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Abstract
Robust control of non-linear systems is a challenging task, notably in the presence of external disturbances and
uncertain parameters. The main focus of this paper is to solve the trajectory tracking problem of an unconventional
quadrotor with rotating arms (also known as a foldable drone), while overcoming some of the challenges associated
with this type of vehicle. Therefore, in a first step, the model of this vehicle is presented, taking into account the
change of the inertia, the centre of gravity, and the control matrix. The theoretical foundations of backstepping
control, based on the finite time Lyapunov stability theory and enhanced by a Super-Twisting algorithm, are then
discussed. Numerical simulations are performed to demonstrate the efficiency of the suggested control approach.
Finally, a qualitative and quantitative comparative study of the proposed controller with the conventional backstep-
ping controller is performed. Overall, the obtained results show that the proposed control strategy outperforms in
terms of accuracy and resilience.

Nomenclature
UAVs Unconventional Unmanned Aerial Vehicles
PID Proportional Integral Derivative
LQR Linear Quadratic Regulator
ADRC Active Disturbance Rejection Controller
SUAV Subminiature UAV
MPC Model Predictive Control
MRAC Model Reference Adaptive Control
CoG Center of Gravity
ST Super Twisting

1.0 Introduction
Automation and robotisation in the aeronautical field are opening up new perspectives in terms of rescue,
observation, inspection and reconnaissance [1, 2, 3]. Research in this field has been very active recently,
and this growing interest is due to technological advances, particularly in the field of miniaturisation of
actuators and onboard electronics.

Unconventional Unmanned Aerial Vehicles (UAVs) (called reconfigurable UAVs) are a new class of
drones. They have a variable structure during flight. In recent years, they have gained great popularity and
have been the subject of scientific researchers, and this is due to their ability to change their morphologies
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to different flight conditions [4] and optimise their shape to achieve multitask missions [5, 6]. Changing
the configuration during flight enables critical tasks that are difficult to complete with conventional
quadrotors.

Unconventional UAVs are reliable in enclosed areas and dangerous places [7]. Infrastructure inspec-
tion and cave discoveries also require this type of vehicle [8, 9]. Furthermore, the ability to grasp and
transfer large objects without the use of extra mechanisms and with minimum energy use is a significant
advantage [10, 11]. Another key element is that modifying the configuration allows new movements like
roll, pitch, yaw, and translation to be introduced without impacting the motors’ rotation velocities [12].
Different structures have already been proposed by introducing changes to the classic drone such as the
length and the number of arms [13, 14], control of the orientation of propellers and rotors, and other
structures [15, 16].

Since the UAV is exposed to an unfavorable atmospheric environment and external conditions, reli-
able and robust control algorithms are required. In the literature, a large number of publications on
multi-copters address this control problem. There are several control laws based on the linearisation of
the dynamic model [17], although these approaches have limitations when the system moves away from
its operating point. Some studies propose the development of linear controllers such as Proportional
Integral Derivative (PID) and Linear Quadratic Regulator (LQR) [18, 19], while others suggest the
development of non-linear methods to maintain the stability of the system [20, 21]. In Ref. [22], Gao
et al. design an Active Disturbance Rejection Controller (ADRC), which is developed from the non-
linear PID controller and applied to an unconventional Subminiature UAV (SUAV) system. Authors
in Ref. [23] implement a linearisation control law based on the input-output feedback. The proposed
control aims to stabilise both the tilt-rotor aircraft and the load over the entire trajectory. Another con-
troller, Model Predictive Control (MPC), was presented by Richard et al. in reference [24] to solve the
trajectory tracking problem of a linearised titled rotor drone when carrying a suspended load. Research
[25] shows a controller based on state-dependent LQR for the high-level and a PID control for the
low-level tilt-rotor. In the work of Desbiez et al. [5], a Model Reference Adaptive Control (MRAC)
and a PID that controls the attitude have been applied to a multirotor with two independent rotating
arms. The MRAC law has been used to manage the uncertainties due to the variable architecture of the
quadrotors. In Ref. [26], Wallace et al. opted for a controller based on a LQR to stabilise the entire
model of the folding arm drone initially, and then control the vehicle in a trirotor configuration in
which the vehicle can transform. This controller is supposed to provide stability to the vehicle, but
it did not generate consistent returns to the origin. Barbaraci et al. [27] also discussed the control algo-
rithm using a LQR on a quadrotor with variable arm geometry, to stabilise the UAV and recover the
error with respect to the reference, but in their case, they implemented the controller after linearis-
ing the system. Another study was made by Falanga et al. [28] to ensure stable flight at all times
with any morphology transition, in which they exploit an adaptive LQR controller that adapts to the
drone’s morphology during the flight. A new and first design of a self-foldable and self-deployable
drone is proposed by Tuna et al. [29], where the arms are rotated at the same time by a single ser-
vomotor. Recently, optimising energy consumption during flight has become an area of interest for
Xiong. To ensure a best energy efficiency, they have proposed the rotation of the quadrotor’s arms,
to achieve the desired movements, while keeping the same thrust for each rotor. In Ref. [30], authors
proposed a new set of morphing wings for drones, these wings provide an energy-efficient method of roll
control.

The studied system in this paper is highly non-linear and has a variable structure during flight, which
makes the control of this type of vehicle difficult and complex. Recent work has focused on conventional
controllers for unconventional drones. The majority of the existing literature focuses on classical back-
stepping. However, this control law does not guarantee stability in the presence of uncertain parameters
and unknown disturbances.

In this paper and following our previous work [4], we are interested in a nonlinear robust controller
to ensure better tracking of a drone with rotating arms in the presence of unknown disturbances, taking
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into account the change of its Center of Gravity (CoG), the variation of the inertia, and the allocation
matrix. The backstepping controller is used in combination with the Super-Twisting (ST) algorithm. The
control law of ST is composed of two parts: the first one represents a convergence term, while the second
one is a disturbance estimation term.

The main contributions of this work are summarised as follows:

• An enhanced backstepping controller with a correction term based on the ST algorithm is pro-
posed. It has the particularity of solving the trajectory tracking problem in finite time and ensures
quicker convergence, better performance, high accuracy, and robustness against disturbances.

• Tests are performed to demonstrate the performance of the developed controller. They are made
under disturbances.

• A quantitative and qualitative comparative study involving our control strategy with a classical
backstepping controller is provided to highlight the performance of our method.

The remainder of the paper is structured as follows: In Section II, a brief modeling of the
unconventional quadrotor using the Newton-Euler formalism is presented, while in Section III
the proposed non-linear control based on the hierarchical robust finite-time control approach and
backstepping method is designed and applied to the studied quadrotor. In Section IV, the numerical
simulation results are carried out. Finally, some concluding remarks are drawn.

Notation
The following notations will be used throughout this document:
Let R and R+ denote the set of real and positive real numbers respectively.
Sigβ(r) = [|r1|βsign(r1) |r2|βsign(r2) |r3|βsign(r3)

]T , Int(r) = [∫
sign(r1)

∫
sign(r2)

∫
sign(r3)

]T ,

r = [
r1 r2 r3

]T , where sign(�) = �

|� | is the standard signum function and |�| refers to the abso-

lute value of �. The notation ‖r‖ refers to the Euclidean norm of vector r. The symbol ∧ denotes the
cross product. For the symmetric matrix P ∈R

n×n, δmin(P) and δmax(P) are its minimum and maximum
eigenvalues, respectively. diag(a1, a2, . . . , an) denotes the corresponding diagonal matrix. The notations
c(.) and s(.) symbolise the functions cos(.) and sin(.), respectively.

2.0 Geometric description and modeling of the unconventional quadrotor
This section briefly presents the geometric description of the rotating arm drone and discusses its
modeling.

2.1 Dynamic model of the disturbed attitude and translation of the unconventional quadrotor
The foldable drone can change the angles σi(t)|i=1,...,4 between its arms via the servomotors, these latter are
linked to a central body as shown in Fig. 1. Each arm contains a rotor placed at its extremity. Changing
the angular velocity of the rotors ωi(t)|i=1,...,4 and rotating the arms can change the shape of the foldable
drone and produce other more complex configurations from the basic X configuration.

Figure 1. Design of the quadrotor with rotating arms. (1) Propeller. (2) Rotating arm. (3) Servo-arm
junction. (4) Servomotor.
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In this paper, we have chosen six different configurations of the quadrotor with rotating arms in this
order (X, Y, YI, H, T, O) as shown in Fig. 2 and Table 1.

Figure 2. Different configurations of the quadrotor with rotating arms: (a) X configuration,
(b) Y configuration, (c) YI configuration, (d) H configuration, (e) T configuration, (f) O configuration.

Table 1. The arm angles of each configuration

Configurations Arm angles
X σ1(t) = π/4, σ2(t) = π/4, σ3(t) = π/4, σ4(t) = π/4
Y σ1(t) = π/4, σ2(t) = π/4, σ3(t) = π/2, σ4(t) = 0
YI σ1(t) = π/2, σ2(t) = 0, σ3(t) = π/4, σ4(t) = π/4
H σ1(t) = π/2, σ2(t) = 0, σ3(t) = π/2, σ4(t) = 0
T σ1(t) = 0, σ2(t) = π/2, σ3(t) = π/2, σ4(t) = 0
0 σ1(t) = π , σ2(t) = π , σ3(t) = π , σ4(t) = π

The quadrotor with rotating arms is considered as a rigid body of which its motion in space can be
represented by two coordinate frames: B = (o, xm, ym, zm) is the body-fixed frame attached to the centre
of gravity of the aerial vehicle and E = (oi, xi, yi, zi) is the earth-fixed frame as shown in Fig. 3.

Hypothesis
The following basic hypothesis are considered in quadrotor with rotating arms modeling:

• The quadrotor is a rigid body whose mass is constant.
• The propellers are rigid.
• The transition from one configuration to another is long so as not to generate abrupt phenomena.
• The angle of manoeuverability of the arms is assumed to be small.
• The rotation velocities of the arms are not too high.
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Figure 3. Schematic of the quadrotor with rotating arms.

We elaborate the dynamic equations of the system by using the Newton-Euler formalism.
The system can be written in the following form [4]:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ̇ = V

mξ̈ = Rη(Ft − Fg) + Fd + Fext

Ṙη = Rη Sk(
)

J(σ (t))
̇= −Sk(
)J(σ (t))
+ �f − �a − �gy + �ext

, (1)

where ξ ∈R
3 and V ∈R

3 are respectively the position and velocity of the quadrotor with rotating arms.
m is the total mass of the quadrotor, which is supposed to be constant and 
 ∈R

3 its angular velocity
expressed in the body frame.

Ft, Fg and Fd belong to R
3 are respectively the total force generated by the four rotors, the gravity

force along the z-axis and the drag force along the three axes (x,y,z).

Ft = R
[
0 0

∑4
i=1 Fi

]T
, (2)

where

Fi = b w2
i , (3)

Fg = [
0 0 −mg

]T
, (4)

Fd = −diag
(
Kdfx Kdfy Kdfz

)
ξ̇ , (5)

with b is the aerodynamic coefficients and Kdf (x,y,z) are the translation drag coefficients.
Fext ∈R

3 represents the disturbances according to the translation movement.
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�f , �gy and �a belong to R
3 are the moment caused by the thrust and drag forces, the gyroscopic

torque of the propellers and the moment resulting from aerodynamic friction.

�f = [
�x �y �z

]T
, (6)

�gy =
4∑

i=1


∧ Jr

[
0 0 ( − 1)i+1wi

]T
, (7)

Jr is the rotor inertia

�a = diag
(
Kafx Kafy Kafz

)T

2, (8)

�ext ∈R
3 is the disturbances according to the rotation movement.

Rη ∈R
3×3 is the rotation matrix connecting the two frames of reference, it can be parameterised by

Euler angles η= (φ, θ ,ψ):

Rη =
⎡
⎢⎣

cψcθ sφsθcψ − sψcφ cφsθcψ + sψsφ

sψcθ sφsθsψ + cψcφ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

⎤
⎥⎦ , (9)

Sk ∈R
3×3 is the skew-symmetric matrix related to the angular velocity 


Sk =

⎡
⎢⎢⎣

0 −r q

r 0 −p

−q p 0

⎤
⎥⎥⎦ . (10)

The reconfiguration of the quadrotor, during the flight, generates a displacement of its CoG, a change
of its inertia J3×3(σ (t)) and requires a readjustment of the allocation matrix. The calculation of the
inertia matrix is mainly based on the theorem of Huygens-Steiner, the analytical details of calculation is
presented in the works of Derrouaoui et al. [31, 32], in which some approximations are made to simplify
the development.

2.2 Developed model
Dynamic model (1) can be written in terms of position, rotation and input as follow:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̈ = fφ(t) + gφ(t)U2

θ̈ = fθ (t) + gθ (t)U3

ψ̈ = fψ (t) + gψ (t)U4

ẍ = fx(t) + gx(t)UxU1

ÿ = fy(t) + gy(t)UyU1

ż = fz(t) + gz(t)U1

, (11)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fφ(t) = Jyy(σ (t)) − Jzz(σ (t))

Jxx(σ (t))
θ̇ ψ̇ − Jr ωr

Jxx(σ (t))
θ̇ − Kafx

Jxx(σ (t))
φ̇2

gφ(t) = 1

Jxx(σ (t))

fθ (t) = Jzz(σ (t)) − Jxx(σ (t))

Jyy(σ (t))
φ̇ψ̇ + Jr ωr

Jyy(σ (t))
φ̇ − Kafy

Jyy(σ (t))
θ̇ 2

gθ (t) = 1

Jyy(σ (t))

fψ (t) = Jxx(σ (t)) − Jyy(σ (t))

Jzz(σ (t))
φ̇θ̇ − Kafz

Jzz(σ (t))
ψ̇ 2

gψ (t) = 1

Jzz(σ (t))

fx(t) = −Kdfx

m
ẋ

gx(t) = 1

m

fy(t) = −Kdfy

m
ẏ

gy(t) = 1

m

fz(t) = −Kdfz

m
ż − g

gz(t) = cosφ cosθ
m

, (12)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ux = (cφsθcψ + sφsψ)

Uy = (cφsθsψ − sφcψ)

ωr =ω1 −ω2 +ω3 −ω4

. (13)

The model given by (11) can be generalised for two subsystems, one is designed for the position �P

and the other is for the attitude �A in which the translational and rotational dynamics are considered as
disturbed non-linear second-order systems. The following subsystems will be used in the control design:

�P:

⎧⎨
⎩

ẋ1 = x2

ẋ2 = f1(x) + g1(x)T ,
(14)

�A:

⎧⎨
⎩

ẋ3 = x4

ẋ4 = f2(x) + g2(x)U,
(15)
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with f1 = [
fx fy fz

]T is written as:
f1(x) = f01 + d1, (16)

and f2 = [
fφ fθ fψ

]T is written as:
f2(x) = f02 + d2, (17)

where xξ = [
x1 x2

] ∈R
3×2 is the vector of states for position, x1 = [

x y z
]T ∈R

3, x2 =[
ẋ ẏ ż

]T ∈R
3, T = [

Ux Uy U1

]T is the vector of control inputs and the bounded disturbance
d1 = [

dx dy dz

] ∈R
3

xη = [
x3 x4

] ∈R
3×2 is the vector of states for attitude, x3 = [

φ θ ψ
]T ∈R

3 and x4 =[
φ̇ θ̇ ψ̇

]T ∈R
3, U = [

U2 U3 U4

]T is the vector of control inputs and the bounded disturbance
d2 = [

dφ dθ dψ
] ∈R

3. g1(x) and g2(x)) belong to R
3×3
∗ . The functions f01 and f02 represent the known

terms of f1(x) and f2(x) respectively.

2.3 Control objective
The main objective is to design a control laws T and U such that the variable (xξ (t), xη(t)) track robustly
the desired signals (xξd(t), xηd(t)), i.e. to render the tracking error(

�1(t)

�3(t)

)
≡
(

xξ (t) − xξd(t)

xη(t) − xηd(t)

)
≡
(

0

0

)
in finite time tR.

3.0 Adopted control architecture
The dynamics of the unconventional quadrotor are strongly non-linear and relatively complex because
of the difficulty of modeling aerodynamic forces (aerodynamic coefficient, air density, and apparent
surface) and the uncertainty of the physical constants of the drone. Robust control techniques are used
to ensure the stability of the vehicle in the presence of external disturbances, despite the complexity
of the aerodynamic forces and the impossibility of directly measuring the wind speed. These unknown
terms are considered disturbances.

3.1 Backstepping design
The backstepping control technique performs successive relations to make the looped system equivalent
to stable cascaded first-order sub-systems in the Lyapunov sense, thus building a control law and a
stabilising Lyapunov function. This method begins with the definition of the Lyapunov function. The
principle is to construct at each step a gap between the current state of the system and a virtual controller
that would guarantee the negativity of the derivative of the Lyapunov function. At the end of each step,
the Lyapunov function compensates this gap, to ensure the convergence to zero. The process ends when
the real control of the system appears, guaranteeing the convergence of the real states to the desired
states.

The control laws by backstepping combined with the ST algorithm are designed as:

T = g−1
1 (x) ( − f01(x) + υ̇1 + υ2), (18)

with ⎧⎨
⎩
υ1 = ẋ1d − κ1 �1

υ2 = −λ1 Sig
1
2 (�2) − λ2 Int(�2),

(19)

U = g−1
2 (x) ( − f02(x) + υ̇3 + υ4), (20)
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with ⎧⎨
⎩
υ3 = ẋ3d − κ2 �3

υ4 = −λ3 Sig
1
2 (�4) − λ4 Int(�4),

(21)

where
(
κ1 = diag

[
κx κy κz

]
, κ2 = diag

[
κφ κθ κψ

]) ∈R
3×3
+∗

and λ1 = diag
[
λ1x λ1y λ1z

]
, λ2 = diag

[
λ2x λ2y λ2z

]
,

λ3 = diag
[
λ1φ λ1θ λ1ψ

]
, λ4 = diag

[
λ2φ λ2θ λ2ψ

]
Theorem 1. Considering the disturbed systems (14) and (15) with bounded condition (25) and the
applied control inputs (18) and (20). The state variables (xξ , xη) of systems (14) and (15), respectively,
can track exactly the desired references (xξd, xηd) and converge in a finite time tR.

The following Lemma is used for the stability analysis

Lemma 1. [33, 34] Considering the continuous system

ẋ = f (x), f (0) = 0, x ∈R
n. (22)

We suppose that there is a continuous positive definite function V: R
n →R

+, a real number γ > 0,
0<α < 1 and an open U ⊆R

n in the neighbourhood of the origin so that the following inequalities are
satisfied:

V̇(x) + γ Vα(x) ≤ 0, x ∈ V \ {0}. (23)

Then, the origin of the system (22) is a stable equilibrium in finite time. If U =R
n, the origin is a globally

stable equilibrium in finite time.
Moreover, the settling time is given by:

tR ≤ 1

γ (1 − α)
V1−α. (24)

Assumption 1. The perturbation terms d1 and d2 are assumed to be bounded, such that:
˙‖ d1 ‖< h1max and ˙‖ d2 ‖< h2max, (25)

where h1max and h2max are strictly positive constants supposed to be known.

Proof. We follow these steps to prove the previous theorem: �

3.1.1 First step
Consider system (14)

Let us define the tracking error �1:

�1 = x1 − x1d. (26)

The first Lyapunov candidate function L1, associated with �1 is given by:

L1 = 1

2
�T

1�1. (27)

Its temporal derivative:

L̇1 = �T
1 �̇1 = �T

1 (ẋ1 − ẋ1d) = �T
1 (ẋ1 − υ1)+ �T

1 (υ1 − ẋ1d) . (28)

The term (ẋ1d) represents the velocity set point and υ1 is the stabilising controller of �1.

υ1 = ẋ1d − κ1 �1. (29)

Replacing (29) in (28), we obtain:

L̇1 = −�T
1 κ1 �1 + �T

1 (ẋ1 − υ1). (30)
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3.1.2 Second step
The error �2 is defined as the difference between the real velocity and the virtual velocity control. The
convergence of �2 will naturally lead to the convergence of �1, since the velocity will tend towards the
virtual velocity and the derivative of L1 will be strictly negative.

Let us define the error �2:

�2 = ẋ1 − υ1. (31)

We define the second Lyapunov candidate function L2, associated with �2.

L2 = 1

2
�T

2�2. (32)

The derivative of the Lyapunov function is given by:

L̇2 = �T
2 �̇2 = �T

2 (f (x) + g(x) T − υ̇1) . (33)

The control law is given by:

T = g−1(x) (−f0(x) + υ̇1 + υ2) . (34)

Replacing (34) in (33), we obtain

L̇2 = �T
2 (d1 + υ2) . (35)

We take υ2 as

υ2 = −λ1 Sig
1
2 (�2) − λ2 Int(�2). (36)

We replace (36) in (35), we find

L̇2 = �T
2

(
−λ1 Sig

1
2 (�2) − λ2 Int(�2) + d1

)
. (37)

We make the following change of variable

z = [
z1 z2

]T
, (38)

⎧⎨
⎩

z1 = �2

z2 = −λ2 Int(�2) + d1

. (39)

Which implies ⎧⎨
⎩

ż1 = −λ1 Sig
1
2 (z1) + z2

ż2 = −λ2
˙Int(z1) + ḋ1

. (40)

The convergence of z1 and z2 to zero ensures the convergence of �2 and �̇2 to zero.
We choose now the following Lyapunov function to analyse the stability:

V(z) = vTP v. (41)

The vector v and the symmetric matrix P ∈R
2×2 are given by:

v =
[
Sig

1
2 (z1) z2

]T

and P = 1

2

[
4λ2 + λ2

1 −λ1

−λ1 2

]
, (42)

this function is defined positive if λ2 is defined positive.

δmin(P)‖v‖2 ≤ V(z) ≤ δmax(P)‖v‖2, (43)
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where v is given by:

‖v‖2 = ‖z1‖ + z2
2, (44)

δmin(P) and δmax(P) are respectively the minimal and maximal eigenvalues of P.
Knowing that ˙‖ d1 ‖ ≤ h1max (see Assumption 1), the temporal derivative of the candidate Lyapunov

function verify that:

V̇ ≤ − 1

‖z1‖ 1
2

δmin(Q) ‖v‖2 + h1max ‖ξ‖‖v‖, (45)

where

Q = λ1

2

[
2λ2 + λ2

1 −λ1

−λ1 1

]
; ξ = [−λ1 2

]
. (46)

Using (44), we can deduce that
1

‖z1‖ 1
2

≥ 1

‖v‖ . (47)

We find

V̇ ≤ ( − δmin(Q) + h1max‖ξ‖) ‖v‖. (48)

Using (43), we can see that:
V

δmax(P)
≤ ‖v‖2 ≤ V

δmin(P)
. (49)

We find

V̇ ≤ −(δmin(Q) − h1max‖ξ‖)
V

1
2√

δmax(P)
. (50)

To conclude on the negativity of V̇(z), it is necessary that:

δmin(Q) ≥ h1max‖ξ‖. (51)

The matrix Q will be defined positive with a minimal eigenvalue δmin(Q) ≥ h1max||ξ ||, λ1 defined positive
and h1max > 0, hence:

λ2 ≥ 2 h2
1max‖ξ‖2

λ2
1

. (52)

Therefore, we get

V̇ ≤ −γ V
1
2 . (53)

with

γ = δmin(Q) − h1max‖ξ‖√
δmax(P)

. (54)

The solution is ∫ tR

0

dV

V
1
2

≤ −γ
∫ tR

0

dt =⇒ tR = 2V
1
2 z(0)

γ
. (55)

So, we have demonstrated the stability in finite time. i.e. z1 and z2 tend to zero in a finite time.

z2 = 0 =⇒ d1 = λ2 Int(z1), (56)

where λ2 Int(z1) represents the perturbation estimation term.
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As soon as z1 = z2 = 0 ∈R3 and according to Equation (56), then:

=⇒ L̇2 = �T
2

(
−λ1 Sig

1
2 (�2)

)

=⇒ L̇2 = −
3∑

i=1

λ1i | �2i || �2i | 1
2

=⇒ L̇2 = −
3∑

i=1

λ1i | �2i | 3
2 , (57)

we define λ̃1 = min{λ11, λ12, λ13}, we get

=⇒ L̇2 ≤ −λ̃1

3∑
i=1

| �2i | 3
2

=⇒ L̇2 ≤ −λ̃1

3∑
i=1

(
1

2
2 | �2i | 3

2

)

=⇒ L̇2 ≤ −λ̃12
3
4

3∑
i=1

(
1

2
| �2i | 3

2

)
. (58)

Let κ̃1 = 2
3
4 λ̃1

=⇒ L̇2 ≤ −κ̃1L
3
4
2

=⇒ L̇2 ≤ −κ̃1Lα

2 , (59)

with α = 3
4
∈ [0, 1]

According to Lemma 1, L2 is stable, so the error �2 → 0.
This implies that L̇1 = −κ1 ‖ �1 ‖2 is stable. Then, the error �1 → 0.

Desired Euler angles
The unconventional quadrotor can be separated into two connected subsystems, based on the hierar-

chical backstepping. According to (13), we can calculate the desired Euler angles φd and θd, which will
introduce the next error variable:⎧⎪⎨

⎪⎩
φd = sin−1 (sψdUx − cψdUy)

θd = sin−1

(
cψdUx + sψdUy

cφd

) . (60)

3.1.3 Third step
Consider system (15), a new error variable is defined as:

�3 = x3 − x3d. (61)

Consider the Lyapunov candidate function L3, associated with the error �3:

L3 = 1

2
�T

3�3. (62)

Its derivative with respect to time yields:

L̇3 = �T
3 �̇3 = �T

3 (ẋ3 − ẋ3d) = �T
3 (ẋ3 − υ3) + �T

3 (υ3 − ẋ3d). (63)
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The term (ẋ3d) represents the velocity set point and υ3 is the stabilising controller of �3.

υ3 = ẋ3d − κ2 �3. (64)

Replacing (64) in (63), we obtain:

L̇3 = −�T
3 κ2 �3 + �T

3 (ẋ3 − υ3), (65)

the second term will be eliminated in the next step.

3.1.4 Fourth step
Consider the second term �3(ẋ3 − υ3) to continue the process of backstepping. The error �4 is defined
as the difference between the real velocity and the virtual velocity control. The convergence of �4 will
naturally lead to the convergence of �3, since the velocity will tend towards the virtual velocity and the
derivative of L3 will be strictly negative.

Let define the error �4:

�4 = ẋ3 − υ3. (66)

The Lyapunov candidate function L4 associated with �4 is defined as:

L4 = 1

2
�T

4�4. (67)

Its temporel derivative is given by:

L̇4 = �T
4 �̇4 = �T

4 (f (x) + g(x) U − υ̇3). (68)

The controller is given by:

U = g−1(x) ( − f0(x) + υ̇3 + υ4). (69)

Replacing (69) in (68), we obtain

L̇4 = �T
4 (d2 + υ4). (70)

We take υ4 as

υ2 = −λ3 Sig
1
2 (�4) − λ4 Int(�4). (71)

We replace (71) in (70), we find

L̇4 = �T
4

(
−λ3 Sig

1
2 (�4) − λ4 Int(�4) + d2

)
. (72)

Consider the following change of variable

z̄ = [
z3 z4

]T
, (73)

⎧⎨
⎩

z3 = �4

z4 = −λ4 Int(�4) + d2

. (74)

Which implies ⎧⎨
⎩

ż1 = −λ3 Sig
1
2 (z3) + z4

ż2 = −λ4
˙Int(z3) + ḋ2

. (75)

The convergence of z3 and z4 to zero ensures the convergence of �4 and �̇4 to zero. Therefore, the
disturbance d2 will be estimated in finite time.

https://doi.org/10.1017/aer.2022.72 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.72


640 Belmouhoub et al.

As soon as z3=z4=0 and the disturbance is estimated, then:

=⇒ L̇4 ≤ −κ̃2Lα

4 , (76)

where α = 3
4
, κ̃2 = 2

3
4 λ̃3 and λ̃3 = min{λ31, λ32, λ33}

According to Lemma 1, L4 is stable ⇒ the error �4 → 0.
which implies that L̇3 = −κ2 ‖ �3 ‖2 is stable. Then, the error �3 → 0

3.2 Control architecture
Hierarchical control is known in aeronautics as guidance and piloting control. The system is decomposed
into two cascaded subsystems: one for translation corresponding to the slow dynamics called the high
level (outer loop) and the other for rotation corresponding to the fast dynamics called the low level (inner
loop) (see Fig. 4).

Figure 4. Control architecture.

The reference trajectories (xd, yd, zd and ψd) are generated by the guidance system block. U1 controls
the attitude while the two other translation variables x and y are controlled indirectly by controlling the
two rotation angles (φ and θ ) with the virtual controllers Ux and Uy. The correction block will generate
the desired roll and pitch angles. The foldable drone is controlled by the velocity of the motors. These
velocities are obtained from the control matrix. The CoG and the inertia matrix are instantly calculated
according to the variation of the angles σi. The different configurations of the quadrotor are generated
by the switching block.

The main difficulty of this control structure is to demonstrate the stability of the global system in
a closed loop and to guarantee good performance as well as robust behaviour towards disturbances.
Servomotors are controlled by a classical PID to turn the arms, where:

Us = kpeσi (t) + kI

∫
eσi (t)dt + kDėσi (t), (77)

with eσi (t) is the tracking error. kp, kI and kD are the controller’s gains.
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The studied quadrotor is controlled by a backstepping controller with a correction term based on the
super-twisting algorithm, which is designed to follow the desired trajectory (xd, yd, zd) and the angle ψd

in the presence of disturbances.

3.3 Control inputs
Applying the control laws (34) and (69) on the systems (14) and (15) respectively, we obtain the final
control inputs as:
Altitude control (z)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�11 = z − zd

�21 = ż − υ11

υ11 = żd − κz �11

υ21 = −λ1z |�21| 1
2 sign(�21) − λ2z

∫
sign(�21(z))dz

U1 = 1

gz(x)
(−fz(x) + υ̇11 + υ21) . (78)

Roll control (φ)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�12 = φ − φd

�22 = φ̇ − υ12

υ12 = φ̇d − κφ �12

υ22 = −λ1φ |�22| 1
2 sign(�22) − λ2φ

∫
sign(�22)(z)dz

U2 = 1

gφ(x)

(−fφ(x) + υ̇12 + υ22

)
. (79)

Pitch control (θ )⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�13 = θ − θd

�23 = θ̇ − υ13

υ13 = θ̇d − κθ �13

υ23 = −λ1θ |�23| 1
2 sign(�23) − λ2θ

∫
sign(�23(z))dz

U3 = 1

gθ (x)
(−fθ (x) + υ̇13 + υ23) . (80)

Yaw control (ψ)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�14 =ψ −ψd

�24 = ψ̇ − υ14

υ14 = ψ̇d − κψ �14

υ24 = −λ1ψ |�24| 1
2 sign(�24) − λ2ψ

∫
sign(�24(z))dz

U4 = 1

gψ (x)
( − fψ (x) + υ̇14 + υ24). (81)
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Virtual controllers
Control of (x) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�1x = x − xd

�2x = ẋ − v1x

υ1x = ẋd − κx �1x

υ2x = −λ1x |�2x| 1
2 sign(�2x) − λ2x

∫
sign(�2x(z))dz

Ux = m

U1

(υ̇1x + υ2x). (82)

Control of (y) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�1y = y − yd

�2y = ẏ − v1y

υ1y = ẏd − κy �1y

υ2y = −λ1y |�2y| 1
2 sign(�2y) − λ2y

∫
sign(�2y(z))dz

Uy = m

U1

(υ̇1y + υ2y). (83)

4.0 Simulation results
In this section, we will present a series of simulations of two flight scenarios resulting from the appli-
cation of the backstepping control previously seen on our drone to test the efficiency and robustness of
the tracking problem.

To validate the efficiency of the proposed control, a qualitative comparison with a classical back-
stepping controller has been made in the presence of external disturbances. The ordinary backstepping
control law applied to a reconfigurable UAV is detailed in [4].

We performed the simulations under MATLAB/Simulink. The numerical values of the main physical
parameters of the quadrotor are provided in Table 2.

Table 2. Parameters of the unconventional quadrotor

Parameters Value Unit
Arm length d 0.21 m
Width and length of the central body a 0.075 m
Total mass m 1.100 kg
Gravity constant g 9.81 m/s2

Rotor inertia Jr 2.8385e − 5 kg/m2

The servomotors are controlled by a PID, the parameters of this latter are given in Table 3 as:

Table 3. Parameters of PID controller.

Parameters Value
kp 33.06079
ki 10
kd 0.2
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Table 4. Parameters of the controller.

Parameters Value
κz 1
κx, κy 0.25
κφ , κθ 0.3
κψ 8000
λ1z 2
λ1x, λ1y, λ1φ , λ1θ 3
λ1ψ 40
λ2z 0.1
λ2x, λ2y, λ2φ , λ2θ 0.2
λ2ψ 0.01

We note that the simulations were done in the presence of external disturbances that are noted as
d1 = 0.5N.kg–1 for translation and d2 = 0.01N.(kg.m)–1 for rotation.

The main controller parameters are summarised in Table 4.

4.1 Scenario 1
In this scenario, we make a square trajectory where the foldable drone changes its configuration during
the flight. Simulation results are presented in Figs 5 to 11. Figure 5 represents the absolute position of
the quadrotor during its flight. The translation and attitude responses are displayed in Figs 6 and 7, while
the control signals are illustrated in Fig. 10.

Figure 5. Absolute position of the quadrotor under disturbances.

According to Figs 6 and 7, the quadrotor follows the reference trajectories. It is observed in Figs 8
and 9 that the tracking error converges to zero due to the effectiveness of the proposed controller. Figure
10 shows the evolution of the control signals. We notice that U2 and U3 contain chattering. This is
due to the discontinuous function sign in control laws, this switching in control excites the unmodeled
dynamics, which leads to oscillations of the state vector. From Fig. 11, the servomotors’ output follows
the desired angles with some error in the descent and ascent, which is generated by the rotation of their
arms.
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Figure 11. Servomotors outputs.

The efficiency of the proposed control method is illustrated in Figs 5 to 10 via the comparison between
the results obtained using the proposed controller and the classical backstepping presented in [4] in the
presence of external disturbances. In comparison to the classical backstepping controller provided, the
simulation results clearly indicate better performance, quicker convergence, high precision tracking, and
resilience.

In the light of these results, we have demonstrated the efficiency of this control approach to follow
the desired trajectories and simulate them in the presence of disturbances.
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4.2 Scenario 2
In this scenario, we make a circular trajectory, which is more complex. The obtained results are displayed
in Figs 12 to 17. Figure 12 shows the absolute position of the quadrotor during the flight in the circular
trajectory. Figures 13 and 14 represent the evolution of the position and orientation of the vehicle. The
actuator force controls are displayed in Fig. 17.

On the basis of these results, we can clearly see from Figs 12, 13 and 14 a good tracking of the desired
trajectories. We can also see that the outputs of the system converge towards the setpoint trajectories
quickly. We notice the presence of chattering in the evolution of the control signals due to the switching
in control laws.

Figure 12. Absolute position of the quadrotor under disturbances.
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The comparison between the results obtained using the proposed controller and the classical back-
stepping is illustrated in Figs 12 to 17 in the presence of external disturbances. When compared to
the classical backstepping controller presented in Ref.(4), the simulation results clearly demonstrate
satisfactory performance, faster convergence, high accuracy tracking and robustness.

Using the simulation results, we have demonstrated the efficiency of this control approach to follow
the desired trajectories and to adapt to the change in the flight configuration. Furthermore, simulations
have shown the robustness of the proposed control in the presence of disturbances. We interpret this by
the introduction of the correction term based on the super-twisting algorithm.

To better clarify the comparison and strengthen our results, we have opted for a quantitative
comparison with respect to the trajectory error and the control inputs.

The Mean Squared Error MSE and the Mean Squared Input MSI are calculated for N points as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

MSEposition = 1

N

(
�T

x �x + �T
y �y + �T

z �z

)
MSEattitude = 1

N

(
�T
φ
�φ + �T

θ
�θ + �T

ψ
�ψ
)

MSI = 1

N

(
UT

1 U1 + UT
2 U2 + UT

3 U3 + UT
4 U4

)
. (84)

In addition to the results found previously, the comparison between the two control laws in terms of
error and input shows the efficiency of our proposed controller, in which the calculated values of the
controller based on the super-twisting algorithm are lower than the classical backstepping controller,
and this is proven in both scenarios (see Tables 5 and 6). The two values, MSE and MSI are considered,
respectively, as the tracking error and the energy consumed during the flight.

Table 5. Quantitative comparison for the 1st scenario

Proposed control Classical backstepping control
MSEposition 0.0014 0.0409
MSEattitude 0.0048 0.0210
MSI 115.5037 115.6780

Table 6. Quantitative comparison for the 2nd scenario

Proposed control Classical backstepping control
MSEposition 0.0210 0.2109
MSEattitude 0.0051 0.0101
MSI 130.3683 143.0445

5.0 Conclusion and future works
In this paper, we have examined the problem of flight path tracking of the unconventional quadrotor in
the presence of disturbances. We have briefly presented the mathematical model of the studied UAV.
This step is crucial to obtain simulation results as close as possible to those of the real system. Then,
a robust control strategy is developed and applied to a model of our foldable drone. This control law
is robust, non-linear, and based on the Lyapunov stability theorem. The backstepping control with a
correction term based on the super-twisting algorithm ensures stability in finite time and cancels the
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effect of the perturbation. The simulation results have shown that the proposed controller is able to
improve the control performance of the quadrotor with rotating arms subjected to external disturbances.
To provide faster convergence, a better ability to reject disturbances and improve robustness level to
uncertainties and disturbances in the model of the quadrotor, we propose, in future, to enhanced the
proposed controller by adding finite-time disturbance observer.
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