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genetically similar to European reference populations
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Abstract

Cognitive abilities are heritable and influenced by socioeconomic status (SES). It is critical to understand the association between SES and
cognition beyond genetic propensity to inform potential benefits of SES-based interventions and to determine if such associations vary across
(i) cognitive domains, (ii) facets of SES, and/or (iii) genetic propensity for different aspects of cognition. We examined the contributions of
neighborhood socioeconomic advantage, family income, and polygenic scores (PGS) for domains of cognition (i.e., general cognitive ability,
executive function, learning and memory, fluid reasoning) in a sample of children (ages 9–10; n= 5549) most genetically similar to reference
populations from Europe. With some variability across cognitive outcomes, family income and PGS were independently significantly
associated with cognitive performance. Within-sibling analyses revealed that cognitive PGS associations were predominantly driven by
between-family effects suggestive of non-direct genetic mechanisms. These findings provide evidence that SES and genetic propensity to
cognition have unique associations with cognitive performance in middle childhood. These results underscore the importance of
environmental factors and genetic influences in the development of cognitive abilities and caution against overinterpreting associations with
PGS of cognitive and educational outcomes as predominantly direct genetic effects.
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Background

Childhood poverty is robustly associated with general and specific
cognitive performance deficits (Clearfield &Niman, 2012; Johnson
et al., 2016; Noble et al., 2015; Noble & Giebler, 2020). As early as
six months old, youth raised with lower household incomes exhibit
poorer performance on measures of total IQ and specific cognitive
processes (e.g., executive function, language; Farah, 2017; Johnson
et al., 2016; Noble et al., 2015; Noble &Giebler, 2020). An emerging
literature also supports independent contributions of neighbor-
hood socioeconomic disadvantage (e.g., a greater percentage of
families living in poverty, increased unemployment, lower
percentage of educational attainment at the neighborhood level)
to cognitive functions and brain maturation in regions associated
with cognitive ability above and beyond the contributions of
household socioeconomic status (SES; Taylor et al., 2020). Greater
educational attainment among children whose families received
supplemental income (Akee et al., 2010; Costello et al., 2003, 2010)

and boosts in cognitive performance induced by enriched
environments in non-human animal models (Sauce et al., 2018)
highlight the plausibility that multiple facets of SES may have a
causal impact on child cognition, and heighten the urgency of
addressing the epidemic of childhood poverty (DeNavas-Walt &
Proctor, 2014; Newhouse et al., 2016).

The moderate heritability of cognitive ability and SES (Tucker-
Drob et al., 2013), as well as their shared genetic architecture
(rg = 0.65–0.82 in adults; Hill, Davies, et al., 2019; Hill, Marioni,
et al., 2019), has been used to argue that cognitive deficits related to
childhood poverty may be partially attributable to shared genetic
liability (Trzaskowski, Harlaar, et al., 2014). Evidence that
adolescent cognitive ability is associated with adult neighborhood
disadvantage has also been used to argue that associations between
cognitive ability and neighborhood disadvantage may be genet-
ically mediated (Ksinan & Vazsonyi, 2021). Shared genetic liability
may arise from genetic inheritance that directly influences
cognitive ability as well as gene-environment correlations (e.g.,
between genetic propensity and higher SES environments with
generally more access to cognitively stimulating activities that may
be more amenable to environmental intervention (Belsky
et al., 2018).

Disentangling genetic and socioeconomic status associations
with cognition is challenging. Twin studies may not be able to
detect genetic influences on SES or the influence of SES on
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cognitive development, as family-level SES is typically shared
within a twin pair (Trzaskowski, Harlaar, et al., 2014). Twin studies
may alsomodestly overestimate the effect of genetics, given that the
equal environments assumption (i.e., that monozygotic twin pairs
share the same environmental similarity as dizygotic twin pairs)
may not be valid (Felson, 2014). Another approach is to measure
genetic influence using polygenic scores (PGS) that effectively
represent genome-wide genetic liability to a particular phenotype
on an individual (rather than population) level (Wray et al., 2007).
Relative to heritability estimates in twin studies that violate the
equal environments assumption, genetic similarities detected in
GWAS of largely unrelated individuals should be minimally
confounded by environmental similarities after accounting for
genetic similarity to reference population(s) (and thus any
influences of population stratification (Friedman et al., 2021).

Emerging evidence largely based on PGS for educational
attainment (EduA) and family-level SES suggests that both PGS
and SES have independent effects on cognition (Corley et al., 2023;
Judd et al., 2020; Merz et al., 2022; Park et al., 2023; Raffington
et al., 2019). Given evidence from twin studies that SES may
moderate the heritability of cognitive outcomes, such that
heritability is higher in higher SES environments (i.e., the Scarr-
Rowe hypothesis; Hanscombe et al., 2012; Rowe et al., 1999), recent
work using PGS has also attempted to replicate this finding in the
context of individual genetic propensity, with mixed evidence
(Corley et al., 2023; Judd et al., 2020; Park et al., 2023; Peñaherrera-
Aguirre et al., 2022; Woodley Of Menie et al., 2021).

Focusing on EduA PGS, in particular, may have limitations,
given that educational attainment PGS is confounded by factors
such as population stratification, assortative mating, and/or gene-
environment correlation (e.g., Okbay et al., 2022). Thus, inves-
tigations that more comprehensively assess PGS and cognitive
abilities are needed. Further, work in the Adolescent Brain Cognitive
Development Study (ABCD) sample has shown that both family
income (Tomasi & Volkow, 2021) and neighborhood socioeco-
nomic poverty (e.g., median neighborhood income) have unique
associations with neurocognitive performance in youth (Hackman
et al., 2021; Taylor et al., 2020). Thus, to examine the contributions
of both PGS and SES to cognition, it is critical to measure SES
comprehensively, including both the familial and neighborhood
levels, and to account for genetic propensity for phenotypes, other
than EduA, more directly related to cognition. Recent work using
the ABCD sample incorporated PGS for cognitive performance and
indicators of neighborhood adversity but did not account for family
relatedness (Park et al., 2023).

The present study tested the hypothesis that SES (i.e., family
income, neighborhood socioeconomic resources) and genetic
propensity (polygenic scores [PGS] for educational attainment,
intelligence, and executive function) independently contribute to
variance in four domains of cognitive ability (i.e., general cognitive
ability, executive function, learning and memory, fluid intelli-
gence) in a sample of 5,549 children (ages nine to 10) genetically
similar to European reference populations. To reduce the influence
of confounding from population stratification, assortative mating,
and/or passive gene-environment correlation, we further decom-
posed PGS variance into between-family and within-family
variance (i.e., within-siblings PGS analyses; (Selzam et al., 2019).
With this approach, family-mean PGS and individual deviation
from that family-mean PGS are both included in the model,
disaggregating confounded effects (i.e., family-mean PGS) from
effects that more closely approximate direct genetic effects (i.e.,
individual deviations from family-mean PGS; Selzam et al., 2019).

Finally, given mixed evidence that SES may moderate the
heritability of cognitive outcomes (Hanscombe et al., 2012;
Rowe et al., 1999), we also tested interactions between each SES
metric (i.e., family income and neighborhood advantage) and
each PGS.

Method

Statement on ethical regulations

Parents/caregivers provided written informed consent, and
children verbal assent, to a research protocol approved by the
central institutional review board at the University of California
at San Diego for 21 data collection sites across the United
States (https://abcdstudy.org/sites/abcd-sites.html) and by the
Washington University IRB for the Washington University site.

Participants

Data came from 11,875 children (mean ± SD age= 9.91 ± 0.62
years; 47.85% girls; 52.1% white; Table 1) who completed the
baseline assessment of the ongoing longitudinal Adolescent Brain
Cognitive Development (ABCD) Study (release 3.0; https://
abcdstudy.org/; Volkow et al., 2018). The study includes multiple
sibling and twin pairs and triplets as part of its family-based design
(Garavan et al., 2018). Primary analyses were restricted to
individuals genetically similar to reference populations from
Europe with available genetic data who did not withdraw consent
between baseline and later study waves (n= 5549), given the lack of
other ancestry-specific discovery GWAS of cognitive phenotypes
and the low predictive utility of PGSwhen applied across ancestries
(Martin et al., 2019).

Individuals in this sample were 9.9 (±0.63) years old, on
average, and 47.0% of the sample were female (Table 1). Of these
5,5491 individuals, there were 3,733 singletons as well as 1,816
individuals in 895 families. According to genetic relatedness
metrics documented in ABCD release 5.1 (“gen_y_pihat.csv”),
there were 863 sibling pairs (197 monozygotic pairs, 296 dizygotic
pairs, 357 non-twin sibling pairs, and 13 pairs of unknown
relatedness), 21 sibling trios (4 sets of triplets, 4 sets of MZ twins
and 1 sibling, 11 sets of DZ twins and 1 sibling, and 2 sets of 3
siblings), one family of 4 individuals (2 sets of MZ twins), one
family of five individuals (1 set of triplets, 1 set of DZ twins), and
nine families of three individuals of whom only two were included
in the subsample of individuals genetically similar to European
reference populations (8 DZ twin pairs and 10 sibling pairs among
those included).

This subsample of ABCD was slightly older at the time of
assessment (t[11,637] = 2.39, p= 0.017) and exhibited lower
neighborhood poverty (t[9358.5] =−48.1, p< 2.2e–16) and higher
household income (t[9436]= 44.2, p< 2.2e–16) than the remain-
der of the ABCD sample (Table 1). Relative to the singleton sample,
the sibling sample was older (t[3376.2]= 6.11, p= 1.08e–09) and
had lower general ability (t[3468.8] = –7.90, p= 3.60e–15), higher
executive function (t[3378.6] = 3.22, p= 1.28e–03), higher neigh-
borhood advantage (t[3535]= 6.34, p= 2.61e–10), and higher
household income (t[3655.1] = 2.54, p= 0.011).

1Seven individuals who withdrew consent for their data to be shared according to the
most recent data release (Release 5.1) were excluded from analyses. In addition, 36
individuals whose neighborhood poverty estimates differed from their siblings were
excluded from within-sibling analyses.
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Measures

Demographic measures

Child demographics
Child age was self-reported andmeasured inmonths. Child sex was
a caregiver-reported dichotomous variable (Barch et al., 2018).

Familial income
Familial income was estimated using binned gross household
income and collected from the PhenX questionnaire (Barch
et al., 2018).

Neighborhood advantage (NAdv)
Area deprivation index values were calculated as outlined in
previous investigations with the ABCD cohort (Taylor et al., 2020).
Briefly, a participant’s primary residential address at baseline was
geocoded by the Data Analysis, Informatics, and Resource Center
of the ABCD Study and were linked to each individual according to
their US census tract information (Singh, 2003). Values were
multiplied by -1, such that higher values represent more advantage,
like family income.

Cognitive measures

Cognitive ability
Three principal components previously derived in the ABCD
sample representing general cognitive ability, executive function,
and learning and memory were used to index cognitive ability
(Thompson et al., 2019). Briefly, a Bayesian Probabilistic Principal
Component Analysis (BBPCA) was applied to cognitive tasks from
the NIH Toolbox cognition battery, which assesses executive
function, attention, processing speed, working memory, episodic
memory, and language; the Rey Auditory Verbal Learning Test,
which measures auditory learning, memory, and recognition; and
the Little Man Task, which assesses visuospatial processing
(Luciana et al., 2018). BPPCA component weights for each
participant were made available with the ABCD curated data
release 2.0.1. The Matrix Reasoning subtest of the Wechsler
Intelligence Scale for Children-Fifth Edition (WISC), which
indexes fluid and perceptual reasoning important for life function
(Burgess et al., 2011; Green et al., 2017) was included as an
additional measure of fluid intelligence.

Polygenic Scores (PGS)
Polygenic scores are weighted sums of effect alleles weighted by
effect sizes found through GWAS of cognitive phenotypes.
Summary statistics from the most well-powered, publicly available
genome-wide association studies (GWAS) of three cognitive
phenotypes (Educational Attainment (EA PGS), N = 766,345 (Lee
et al., 2018); common Executive Function (cEF PGS), N = 427,037
(Hatoum et al., 2019); and IQ (IQ PGS),N = 269,867 (Savage et al.,
2018)) were used. PGS were computed using PRS-CS (Ge et al.,
2019), a Bayesian approach that incorporates all SNPs (i.e., no p-
value thresholding) and utilizes an external linkage disequilibrium
(LD) reference panel to account for correlations between SNPs.
The “auto” function within the PRS-CS software package was used
to compute PGS (see Supplement for further details).

Genotyping, quality control, and imputation

The Rutgers University Cell and DNA repository (now incorpo-
rated with other companies as Sampled; https://sampled.com/)
genotyped saliva samples on the Smokescreen array (Baurley et al.,
2016). The genetic data underwent typical quality control
procedures following the Ricopili pipeline (Lam et al., 2020).
Analyses were restricted to individuals most genetically similar to
European reference populations, to match the ancestry makeup of
the discovery GWAS. Further details are provided in the
Supplement.

Each cognitive outcome (e.g., general cognitive ability, learning
and memory, executive function, fluid intelligence), was regressed
onto the two SES indicators, the three PGS, age, sex, and the first 10
ancestrally informative principal components (PCs), with a family
identifier, and study site included as random effects. Of note, there
was no evidence of multicollinearity in these models despite
expected correlations between variables (variance inflation factor
<2 for every variable in all models, see Supplement Table 1,
Supplement Figure 1 for correlations). All continuous variables
were standardized before analysis, with SES indicators standard-
ized at the level of the family (i.e., level 2). The false discovery rate
was used to correct across all SES p-values (n= 8) and, separately,
all PGS p-values (n= 12).

To test whether any significant PGS effects were inflated by
population stratification, assortative mating, and/or passive gene-
environment correlation, we conducted within-sibling analyses in
which each PGS was decomposed into between- and within-family
variance (Selzam et al., 2019). Specifically, both the family average
PGS and each individual’s deviation from that family average PGS
were included in linearmixed-effects models with the SES variables
and covariates. Individual-level (within-family) estimates more
closely approximate direct, or causal, genetic effects, whereas
family-level estimates represent the portion of PGS effects that are
confounded (Selzam et al., 2019). The false discovery rate was used
to correct across all SES p-values (n= 12) and, separately, all PGS
p-values (n= 24).

To examine whether SES moderates the effects of PGS on
cognitive abilities, a series of linear mixed-effects models were run
in which each SES variable was interacted with each PGS variable
(i.e., six models per cognitive outcome). Moderation models
covaried for all covariate-by-SES and covariate-by-PGS inter-
actions (Keller, 2014). FDR was used to correct across all
interaction p-values, separately for each SES and PGS (e.g., four
income × EduA PGS, four NAdv × cEF PGS, etc.). All analyses
were conducted in R version 4.3.2 using the lme4 package, with p-
values calculated using lmer Test (D. Bates et al., 2015; Kuznetsova

Table 1. Sample characteristics

M (SD) / n (%) n complete data

Age, years 9.93 (0.63) 5556

Sex, female 2612 (47.01%) 5556

Combined family incomea 8.30 (1.64) 5153

Neighborhood Advantage, M (SD)b 0.36 (0.52) 5296

Cognition phenotypes

General Cognitive Ability 0.24 (0.69) 5207

Executive Function 0.06 (0.72) 5207

Learning and Memory 0.15 (0.67) 5207

WISC Matrix Reasoningc 10.40 (2.85) 5207

aFamily income was estimated using binned gross household income and collected from the
PhenX questionnaire (see Methods).
bScaled factor score.
cTotal scaled score. WISC=Wechsler Intelligence Scale for Children.
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et al., 2017). Bootstrapped (n= 200) confidence intervals were
computed for all beta estimates.

Results

Associations between SES and PGS and cognitive outcomes

Family income was significantly and positively associated with
cognitive performance across all four examined outcomes (Table 2,
Figure 1, (β) ≥ 0.05, ΔR2≥ 4.00e-04, p≤ 3.32e-03, pFDR≤ 0.01),
with the largest effect observed for general cognitive ability
(β = 0.18, ΔR2= 0.031) and the smallest for executive function
(β = 0.05, ΔR2= 4.00e-04). Neighborhood advantage, by contrast,
showed no significant associations with cognitive outcomes
(|β| ≤ 0.03, ΔR2≤ 1.60e-03, p ≥ 0.081) independent of family
income.

EduA PGS was significantly and positively associated with
general cognitive ability and matrix reasoning (β ≥ 0.07,
ΔR2≥ 3.73e-03, p≤ 9.12e-05, pFDR≤ 1.82e-04) but not with
executive function or learning and memory (β ≤ 0.03,
ΔR2≤ 7.30e-04, p ≥ 0.08). cEF PGS was positively linked to
executive function, learning and memory, and matrix reasoning
performance (β ≥ 0.06, ΔR2≥ 3.07e-03, p≤ 1.66e-04,
pFDR≤ 2.50e-04) but not general cognitive ability (β = 0.01,
ΔR2= 6.26e-05, p= 0.35). Intelligence PGS was positively asso-
ciated with general cognitive ability, learning and memory, and
matrix reasoning (β ≥ 0.08, ΔR2≥ 2.94e-03, p≤ 1.08e-04,
pFDR≤ 1.85e-04) but not executive function (β = –5.17e-04,
ΔR2= –1.26e–52, p= 0.98). Overall, except for cEF PGS, the largest
effect sizes between income and PGS and cognition were observed
for general cognitive ability, and the smallest for executive function
(Figure 1). Significant income and PGS associations were
comparable in effect size, with a one standard deviation increase
in each linked to 0.05 – 0.19 standard deviation increases in
cognitive ability.

Within-sibling results

In a reduced sample of siblings (n= 1,816, excluding singletons
and 36 participants with within-family differences in neighbor-
hood advantage values), intelligence PGS continued to predict
general cognitive ability at both the between-family (β = 0.22,
ΔR2= 0.020, p= 6.08-08, pFDR= 1.46e–07) and within-family (β=
0.06, ΔR2= 2.39e–03, p= 2.98–04, pFDR= 2.05e–03) levels
(Table 3, Figure 2). Between-family (β = 0.13, ΔR2 = 8.09e–04,
p= 3.42e–04, pFDR= 2.05e–03), but not within-family (β = 0.019,
ΔR2= 2.95e–04, p= 0.23), EduA PGS was significantly associated
with general cognitive ability. Similarly, between-family (β = 0.16,
ΔR2= 0.021, p= 2.38e–06, pFDR= 2.86e–05), but not within-
family (β = 0.026, ΔR2 = 6.21e–04, p= 0.12), effects of cEF PGS
were associated with learning and memory (Table 3, Figure 2). No
other PGS associations were significant following false discovery
rate correction (|β| ≤ 0.10, ΔR2≤ 5.42e-03, p ≥ 0.011, pFDR ≥
0.052). Income remained significantly and positively associated
with general cognitive ability, learning and memory, and matrix
reasoning (β ≥ 0.11, ΔR2≥ 7.80e–03, p≤ 7.49e–03, pFDR≤ 2.00–
03; Table 3, Figure 2) but not with executive function (β = 0.037,
ΔR2= –9.98e–04, p= 0.27; Table 3, Figure 2).

Interactions between SES and PGS

No interactions between SES (i.e., income, neighborhood
advantage) and PGS (i.e., EduA, cEF, intelligence) were significant
following FDR correction (|β| ≤ 0.03, ΔR2≤ 7.52e–04, p ≥ 0.04,
pFDR ≥ 0.39; Tables 4–7).

Discussion

The present study had three aims: (a) test whether indicators of
family and neighborhood socioeconomic status (SES) are
independently associated with different aspects of cognitive ability
in a large sample of youth, beyond contributions from polygenic
scores (PGS) of educational attainment (EduA), intelligence (IQ),
and common executive function (cEF); (b) test whether any
significant PGS effects are attributable to between-family and/or
within-family effects through within-siblings analyses; and (c) test
whether SES moderates associations between PGS and cognitive
outcomes. Broadly, family income, but not neighborhood
advantage, and PGS were significantly and independently
associated with cognitive abilities with similar effect sizes, with
some variability across PGS indicators and cognitive outcome.
Except for Intelligence PGS and general cognitive ability, no
within-family PGS effects were detected. Finally, no significant
interactions between SES and PGS were observed after correction
for multiple comparisons. These findings provide further evidence
for the importance of modifiable environmental factors and
genetic influences in the development of cognitive abilities.

Concerning SES, family income was robustly associated with all
cognitive outcomes, accounting for indicators of genetic propen-
sity, whereas neighborhood advantage was not. The magnitude of
the associations between income and each cognitive outcome was
1.18 to 2.17 times larger than most significant PGS associations
with the same outcomes, with the exceptions of intelligence PGS
and general cognitive ability and cEF PGS and executive function
(1.06–1.40 times larger than income associations). Altogether,
these results show that family income and estimates of genetic
propensity for cognitive phenotypes derived from current GWAS
in youth genetically similar to European reference populations
show similar magnitudes of association with cognitive outcomes.

The lack of significant neighborhood advantage associations is
not consistent with previous evidence of independent contribu-
tions of family SES and neighborhood resources (Taylor et al.,
2020) and area deprivation (Park et al., 2023) to cognition in the
ABCD dataset or with other investigations of putative effects of
neighborhood disadvantage on performance on various cognitive
tasks (Kalb et al., 2023; Wodtke, Ard, et al., 2022; Wodtke, Ramaj,
et al., 2022). There are several potential explanations for this
divergence. First, the variability of NAdv among Black participants
in ABCD is greater than that among White participants (Taylor
et al., 2020). Although race and genetic ancestry should not be
conflated, it may be that the present study’s reliance on individuals
most genetically similar to European reference populations may
have truncated the variability in NAdv and thus the magnitude of
association with cognitive outcomes. Further, Taylor and
colleagues (2020) utilized the full ABCD sample in analyses, so
the present study in the smaller subsample may have simply been
underpowered to detect such effects. Second, Taylor and colleagues
(2020) did not account for PGS in their analyses, possibly inflating
income and neighborhood poverty estimates. Third, Park and
colleagues (2023) used the area deprivation index rather than a
latent neighborhood poverty factor like that in our analyses, and
they did not appear to account for family relatedness. Other

2Delta R-squared values were calculated as the R-squared difference between two fixed
effects models, which can have a negative value if the predictor is near zero and changes the
variance of the random effect parameter when the model is iteratively estimated.
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investigations did not account for family income as was done in the
present study, possibly explaining our null findings relative to
other investigations.

Similar to prior work (Judd et al., 2020; Merz et al., 2022; Park
et al., 2023; Peñaherrera-Aguirre et al., 2022; Raffington et al.,

2019), the present study found that EduA PGS was associated with
cognitive ability. The largest effect found was for general cognitive
ability and no significant association was detected for executive
function, similar toMerz and colleagues (2022), or for learning and
memory. Building upon this literature, the current study found

Figure 1. Associations between PGS, family income, and neighborhood advantage and cognitive performance. Polygenic score (PGS) associations are shown in blue, and SES
associations are shown in orange. Estimates are standardized betas, with 95% confidence intervals. Edu Attain = educational attainment; cEF = common executive function;
PGS= polygenic score.
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that intelligence PGS mirrored these associations, showing larger
effects than EduA for general cognitive ability and matrix
reasoning and also showing a significant association with learning
and memory. PGS for common executive function (cEF) was
associated with larger effects than the other PGS for executive
function and learning and memory and was also associated with
matrix reasoning. Altogether, these findings suggest that matrix
reasoning is most broadly associated with estimates of genetic
propensity toward cognitive ability and educational attainment
and that executive function is the least strongly predicted by PGS
overall and specifically linked to cEF PGS. These findings support
the importance of examining multiple indicators of cognitive
ability and genetic propensity to parse differences across cognitive
domains.

In this study, results highlight that in middle childhood both
income and genetic propensity are independently associated with
both relatively stable cognitive abilities (e.g., fluid intelligence and
IQ) as well as those that undergo substantial development through
adolescence (e.g., EF). More explicitly, each cognitive domain
examined (i.e., general ability, fluid intelligence, executive
function, learning/memory) has varying trajectories of develop-
ment from middle childhood through adulthood (Diamond, 2006,
2013; Ferrer et al., 2009; Greiff et al., 2015; McKean et al., 2015;

Petscher et al., 2018). Despite stability differences between
domains there is ample evidence that adolescent cognitive ability
strongly predicts ability across the lifespan (Icenogle et al., 2019),
and that adolescent cognitive ability may mediate associations
between early-life SES and later-life cognition (Zheng et al., 2019),
underscoring the importance of examining relationships between
income, genetic propensity, and cognition in adolescence.
Moreover, there is evidence that the same genes are associated
with domains of cognition throughout the lifespan and that
cognitive ability at different ages is genetically correlated (Haworth
et al., 2010; Mollon et al., 2021; Trzaskowski, Yang, et al., 2014).
Altogether, although some change may occur due to increasing
heritability of cognition over the lifespan (Mollon et al., 2018,
Trzaskowski et al., 2014) and increasing correlation between
genetic influences and specific measured environments, the effects
presented here can be generally expected to persist and likely
increase in magnitude into adolescence and young adulthood.

Notably, results of the within-siblings analyses suggested that
most of these significant PGS associations were attributable to
between-family, but not within-family, variability in PGS. That is,
accounting for the family PGS means, individual-level PGS for
EduA was not associated with general cognitive ability or matrix
reasoning, nor was individual-level intelligence PGS with learning

Table 2. Associations between PGS, family income, and neighborhood advantage and cognitive performance

Standardized Beta (β) STE 95% CI p pFDR

General Cognitive Ability

EduA PGS 0.11 0.02 0.08, 0.14 1.14E-12 6.86E-12

cEF PGS 0.01 0.01 −0.01, 0.05 0.35 0.42

INT PGS 0.19 0.02 0.15, 0.23 1.61E-26 1.93E-25

Income 0.18 0.02 0.15, 0.21 9.48E-31 7.58E-30

Neighborhood Advantage 0.01 0.02 −0.02, 0.04 0.56 0.63

Executive Function

EduA PGS 0.01 0.02 −0.02, 0.05 0.60 0.66

cEF PGS 0.07 0.02 0.03, 0.10 3.91E-05 1.06E-04

INT PGS −5.17E-04 0.02 −0.04, 0.04 0.98 0.98

Income 0.05 0.02 0.02, 0.08 3.32E-03 0.01

Neighborhood Advantage 0.03 0.02 −0.01, 0.06 0.08 0.13

Learning and Memory

EduA PGS 0.03 0.02 6.69E-04, 0.07 0.08 0.10

cEF PGS 0.11 0.02 0.08, 0.14 1.93E-12 7.74E-12

INT PGS 0.08 0.02 0.04, 0.12 1.08E-04 1.85E-04

Income 0.13 0.02 0.09, 0.17 3.23E-14 1.29E-13

Neighborhood Advantage −0.02 0.02 −0.06, 0.01 0.16 0.21

WISC Matrix Reasoning

EduA PGS 0.07 0.02 0.04, 0.11 9.12E-05 1.82E-04

cEF PGS 0.06 0.02 0.04, 0.10 1.66E-04 2.50E-04

INT PGS 0.09 0.02 0.04, 0.14 4.41E-05 1.06E-04

Income 0.13 0.02 0.10, 0.17 6.69E-14 1.78E-13

Neighborhood Advantage 1.95E-03 0.02 −0.03, 0.04 0.91 0.91

PGS= Polygenic Score; EduA = educational attainment; cEF = common executive function; INT= intelligence. pFDR represents FDR-corrected p-values, separately for Income/Neighborhood
Advantage (n = 8 tests) and the PGS (n = 12 tests).

6 S.E. Paul et al.

https://doi.org/10.1017/S0954579424001573 Published online by Cambridge University Press

https://doi.org/10.1017/S0954579424001573


Figure 2. Between- and within-family PGS associations with cognition. Polygenic score (PGS) associations with cognition are decomposed into between- (blue) and within-
(purple) family estimates; SES associations are shown in orange. Estimates are standardized betas, with 95% confidence intervals.
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and memory or matrix reasoning or cEF PGS with executive
function or learning andmemory. In these cases, the observed PGS
effects may be attributable to population stratification, assortative
mating, or passive gene-environment correlation, rather than to
direct genetic effects (Selzam et al., 2019). Both between- and
within-family PGS effects were detected for intelligence PGS in
association with general cognitive ability, with the between-family

PGS association being approximately four times larger than the
within-family PGS association. These findings converge with prior
work showing that, particularly for cognitive phenotypes, between-
family PGS effects eclipse within-family PGS effects (e.g., Okbay
et al., 2022; Selzam et al., 2019). Shared environment has been
shown to capture a particularly large amount of variability in
phenotypes such as IQ and educational attainment, relative to

Table 3. Results for within-sibling analyses

Standardized Beta (β) STE 95% CI p pFDR

General Cognitive Ability

Income 0.14 0.03 0.07, 0.21 4.38E-05 3.50E-04

Neighborhood Advantage 0.04 0.03 −0.04, 0.10 0.23 0.41

EduA PGS - between 0.13 0.04 0.06, 0.22 8.70E-04 0.01

EduA PGS - within 0.02 0.02 −0.01, 0.06 0.26 0.57

cEF PGS - between −4.19E-03 0.04 −0.07, 0.07 0.91 0.94

cEF PGS - within 0.01 0.02 −0.01, 0.05 0.38 0.63

INT PGS - between 0.25 0.04 0.18, 0.33 4.00E-08 9.59E-07

INT PGS - within 0.06 0.02 0.02, 0.10 4.64E-04 3.71E-03

Executive Function

Income 0.04 0.04 −0.03, 0.11 0.25 0.41

Neighborhood Advantage 0.01 0.03 −0.04, 0.07 0.72 0.72

EduA PGS - between −0.02 0.04 −0.10, 0.06 0.67 0.85

EduA PGS - within 4.11E-03 0.02 −0.04, 0.04 0.83 0.94

cEF PGS - between 0.03 0.04 −0.04, 0.09 0.42 0.63

cEF PGS - within 4.21E-04 0.02 −0.04, 0.04 0.98 0.98

INT PGS - between 0.04 0.05 −0.06, 0.15 0.34 0.63

INT PGS - within 0.02 0.02 −0.02, 0.07 0.24 0.57

Learning and Memory

Income 0.14 0.04 0.08, 0.22 1.74E-04 6.98E-04

Neighborhood Advantage −0.02 0.04 −0.08, 0.06 0.66 0.72

EduA PGS - between 0.03 0.04 −0.02, 0.11 0.46 0.63

EduA PGS - within 4.03E-03 0.02 −0.03, 0.05 0.82 0.94

cEF PGS - between 0.17 0.04 0.09, 0.25 1.59E-05 1.91E-04

cEF PGS - within 0.03 0.02 −4.90E-03, 0.07 0.06 0.26

INT PGS - between 0.06 0.05 −0.05, 0.16 0.19 0.52

INT PGS - within 0.01 0.02 −0.02, 0.05 0.47 0.63

WISC Matrix Reasoning

Income 0.12 0.03 0.04, 0.18 1.00E-03 2.67E-03

Neighborhood Advantage 0.02 0.03 −0.05, 0.10 0.62 0.72

EduA PGS - between 0.10 0.04 0.02, 0.19 0.01 0.06

EduA PGS - within −3.76E-03 0.03 −0.08, 0.06 0.89 0.94

cEF PGS - between 0.03 0.04 −0.05, 0.10 0.46 0.63

cEF PGS - within 0.04 0.03 −0.02, 0.09 0.16 0.52

INT PGS - between 0.05 0.05 −0.06, 0.13 0.33 0.63

INT PGS - within 0.04 0.03 −0.02, 0.10 0.17 0.52

PGS= Polygenic Score; EduA= educational attainment; cEF= common executive function; INT= intelligence. pFDR= FDR-corrected p-values, separately for Income/Neighborhood Advantage
(n= 8 tests) and the PGS (n= 24 tests).
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Table 4. Interactions between PGS & SES in models predicting general cognitive ability

Model Standardized Beta (β) STE 95% CI p pFDR

EduA PGS 0.21 0.02 0.17, 0.24 3.54E-29

Income 0.17 0.02 0.13, 0.20 1.51E-19

Income * EduA PGS −0.03 0.01 −0.06, 2.14E-04 0.05 0.39

EduA PGS 0.23 0.02 0.20, 0.27 1.74E-38

Neighborhood Advantage 0.06 0.02 0.02, 0.10 9.264E-04

Neighborhood Advantage * EduA PGS −0.02 0.01 −0.05, 0.01 0.20 0.67

cEF PGS 0.14 0.02 0.10, 0.18 1.52E-14

Income 0.21 0.02 0.18, 0.25 4.13E-29

Income * cEF PGS −0.01 0.01 −0.04, 0.01 0.29 0.67

cEF PGS 0.14 0.02 0.10, 0.18 3.64E-16

Neighborhood Advantage 0.08 0.02 0.05, 0.12 1.29E-05

Neighborhood Advantage * cEF PGS 0.01 0.01 −0.01, 0.04 0.31 0.67

INT PGS 0.26 0.02 0.22, 0.30 1.13E-47

Income 0.18 0.02 0.14, 0.21 1.65E-21

Income*INT PGS −0.03 0.01 −0.06, -2.01E-03 0.02 0.39

INT PGS 0.29 0.02 0.25, 0.33 1.11E-58

Neighborhood Advantage 0.07 0.02 0.03, 0.11 9.12E-05

Neighborhood Advantage*INT PGS 2.06E-03 0.01 −0.03, 0.03 0.88 0.91

PGS= Polygenic Score; EduA= educational attainment; cEF= common executive function; INT= intelligence. pFDR represents FDR correction across all interaction p-values, separately for each
SES and PGS (e.g., 4 Income × EduA PGS, 4 Neighborhood Advantage × cEF PGS, etc).

Table 5. Interactions between PGS & SES in models predicting executive function

Model Standardized Beta (β) STE 95% CI p pFDR

EduA PGS −0.02 0.02 −0.05, 0.03 0.44

Income 0.05 0.02 3.63E-03, 0.09 0.03

Income*EduA PGS 3.32E-03 0.02 −0.02, 0.04 0.83 0.91

EduA PGS −0.01 0.02 0.05, 0.02 0.52

Neighborhood Advantage 0.07 0.02 −0.03, 0.10 1.04E-03

Neighborhood Advantage*EduA PGS 0.02 0.01 −0.01, 0.04 0.25 0.67

cEF PGS 0.07 0.02 0.04, 0.11 1.20E-04

Income 0.04 0.02 4.73E-03, 0.07 0.06

Income* cEF PGS −0.01 0.02 −0.04, 0.02 0.37 0.70

cEF PGS 0.09 0.02 0.05, 0.13 4.38E-06

Neighborhood Advantage 0.06 0.02 0.03, 0.10 1.20E-03

Neighborhood Advantage* cEF PGS −0.01 0.01 −0.04, 0.02 0.63 0.90

(Continued)
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some physical and mental health phenotypes, suggesting that PGS
of IQ and EduA may be especially confounded by gene-
environment correlation (Polderman et al., 2015; Selzam
et al., 2019).

The hypothesis that SES may moderate the effect of genetic
propensity on cognitive outcomes was not supported by the
present data. Although inconsistent, particularly across coun-
tries, much of the evidence for what has been named the Scarr-
Rowe hypothesis has come from twin studies showing that SES

moderates the heritability of cognitive ability (e.g., T. C. Bates
et al., 2013; Harden et al., 2007; Rowe et al., 1999; Tucker-Drob
et al., 2011; Turkheimer et al., 2003). Using polygenic scores
allows this hypothesis to be tested among singletons as well as
twins and overcomes the erroneous (in this case) twin
assumption that there is no covariance between additive genetic
and shared environmental influences on a trait. At the same time,
the variance explained by PGS is substantially less than
heritability estimates and does not fully capture an individual’s

Table 5. (Continued )

Model Standardized Beta (β) STE 95% CI p pFDR

INT PGS 0.03 0.02 7.98E-04, 0.07 0.08

Income 0.04 0.02 −4.05E-03, 0.08 0.07

Income*INT PGS 3.23E-03 0.01 −0.03, 0.03 0.83 0.91

INT PGS 0.04 0.02 5.97E-04, 0.08 0.03

Neighborhood Advantage 0.06 0.02 0.01, 0.10 1.70E-03

Neighborhood Advantage*INT PGS 0.01 0.02 −0.02, 0.04 0.49 0.84

PGS= Polygenic Score; EduA= educational attainment; cEF= common executive function; INT= intelligence. pFDR represents FDR correction across all interaction p-values, separately for each
SES and PGS (e.g., 4 Income × EduA PGS, 4 Neighborhood Advantage × cEF PGS, etc).

Table 6. Interactions between PGS & SES in models predicting learning and memory

Model Standardized Beta (β) STE 95% CI p pFDR

EduA PGS 0.09 0.02 0.05, 0.13 1.76E-05

Income 0.10 0.02 0.05, 0.14 6.81E-06

Income*EduA PGS 0.01 0.02 −0.03, 0.04 0.67 0.90

EduA PGS 0.10 0.02 0.06, 0.14 1.22E-07

Neighborhood Advantage 3.75E-03 0.02 −0.04, 0.04 0.85

Neighborhood Advantage*EduA PGS −0.01 0.01 −0.04, 0.02 0.66 0.90

cEF PGS 0.15 0.02 0.12, 0.19 2.76E-15

Income 0.11 0.02 0.07, 0.15 1.09E-07

Income*cEF PGS 0.02 0.02 −0.01, 0.05 0.18 0.67

cEF PGS 0.16 0.02 0.12, 0.20 1.30E-17

Neighborhood Advantage 0.01 0.02 −0.04, 0.05 0.54

Neighborhood Advantage*cEF PGS 0.03 0.01 3.62E-03, 0.06 0.04 0.39

INT PGS 0.14 0.02 0.10, 0.18 2.52E-12

Income 0.10 0.02 0.05, 0.14 2.22E-06

Income*INT PGS 0.02 0.02 −0.02, 0.05 0.29 0.67

INT PGS 0.15 0.02 0.11, 0.19 1.08E-14

Neighborhood Advantage 0.01 0.02 −0.03, 0.05 0.71

Neighborhood Advantage*INT PGS 0.02 0.02 −0.01, 0.05 0.14 0.67

PGS= Polygenic Score; EduA= educational attainment; cEF= common executive function; INT= intelligence. pFDR represents FDR correction across all interaction p-values, separately for each
SES and PGS (e.g., 4 Income × EduA PGS, 4 Neighborhood Advantage × cEF PGS, etc).
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full genetic propensity. Further, interactions in general, and in
particular those involving potentially noisy measures, such as
polygenic scores, are often quite small and difficult to detect (e.g.,
Vize et al., 2023). The present findings align with some prior
research estimating interactions between PGS and SES in
association with cognitive ability (e.g., Merz et al., 2022; von
Stumm et al., 2023), including in the ABCD sample (e.g., Judd
et al., 2020), but contrasts other work detecting PGS-by-SES
interactions, also using the ABCD sample (e.g., Peñaherrera-
Aguirre et al., 2022). The latter study was limited by analyses that
used different genotype quality control standards and did not
correct for multiple testing in assessing statistical significance of
the interactions. Overall, these results contribute to a complicated
literature by showing that, in a large sample of children from
across the U.S. who are genetically similar to European reference
populations, genetic influences on cognition derived from three
GWAS of aspects of cognition are not moderated by childhood
family SES or neighborhood poverty across a range of cognitive
measures.

Strengths of this study include the large sample size; the
decomposition of polygenic score variance into between- and
within-family variance to better account for potentially con-
founding influences of population stratification, assortative
mating, and or passive gene-environment correlation; and the
use of both family- and neighborhood-level SES, multiple

polygenic scores, and multiple cognitive outcomes. Further, by
leveraging genome-wide data and measured SES, we were able to
estimate the independent effect of SES on cognitive abilities,
accounting for genetic influences on cognition that may share
variance with SES.

Limitations to the present study should be considered in
interpreting the results. First, our sample is restricted to individuals
most genetically similar to reference populations from Europe.
Given the intersectionality between SES and race (which is
correlated with but distinct from ancestral background) alongside
typically higher levels of both familial and neighborhood poverty
among BIPOC populations, our findings may not generalize to all
ancestral backgrounds or racial groups. There is a dearth of well-
powered GWAS of cognitive phenotypes in individuals with less
genetic similarity to European reference populations, precluding
the estimate of PGS in these groups in ABCD, but the exclusion of
these individuals from research on this topic is a major limitation.
Second, polygenic scores include information only from common
genetic variants, and thus, in conjunction with the still-limited
power of PGS to explain the common variant heritability, are
underestimates of the true genetic effect on cognition. Further, rare
genetic variants and de novo mutations not incorporated into the
PGS may interact with SES (Ganna et al., 2016; Rask-Andersen
et al., 2021), and our approach was not able to account for this
possibility.

Table 7. Interactions between PGS & SES in models predicting wisc matrix reasoning

Model Standardized Beta (β) STE 95% CI p pFDR

EduA PGS 0.15 0.02 0.10, 0.19 1.67E-11

Income 0.13 0.02 0.08, 0.18 4.91E-09

Income*EduA PGS 1.89E-03 0.02 −0.04, 0.04 0.91 0.91

EduA PGS 0.17 0.02 0.13, 0.22 8.23E-16

Neighborhood Advantage 0.05 0.02 0.01, 0.09 0.03

Neighborhood Advantage*EduA PGS −2.76E-03 0.02 −0.04, 0.03 0.86 0.91

cEF PGS 0.15 0.02 0.11, 0.19 8.79E-13

Income 0.16 0.02 0.12, 0.20 2.16E-13

Income* cEF PGS −4.85E-03 0.02 −0.04, 0.03 0.77 0.91

cEF PGS 0.16 0.02 0.12, 0.20 1.40E-14

Neighborhood Advantage 0.06 0.02 0.02, 0.10 2.86E-03

Neighborhood Advantage* cEF PGS 0.02 0.01 −0.01, 0.05 0.16 0.67

INT PGS 0.16 0.02 0.11, 0.21 8.40E-14

Income 0.14 0.02 0.11, 0.18 1.16E-10

Income*INT PGS 0.01 0.02 −0.03, 0.04 0.60 0.90

INT PGS 0.19 0.02 0.15, 0.24 1.30E-18

Neighborhood Advantage 0.05 0.02 0.01, 0.10 0.01

Neighborhood Advantage*INT PGS 0.01 0.02 −0.02, 0.05 0.38 0.70

PGS= Polygenic Score; EduA = educational attainment; cEF = common executive function; INT= intelligence. Betas are standardized. pFDR represents FDR correction across all interaction
p-values, separately for each SES and PGS (e.g., 4 Income × EduA PGS, 4 Neighborhood Advantage × cEF PGS, etc).
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Third, the data used in this study are cross-sectional due to the
availability of certain cognitive tasks at baseline but not follow-up
waves of ABCD (Luciana et al., 2018; Thompson et al., 2019). Prior
work examining specific cognitive measures in ABCD suggested
that despite age-related change, there is considerable stability in
individual differences of cognitive performance from ages 9–10 to
11–12 (Anokhin et al., 2022). Here, we were interested in broad
cognitive constructs that mapped most closely onto the GWAS
used for our PGS, and because these broader cognitive components
can only be computed at one time point, we were restricted to
baseline cognitive and SES data. The nascent literature indicates
that early life and sustained exposure to poverty has differential
associations with cognition relative to those with more transient or
later development poverty (Brooks-Gunn & Duncan, 1997;
Korenman et al., 1995; Najman et al., 2009; National Institute of
Child Health and Human Development Early Child Care Research
Network, 2005), and thus it is unclear whether the effects
associated with SES in this study reflect persistent or temporally
limited relationships. Given possible changes in SES and in the
strength of associations between polygenic propensity and SES and
cognitive ability over the lifespan (Brooks-Gunn & Duncan, 1997;
Korenman et al., 1995; Najman et al., 2009; National Institute of
Child Health and Human Development Early Child Care Research
Network, 2005), it will be important for future work to whether
changes in SES are associated with changes in cognitive ability
accounting for, or in interaction with, polygenic propensity.

wFourth, the observed associations were relatively small in
effect (β ≤ 0.193, R2 ≤ 0.031 in primary analyses), suggesting that
large proportions of variance in the cognitive abilities examined
are still unexplained. Other influences, including but not limited
to maternal exposure to adversity and stress effects on the fetus,
caregiver and child stress, mental health, parenting behavior,
cognitive stimulation in the home, nutritional deprivation, greater
exposure to environmental toxins, and parent genetic variants for
cognition that were not passed to their children but shaped their
cognitive environment, are also important factors to consider (See
reviews: Johnson et al., 2016; Merz et al., 2019; Pace et al., 2017;
Perkins et al., 2013). Each of these aforementioned factors (e.g.,
household stress, increased risk of mental health diagnoses,
parental behaviors) are correlated with childhood poverty and are
potential environmental mechanisms linking childhood poverty
with adverse outcomes, including lower performance on cognitive
measures. Future work may address some of these limitations
through the incorporation of parental cognitive performance
measures, in addition to measures of other influences that may
shape child cognition and cognitive environment. Fifth, the
inclusion of PGS and heritable environmental factors (e.g., SES) in
the same regression can create spurious associations (Akimova
et al., 2021). In that case, the effect of the environment should
increase, while the effect of genetics should decrease. We did not
find this to be the case in our models, suggesting that the
associations we observed are not spurious or driven by
conditioning on a collider. Relatedly, prior work shows that gene
× environment interactions may be inflated in the case of gene-
environment correlations (Akimova et al., 2021; Kazma et al.,
2011; Lindström et al., 2009). Because we did not detect any
significant interactions, we do not believe this is a concern in our
analyses.

Broadly, this study extends prior work by examining multiple
SES, PGS, and cognitive outcomes and testing whether PGS
associations may be attributable to direct genetic effects or, rather,
are confounded. We show that the PGS effects are largely

confounded (e.g., by population stratification, assortative mating,
and/or gene-environment correlation) and are smaller than the
effects observed for family income. These findings highlight the
unique importance of a modifiable environmental factor, SES, to
childhood cognitive ability and lend further empirical support to
those investigating the effects of interventions designed to alleviate
childhood poverty, such as direct payments designed to increase
family financial stability and enhance child cognitive and
psychosocial functioning (Rojas et al., 2020). This work empha-
sizes the continued need for public policy solutions to the problem
of childhood poverty. Future work is needed to examine
mechanisms through which genes and SESmay influence cognitive
ability (e.g., brain structure, stress, physical and mental health),
which may also hold implications for intervention efforts and local
and federal policy aimed at reducing child poverty and its sequelae.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0954579424001573.
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