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Abstract

We investigate semigroups S which have the property that every subsemigroup of S × S which contains
the diagonal {(s, s) : s ∈ S} is necessarily a congruence on S. We call such an S a DSC semigroup. It is
well known that all finite groups are DSC, and easy to see that every DSC semigroup must be simple.
Building on this, we show that for broad classes of semigroups, including periodic, stable, inverse and
several well-known types of simple semigroups, the only DSC members are groups. However, it turns
out that there exist nongroup DSC semigroups, which we obtain by utilising a construction introduced
by Byleen for the purpose of constructing interesting congruence-free semigroups. Such examples can
additionally be regular or bisimple.
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1. Introduction

Given an algebra A, a congruence on A is an equivalence relation that is compatible
with the operations of the algebra. We can also think of ρ as a subset of the direct
product A × A. So instead of ρ being reflexive we can think of ρ as containing
the diagonal Δ = {(x, x) : x ∈ A}, and the notion of ρ respecting the operations then
becomes ρ being a subalgebra of A × A. Motivated by this we give the following
definition.

DEFINITION 1.1. Let A be an algebra. A diagonal subalgebra ρ of A × A is a
subalgebra of A × A that contains the diagonal Δ = {(x, x) : x ∈ A}. A congruence on
A is a diagonal subalgebra of A × A, such that for all x, y, z ∈ A,

(x, y) ∈ ρ⇒ (y, x) ∈ ρ and (x, y), (y, z) ∈ ρ⇒ (x, z) ∈ ρ.

It is a well known, easy fact that for groups, diagonal subgroups and congruences
are one and the same.
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2 C. Barber and N. Ruškuc [2]

PROPOSITION 1.2. Let G be a group. Then the diagonal subgroups of G × G are
precisely the congruences on G.

PROOF. This is regarded as folklore, but we provide a short proof for completeness.
By definition any congruence is a diagonal subgroup. If ρ is a diagonal subgroup, and
if (x, y), (y, z) ∈ ρ, then, bearing in mind that (x, x), (y, y), (y−1, y−1) ∈ ρ, we have

(y, x) = (y, y)(x, y)−1(x, x) ∈ ρ and (x, z) = (x, y)(y−1, y−1)(y, z) ∈ ρ.

Hence, ρ is a congruence. �

The same result holds more generally for any algebras A with a Mal’cev term, that
is, a term m(x, y, z) in three variables such that m(x, y, y) = x = m(y, y, x) holds for all
x, y ∈ A (see, for example, [5, Theorem 4.70]). In particular, the result holds for rings,
associative and Lie algebras, loops and quasigroups. However, it does not hold for
semigroups, as the following easy example shows.

EXAMPLE 1.3. Consider the left zero semigroup S = {x, y} with multiplication ab = a
for all a, b ∈ S. The set ρ = {(x, x), (x, y), (y, y)} is a diagonal subsemigroup of S × S but
is not a congruence on S.

Motivated by this we give the following definition.

DEFINITION 1.4. We will say that a semigroup is DSC if every diagonal subsemigroup
is a congruence.

Over the course of this paper we will see that DSC semigroups are few and far
between. In fact, with any of a number of additional mild assumptions, the only
DSC semigroups are groups. A further wrinkle worth keeping in mind is that, despite
Proposition 1.2, not even all groups are DSC, due to the fact that a group may contain
subsemigroups that are not subgroups. Here is a concrete example

EXAMPLE 1.5. Let Z denote the infinite cyclic group. Then {(x, y) ∈ Z × Z : x ≤ y} is a
diagonal subsemigroup of Z × Z, but is not a congruence.

Of course, this ‘anomaly’ cannot arise for finite, or indeed periodic, groups.
We can prove, in full generality, that all DSC semigroups are simple (Theorem 2.1).

Proceeding from there, we prove that for a semigroup S:

• supposing S is finite or periodic, S is DSC if and only if S is a group (Corollaries 2.4,
2.5);

• if S is a stable or inverse DSC semigroup then S is a group (Corollary 2.3,
Theorem 2.6).

Focusing on special classes of simple semigroups, we also have:

• if S is a completely simple DSC semigroup then S is a group (Theorem 2.2);
• for any semigroup S and any endomorphism θ : S→ S, the Bruck–Reilly extension

BR(S, θ) is not DSC (Theorem 3.2);
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[3] Semigroup congruences 3

• for any two infinite cardinals p ≥ q, the generalised Baer–Levi semigroup B(p, q) is
not DSC (Theorem 3.3).

In Theorem 3.1 we will prove that the class of DSC semigroups is closed under
quotients. Thus, one might wish to look for possible nongroup examples among
simple, congruence-free semigroups. Byleen [2] gives a construction which, under
certain conditions, yields such semigroups. It turns out that we can deploy this
construction to show that:

• there exist nongroup DSC semigroups (Corollary 4.4(i));
• furthermore, there are such examples that are regular and bisimple (Corollary

4.4(ii)).

As a byproduct we also observe that the class of DSC semigroups is not closed under
subsemigroups (Corollary 4.4(iii)).

We will require only very basic concepts from semigroup theory. They will
be introduced within the text where they are needed first. For a more systematic
introduction we refer the reader to any standard monograph such as [4]. We will use N
to denote the set of all positive integers, and N0 for N ∪ {0}.

2. Completely simple, stable and inverse semigroups

In this section we will show that all DSC semigroups belonging to certain classes
are in fact groups. Specifically, we will do this for completely simple, stable and inverse
semigroups, in that order.

A nonempty subset I of a semigroup S is said to be an ideal if for all x ∈ I and all
s ∈ S we have sx, xs ∈ I. A semigroup is said to be simple if it has no ideals other than
itself.

THEOREM 2.1. Any DSC semigroup is simple.

PROOF. Suppose S is not simple. Let I be a proper ideal of S. It is easily seen that
ρ = I × S ∪ Δ is a diagonal subsemigroup of S × S. If we take x ∈ I and y ∈ S \ I then
(x, y) ∈ ρ but (y, x) � ρ. Hence, ρ is not a congruence and S is not a DSC semigroup.�

Let S be a semigroup, and let E be the set of idempotents of S. The relation ≤ on
E defined by e ≤ f ⇐⇒ e f = f e = e is a partial order. Any minimal element in this
partial order is said to be primitive. A simple semigroup S is said to be completely
simple if it has a primitive idempotent. All finite simple semigroups are completely
simple.

There is a complete structural description of completely simple semigroups,
originally due to Suschkewitsch [8]. Let G be a group, let I and J be two index sets, and
let P = (pji)j∈J,i∈I be a J × I matrix with entries from G. The Rees matrix semigroup
M[G; I, J; P] is the set I × G × J with multiplication (i, g, j)(k, h, l) = (i, gpjkh, l).
Suschkewitsch’s theorem then asserts that a semigroup S is completely simple if
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and only if it is isomorphic to some Rees matrix semigroup M[G; I, J; P] (see [4,
Theorem 3.3.1]).

THEOREM 2.2. Let S be a completely simple semigroup. If S is DSC then S is a group.

PROOF. Let S be a completely simple semigroup. By Suschkewitsch’s theorem,
without loss of generality we may assume S =M[G; I, J; P]. If |I| > 1 then pick
i � k ∈ I. Now consider the set

ρ = {((i, g, j), (k, h, j)) : g, h ∈ G, j ∈ J} ∪ {(l, g, j), (l, h, j)) : l ∈ I, g, h ∈ G, j ∈ J}.

It is routine to verify that ρ is a diagonal subsemigroup. For an arbitrary j ∈ J it is easily
seen that ((i, 1, j), (k, 1, j)) ∈ ρ but ((k, 1, j), (i, 1, j)) � ρ. Hence, ρ is not a congruence,
contradictingM[G; I, J; P] being DSC. Therefore, it must then be the case that |I| = 1
and, analogously, |J| = 1. It now easily follows that S � G, a group. �

We know from Theorem 2.1 that a DSC semigroup S must be simple. Whenever we
can show that under some additional assumptions S must in fact be completely simple,
Theorem 2.2 will force S to be a group. We deploy this strategy for stable and inverse
semigroups.

In order to define stability, we need to introduce Green’s equivalences R, L and J
on a semigroup S:

sRt ⇔ sS1 = tS1, sLt ⇔ S1s = S1t, sJ t ⇔ S1sS1 = S1tS1

(for a detailed introduction see [4, Section 2.1]). We then say that S is stable if the
following implications hold:

xJsx⇒ xLsx and xJxs⇒ xRxs for all s, x ∈ S.

All finite semigroups are stable [7, Theorem A.2.4]. By [7, Theorem A.4.15] every
stable simple semigroup is completely simple, and so we have the following corollary.

COROLLARY 2.3. Let S be a stable semigroup. If S is DSC then S is a group.

A semigroup S is said to be periodic if for every s ∈ S there exist distinct m, n ∈ N
such that sm = sn. Every finite semigroup is periodic.

COROLLARY 2.4. Let S be a periodic semigroup. Then S is DSC if and only if S is a
group.

PROOF. (⇒) By [7, Theorem A.2.4], every finite semigroup is stable. In fact, the proof
is valid under the weaker assumption of periodicity (see also the proof of [1, Corollary
3.1]). This direction now follows from Corollary 2.3.

(⇐) Suppose S is a group. Let ρ be a diagonal subsemigroup of S × S. We
claim that ρ is also a diagonal subgroup of S × S, and the result then follows from
Proposition 1.2. Let (x, y) ∈ ρ. As S is periodic, xa = 1 = yb for some a, b ∈ N. Then
(x, y)−1 = (x−1, y−1) = (xab−1, yab−1) = (x, y)ab−1 ∈ ρ. �

COROLLARY 2.5. Let S be a finite semigroup. Then S is DSC if and only if S is a group.
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We finish this section with a discussion of inverse semigroups. An element s ∈ S is
said to be regular if sts = s for some t ∈ S. If in addition tst = t we say that s and t are
(semigroup) inverses of each other. It is known that an element is regular if and only
if it has an inverse (see [4, page 51]). The semigroup S is regular if every element is
regular, and it is inverse if every element has a unique inverse.

THEOREM 2.6. Let S be an inverse semigroup. If S is DSC then S is a group.

PROOF. Let S be an inverse DSC semigroup. There is a natural partial order on S given
by x ≤ y⇐⇒ x = ey for some idempotent e (see [4, Section 5.2]). It is also true that this
partial order is compatible with the multiplication and restricts to the natural partial
order on the idempotents. So ρ = {(x, y) ∈ S × S : x ≤ y} is a diagonal subsemigroup
and by assumption is a congruence. Hence, ≤ is both symmetric and antisymmetric,
and therefore there exists a primitive idempotent. �

We started this paper by introducing the concept of diagonal subalgebra for general
algebras and we have looked at the cases when the algebra is a group or semigroup.
At this point we have enough theory to answer this question for inverse semigroups as
well.

THEOREM 2.7. Let S be an inverse semigroup. Then every diagonal inverse subsemi-
group of S × S is a congruence if and only if S is a group.

PROOF. The proof of the reverse direction is identical to the proof of Proposition 1.2.
The proof of the forward direction is similar to the proof of Theorem 2.6. The only
difference is that we need to show ρ is a diagonal inverse subsemigroup, which follows
from the fact that x ≤ y⇒ x−1 ≤ y−1. �

3. Some further infinite non-DSC semigroups

As we have seen in the previous section, there exist no nongroup completely simple,
stable or inverse DSC semigroups. So if we want to find a non-DSC semigroup we will
have to look a bit harder. We know that any DSC semigroup is simple, and we will
explore different constructions leading to examples of simple semigroups.

One such is the Rees matrix semigroup construction, which we have already
encountered, but which can be deployed in greater generality. Specifically, instead of
starting with a group G, we can start with an arbitrary semigroup S. Keeping the
remainder of the definition from Section 2 unchanged, we obtain the Rees matrix
semigroup M[S; I, J; P]. It is easy to check (for example, by using [4, Corollary
3.1.2]), that M[S; I, J; P] is simple if and only if S is simple. By an analogous
proof to that of Theorem 2.2, we can see that if S′ =M[S; I, J; P] is DSC then
|I| = |J| = 1. Hence, S′ has multiplication x · y = xay for some a ∈ S. We claim that if
S′ is DSC then S must also be DSC. Let ρ be a diagonal subsemigroup of S and define
ρ′ ⊆ S′ × S′ by (x, y) ∈ ρ′ ⇐⇒ (x, y) ∈ ρ. As ρ contains the diagonal, so does ρ′. And
if we have (x, y), (z, t) ∈ ρ′ then (x, y), (z, t) ∈ ρ, which gives (xaz, yat) ∈ ρ and hence
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(x · z, y · t) ∈ ρ′. Hence, ρ′ is a diagonal subsemigroup and, as S′ is DSC, a congruence
on S′. It follows that ρ is also a congruence on S, and therefore S must be DSC.

We have just seen that in order forM[S; I, J; P] to be DSC, S must also be DSC. So
for finding more DSC semigroups, taking a Rees matrix semigroup will not be much
help as we would have to know whether our original semigroup was DSC to begin
with.

Another way to construct simple semigroups is the Bruck–Reilly extension
[4, Section 5.6]. Here we take a semigroup S and an endomorphism θ of S. The
Bruck–Reilly extension BR(S, θ) is the set N0 × S × N0 with multiplication

(m, s, n)(p, t, q) = (m − n + k, (sθk−n)(tθk−p), q − p + k) where k = max(n, p).

Under certain conditions the semigroup BR(S, θ) is simple. The conditions themselves
will not concern us, but the reader can consult Proposition 5.6.6 and Exercise 5.25 in
[4] for two examples. Unfortunately, again, this construction will not work for us. One
can show directly that no Bruck–Reilly extension is DSC, but it is easier to use some
of the theory we have built up in the previous section. Additionally, we will need the
following result.

THEOREM 3.1. Let S be a DSC semigroup and let σ be a congruence on S. Then the
quotient S/σ is also DSC.

PROOF. Let ρ be a diagonal subsemigroup of S/σ × S/σ. Define ρ′ ⊆ S × S by

(x, y) ∈ ρ′ ⇐⇒ (xσ, yσ) ∈ ρ.

For each x ∈ S, (xσ, xσ) ∈ ρ so (x, x) ∈ ρ′. If (x, y), (z, t) ∈ ρ′ then (xσ, yσ),
(zσ, tσ) ∈ ρ. This implies (xzσ, ytσ) ∈ ρ and so (xz, yt) ∈ ρ′. Hence, ρ′ is a diagonal
subsemigroup of S × S which by assumption is also a congruence. Now

(xσ, yσ) ∈ ρ⇒ (x, y) ∈ ρ′ ⇒ (y, x) ∈ ρ′ ⇒ (yσ, xσ) ∈ ρ,
(xσ, yσ), (yσ, zσ) ∈ ρ⇒ (x, y), (y, z) ∈ ρ′ ⇒ (x, z) ∈ ρ′ ⇒ (xσ, zσ) ∈ ρ.

Hence, ρ is a congruence and S/σ is DSC. �

In particular, the homomorphic image of a DSC semigroup is DSC. This result
makes it much easier to check if a semigroup is not DSC.

THEOREM 3.2. For any semigroup S and endomorphism θ of S, the Bruck–Reilly
extension BR(S, θ) is not DSC.

PROOF. Let B denote the bicyclic monoid, the semigroup with underlying set N0 × N0
and multiplication (m, n)(p, q) = (m − n + k, q − p + k), where k = max(n, p) (see [4,
Section 1.6]). The bicyclic monoid is a homomorphic image of BR(S, θ) via the
projection onto the first and third coordinates. It is known that B is an inverse
semigroup but not a group (for example, see [4, Section 5.4]). So, by Theorem 2.6,
B is not DSC. Hence, BR(S, θ) is not DSC either, by Theorem 3.1. �
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The final kind of simple semigroups we will look at in this section are the
generalised Baer–Levi semigroups (see [3, Section 8.1]). Here we take two infinite
cardinals p and q with p ≥ q. Let X be a set of cardinality p and consider the set

B(p, q) = { f : X → X : f is injective and |X \ X f | = q}.
Under the usual composition of functions B(p, q) forms a semigroup. This semigroup
is always simple (even right simple) and contains no idempotents [3, Theorem 8.2],
so potentially makes a good candidate for a nongroup DSC semigroup. Unfortunately,
this hope too turns out to be unjustified.

THEOREM 3.3. For any two infinite cardinals p ≥ q, the generalised Baer–Levi
semigroup B(p, q) is not DSC.

PROOF. Let B = B(p, q). Consider the set

ρ = {( f , g) ∈ B × B : (X \ X f ) ∩ (X \ Xg) � ∅}.
It is easy to check that ρ is a diagonal subsemigroup of B × B. It is also clear that
ρ is symmetric, so we will show that ρ is not transitive. Partition X into two sets A
and B with cardinality p. Let A′ and B′ be subsets of A and B respectively, both with
cardinality q. Let x ∈ A′. The sets X \ A′, X \ (B′ ∪ x) and X \ B′ all have cardinality p.
So there are bijections

f ′ : X → X \ A′, g′ : X → X \ (B′ ∪ x) and h′ : X → X \ B′.

Each can be extended to an injection from X to itself; call these functions f , g and h,
respectively. Note that X \ X f = A′, X \ Xg = B′ ∪ {x} and X \ Xh = B′. So f , g, h ∈ B
and ( f , g), (g, h) ∈ ρ, but ( f , h) � ρ. Hence, ρ is not transitive. �

4. Nongroup DSC semigroups

In Theorem 3.1 we saw that any quotient of a DSC semigroup must be DSC. So
if we have a semigroup S with congruence σ, for S to be DSC so must S/σ. This
gives us an extra constraint on being DSC. So we will try looking at congruence-free
semigroups. One rather general such construction was introduced by Byleen in [2].
The construction uses the notions of monoid actions and presentations, which we now
briefly review.

Let S be a monoid with identity 1 and let A be a set. A right action of S on A is
a function A × S→ A, (a, s) �→ a � s such that (a � s) � t = a � (st) and a � 1 = a for all
a ∈ A and all s, t ∈ S. The action is said to be faithful if for any two distinct s, t ∈ S there
exists a ∈ A such that a � s � a � t. A left action of S on a set B is defined analogously.
For more details, see [4, Section 8.1].

Now suppose that X is an alphabet and denote by X∗ the free monoid on X; it consists
of all words over X, including the empty word ε, and the operation is concatenation.
A monoid presentation is a pair of the form 〈X | R〉, where R ⊆ X∗ × X∗. The monoid
defined by this presentation is S = X∗/ρ, where ρ is the congruence generated by R.
The elements of this semigroup are the ρ-classes [u], u ∈ X∗. An elementary sequence
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with respect to 〈X | R〉 is any sequence w1, w2, . . . , wn (n ≥ 1) of words from X∗ such
that for every i = 1, . . . , n − 1 we have wi = w′uw′′, wi+1 = w′vw′′ for some w′, w′′ ∈ X∗

and some (u, v) ∈ R or (v, u) ∈ R. For two words u, v ∈ X∗ we have [u] = [v] if and only
if there exists an elementary sequence starting at u and ending in v. We will abuse
notation and write u instead of [u] for a typical element of S, and u = v instead of (u, v)
for a typical element of R. For a more detailed basic introduction to presentations see
[4, Section 1.6].

DEFINITION 4.1. Let S be a monoid with identity 1, and let A and B be sets that are
disjoint from each other and from S. Let α : A × S→ A, (a, s) �→ a � s be a right action,
and let β : S × B→ B, (s, b) �→ s 	 b be a left action. Let W = A ∪ B ∪ S and let P be
an A × B matrix with entries in W. Let C1(S;α, β; P) denote the monoid with monoid
presentation

〈W | ab = pa,b, as = a � s, sb = s 	 b, st = s · t, 1 = ε (a ∈ A, b ∈ B, s, t ∈ S)〉.

In the above presentation, the relation st = s · t should be interpreted as a word of
length 2, namely st, being equal to a word of length 1, the product of s and t in S.
In other words, those relations represent the inclusion of the Cayley table of S in the
defining presentation for C1(S;α, β; P).

In [2] it is shown that any element of C1(S;α, β; P) can be written uniquely in the
form vsu where v ∈ B∗, s ∈ S and u ∈ A∗. The monoid C1(S;α, β; P) has identity 1 = ε.
Calculations are easy in C1(S;α, β; P) as each relation (other than 1 = ε) replaces a
word of length 2 with a word of length 1. In general, this semigroup need not be DSC.
We now introduce some additional conditions which will then imply DSC.

DEFINITION 4.2. Let A, B and C be nonempty sets and let P = (pab)a∈A,b∈B be an A × B
matrix with entries from C. We say that P is 2-transitive if the following hold:

(1) for every a1 � a2 ∈ A and c1, c2 ∈ C, there exists b ∈ B such that pa1,b = c1 and
pa2,b = c2;

(2) for every b1 � b2 ∈ B and c1, c2 ∈ C, there exists a ∈ A such that pa,b1 = c1 and
pa,b2 = c2.

We will be interested in 2-transitive A × B matrices with entries in W = A ∪ B ∪ S.
As |W | ≥ |A|, |B|, the sets A and B will of necessity be infinite. For an explicit
construction when A and B are countably infinite see [6].

The proof of the following result closely follows Byleen’s proof showing that
C1(S;α, β; P) is congruence-free. Our proof will be divided into more cases as we
have to work around the parts that use symmetry and transitivity.

THEOREM 4.3. The monoid C1(S;α, β; P), with α, β faithful monoid actions and P a
2-transitive matrix over W = A ∪ B ∪ S, has only two diagonal subsemigroups.

PROOF. Let T = C1(S;α, β; P). We will show that Δ = {(t, t) : t ∈ T} and T × T are
the only diagonal subsemigroups of T × T . To this end we will consider arbitrary
distinct vsu, ytx ∈ T and show that the subsemigroup ρ of T × T generated by (vsu, ytx)
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and Δ is equal to T × T . Note that if W ×W ⊆ ρ, then for any w = w1 · · ·wn and
w′ = w′1 · · ·w

′
m ∈ T we have (wi, 1), (1, w′j) ∈ ρ for all i, j, and so

(w, w′) = (w1, 1) · · · (wn, 1)(1, w′1) · · · (1, w′m) ∈ ρ.
Hence, under this assumption, ρ = T × T . So it suffices to show that W ×W ⊆ ρ. To
do this we will first prove several intermediate claims.

CLAIM 1. For every u ∈ A∗ there exists λ ∈ Δ such that (1, 1) = (u, u)λ.

PROOF. The result is trivial if u = ε so let u = a1 · · · an. By 2-transitivity of P there
are b1, . . . , bn ∈ B such that a1b1 = 1, a2b2 = b1, . . . , anbn = bn−1. If we let λ = (bn, bn),
then

(1, 1) = (a1 · · · anbn, a1 · · · anbn) = (u, u)λ. �

CLAIM 2. Let u, x ∈ A∗ be distinct. Then there exist λ ∈ Δ and ε � p ∈ A∗ such that
(1, p) = (u, x)λ or (p, 1) = (u, x)λ.

PROOF. First we note that if either of u or x is empty then the result follows by taking
λ = (1, 1). We will use induction on |u| + |x|. As u and x are distinct, the base case
is when |u| + |x| = 1, so one of u, x is the empty word. The result then follows by
the observation at the start of the proof. Let n > 1 and suppose for all distinct words
u′, x′ ∈ A∗ with |u′| + |x′| < n that there exists λ ∈ Δ such that (u′, x′)λ = (1, p) or (p, 1).
Now suppose that |u| + |x| = n and that neither u nor x is empty. Write u = a1 · · · an,
x = a′1 · · · a

′
m.

If an = a′m then from Claim 1, there is λ1 ∈ Δ such that (1, 1) = (an, a′m)λ1.
The words a1 · · · an−1 and a′1 · · · a

′
m−1 are distinct as u, x are distinct and an = a′m.

By the inductive hypothesis there are elements λ2 ∈ Δ and ε � p ∈ A∗ such that
(a1 · · · an−1, a′1 · · · a

′
m−1)λ2 = (1, p) or (p, 1). Now take λ = λ1λ2.

Now assume an � a′m. Assume also that |u| ≥ |x|; the case when |u| ≤ |x| is dual.
There exists b ∈ B such that anb = an, a′mb = 1. Now |u| > |a′1 · · · a

′
m−1| so the words

u and a′1 · · · a
′
m−1 are distinct. So by the inductive hypothesis there exist λ′ ∈ Δ and

ε � p ∈ A∗ such that (u, a′1 · · · a
′
m−1)λ′ = (1, p) or (p, 1). Now take λ = (b, b)λ′. �

CLAIM 3. Let u, x ∈ A∗ and w1, w2 ∈ W, with u � x. Then there exist λ, μ ∈ Δ such that
(w1, w2) = μ(u, x)λ.

PROOF. By Claim 2, there exist λ′ ∈ Δ and ε � p ∈ A∗ such that (u, x)λ′ = (1, p)
or (p, 1). We will assume (u, x)λ′ = (1, p); the case when (u, x)λ′ = (p, 1) is dual.
Let p = a1 · · · an. There exist b0, . . . , bn ∈ B with a1b1 = b0, . . . , an−1bn−1 = bn−2,
anbn = bn−1 and bn � b0, so pbn = b0. Now we can pick a ∈ A such that abn = w1
and ab0 = w2. If we let μ = (a, a) and λ = λ′(bn, bn), then

μ(u, x)λ = (a, a)(1, p)(bn, bn) = (abn, ab0) = (w1, w2). �

The next three claims are dual to Claims 1, 2, 3 and we omit their proofs.

CLAIM 4. For every v ∈ B∗ there exists μ ∈ Δ such that (1, 1) = μ(v, v).
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CLAIM 5. Let v, y ∈ B∗ be distinct. Then there exist μ ∈ Δ and ε � q ∈ B∗ such that
(1, q) = μ(v, y) or (q, 1) = μ(v, y).

CLAIM 6. Let v, y ∈ B∗ and w1, w2 ∈ W, with v and y distinct. Then there exist λ, μ ∈ Δ
such that (w1, w2) = μ(v, y)λ.

Now let vsu, ytx ∈ T be distinct, and let w1, w2 ∈ W be arbitrary. We will show
(w1, w2) ∈ ρ = 〈(vsu, ytx),Δ〉.

If u = x and v = y then it must be the case that s � t. By Claims 1 and 4 there exist
λ, μ ∈ Δ such that (u, x)λ = (1, 1) = μ(v, y). As the right action α is faithful, there is
a ∈ A such that a1 = a � s � a � t = a2. From Claim 3, there exist λ′, μ′ ∈ Δ such that
μ′(a1, a2)λ′ = (w1, w2). Thus,

(w1, w2) = μ′(a, a)μ(vsu, ytx)λλ′ ∈ ρ.

Now suppose that u � x and v = y (the case when u = x and v � y is dual). By Claims 2
and 4 there exist λ, μ ∈ Δ and ε � p ∈ A∗ such that μ(v, y) = (1, 1) and (u, x)λ = (p, 1)
(again the case when (u, x)λ = (1, p) is dual). Let a be any element of A and let
a1 = a � s, a2 = a � t. As the words p and 1 = ε are distinct, the words a1 p and a2
are also distinct. Hence, by Claim 3, there exist λ′, μ′ ∈ Δ such that μ′(a1 p, a2)λ′ =
(w1, w2). Thus,

(w1, w2) = μ′(a, a)μ(vsu, ytx)λλ′ ∈ ρ.

If instead we had u � x and v � y then, by Claims 2 and 5, there exist λ, μ ∈ Δ and
ε � p ∈ A∗, ε � q ∈ B∗ such that

(u, x)λ ∈ {(1, p), (p, 1)} and μ(v, y) = {(1, q), (q, 1)}.

Here we will write (u, x)λ = (p1, p2), noting that |p1| � |p2|. We will treat the case
when μ(v, y) = (1, q); the other case ((v, y)μ = (q, 1)) is dual to this.

Write q = b1 · · · bn, and let a be any element of A. There exist an, . . . , a1 ∈ A such
that

anbn = a, an−1bn−1 = an, . . . , a1b1 = a2.

So we have a1q = a. The words (a1 � s)p1 and (a � t)p2 are distinct (as p1 and p2 have
different lengths), so, by Claim 3, there are λ′, μ′ ∈ Δ such that

μ′((a1 � s)p1, (a � t)p2)λ′ = (w1, w2).

Hence,

(w1, w2) = μ′(a1, a1)μ(vsu, ytx)λλ′ ∈ ρ.

So in all cases (w1, w2) ∈ ρ and hence W ×W ⊆ ρ. �

From here on, when we refer to C1(S;α, β; P), we will assume that α and β are
faithful actions, and that P is 2-transitive over A ∪ B ∪ S.

We will show that there are nongroup DSC semigroups that are bisimple. The
Green’s equivalence D on a semigroup S is defined to be R ◦ L = L ◦ R (for a
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more detailed explanation see [4, Section 2.1]). We say a semigroup S is bisimple
ifD = S × S.

COROLLARY 4.4. The following statements involving DSC semigroups hold:

(i) there exist nongroup DSC semigroups;
(ii) there exist nongroup DSC semigroups that are regular and bisimple;
(iii) subsemigroups of DSC semigroups are not necessarily DSC.

PROOF. (i) From Theorem 4.3, we have seen that C1(S;α, β; P) is DSC. To see that it
is not a group, take any a ∈ A and vsu ∈ C1(S;α, β; P). Then vsua � 1. So, the element
a has no group theoretic inverse and hence C1(S;α, β; P) is not a group.

(ii) If S is bisimple, Byleen showed in [2] that C1(S;α, β; P) is also bisimple.
Now suppose S is regular. Let vsu ∈ C1(S;α, β; P), with v = b1 · · · bm and u = a1 · · · an.
There exist s′ ∈ S, a′1, . . . , a′m ∈ A and b′1, . . . , b′n ∈ B such that ss′s = s, s′ss′ = s′ and

a′1b1 = · · · = a′mbm = a1b′1 = · · · = anb′n = 1.

If we set

y = b′n · · · b′1 and x = a′m · · · a′1,

then ys′x is an inverse of vsu. Hence, C1(S;α, β; P) is regular. Therefore, if a monoid S
is regular and bisimple (such as any group) then C1(S;α, β; P) is regular and bisimple.

(iii) Consider the subsemigroup A∗ of C1(S;α, β; P). This semigroup is not DSC (as
it is not simple). Hence, C1(S;α, β; P) has non-DSC subsemigroups. �

5. Closing remarks and further questions

Now that we have seen that there exist DSC semigroups that are not groups, one
might want to try to understand them better, and perhaps completely classify them.
This seems to be out of reach at present but some seemingly easy questions remain.
For example, we have seen that not even all (infinite) groups are DSC semigroups. So
one may ask whether a description of DSC groups might be possible. Also, we do not
know whether DSC semigroups are closed under formation of direct products.

Another direction one may take is to investigate more systematically the degree
of interdependence of all four defining properties of a congruence. Specifically, a
relation ρ on a semigroup S is a congruence if and only if it is reflexive, symmetric,
transitive and compatible. DSC semigroups are precisely those for which reflexivity
and compatibility imply symmetry and transitivity. What about other combinations of
these properties?
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