †: EndF[G](B) ! A is an epimorphism, we have

that EndF[G](B)
ker(†) ≤ A.

(d) It follows from [3, Proposition 6.10]; [3, Proposition 5.21] and (c).
Let G be a finite p-group, H a subgroup of G such that G acts on a finite set S and let

X be an H-orbit of S. We say that X is a Weiss H-orbit over S if X contains some s 2 S
such that the stabilizer Gs satisfies Gs � H. We have that X is a Weiss H-orbit over S if
and only if Gs = Hs for some s 2 X if and only if Gs � H for some s 2 X.

PROPOSITION 8 (WEISS). Let G be a finite p-group, F a field of characteristic p, S
a finite set such that G acts on SÒ H a subgroup of G acting by restriction on S. Then
B := fTrGÛH(X̂) j X a Weiss H-orbitg is an F-base of the module TrGÛH(F[S]H).

PROOF. Let ¢ 2 TrGÛH(F[S]H). Then ¢ = TrGÛH(
Pt

i=1 riX̂i) =
Pt

i=1 ri TrGÛH(X̂i) where
ri 2 F and Xi, i 2 [[1Ò t]] are the H-orbits over S. Let s 2 S and let Xi be an H-orbit over
S such that s 2 Xi. We have that if H =

U[H:Hs]
i=1 hiHs, then Xi = fhis j i 2 [[1Ò [H : Hs]]]g.

So, TrGÛH(X̂i) = TrGÛH TrHÛHs
(s) = TrGÛHs

(s) = TrGÛGs
TrGsÛHs

(s) = TrGÛGs
([Gs : Hs]s) =

[Gs : Hs] TrGÛGs
(s) =

(
Ôs if Gs = Hs

0 otherwise,
where Ôs is the G-orbit over S containing

s. Hence ¢ =
Pt

i=1 ri[Gs : Hs] TrGÛGs
(s) =

Pt
i=1 ri TrGÛH(X̂i), where the X0

i s are Weiss
H-orbits over S.

Clearly B is an F-linearly independent set.

PROPOSITION 9 (WEISS). Let G be a finite p-group, F a field of characteristic p,
H1Ò    ÒHr subgroups of G satisfying the condition

(Ł) Hg
i = gHig

�1 � Hj for some g 2 G () i = j

and such that G acts in a natural way on the set S :=
Ur

i=1 GÛHi. Then B := F[S]
FŜ

is an
indecomposable F[G]-module.

PROOF. Let A := f f̂ j f 2 EndF[G](B)g, where f̂ 2 EndF

�
B

IGB

�
and f̂ (x + IGB) =

f (x) + IGB. In order to prove the F[G]-indecomposability of the module B, it suffices to
prove that A is a local ring. Let vj := ô(Hj + FŜ), j 2 [[1Ò r]], where ô: B ! B

IGB is the
canonical projection. We have that V := fvj j j 2 [[1Ò r]]g is an F-generator set of the
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module B
IGB . The map ö: IGF[S] ! IG

�
F[S]
FŜ

�
given by

Pn
i=1 xiyi !

Pn
i=1 xi(yi + FŜ) is an

F[G]-epimorphism with ker(ö) ≤ FŜ. Thus IGB ≤ IGF[S]
FŜ

.
We consider x =

Pn
i=1 xiyi 2 IGF[S], where xi 2 IG, yi 2 F[S]. We have that

xiyi =
�X

g2G
rgg

�� rX
j=1

X
õj2GÛHj

aõjõj

�
=

rX
j=1

X
õj2GÛHj

X
g2G

(rgaõj )õj(5)

Therefore, for each õj 2 GÛHj and for each j 2 [[1Ò r]] the coefficients in
P

g2G(rgaõj g)õj

satisfy
P

g2G rgaõj = 0. Given
Pr

i=1 aivi, any linear F-combination of the vi, equal to zero,
it follows that (a1H1 + Ð Ð Ð + arHr) + FŜ 2 IGB; so ai = 0 8 i 2 [[1Ò r]]. Therefore V is an
F-base of B

IGB .

Since f (Hj + FŜ) 2 F[S]Hj

FŜ
, from Proposition 7 (b), it follows that f (Hj + FŜ) =�P

X2SÛHj
aj(X)X̂

�
+ FŜ, where aj(X) 2 F and SÛHj represents the set of Hj-orbits over S.

Since FŜ = Ŝ + FŜ, we have that

FŜ = f (Ŝ + FŜ) = f
� rX

j=1
TrGÛHj

(Hj + FŜ)
�

=
rX

j=1

X
X2SÛHj

aj(X) TrGÛHj
(X̂) + FŜ

If X is not a Weiss Hj-orbit, it follows from Proposition 8 that TrGÛHj
(X̂) = 0. Therefore

rX
j=1

X
X2SÛHj

aj(X) TrGÛHj
(X̂) + FŜ =

rX
j=1

X
X2U

aj(X) TrGÛHj
(X̂) + FŜÒ

where U is the set of Weiss Hj-orbits over S. Since X is an Hj-orbit over S, we have that
for some i 2 [[1Ò r]], X = fgg0Hi j g 2 Hjg.

Since X is a Weiss H-orbit over S, it follows that there exists some xg0Hi 2 X such that
Gxg0Hj � Hj. We have that Gxg0Hi = Hxg0

i . Therefore Hxg0

i � Hj. Hence, from condition (Ł)
it follows that i = j. Therefore g0 2 NG(Hj). Thus X = fg0Hjg. Hence

rX
j=1

X
g02NG(Hj)

aj

�
fg0Hjg

�
TrGÛHj

(g0Hj) 2 FŜ

Since TrGÛHj
(g0Hj) =

P
z2GÛHj

zHj, it follows that

rX
j=1

X
z2GÛHj

X
g02NG(Hj)

aj

�
fg0Hjg

�
zHj 2 FŜ

So, X
g02NG(Hj)

aj

�
fg0Hjg

�
=

X
g02NG(Ht)

at

�
fg0Htg

�
8 tÒ j 2 [[1Ò r]]

Thus, the element

a( f ) :=
X

g02NG(Hj)
aj

�
fg0Hjg

�
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is independent of j. Thus,

f̂ (vj) = ô
�
f (Hj + FŜ)

�
=

X
g02NG(Hj)

aj

�
fg0Hjg

�
ô(g0Hj + FŜ) = a( f )vj

So, f̂ is the multiplication by the constant a( f ). Hence A ≤ fa( f ) j f 2 EndF[G](B)g.
Therefore A is a local ring.

PROPOSITION 10. Let G be a finite p-group and M a p-torsion Zp[G]-module.
(a) If pM is an indecomposable Fp[G]-module, then M is an indecomposable Zp[G]-

module.
(b) Let M be a p-divisible Zp[G]-module such that pM is an indecomposable Fp[G]-

module. Then (R[G]bÒ h) is the injective Zp[G]-envelope of M for some b 2 N0,
coker(h) does not have injective Zp[G]-components and Ω#(M) is an indecompos-
able Zp[G]-module.

PROOF. [9, Proposition 2.25].

PROPOSITION 11. With the conditions and notations in Proposition 5, let Hi = Gi.

Then Ω#
 L

i2A2
R[GÛGi]

ReŁA2

!
is an indecomposable Zp[G]-module. Furthermore, as Zp[G]-

modules

Ω#

0
@Li2A2 R[GÛGi]

ReŁA2

1
A ≤

R[G]jA2j�1+dGÛĤL
i2A2

R[GÛGi]

ReŁA2

and as Zp-modules

Ω#

0
@Li2A2 R[GÛGi]

ReŁA2

1
A ≤ RaÒ

where a = jGjdGÛĤ +
P

i2A2

�
jGj � jGj

jGij

�
+ 1 � jGj.

PROOF. From Proposition 5 follows the existence of a Zp[G]-monomorphism f :

M ! T, where M :=
L

i2A2
R[GÛGi]

ReŁA2

and T :=
Lr

i=1 R[GÛGi]
ReŁ .

From Proposition 1, it follows that (R[G])c is the injective Zp[G]-envelope of T,
where c = dimFp

�
( pT)G

�
. From [9, Proposition 1.11], we have that the injective Zp[G]-

envelope of M is (R[G]tÒ ö) for some t 2 N0. As in the proof of Proposition 1, we have
that coker(ö) does not have injective Zp[G]-components. From Proposition 10 follows
that Ω#(M) is an indecomposable Zp[G]-module. From Propositions 1, 2 and 4, follows
that the Zp[G]-sequence

0 ! M ! R[G]jA2j�1+dGÛĤ ! Ω#(M) ! 0

is exact. Hence, Ω#(M) ≤ R[G]
jA2j�1+d

GÛĤL
i2A2

R[GÛGi ]

ReŁ
A2

. So, we obtain the Zp[G]-module structure of

Ω#(M) and the value of a.
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The first main result of this paper is the following

THEOREM 1. Let LÛK be a finite Galois p-extension of cyclotomic Zp-fields of CM-
type with Galois group G = Gal(LÛK), such that ñ�K = 0, ñ�L = 0. Let P1Ò    ÒPr be the
ramified prime divisors in LÛK with G1Ò    ÒGr their decomposition groups respectively.
For each i 2 [[1Ò r]] let Ĝi := hgGig�1 j g 2 Gi be the normal closure of the subgroup Gi

in G. We set Ĥ := Ĝ1 Ð Ð Ð Ĝr and dGÛĤ the minimum number of generators of the group

GÛĤ. Let CL
�(p) be the minus part of the p-subgroup of the class group of L. Reordering

the indices and taking conjugates, if necessary, let 1 � i1 Ú i2 Ú Ð Ð Ð Ú is�1 Ú is = r
such that

G1Ò    ÒGi1�1 � Gi1

Gi1+1Ò    ÒGi2�1 � Gi2

...

Gis�1+1Ò    ÒGis�1 � Gis = Gr

and that they satisfy the condition: If for 1 � j, k � s, there exists some g 2 G such that
Gg

ij
= gGij g

�1 � Gik , then j = k. Let A2 := fi1Ò i2Ò    Ò isg and A1 := [[1Ò r]]�A2 . Then the
modular decomposition of CL

�(p) in terms of indecomposable Zp[G]-modules is given
by

CL
�(p) ≤ R[G]ï

�
K�dGÛĤ

MM
i2A1

R[G]
R[GÛGi]

M
Ω#

0
BB@
L

i2A2

R[GÛGi]

ReŁA2

1
CCA Ò

where ReŁA2
= f(

P
õ2GÛGi1

xõÒ    Ò
P

õ2GÛGis
xõ) 2

L
i2A2 R[GÛGi] j x 2 Rg.

As Zp[G]-modules we have that

W := Ω#

0
BB@
L

i2A2

R[GÛGi]

ReŁA2

1
CCA ≤

R[G]jA2j�1+dGÛĤL
i2A2

R[GÛGi]

ReŁA2

;

W is an indecomposableZp[G]-module and as Zp-module W ≤ Ra, where a = jGjdGÛĤ +P
i2A2

�
jGj � jGj

jGij

�
+ 1 � jGj.

PROOF. From (1) we have that

CL
�(p) ≤ CL

�(p)(0) ý CL
�(p)(1) ≤ R[G]u ý Ω#(T)

From Proposition 2 it follows that

CL
�(p)(0) ≤ R[G]r�1�c+ï�K Ò

where c = dimFp

�
( pT)G

�
. From Proposition 4 we obtain that

dimFp

�
( pT)G

�
= dimFp

�
( pTr)G

�
= r � 1 + dGÛĤ
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If C is a subgroup of G in [18, Proposition 4] is shown that as Zp[G]-modules
Ω#(R[GÛC]) ≤ R[G]

R[GÛC] . Moreover, the Zp[G]-modules R[GÛC] and R[G]
R[GÛC] are inde-

composable Zp[G]-modules. Therefore,

M
i2A1

Ω#(R[GÛGi]) ≤
M
i2A1

R[G]
R[GÛGi]



Hence, from Proposition 5 we obtain that the modular decomposition of CL
�(p)(1) is

given by

CL
�(p)(1) ≤ Ω#(T) ≤

M
i2A1

R[G]
R[GÛGi]

ý W

Finally, from Proposition 11 we obtain that W is an indecomposable Zp[G]-module,
as well as we obtain its Zp-module structure.

4. Jacobian variety. For a function field L over k, in addition to the notation intro-
duced earlier, we denote by PL and D0L, respectively, the group of principal divisors and
the group of divisors of degree 0. The p-subgroup C0ÒL(p) of the group of divisor classes of
degree 0 in L has structure of Zp-module with action given by (

P1
i=0 aipi)(OPL) = OaPL,

where a =
Pn0

i=0 aipi and n0 2 N satisfies Opm
2 PL 8m ½ n0. Let G be a finite subgroup

of AutK(L). Then C0ÒL(p) has structure of G-module with the action of G on C0ÒL(p) given
by õ(OPL) = OõPL, õ 2 G. Therefore C0ÒL(p) has the structure of Zp[G]-module.

A formal product M =
Q

P2PL
PnM (P ) where nM (P ) 2 N0 and nM (P) = 0, except for

a finite number of prime divisors of L, will be called a modulus over L. We will denote
by D0LÒM the group of divisors of L of degree zero relatively prime to M , PLÒM will

denote the group of principal divisors (ã) such that ã � 1 mod M and C0LÒM :=
D0LÒM
PLÒM

will denote the group of classes of degree zero associated to the modulus M .
For any modulus M over L we have a commutative algebraic group, denoted by JLÒM

called the generalized Jacobian of L corresponding to the modulus M (for the definition
and results about Jacobians we refer to Serre [14]). As groups we have C0LÒM ≤ JLÒM
[14, Theorem 1, p. 88]. For M = ë, where ë is the unit divisor of L we have that JLÒë = JL,
where JL is the Jacobian variety associated to the function field L [14, p. 90].

Let M and M 0 be modulii over L. We say that M 0 divides M , denoted by M 0 j M ,
if we have that nM (P ) ½ nM 0(P ) 8P 2 PL. Let M , M 0 be modulii over L such
that M 0 j M . Then there exists a unique epimorphism ß: JLÒM ! JLÒM 0 such that
HM 0jM := ker(ß) is a connected subgroup of JLÒM [14, Proposition 6, p. 91]. We set

úLÒM := dimFp

�
pJLÒM (p)

�
. The number úLÒM is the p-rank of the generalized Jacobian

JLÒM and ú:
L = dimFp

�
pJL(p)

�
, the p-rank of the Jacobian variety associated to LÛk, is

called the Hasse-Witt invariant of L.
We will denote by p an arbitrary rational prime number. Let LÛK be a finite Galois

p-extension of algebraic function fields of one variable with Galois group G = Gal(LÛK)
and field of constants k, an algebraically closed field of characteristic p. Let

S := fP1ÒP2Ò    ÒPrgÒ Ŝ :=
n

Q(i)
t j i 2 [[1Ò r]]Ò t 2 [[1Ò psi ]]

o
Ò(6)
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where S is the set consisting of the prime divisors Pi of K which are ramified in L, Ŝ is
the set consisting of the prime divisors Q(i)

t of L such that the Q(i)
t are the divisors in L

above Pi and psi is the decomposition number of the prime divisor Pi. If Q(i)
t 2 Ŝ we

define G(i)
t := fõ 2 G j Q(i)õ

t = Q(i)
t g = Dec(Q(i)

t j Pi), the decomposition group of the
prime divisor Q(i)

t . We have that if Q(i)
t0 is any other prime divisor of L dividing the prime

divisor Pi, then the groups G(i)
t0 and G(i)

t are conjugate. It follows that as Zp[G]-modules
R[GÛG(i)

t ] ≤ R[GÛG(i)
t0 ]. If t 2 [[1Ò psi ]], we choose Gi, one representative in the conjugacy

class of G(i)
t and we define Qi := Q(i)

t ; so Gi := fõ 2 G j Qõ
i = Qig = Dec(Qi j Pi). We

define the following modulii over L and over K

N :=
Y

Q2Ŝ

QÒ M :=
Y
P2S

P(7)

where SÒ Ŝ are the sets given in (6). Let JLÒN , JKÒM be the generalized Jacobians of L and
of K associated to the modulus N and M , respectively.

Since k is an algebraically closed field, we have that the inertia degree fQ of every
prime divisor Q of L and of K is 1. It follows that the degree of the modulus N is
deg(N ) =

Pr
i=1 psi =

Pr
i=1

jGj
jGi j

. We also have deg(M ) = r.

PROPOSITION 12. Let LÛK be a finite Galois p-extension of algebraic function fields
of one variable with field of constants k, an algebraically closed field of characteristic
p and Galois group G = Gal(LÛK). Let S, Ŝ be the sets of primes given in (6) and
G1Ò    ÒGr the decomposition groups of the prime divisors of L that divide the ramified
prime divisors of K given in (4). Let

N :=
Y

Q2Ŝ

QÒ M :=
Y
P2S

P(8)

and JLÒN , JKÒM be the respective generalized Jacobians. Let JL(p) be the p-torsion part
of the Jacobian variety associated to LÛk. Then

(a) pJLÒN (p) is a free Fp[G]-module. Moreover pJLÒN (p) ≤ Fp[G]r�1+úK .

(b) dimFp

�
p

�
JLÒN (p)G

��
= r � 1 + úK.

(c) There exists a Zp[G]-exact sequence 0 ! HëÛN (p) ! JLÒN (p) ! JL(p) ! 0.

(d) As Zp[G]-modules HëÛN (p) ≤
Lr

i=1 R[GÛGi]
ReŁ , and HëÛN (p) ≤ Rdeg(N )�1 as Zp-

modules.
(e) dimFp

�
pJKÒM (p)

�
½ dimFp

�
p

�
JLÒN (p)

�G
�

.

(f) JLÒN (p) ≤ R[G]r�1+úK .
(g) There exists a Zp[G]-exact sequence

0 !
Lr

i=1 R[GÛGi]
ReŁ

! R[G]r�1+úK ! JL(p) ! 0Ò(9)

and for some v 2 N0,

JL(p) ≤ JL(p)(0) ý JL(p)(1) ≤ R[G]v ý Ω#

0
BBBB@

rL
i=1

R[GÛGi]

ReŁ

1
CCCCA = R[G]v ý Ω#(T)Ò(10)
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where T :=
Lr

i=1 R[GÛGi]
ReŁ .

PROOF. (a) It follows using the Deuring-S̆afarevic̆ formula and proceeding as in [17,
Proposition 8].

(b) In general we have that if M is a Zp[G]-module then, as Zp[G]-modules ( pM)G ≤

p(MG). From (a) it follows that as Fp[G]-modules
�

pJLÒN (p)
�G

≤ Fr�1+úK
p . Therefore

dimFp

�
p

�
JLÒN (p)G

��
= dimFp

��
pJLÒN (p)

�G
�

= r � 1 + úK .

(c) From [14, Proposition 6, p. 91] applied to the modulus N Ò ë over L follows
the existence of a unique epimorphism ß: JLÒN ! JLÒë such that HëjN := ker(ß) is a
connected subgroup of JLÒN . Therefore there exists an exact sequence of groups

0 ! HëjN ! JLÒN
ß
! JL ! 0(11)

Since the torsion of HëjN is pn-divisible for all n 2 N, we have that there exists a
Zp[G]-exact sequence

0 ! pnHëjN ! pn JLÒN ! pn JL ! 0(12)

In general, if A is an abelian group we have that A(p) ≤ lim
!

pm A ≤
S1

m=1 pm A. Therefore,

from (12), we obtain the Zp-exact sequence

0 ! HëjN (p) ! JLÒN (p) ! JL(p) ! 0(13)

Moreover, since G acts in a natural way on these modules, we have that (13) is a
Zp[G]-exact sequence.

(d) [18, p. 267].

(e) From [18, Proposition 9], we have that the conorm map û: JKÒM (p) !
�
JLÒN (p)

�G

is surjective. Therefore,

úKÒM = dimFp

�
p

�
JKÒM (p)

��
½ dimFp

�
p

�
JLÒN (p)

�G
�


(f) From (e), we obtain that

dimFp

�
p

�
JKÒM (p)

�
= úKÒM = r � 1 + úK ½ dimFp

�
p

�
JLÒN (p)

�G
�


Now, we have that úLÒN = dimFp

�
pJLÒN (p)

�
= úL +

Pr
i=1

jGj
jGij

� 1. Therefore, from the

Deuring-S̆afarevic̆ formula, we obtain that úLÒN = jGj(r�1+úK) = jGjúKÒM . It follows that

dimFp

�
pJLÒN (p)

�
½ jGj dimFp

�
p

�
JLÒN (p)

�G
�

. From Kato’s Lemma [10, Proposition 2],

we obtain that pJLÒN (p) ≤ Fp[G]r�1+úK . Finally, as in [18, Theorem 9] we obtain that as
Zp[G]-modules JLÒN (p) ≤ R[G]r�1+úK .

(g) It follows from (d), (f) and (13).
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The sequence (9) is similar to theZp[G]-exact sequence in [18, Theorem 4] for number
fields, so the Zp[G]-exact sequence (9) determines uniquely the Zp[G]-module structure
of JL(p). Similarly, as in [18, Theorem 2], we have that for some v 2 N0

JL(p) ≤ R[G]v MΩ#

0
BBBB@

rL
i=1

R[GÛGi]

ReŁ

1
CCCCA (14)

The expression (14) gives us implicitly the structure of JL(p) as Zp[G]-module.
As analogous to Propositions 1, 2 and 4, we have that R[G]c is the injective Zp[G]-

envelope of T, where c is the minimum natural number such that there exists a Zp[G]-
monomorphism û: T ! R[G]c and there exists an Zp[G]-exact sequence 0 ! T !
R[G]c ! Ω#(T) ! 0.

For each i 2 [[1Ò r]], let Ĝi := hgGig�1 j g 2 Gi be the normal closure of the
subgroup Gi in G and let dGÛĜi

be the minimum number of generators of the group

GÛĜi. We set Ĥ := Ĝ1 Ð Ð Ð Ĝr. We have that JL(p)(0) ≤ R[G]v for some v 2 N0. Moreover
v = r � 1 � c + úK and c = dimFp

�
( pT)G

�
= r � 1 + dGÛĤ where dGÛĤ is the minimum

number of generators of the group GÛĤ.
In (14), from Proposition 5 it follows that

Ω#

0
BBBB@

rL
i=1

R[GÛGi]

ReŁ

1
CCCCA ≤

M
i2A1

R[G]
R[GÛGi]

M
Ω#

0
BB@
L

i2A2

R[GÛGi]

ReŁA2

1
CCA 

From Proposition 11 we have that the indecomposable Zp[G]-module

Ω#

0
BB@
L

i2A2

R[GÛGi]

ReŁA2

1
CCA ≤

R[G]jA2j�1+dGÛĤL
i2A2

R[GÛGi]

ReŁA2

and W ≤ Ra as Zp-modules, where a = jGjdGÛĤ +
P

i2A2

�
jGj � jGj

jGij

�
+ 1 � jGj.

As the second main result of this paper, we obtain unconditionally and explicitly, the
Galois module structure of JL(p).

THEOREM 2. Let LÛK be a finite Galois p-extension of algebraic function fields of
one variable with field of constants k, an algebraically closed field of characteristic
p and, let G = Gal(LÛK). Let P1Ò    ÒPr be the ramified prime divisors in LÛK with
G1Ò    ÒGr their decomposition groups respectively and let JL(p) be the p-torsion part of
the Jacobian variety associated to LÛk. For each i 2 [[1Ò r]], let Ĝi := hgGig�1 j g 2 Gi
be the normal closure of the subgroup Gi in G and let dGÛĜi

be the minimum number of

generators of the group GÛĜi. Let Ĥ := Ĝ1 Ð Ð Ð Ĝr and dGÛĤ be the minimum number of
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generators of the group GÛĤ. Reordering the indices and taking conjugates, if necessary,
let 1 � i1 Ú i2 Ú Ð Ð Ð Ú is�1 Ú is = r such that

G1Ò    ÒGi1�1 � Gi1

Gi1+1Ò    ÒGi2�1 � Gi2

...

Gis�1+1Ò    ÒGis�1 � Gis = Gr

and that they satisfy the condition: If for 1 � j, k � s, there exists some g 2 G such that
Gg

ij
= gGij g

�1 � Gik , then j = k. Let A2 := fi1Ò i2Ò    Ò isg and A1 := [[1Ò r]]�A2 . Then the
modular decomposition, in terms of indecomposableZp[G]-modules of JL(p), is given by

JL(p) ≤ R[G]úK � dGÛĤ

MM
i2A1

R[G]
R[GÛGi]

M
Ω#

0
BB@
L

i2A2

R[GÛGi]

ReŁA2

1
CCA Ò

where
ReŁA2

=
²� X

õ2GÛGi1

xõÒ    Ò
X

õ2GÛGis

xõ
�
2
M
i2A2

R[GÛGi] j x 2 R
¦


As Zp[G]-module we have that

W := Ω#

0
BB@
L

i2A2

R[GÛGi]

ReŁA2

1
CCA ≤

R[G]jA2j�1+dGÛĤL
i2A2

R[GÛGi]

ReŁA2

Ò

and W is an indecomposable Zp[G]-module and, as Zp-module, W ≤ Ra where a =

jGjdGÛĤ +
P

i2A2

�
jGj � jGj

jGij

�
+ 1 � jGj.

PROOF. Analogous to that of Theorem 1.
From Theorem 1 and Theorem 2, we see that the Galois module structure of the

p-torsion part of the Jacobian variety of an algebraic function field of one variable is
analogous to that of the minus part of the p-class group of a cyclotomic Zp-extension of
CM-type.
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