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INTEGRAL REPRESENTATION OF p-CLASS GROUPS IN
Z,-EXTENSIONSAND THE JACOBIAN VARIETY

PEDRO RICARDO LOPEZ-BAUTISTA AND
GABRIEL DANIEL VILLA-SALVADOR

ABSTRACT.  For anarbitrary finite Galoisp-extension L / K of 7,-cyclotomic number
fields of CM-type with Galois group G = Gal(L/K) such that the Iwasawa invariants
i 1y @rezero, we obtain unconditionally and explicitly the Galois module structure
of C_™(p), the minus part of the p-subgroup of the class group of L. For an arbitrary
finite Galois p-extension L/K of algebraic function fields of one variable over an
algebraically closed field k of characteristic p asits exact field of constantswith Galois
group G = Gal(L/K) we obtain unconditionally and explicitly the Galois module
structure of the p-torsion part of the Jacobian variety J (p) associated to L /k.

1. Introduction. LetL beanalgebraic number field L. It is said to be of CM-typeif
itisatotally imaginary quadratic extension of atotally real field. It iscalled acyclotomic
Zy-field if L = LoQo Where Lo is afinite extension of Q, the field of rational numbers,
Z, isthering of the p-adic integers and Q. is the cyclotomic Z,-extension of Q. For an
odd prime pwewill denote by L /K afinite Galois p-extension of Z,-cyclotomic number
fields of CM-type with Galois group G = Gal(L /K) such that the lwasawa invariants
ur, 1 are zero (a conjecture of lwasawa states that the p-part of the class group is
divisible. It implies i = 0 = ). Let L, be the intermediate fields associated to the
extension L /Lo. Let I, bethe group of ideals, P, the group of principal idealsand Cy,
the group of ideal classesof L. It iswell-known that, if C_(p) denotesthe set of p-torsion
elements of C, then, as groups, C ~ Ii_nj Ci,, CL(p) = Ii_r)n CrL.(p) and CL = @4 CL(0)
where g runs over the rational primes. We also have C_(p) =~ C.~(p) © C_*(p) and that,
as Zy-modules, C_~(p) = R't, where C_(p)* := {a | a € C.(p), &’ = +a}, J denoting
complex conjugation, A istheminuspariant A of thefieldL and R := Q,/ Z,, where Q,,
isthefield of the p-adic numbers. We havethat G acts naturally on the Z,-module Cy (p),
so that C.~(p), the minus part of the p-subgroup of the class group of L, has structure
of Zp[G]-module. Here Z,[G] denotes the group ring with coefficients in Z,. Iwasawa
obtained [7] the Q@p[G]-module structure of Homg, (C._‘(p). R) ®@7,Qp. Using this result,
he gave a new proof of the Kida-Kuzmin formulawhich, in this context, is analogousto
the Deuri ng—éafarevi(“: formulain theory of algebraic function fields of one variable.

We are interested in the explicit Galois module structure of C_~(p) as Zp[G]-module.
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The explicit Galois module structure of C_~(p) is known in some cases. The cases
known before this work are the following: when G is a cyclic group of order p or p?
(Gold-Madan [4]); when L /K is an extension unramified (Villa-Madan [17]); when the
p-th roots of unity are not present in K (Villa-Madan [18]); when K contains the p-roots
of unity and there exists a unique maximal decomposition group and this is normal in
G (VillaMadan [18]). This last family has as particular cases: L /K hasafully ramified
prime or G isacyclic group.

The following exact sequence of Z,[G]-modules was established in [18]:

;
EBl RIG/Gi] »
= = — - — 0.
0— Fme— = RIG % — G (p) = 0
This sequence determinesimplicitly the Galois module structure of C_~(p) and we have
that, as Z,[G]-modules,

&RIG/G]

(@) C(p) = RE" & Q" (lRe

whereuisanonnegativeinteger to bedetermined, Q* isthedual of the Heller’ sloop-space
operation, Gy, . . ., G are the decomposition groups of the prime divisors Py, .. . , P of

K ramified in L and Re" = {(Tyec/6, X0 - - -+ Toec)c, X0) € eral RIG/G] | x € R}.

As our first main result in this paper we obtain unconditionally and explicitly the
Galois module structure of C_.~(p) (Theorem 1).

Theinteger uin () isgivenin termsof A, the minus A Iwasawainvariant of K and
the minimum number of generators of the group G/ H, where H is the composite of the
normal closure of the G/sin G, (Propositions 2 and 4). The decompositionin () of the
second summand in terms of indecomposablemodulesis given in Propositions 5 and 10.

It has been known since the days of Gauss that thereis a strong analogy between the
theory of algebraic functions of one variable and the theory of algebraic numbers. In
fact, lwasawa laid the foundations of his theory in number fields, in an attempt to find
an analog of the group of divisor classes of degree 0 in algebraic functions. Section 4 is
devoted to algebraic function fields.

Let L/K be afinite Galois p-extension of algebraic function fields of one variable
with Galois group G = Gal(L /K) and field of constantsk, an algebraically closed field
of characteristic p, where p is an arbitrary rational prime number.

The group G acts naturally on several Z,-modules associated to L. Let J_ be the
Jacobian variety associatedto L. Then G actson J, and, by restriction, on »Jy, the group
of points of order dividing p". Let J.(p) = Iim prJL the p-torsion part of the Jacobian

variety associatedto thefunctionfield L / k. We havethat J, (p) is naturally G-isomorphic
to Co.L(p), the p-subgroup of Cq, the group of divisor classes of degree O of L. It is
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well-known that, as Z,-modules, Co (p) = R, where 7 is the Hasse-Witt invariant of
field L.

We are interested in the explicit Galois module structure of J_(p) as Z,[G]-module.

In the classical case, that is, when k is the field of complex numbers, the structure of
the group of divisor classes of degree 0 is given by the classical theorem of Abel and
Jacobi.

The explicit Galois module structure of J, (p) is known in some cases. One of the
cases is when there exists a unique maximal decomposition group and this is normal in
G. This family has as particular cases: when L /K has a fully ramified prime or when
L/K is acyclic extension [18]. In that paper the following Z,[G]-exact sequence was
obtained:

;
D RIG/G]
=

Re"
This sequence determines implicitly the Galois module structure of J_(p). It was proved
that, as Z,[G]-modules,

0— — RG]+ — J (p) — O.

& RG/G]

~ v, i=1
®) AP =RE'PQ" | =

where v is a nonnegative integer number to be determined and G, ..., G, are the
decomposition groups of the prime divisors Py, . . . . P: of K ramifiedinL.

For a finite Galois p-extension L /K we obtain unconditionally and explicitly the
Galois module structure of J_(p) (Theorem 2).

The integer v in (8) is given in terms of 7 the Hasse-Witt invariant of K and the
minimum number of generators of the group G/H, where H is the composite of the
normal closure of the G/sin G, (analogue of Propositions 2 and 4). The decomposition
in (8) of the second summand in terms of indecomposable modules is given as in
Propositions 5 and 10.

ACKNOWLEDGMENT. Theauthorsaregrateful to Professor A. Weissfor the help they
received from him during the preparation of this work.

2. Notations. We will denote by [, the finite field with p elements, C, the cyclic
group of order p, R thefield of real numbers, N := {1,2.3,...} and No := N U {0}. For
ne NwesetW, := {€ € C| " =1}, W(p) := Un2o W. We havethat R >~ W(p).

We will denotethe disjoint union of the sets X, ..., Xn by ity Xi.

Let G beafinite p-group. For aZ,[G]-module M wewriteM = M@ &M@, whereM©
isZ,[G]-injectiveand M hasnoinjective Z,[G]-components. If0 — M — Y — N — 0
is a Zp[G]-exact sequence with Y injective then the dual of the Heller's loop-space
operation is defined by Q#(M) =~ N®,

We denote by MC theset {(Ime M | gm=mVg € G},lg :=(g—1|ge G) C
Z[G] C Z,[G].
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I(M) will denote the only injective Z,[G]-envelope of M, up to isomorphism, and
P(M) will denotethe only projective Z,[G]-cover of M, up to isomorphism, if such cover
exists.

For n € N, we define the Z,[G]-homomorphism p™: M — M such that p"(m) = p"m
vm e M. We set »M := ker(p"). Then »M is the subgroup of elementsin M of order
dividing p".

Let H be a subgroup of G. A subset X of G that contains exactly one element of
each left coset of H in G is called a left transversal of H in G. If X is aleft transversal
of Hin G and M is a Zy[G]-module, we define the map Trg 14 MH — MC such that
Trgu(M) = Xgex gim. Trgy Will be called the transversal trace of H in G.

In general, if AisaG-module then H"(G, A) will denote the n-th cohomology group
of G with coefficients in the module A. We write H"(A) := H"(G, A) if the underlying
group G is clear. Thetrivial cohomology group will be denoted by 0, whether the group
structure of the module A is multiplicative or additive.

3. Integral representation of p-classgroups. Wewill denote by p an odd rational
prime number, L /K afinite Galois p-extension of cyclotomic Z,-fields of CM-type with
Galois group G = Gal(L/K) that satisfies i = 0, ux = 0. We assume W(p) C K. The
caseW(p) Z K hasbeen consideredin [18]. Let P;., ..., P’ betheprimesinK* := KNR
ramifiedin L* := L N R split in K and such that they are non-p primes, that is, Pi+|@ Zp.
Let Mo := Cong.« (P - - - PY) = P1Py - - - P,P; where Cony.  is the conorm map. Let
S:= {P..Pys....P},and S:= {QY | i € [L.r], t € [1g]}. where Sis the set
consisting of the prime divisors Q" of L such that Q" divides the prime divisor P;
and g; is the decomposition number of the prime divisor P;. If Q) € S we define
GV = {o e G| Q" = Q"} = Dec(Q" | P;) the decomposition group of the prime
divisor Q. 1ft € [1,g] wesetQ := QP andG; = {0 € G| Q' = Q } = Dec(Q; | P)).
Wewill say that G; isthe decomposition group of the prime divisor P;. If P; isany of the
previous primes, we define

HY" = Cong (P) = (@) -+ QF)”

where p& is the ramification index and g; is the decomposition number of the prime
PiinL/K. Let N := [T, HiH. We define Py = {(a) | @ € L*, @ = 1modN },
Iy :={O | Oisdivisor of L relatively primeto N }, Cy := Iy /Py theray classgroup,
TN ={(@) | @ € L%, () isrelatively primeto N }.

The Z,[G]-module structure of C_~(p) is obtained implicitly in [17] and [18]. We
have the Z,[ G]-exact sequence[17, p. 332],

0— (Tn /Pn)~(P) — Gy (P) — C(p) — 0.

We have that, as groups, (Ty /P )~ (p) & W(p)" % wheret = Y°/_, g, and 6k = 1 if
W(p) C K and 6k = 0 otherwise.

In[17, Theorem 5] is shown that as Z,[G]-modules (Ty /Py )~ (p) 2 @{Zle)(fK/Gi] and
in [18, Proposition 3] as Z,[G]-modules Cy (p) = RG] "+«
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Weset T := w Since éx = 1 we obtain the Z,[G]-exact sequence [18,
Theorem 1]
0—T— RG] ™ —C. (p) — 0.

Since RIG]"~1*« isaninjective Z,[G]-module we obtain that there exists someu > 0
such that as Z,[G]-modules [18, Theorem 2],
r
© RG/G]

@D CExCc (P@ec (p)? ~RGMPQ* ile"

= R[G]'@Q"(T),
where C_.~(p)©@ is the injective part of C_~(p) and C_~(p)¥ does not have injective
components. The implicit Zp[G]-module structure of C_~(p) is given in (1). To find
explicitly the structure of C_.~(p) we will calculate the value of u and we will find
the indecomposable Z,[G]-components of the second summand. Our first step is the
following

PropPoSITION 1. Let ¢ bethe minimum natural number suchthat thereexistsa Z,[GJ-
monomorphism¢: T — R[G]°. Then RIG]€ istheinjective Z,[G]-envelope of T and there
exists a Zp[G]-exact sequence 0 — T — R[G]® — Q*(T) — 0.

PROOF. Let (I(T), h) be the injective Z,[G]-envelope of T. It follows that R[G]® =
I(T) ® W for some Zp[G]-module W. It follows that 1(T) =~ R[G]¢ for somed < c.
ThereforewehaveaZ[G]-monomorphism ¢: T — R[G]¢. Sincecisminimumit follows
that d = c. Since p(R[G]®/T) = [FP‘E—? and this module does not have F,[G]-injective
components, it follows from [11, Lemma 3] that R{G]¢/ T does not have Z,[G]-injective
components. ]

ProPosITION 2. Let (R[G]°, h) betheinjective Z,[G]-envelopeof T and u € Ng such
that C. ~(p)©@ =~ R[G]". Then there exists an F,[G]-exact sequence

0— pT 3 F[G]° — Q¥,T) — 0.
Furthermore, theinteger uisgivenbyu=r — 1 —c+Ag and ¢ = dime,((pT)®).
ProoF. SinceT is ap-divisible module we obtain the F,[ G]-exact sequence
0— pT 3 F[G]° — pQ¥(T) — 0.

It follows from [9, Proposition 2.11] that Q*(,T) =~ ,Q*(T).
Since R[G]¢ and R[G]"~***« are injective Z,[G]-modules, we obtain the Z,[G]-exact
sequence
0— T — RG] — RG]Y@® Q*T) — 0.

From Proposition 1 and Schanuel’s Lemma for injective modules we have that

RIG]® & RIG]" & Q(T) ~ Q*(T) & RG] .
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Thereforeu=r —1—c+ \.
Letc’ = dimg, ((pT)®). From the F[G]-exact sequence

0— (,1)° 2 (FplCI)° — (,0%(M)°.

we obtain aFp[G]-monomorphism (,T)® iR Fp. Thusc’ <c.

We have that (Fp[G]°, f) is the injective Fp[G]-envelope of ,T. Therefore c is the
minimum nonnegative integer such that there exists an F,[G]-monomorphism h: pl —
FplG]°.

Since (pT)C = [Fg CFplG] ¢, we have that there exists an Fp[G]-monomorphism

p: (pT)G - [Fp[G]d-

Since [Fp[G]d is an injective Fp[G]-module and the inclusion map i:(,T)¢ — T
is an Fp[G]-monomorphism, it follows that there exists p: ,T — Fp[G]d, an Fy[G]-
homomorphism such that p = p o i. We have that p is aFp[G]-monomorphism because
otherwise if ker(p) # (0), then, sinceF,, isafield of characteristic p and G is afinite p-
group wewould havethat (ker(3))® # 0. Now, (ker(3)) = ker(3)n (,T)® = ker(p) = O.
Therefore p is an Fy[G]-monomorphism. Thusc < c'. ]

We now calculate di me((pT)G). LetHy,.... H: be arbitrary subgroups of G and let

Ti= %&?M],t € [1, r] where Rej isthe diagonal submoduleof @{_; RIG/H;]. We
= B FlG/H]
havethat ,T; = [Fp"i%

First, we will calculate dimg, ((,T1)¢).

, where F€f, is the diagonal submodule of @i, Fo[G/Hil.

ProOPOSITION 3. Let G be a finite p-group, H an arbitrary subgroup of G, v €
Hom(G, Cp), H := (gHg! | g € G) the normal closure of H in G, dG/g the min-
imum number of generators of the group G/ H. Let o Fp€lyy — Fp[G/H] be the
Fp[G]-homomorphism given by aa(X) = ,cq/mXo, and let o HY(G, Fo€a) —
H(G. Fp[G/H]) be the map induced by a; on the cohomology groups. Then

(@) dime,((T2)®) = dimg, ((%)G) = dim, (ker(ay)).

(b) v € ker(eg) if and only if A < ker(y).
(c) ker(aj) = Hom(G/H, Cp).

(d) dim;, (ker(a3)) = dg . Thereforedim, ((,T1)®) = dimy, ((M)G) = do -

oy
ProoF. (a) From theF,[G]-exact sequence

- FolG/Hl
F

0— Fpefy B F[G/H] & 0.

P&
we obtain the long exact sequencein cohomology,

0— (["_pez(l))G — (FD[G/H])G — (pT1)® — Hl("'_pefl)) —
— HYFp[G/H]) — HY(pTy) — - -
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Since (Fp[G/H])® ~ Fp =~ Fp€fy) we have the exact sequence of groups

It follows that ¢; isinjective. Then we have the exact sequence of groups
0— (pT)®— Hl(Fpefl)) — Hl([Fp[G/H]) -

Since G actstrivially on the module F€f;), we obtain the exact sequence
0— (T0)® 2 Hom(G, Cp) - H(Fo[G/H]) —

So, ker(eg) = im(yp1) = (pT1)C = (le G/H]) .

Fos (]

(b) The map oj: Hom(G, Cp) — HY(Fp[G/H]) isgiven by

i) = ar 0y +BY(G.Fo[G/H]). where aio(g) = %:/H (@0 VgeG.

We have the following equivalences

b € Ker(e) = aj() = a1 0 6+ B(G. FylG/H]) = BY(G.F,[G/H])
> a0y € BY(G,F[G/H])
<= Je € Fp[G/H] suchthat a1 o (g) = (g — 1)e. Vg € G.

From these equivalencesit follows that ¢ € ker(o) = H < ker(¢y). For the opposite
implication we assume that H < ker(1). We will prove that ¢ € ker(aj). For this, it
sufficesto show the existence of an element ¢ € Fy[G/H] suchthat ag 0 ¢(g) = (9 — e
fordl g € G.

Wesete i= Y ,cq/H S0 € Fp[G/H]. Ascandidatesfor thes, we set Sy := Sq — ¥(0).
The definition of s, = sy4 does not depend on the representative of the class o. Thus, if
€ = Ypea/n S0 = Tyea/m(SH — 1¥(%))o, wherex, is any representative of the class o
then e satisfies s 09(g) = (9— 1)z, foral g € G. Therefore v € ker(aj) H < ker(y).

(c) Lety € ker(o) € Hom(G, Cp). We havethat ¢ € ker(al) s H< ker(w) with
H < G. Therefore, for each ) € ker(a}), there eX|stsaun|que¢ € Hom(G/ H, . Cp) such
that zp(gH) P(g)foral g € G. Let p:ker(a) — Hom(G/H C,) begivenby p(y) =
We have that p is an isomorphism.

(d)  Since G/I:| is a finite p-group we have that HomZ(G/I:L Cy)
Hom; (%G//Hﬁ—),cp) where ®(G/H) is the Frattini subgroup of G/H. From (c) and
from [15, Theorem 1.16] it follows that

dime, (ker(a3)) = dim, (Homz <¢?G//HI:I)’C‘)>> =dg/- .

Now, we calculate dimg, ((,T;)¢) forr > 2.

https://doi.org/10.4153/CJM-1998-061-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-061-8

1260 PEDRO RICARDO LOPEZ-BAUTISTA AND GABRIEL DANIEL VILLA-SALVADOR

PrROPOSITION 4. Let G beafinite p-group, Hy, ... . H; arbitrary subgroupsof G. For
eachi € [1,r], let H; := (gHig™ | g € G) be the normal closure of the subgroup H;

inG.WesetH :=H;---H, and let dg,; be the minimum number of generators of the
group G/H. Thendim ((pT,)®) =r — 1+ deii-

PROOF. For eachi € [[1.r] we consider the maps «;:Fpef — Fy[G/H;] such that
@i (X) = oeg)H, Xo, WhereFpel is the diagonal submoduleof Fy[G /Hil. Since the group
G acts trivially on Fpe' we have that HY(G. Fpe) =~ Hom(G. Cp). Let o be the map
induced by «; on the cohomology groups, that is

ot Hom(G, Cp) — HY(G.Fp[G/Hi])

suchthat, for eachy € Hom(G, Cp), o (v)) = aj 01h+BYG, Fp[G/Hi]), where o o1)(g) =
Yoee/n; V(@)oVg € G. We set Fpe™ 1= Fpefy). We consider the F [ G]-exact sequence

a ; T " F )
0— Fye = F (G H] = SmfelC/Hl o
i=1 Foe*
where (X.....X) = (e H, X0 - - - - Coecm, X0). Therefore o = (an.....ar). We

obtain the long exact sequencein cohomology,
* ¥ 4 G ¢ 1 w o
0— (Foe")® = (@ Fo[G/H])™ = (pT1)® = HY(G.Fpe") =
=

L DHYG.F[G/H]) — HY(pT) — .

r
=1

where for each v € Hom(G, Cy) we have a* (1) = (3(¥). .. . , o (¥)). Since the group
G actstrivially onFpe*, we obtain the exact sequence

0— Foe” 22 (Fo&) 2 (,T1)® 22 Hom(G, Cp) &

o

s T
@ = @ HY(G.Fp[G/H) — HY(pTr) — -+
i=1
Since ker(a*) = im(y1), from (2) we obtain the F ,-exact sequence
©) 0— Fpe = (Foe) 2 (,T1)% 2 ker(a®) — 0.

Therefore, r = dimg, (ker(02)) + dimg, (im(ip2)) = 1 + dimg, (ker(i01)). It follows that
dimg, (ker(1)) =r — 1. From (3) we obtain the F -exact sequence

(4) 0— (Fpe)* — (,T1)® — ker(a®) — 0.

Since (Fpe") " isFp-injective, we havethat dimg, ((,T,)®) = r — 1+dimg, (ker(a)).
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From Proposition 3 (b) it follows that for eachi € [1, r] the map v is characterized
by v € ker(e) & Hi < ker(y). Since ' (¥)) = (5(¥). . .. . o (v)), we have that

¥ € ker(a®) <= ¢ € ker(f) Vi e [1.r].
— Hi <ker(y) Viel[lr].
& H=Hy---H <ker(y).

In a similar fashion, as in the proof of Propostion 3 (c), it can be proven that
ker(ar") 2 Hom(G/H, Cp). Therefore dim, (ker(ar*)) = dg s .

PrROPOSITION 5. Let L /K be a finite Galois p-extension of cyclotomic Z-fields of
CM-type with Galois group G = Gal(L /K) such that g = 0, u = 0. LetHy, ..., H: be
arbitrary subgroupsof G. Reordering the indices and taking conjugates, if necessary, let
1<ip<ip < -+ <lig1 <is=r besuchthat

Hi, 1. Hi. 1 C Hi, = H,

and that the subgroupsH;,, Hi,. . .. , H;, satisfy the condition: If for 1 < j, k < s, there
exists some g € G such that Hi? = gH;g7! C Hi,, thenj = k. Let Ay := {i1.iz, ... .is}
and A; :=[[1,r] — Ax. Then

r

& RIG/HI @ RIG/H]

- G/H]1P —2—i—.

Re* Ié.;lR[ / l]@ Rezz

whereRe;, = {(2(,66/,4i1 XTy..ts Yoee/H, X0) € Biea, RIG/H] | X € R}

ProOOF. For eachj € [1, 5], we set

NyRG/H ] = RIG/H. Y aw— > a, > o.

/ " oCyr
LEG/H,i 0 EG/H,J. v,
J

where?; € [[ij—1 + 1.i; — 1]}, io = 0. We havethat A\;, isa Z,[G]-monomorphism. We set

i=1 R[G/Hi]

N IG:? RIG/Hi] — Re ,

where . ) ]
o = &t +/\t(§ij) ifte [[Ij,1 +1, lj — 1]]
t= fij if t =ij.
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Themap AisaZ[G]-epimorphismandker(A) = D =~ Rej , withD C @ RIG/Hi],

D::{(o ..... 0. 3 x¢.0.....0, 3 x¢.0.....0, 3 xw)\xeR}. .

l’?EG/Hil IL'GG/HiZ L;’!EG/HiS

In (1), from Proposition 5 it follows that

& RIG/G]
i=1 o RG]
o (T =D

\ ieAy
An essential part in the demonstration of the Z,[ G]-indecomposability of the module

o W) is the F,[G]-indecomposability of the F,[G]-module
Ao

Dicn, RIG/GI _ Bicn, HIG/GI
p Re;, = Pl

If Fisafield and X is afinite set, we set X := Yyex X € F[X].

# | €A
o e

@R[G/G])

PROPOSITION 6. Let G be a finite p-group and let Hy, ..., Hr be subgroups of G.
Consider the natural action of G on the set S := [4_; G/H;. Then, as F,[G]-modules,

Bl Fp[G/Hi] = Fy[lJi=y G/Hi] and, therefore, % "[S = asFp[G]-modules.

PROOF. The mapping ¢: /-, Fo[G/Hi] — Fy[li-; G/Hil, suchthat

¢(( 2 801 D aﬂrof)):i: > a0

(71€G/H1 (TrEG/Hr i=1 oj EG/H,
is an Fp[G]-isomorphism. ]
Kindly, Professor Alfred Weiss supplied the proof that the F,[G]-module [FF[? is

Fp[Gl-indecomposable, where S := |#)i.a, G/ Gi. Moreover, Professor Weiss provesthat
the F[G]-module ﬂFg is an indecomposable F[G]-module, where F is an arbitrary field
of characteristic p, G afinite p-group and S:= (Ji-; G/H; with H; arbitrary subgroups of
G subject to the condition that H? = gHijg™* C H; for someg € G & i =]j.

ProPOSITION 7 (WEISS). Let G be a finite p-group, F a field of characteristicp, Sa
finite set, such that G actson S, H a subgroup of G acting by restriction on Sand B an
F[G]-module. Then

(a) Theset S := {X | X'is a H-orbit in S} is an F-base of the module (F[S_|)H In
particular, the set S := {X + FS| X € S} is F-generator of the module FI°

(b) Every f € Endrg(B) induces an map f € Endr (3) given by f(b+ IgB) =

f(b) + IB.
(c) We consider the homomor phism of F-algebras ¢: EndF[G] (B) — Endr (lG%) such
Endy(B)
that (f) =f andlet A = Y(Endric)(B)). Then iz = WE:(EW’ whererad(A)

denotes the Jacobson radical of A.
(d) HF% is an indecomposable F[G]-module if and only if Aisalocal ring.
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PROOF. (8) Letx = Ysrss € (F[I)". If X, i € [1.t] are the H-orbits over S, we
have that x = S I Yeex, S = X1y riXi. It follows that the set S is an F-generator of
(FISHH. If =L X = Othenb; = 0Vi € [1.1]. It follows that Sis an F-base.

(b) We havethat f(IgB) = I f(B) and IgB C ker(w o f), where 7 is the canonical
projection. So, there exists a uniquef € Endrg (,GiB) as is required. Since G acts
trivially on B, Endrrg) (135) 2 (Ende (155))° = Endr (155).

(c) From [12, Lemma 2.21], we have that I is a nilpotent ideal. It follows that
ker(y) = {f € Endrg(B) | f(B) C IgB} isanilpotent ideal. From [1, Corollary 15.10]
we obtain that ker(y) C rad(Endgc)(B)). From [3, Proposition 5.1-iii] it follows that

rad (Enﬁ;[a};gB)) ~ rad(iz?z;](m) . Since ¢ Endr;g)(B) — A is an epimorphism, we have
that SEE o A,
(d) It followsfrom [3, Proposition 6.10]; [3, Proposition 5.21] and (c). ]
Let G be afinite p-group, H a subgroup of G such that G acts on afinite set Sand let
X be an H-orbit of S. We say that X is a Weiss H-orbit over Sif X containssomes € S
such that the stabilizer G5 satisfies Gs < H. We have that X is a Weiss H-orbit over Sif

and only if Gs = Hg for some s € X if and only if Gg C H for somes € X.

ProPOSITION 8 (WEISS). Let G be a finite p-group, F a field of characteristic p, S
a finite set such that G acts on S, H a subgroup of G acting by restriction on S Then
B := {Trg/u(X) | X aWeiss H-orbit} is an F-base of the module Trg 4 (F[S").

PROOF. Let & € Trgu(F[SM). Then e = Trg (Sl 1iXi) = Sy 1 Trg m(Xi) where
ri€ FandX,i € [[1.t] arethe H-orbits over S. Let s € Sand let X; be an H-orbit over
Ssuchthat s € X;. We have that if H = (/"M hHg, then X; = {his | i € [1,[H : Hd]T}.
S0, Tre/m(Xi) = Trm Tru m (S) = Trgn (S) = Trg)g, Tre,/m,(S) = Trec,([Gs : Hsls) =

Os if Gs=H : . .
Gs : H]Tr S) = s S s where Oy is the G-orbit over S containin
[ s s] G/Gs() 0 oth ise, S g

s. Hence e = 3L, 1i[Gs : H Tre/a,(9) = ST TrG/H(f(i), where the X/s are Weiss
H-orbits over S.
Clearly B isan F-linearly independent set. "

PrROPOSITION 9 (WEISS). Let G be a finite p-group, F a field of characteristic p,
Hi, ..., H; subgroupsof G satisfying the condition

(*) Higngig_lgHj for somege G i =|j

and such that G acts in a natural way on the set S:= 4., G/H;. Then B := JFg isan
indecomposable F[G]-module.

ProOF. Let A := {f | f € Endr(B)}, where f < Endr (Z5) and f(x+1gB) =
f(X) + IgB. In order to prove the F[G]-indecomposability of the module B, it suffices to
prove that A is aloca ring. Let vj := n(H; + FS,j € [1.r], where 1B — ,G% isthe
canonical projection. We have that V := {v; | j € [1.r]} is an F-generator set of the
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module 5. The map p: 1F[S — Ig () given by L, xiyi — XL, xi(yi + F9isan
F[G]-epimorphism with ker(p) = FS Thus|gB o ‘13,
We consider x = 3L, xiyi € IgF[S], wherex; € lg, yi € F[S. We have that

) i = () (X X an) =2 X D (reds)oj

r r
geG j:1 UjEG/Hj =1 UjEG/Hj geG

Therefore, for each o; € G/H; and for eachj € [1. r] the coefficientsin > gcc(rga,; 9)oj
satisfy Ygec g2y = 0. Given 3o, &Vvi, any linear F-combination of the i, equal to zero,
it followsthat (ayH; +--- +aH;) + FS€ IgB; soa = 0Vi € [1,r]. ThereforeV isan
F-base of 5.

Since f(H; + F € ﬂFﬂS—’ from Proposition 7 (b), it follows that f(H; + FS) =
(Xxesm; 3(X)X) +FS where aj(X) € F and S/H; representsthe set of Hj-orbits over S

Since FS= S+ FS, we havethat

8(X) Trg,(X) + FS

r
=1 Xe /Hj

~ ~ ~ r ~
FS={(S+F9 = (3 Trgn(H +F9) =
=1
If Xiis not aWeiss Hj-orbit, it follows from Proposition 8 that Trg 1, (X) = 0. Therefore

i 3 q(X)TrG/Hj(X)+Fé:i > g(X) Trgn (X) +FS

j=1 XeS/H; j=1Xeu

where U is the set of Weiss H;-orbits over S Since X is an H;-orbit over S we have that
for somei € [1.r], X ={gg'Hi | g € H;}.

Since X isaWeissH-orbit over S, it followsthat there exists somexg'H; € X suchthat
Gugh, C Hj. We havethat Gugy, = H9. ThereforeH9 C H;. Hence, from condition (x)
it followsthat i = j. Thereforeg’ € Ng(H;). Thus X = {g’'H; }. Hence

Xr: > a({g'H}) Trgm (@'H) € FS

i=1g'eNg(H))

Since Trg w; (9'Hj) = Zzeq/m, 2Hj, it follows that

Y Y a({gH})a eFa

i=1 zeG/H; ¢'eNg(H;)

> a({gHi}) = X a({gH}) Vtje[Lr].

g'eNa(H)) g'eNg(H)

Thus, the element

a(f)y:= > a({gH})

g'eNa(H;)

https://doi.org/10.4153/CJM-1998-061-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-061-8

p-CLASS GROUPS IN Z,-EXTENSIONS 1265

isindependent of j. Thus,

fw)=r(f(H+F9) = > a({gH})n(@H; +F = a(f)y.

g'eNg(H))

So, f isthe multiplication by the constant a(f). Hence A =~ {a(f) | f € Endgg(B)}.
Therefore Aisalocal ring. ]

PropPosITION 10. Let G be a finite p-group and M a p-torsion Z,[G]-module.

(&) If pM is an indecomposable F,[G]-module, then M is an indecomposable Z,[G]-
module.

(b) Let M be a p-divisible Z,[G]-module such that ,M is an indecomposable F,[G]-
module. Then (RG], h) is the injective Z,[G]-envelope of M for some b € No,
coker(h) does not have injective Z,[ G]-components and Q*(M) is an indecompos-
able Z,[G]-module.

PrROOF. [9, Proposition 2.25]. ]

PropPosITION 11. With the conditions and notations in Proposition 5, let H; = G;.
Then Q (_@IEAZ RIG/G]

ke, ) is an indecomposable Z,[G]-module. Furthermore, as Z,[G]-
modules

ot [ ®ienRIG/G) _ RIG"™ s
\" R&, ) DR

Re;
Ay

and as Z,-modules
o { Bica, R[*G/Gi] ~ R
\  Re,

wherea = |Gldg 5 + Siea, (|G| - %) +1-|G|.

Proor. From Proposition 5 follows the existence of a Zp[G]-monomorphism f:

M — T, whereM := LEESG/ il andT := 7@{455/ Gl

From Proposition 1, it follows that (RIG])¢ is the injective Z,[G]-envelope of T,
where ¢ = dim, ((,T)®). From [9, Proposition 1.11], we have that the injective Z,[G]-
envelope of M is (R[G]', p) for somet € No. Asin the proof of Proposition 1, we have
that coker(p) does not have injective Z,[G]-components. From Proposition 10 follows
that Q*(M) is an indecomposable Z,[G]-module. From Propositions 1, 2 and 4, follows

that the Z,[G]-sequence

0— M — R[G]"H%/m — Q*(M) — 0

RG \Az\—l-v-dG/H
Dica, RO/G
Rep

Q#M) and the value of a. .

is exact. Hence, Q#(M) =~ . So, we obtain the Z,[G]-module structure of
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Thefirst main result of this paper is the following

THEOREM 1. Let L/K be a finite Galois p-extension of cyclotomic Z-fields of CM-
type with Galois group G = Gal(L /K), such that i =0, u_ = 0. Let Ps.....P; bethe
ramified primedivisorsinL/KwithGg. ..., G: their decomposition groupsrespectively.
For eachi € [1.r] 1et Gi = (9Gig! | g € G) bethe normal closure of the subgroup G;

inG.WesetH := G, --- G, and dG/Fl the minimum number of generators of the group

G/ H. Let C_~(p) bethe minus part of the p-subgroup of the class group of L. Reordering
the indices and taking conjugates, if necessary, let 1 < iy <ip <+ <ligg <lig=Tr
such that

and that they satisfy the condition: If for 1 < j, k < s, thereexists someg € G such that
Gﬁ =9G,g* C G, thenj = k. Let Ay := {i,iz..... is} and A; := [1,r] — Ax. Thenthe

modular decomposition of C_~(p) in terms of indecomposable Z,[G]-modules is given
by
® RIG/G]

O () = RIG 5 B @ s 2 DY (T) |

where Rej, = {(ZUGG/Gil X0y .y Y0ec/G, X0) € @iea, RIG/Gi] | X € R}.
As Z,[G]-modules we have that

Wi o (G?\ el Gi]) _ RGIA

Re;, AR
Rel,

Wis anindecomposable Z,[G]-module and as Z,-module W =~ Rf, wherea = |G|dg ; +
Sien, (16— &) +1- (G,
PrROCOF. From (1) we have that
CU (P =C (@@ C (p)® ~ RG] e QX(T).
From Proposition 2 it follows that
CL™ (M = RG],
where ¢ = dim, ((,T)®). From Proposition 4 we obtain that

dime, ((pT)®) = dime, ((oT)%) =1 — 1+dg -
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If C is a subgroup of G in [18, Proposition 4] is shown that as Z,[G]-modules

Q*RIG/C]) =~ R—[R(LJ‘—/B]C—]. Moreover, the Z,[G]-modules R[G/C] and R—[RGL?]C—] are inde-

composable Z,[G]-modules. Therefore,

N R
QRG> D me/er

Hence, from Proposition 5 we obtain that the modular decomposition of C.~(p)® is
given by

Cop = 9N = B g

Finally, from Proposition 11 we obtain that W is an indecomposable Z,[G]-module,
aswell aswe obtain its Zp,-module structure. "

O W.

4, Jacobian variety. For afunction field L over k, in addition to the notation intro-
duced earlier, we denote by P, and Dq_, respectively, the group of principal divisorsand
the group of divisors of degree0. Thep-subgroup Co,. (p) of the group of divisor classes of
degree 0in L has structure of Z,-module with action given by (>, aip)(OP.) = 03P,
wherea =% ap' and ny € N satisfiesOP" € P ¥ m > no. Let G be afinite subgroup
of Autk(L). Then Cy (p) hasstructure of G-modulewith the action of G on Cy . (p) given
by o(OP.) = O°P,, o € G. Therefore Co (p) hasthe structure of Z,[G]-module.

A formal product M = TTp s, P™®) where ny; (P) € No and ny (P) = 0, except for
afinite number of prime divisors of L, will be called a modulus over L. We will denote
by Do m the group of divisors of L of degree zero relatively prime to M, P will

denote the group of principal divisors () suchthat « = 1modM and Cy_ \ := ?{L&A

will denote the group of classes of degree zero associated to the modulus M .

For any modulusM over L we have acommutative a gebraic group, denoted by J,
called the generalized Jacobian of L correspondingto the modulus M (for the definition
and results about Jacobians we refer to Serre [14]). As groupswe have Cy m = J m
[14, Theorem 1, p. 88]. For M = 1, wherer istheunit divisor of L wehavethat J, , = J;,
where J._ is the Jacobian variety associated to the function field L [14, p. 90].

Let M and M " be modulii over L. We say that M ’ dividesM , denotedby M’ | M,
if we have that ny (P) > ny.(P) VP € P.. Let M, M’ be modulii over L such
that M’ | M. Then there exists a unique epimorphism ¢:J, y — J_m Such that
Hm/m = ker(p) is a connected subgroup of Ji \ [14, Proposition 6, p. 91]. We set
Tim = dime(pdm (p)). The number 7 is the p-rank of the generalized Jacobian
Jm and 7 = dimg, (pd(p)), the p-rank of the Jacobian variety associated to L /k, is
called the Hasse-Witt invariant of L.

We will denote by p an arbitrary rational prime number. Let L /K be afinite Galois
p-extension of algebraic function fields of one variable with Galoisgroup G = Gal(L /K)
and field of constantsk, an algebraically closed field of characteristic p. Let

(6) Si={P.P.....P}. S:={QV |ie[Lr].t [1Lp]}.
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where Sis the set consisting of the prime divisors P; of K which are ramified in L, Sis
the set consisting of the prime divisors Q{" of L such that the Q" are the divisorsin L
above P; and p3 is the decomposition number of the prime divisor P;. If Qﬁi) e Swe
define G := {0 € G| Q" = Q"} = Dec(Q{" | P;), the decomposition group of the
prime divisor Q). We have that if Q{ is any other prime divisor of L dividing the prime
divisor P;, then the groups G’ and G{" are conjugate. It follows that as Z,[G]-modules
RIG/G{] ~ RIG/G{].Ift € [1, p°], wechoose G;, onerepresentativein the conjugacy
class of Ggi) and we define Q; = QE”; 0G ={c € G| Q¥ =Q} =Dec(Q | P). We
define the following modulii over L and over K

(7) N=]]Q M:=]]P
Qeé PesS
where S Sarethe setsgivenin (6). LetJ, . Jk.m bethe generalized Jacobiansof L and
of K associated to the modulus N and M , respectively.
Since k is an algebraically closed field, we have that the inertia degree fg of every
prime divisor Q of L and of K is 1. It follows that the degree of the modulus N is

deg(N) =¥, p° =31, % We also havedeg(M ) =r.

ProPOSITION 12. Let L/K bea finite Galois p-extension of algebraic function fields
of one variable with field of constants k, an algebraically closed field of characteristic
p and Galois group G = Gal(L/K). Let S S be the sets of primes given in (6) and
Gy, ..., G: the decomposition groups of the prime divisors of L that divide the ramified

primedivisorsof K givenin (4). Let

(8) N=J]Q M:=]]P

Qgs PeS

and J, N, Jxm bethe respective generalized Jacobians. Let J_(p) be the p-torsion part
of the Jacobian variety associated to L /k. Then

(@) pJn (p) isafreeFy[G]-module. Moreover pJ; y () = Fp[G]~ 7.

(b) dim, (p(JLN (p)G)) =1 —1+7x.

(c) Thereexistsa Zp[G]-exact sequence0 — H, N P — I NP — @) —O.

(d) As Z[G]-modules H, \ (p) = w and H, n (p) = RAON)-1 as 7,-

modules.
(© dimy, (s3m ®) = dime, (p(3n )°).

() Jn (p) = RG] ™.
(9) Thereexistsa Z,[G]-exact sequence

® 0 BaRS/BL_ gy — a0,
and for somev € N,
D RIG/G]
10) 3P = 1P i@ =RE® Q" | Fme— | =RG] & Q/(T).

\
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.— D, RIG/G]
whereT := T/-
PrOOF. (a) Itfollowsusing theDeuring-éafareviéformulaand proceedingasin [17,
Proposition 8].
(b) Ingeneral we havethat if M isa Z,[G]-module then, as Z,[G]-modules (,M)® =
p(M®). From (a) it follows that as F,[G]-modules (pJ; (p))G ~ F 7%, Therefore
. . G
dlmIFp(p(‘]L.N (p)G)) = d|m[Fp<(pJL,N (p)) ) =r—1+m.
(c) From [14, Proposition 6, p. 91] applied to the modulus N ., 1 over L follows

the existence of a unique epimorphism ¢:J, y — Ji,; such that H, |y = ker(y) isa
connected subgroup of J,_y . Therefore there exists an exact sequence of groups

(11) 0—H,N — I N —I—0.

Since the torsion of H,\ is p"-divisible for al n € N, we have that there exists a
Z,[G]-exact sequence

(12) 0— anr]|N - Pn‘]L,N - anL —0.

In general, if Ais an abelian group we havethat A(p) 2 limpmA = (i prA. Therefore,
from (12), we obtain the Z,-exact sequence

(13) 0—H,N{PE) — I nPE) — ) —0.

Moreover, since G acts in a natural way on these modules, we have that (13) is a
Z,[G]-exact sequence.

(d) [18, p. 267].

(€) From[18, Proposition 9], we havethat the conorm map ¢: J m (P) — (I (p))G
is surjective. Therefore,

Tkm = dimg (D(‘]K,M (p))) > dimg, (D(‘]L.N (P))G)-

(f) From (e), we obtain that

dime, (p(JKM () =7 m =1 —L+7c > dimg, (p(JL.N (p))G)-

Now, we have that 7,y = dime, (pJ N (P)) = 7 + Xy % — 1. Therefore, from the

Deuring-Safarevi¢ formula, weobtainthat 7,y = |G|(r—1+7«) = |Gl7i 1 - It followsthat
dime, (pJ N () > |G| dim, (,J(JLN (p))G). From Kato’s Lemma [10, Proposition 2],
we obtain that pJ, N (p) 2 Fp[G] 2. Finally, asin [18, Theorem 9] we obtain that as
Zp[G]-modules Jy \ (p) = R[G]™ .

(9) Itfollowsfrom (d), (f) and (13).
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Thesequence(9) issimilar to the Z,[ G]-exact sequencein [18, Theorem 4] for number
fields, so the Z,[G]-exact sequence (9) determines uniquely the Z,[G]-module structure
of J.(p). Similarly, asin [18, Theorem 2], we have that for somev € Ny

@ RIG/G]

~ v, i=1 -
(14) J(p) = RG] @Q#(—Re" :

The expression (14) gives usimplicitly the structure of J.(p) as Z,[G]-module.

As analogous to Propositions 1, 2 and 4, we have that R[G]° is the injective Z,[G]-
envelope of T, where ¢ is the minimum natural number such that there exists a Z,[G]-
monomorphism ¢: T — R[G]® and there exists an Z,[G]-exact sequence 0 — T —
R[G]¢ — Q*T) — 0.

For eachi € [1.r], let G; := (gGig ! | g € G) be the normal closure of the
subgroup G; in G and let dg /6 be the minimum number of generators of the group
G/Gi.WesetH := G; - - - G,. We havethat J (p) =~ R[G]" for someV € No. Moreover
v=r—1—c+nandc=dim,((pT)®) =1 — 1+dg whereds p isthe minimum
number of generators of the group G/ H.

In (14), from Proposition 5 it follows that

RIG/G]
i= - RG]
Q* (T ~ P
\ -

From Proposition 11 we have that the indecomposable Z,[G]-module

o[

® RG/G]
Lo (2

Q# (igz R[G/GI] N R[G]‘Ag‘—l+de/':|
|\ Re, )T gl
Re,,

and W =~ R® as Z,-modules, wherea = |G|dG/':| + Yiea, (|G| — ||e£||) +1—1G|.
Asthe second main result of this paper, we obtain unconditionally and explicitly, the

Galois module structure of J.(p).

THEOREM 2. Let L/K be a finite Galois p-extension of algebraic function fields of
one variable with field of constants k, an algebraically closed field of characteristic
p and, let G = Gal(L/K). Let Py,...,P; be the ramified prime divisorsin L /K with
G, ..., G their decomposition groups respectively and let J, (p) be the p-torsion part of
the Jacobian variety associated to L /k. For eachi € [1.r], let Gi:=(gGigl|geG)
be the normal closure of the subgroup G; in G and let d 4 be the minimum number of

generatorsof the group G/G;. Let H := G; - - - G, and dgf, be the minimum number of
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generatorsof thegroup G/ H. Reorderingtheindicesand taking conjugates, if necessary,
letl<iy <ip<--- <lisgg <is=r suchthat

Gi, +1y -+ » G-1C G, =G

and that they satisfy the condition: If for 1 <, k < s, thereexists some g € G such that
Gﬁ =0G,g* C G, thenj = k. Let Ay := {i,iz..... is} and A; :=[1,r] — Ax. Thenthe
modular decomposition, in terms of indecomposable Z,[G]-modules of J. (p), isgiven by
® RG/Gi]

v ek o[

€Ay \ Rei\z

where

Re,’gzz{( S xo..... D Xa)E@R[G/GiHXER}.

UEG/Gil UEG/GiS ieAy

As Z,[G]-module we have that

RIG/G|]

w_yfm o RIGAos
o Re; ~  ©®RG/G]
LT e
Re,,

and W is an indecomposable Z,[G]-module and, as Z,-module, W >~ R® where a =
Gldgq + Sien, (1G] = 1)) +1 -1,

PROOF. Analogousto that of Theorem 1. ]

From Theorem 1 and Theorem 2, we see that the Galois module structure of the
p-torsion part of the Jacobian variety of an algebraic function field of one variable is
analogousto that of the minus part of the p-class group of a cyclotomic Z,-extension of
CM-type.
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