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COMPACT 16-DIMENSIONAL PROJECTIVE PLANES 
WITH LARGE COLLINEATION GROUPS. IV 

HELMUT SALZMANN 

Let & be a topological projective plane with compact point set P of 
finite (covering) dimension. In the compact-open topology (of uniform 
convergence), the group 2 of continuous collineations of & is a locally 
compact transformation group of P. 

THEOREM. If dim 2 > 40, then & is isomorphic to the Moufang plane 6 
over the real octonions (and dim 2 = 78). 

By [3] the translation planes with dim 2 = 40 form a one-parameter 
family and have Lenz type V. Presumably, there are no other planes with 
dim 2 = 40, cp. [17]. 

If dim 2 > 35, then dim P > 8, each line is homotopy equivalent to the 
sphere S8, and dim P = 16, see [11, (4.0) ] and [5]. Moreover, any 
connected closed subgroup A ^ 2 is a Lie group [6], and A is semisimple 
or fixes a point or a line [16, (2.1) ]. In each of the following cases, & = 0 
has already been shown: 

(I) dim A ^ 37, and A is semisimple [15], 
(II) dim A ^ 39, and A fixes exactly one element (point or line) 

[17, (C) ] or a non-incident point-line pair [15, (2.2) ], 
(III) dim A ^ 40, and A fixes two points or two lines [16, Section 5]. 
If A has more fixed elements, then dim A ^ 38 by [12]. In the only 

remaining case, the fixed elements of A form a flag (v, W), and A has a 
minimal normal subgroup 0 = R' consisting [16, (2.2) ] of translations 
with axis W and center v. The theorem will be proved in the following 
main steps: For a <£ W the connected component V of the stabilizer Â  
cannot be semisimple, and there is a normal subgroup S = R̂  which 
consists of dations with axis av. Dually, there is a group IT = Rr 

of translations with center u e W\v. Up to duality, s ^ r. The stabilizer 
V of the triangle (a, u, v) induces irreducible representations on sub­
groups of 0 , S, and II. The representation on the product of two of 
these groups is faithful (V is reductive). By a combination of group 
theoretic and geometric arguments, r < 8 turns out to be impossible. 
Hence @ is a translation plane, and the result follows from HahPs 
classification [3, p. 264] of all translation planes with dim 2 ^ 38. 
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By [5], P is of dimension d = 2W + 1 (0 ^ m ^ 3). The theorem may 
then be combined with analogous results [9; 10; 13] for planes of dimen­
sion d = 2m + 1 (0 ^ m < 3) to obtain the following corollary. Let 
g = g(m) denote the dimension of the full automorphism group of the 
"classical" plane over the real or complex numbers, the quaternions or 
octonions respectively. 

COROLLARY. If& is a compact d-dimensional projective plane, and if 

then & is classical. The given bound is sharp. 

Since dim A ^ 40 for proper translation planes, it will be assumed 
throughout that the group T of translations in A with axis W is not 
transitive and also that 0* is not a dual translation plane. The group of 
translations with center z e ï^will be denoted by T2. The next theorem is 
also due to Hàhl [4, Corollary 1.3], and will play a key role: 

(H) If 12 is a connected subgroup of A and if a ¥= a £ W = W , then 
either Q,a acts effectively on W or a = a n . 

Another useful fact is a topological analogue [18] of a well-known 
theorem of Gleason: 

(T) If T„ = R* for all z G W and some fixed k > 0, then T is 
transitive. 

As in the case of 8-dimensional planes [11, (1.2)], and with an 
analogous proof one has 

(R) There are at most 3 pairwise commuting reflections. 

Many steps in the proof of the theorem require information about the 
connected component A of the stabilizer of a quadrangle (the automor­
phism group of a corresponding ternary field). 

(A) Let $F be the subplane of the fixed elements of A. 
(i) A = G2, the compact \4-dimensional automorphism group of the 

octonions, or dim A < 14. 
(ii) If A contains a pair of commuting involutions, then A is compact. 

(iii) If A is compact, then A = G2, SU3, or S04 , or dim A < 5. 
(iv) If dim W > 2, then A = SU3 or dim A < 8. 
(v) If dim J*7 = 8 (i.e., if & is a Baer subplane), then A = SU2 or 

so2. 
For a proof see [12] and [16, Corollary], and note that A is a Lie group. 

Assertion (v) follows from [12, (1.7) and (2.3) ]. 
More can be said exploiting the existence of an invariant group 0 = R' 

of translations [17; 16; 13]: 
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(B) Assume that A fixes a £ W and c e a~ and 3 points w, v, w e W 
where a* Q av. 

(i) Ift = 1, then A = G2 or dim A g 10. 
(ii) Ift = 2, then A = SU3 or dim A < 8. 

(iii) If 2 < / < 8, /Aew dim A ^ 6, or A = SU3 and t = 7. 
(iv) Ift = $, then A is compact and (A, iii) applies. 

The last part of (iii) is a consequence of the fact that the action of A on 
a" is naturally equivalent to the action on 0 and that SU3 has no 
representation in dimension < 6 . 

(C) If the assumption c G a" in (B) is replaced by c e av\a~\v, then A is 
compact or dim A = 6 or t = 1 and dim A < 8, 5££ Section 1 below. 

It will be proved in (2.3) that dim A > 40 and dim T < 16 imply 
A qt G2. Hence 

(B') dim A ^ 8 or t = 1 ÛAK/ dim A â 10. 

Together with (2.2) and its dual follows immediately 

(D) If V fixes a triangle (a, w, v), then 

17 ^ dim V ^ 22. 

Another useful application of (B') is 

(E) If dim A > 40, and if the translation group satisfies Tv < T, then 
dim T = n > 8, and dim L > 0 /or each z ^ W. Moreover, T z's the 
centralizer of its connected component T . 

Proof. Let b ^ a^ v and c e #M \a, and denote the connected 
component of àabc by A. Then 

24 - n < dim Art/? ^ f + dim A ^ 16, and n > 8. 

By the definition of translations, T I—> aTz induces an injective map of T/T, 
into the pencil iÇ, and the dimension T:TZ is at most 8. Hence each z ^ W 
is the center of some connected subgroup of T and is fixed by the 
centralizer of T . Note in particular 

(F) dim T g dim T2 + 8. 

The following fact [7, 19 or 22] will be needed repeatedly 

(G) If G is a connected transitive subgroup of GL6R, then a maximal 
compact subgroup of G is isomorphic to SU3, U3, or S06 , and dim G = 10 or 
dim G = 16. Moreover, Gf is compact or dim G' = 16. 

Notation is mostly standard, and is in accordance with that in parts 
I-III ( [15, 16, 17] ). The meaning is often indicated in the text. We note 
that 

T:A = dim T - dim A 
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is the dimension of the coset space 17 A, so that 

T:TX = dim x ; 

and distinguish between the commutator group A' = A o A and the 
connected component A of the identity. 

1. The stabilizer of a quadrangle. For the proof of (C), introduce 
coordinates from a ternary field K as in [16, Section 1]. The translations in 
0 are given by (x9y)\-* (JC, y + s), where s e S = S = R* and 1 £ S by 
the hypothesis of (C). Let 0 ¥= d e S and denote the subternary of the 
fixed elements of A^ by D. Then Z) properly contains the one-para­
meter group spanned by d in S. Hence D is connected [14, (1.8) ], and 
dim D = 2 > 1. If there is a closed subternary 7/ with D < H < K, then 
A is compact by [12, Zusatz]. For / = 1 the assertion is but a restatement 
of [16, Corollary]. If t > 1, then A is compact o r A ^ , = 1, so that (C) is 
true for / ^ 3. Now choose S minimal and assume t â 4. Then A acts 
faithfully and irreducibly on S. Hence A' is semisimple and A: A' ^ 2, see 
[2, (19.17)]. If A contains a pair of commuting involutions, then A is 
compact by (A, ii). Otherwise A' is quasisimple and dim A' ^ 3 or a 
maximal compact subgroup of A' is isomorphic to Spin3. In the latter case, 
A contains a central involution a. The fixed elements of a coordinatize 
an invariant Baer subplane. Now [11, (2.13)] and (A, v) imply again 
dim A' ë 3. 

2. The stabilizer of an affine point. In the sequel, 0> will always denote a 
compact 16-dimensional projective plane such that neither 0* nor its dual 
is a translation plane; A is a connected Lie group of automorphisms of 0 
with dim A > 40 fixing a line W, a point v e W and no other elements. 
These general assumptions will usually not be repeated. By [16, Section 2], 
the group Tv = Arv w^ of translations in A with center v has an in­
variant subgroup 0 = R'. In this section, the connected component T 
of the stabilizer Aa of a point a £ W will be investigated. Note that 
25 ^ dim r ^ 38 by (A, i). 

(\)Ifu <= W\v, then dim uT > 4. 

Proof, (a) First assume u = u. Let K = av and consider the connected 
component * of A^. With (A, i) follows dim T ^ 30 < dim * . If 
u* = u ¥= u8 then K8 = L * K and ¥ = A[. Therefore T]^ * n *8 

fixes a quadrangle, but dim TL â 17. Hence ^ : ^ w > 0 and there is some 
S e t with wô ^ w and a8 = c ¥= a. Now Vl ^ T n T5 fixes also w and w5, 
which again contradicts (A, i). Consequently, dim u — k > 0. 

(b) If A is the connected component of the stabilizer of a, c e aM and 
two points in u , then T:A ^ 2k + /, and /c > 1. Moreover, k > 4 or 
A = G2 acts in the standard way on W by (B) and [15, (1.2) ], and u 
contains an orbit z « S . 
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(2) Tu is not transitive on W\{u, v} for any u ^ W\v. 

Proof. Assume that the effective action 

a = r^ = r/rm 
is doubly transitive on W\v « R8. Then £2 is an extension of R by a 
transitive linear group, and the latter contains a subgroup 0 = Spin^ with 
5 S k ^ 7, see [19, IV C; 7 or 22]. There is an isomorphic copy of O in a 
maximal semisimple subgroup of T, and 0 fixes a triangle. Since $ does 
not act on a proper subplane by [11, (**) ], the central involution o e O 
is a reflection with center u e W\v or axis au. Transitivity of T implies 
that the elation group Â v av^ is transitive. The axis av not being fixed by 
the general assumption, & is then even a dual translation plane, a 
contradiction. 

(3) The group G2 is not contained in A. 

Proof The fixed elements of a group A = G2 form a flat ( = 2-
dimensional) subplane S by [15, (1.2) ]. Choosing a in <f, one has A < T. 
Let £2 = y T denote the radical (maximal connected solvable normal 
subgroup) of T. Either T = AS or A is properly contained in a semi-
simple subgroup SP of T. In the latter case, A is normal in ^ or there is 
even a quasisimple group >P. Inspection of the list of simple Lie groups 
shows that ^ is then the complexification G2 or contains a compact 
group 0 isomorphic to SO? or Spin7. These 5 possibilities will be treated 
separately. 

(a) A <3 ty. Then ^ / A induces on S a quasisimple group fixing 2 points 
and two lines. This contradicts [9, (5.2) ]. 

(b) ^ ^ G £ Then A is a maximal subgroup of >P, and ^ : A = 14. 
Hence SP" fixes each point of ê n W and dually. This contradicts (A, i). 

(c) <£ = S07 . Then the diagonal involution a = (— 1 ) 6 X ( 1 ) and each 
of its conjugates has a centralizer S06 . Hence a is not planar by the first 
part of [11, (*) ], and a cannot be a reflection by (R). 

(d) O = Spin7. Then the central involution a e O is a reflection. If a 
has axis W and center a, the translation group T is connected by (H), and 
ra = r for each r e T. Hence O acts faithfully on each invariant 
component H ^ T and dim S is even and > 6 . Since T ¥= Tv and the ac­
tion of O is completely reducible (see e.g. [2, (35.4) ] ), T = 0 X n is a 
product of two irreducible components, and dim T = 16 contrary to the 
assumption. By analogous arguments, o cannot have a center on W. 

(e) T = A £2. Choose u Œ W\v in é*, and consider the stabilizer 
V = r j = AP where 

is the radical of V. From dim A > 40 follows dim P > 2. On the other 
hand, 
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dim(V n Cs A) ^ 2 

by [8, Section 3]. Consequently A o P ^ 1, and A is faithfully represented 
on the Lie algebra tfP. This implies dim P ^ 7. Being solvable, £2 has a 
normal subgroup N such that 1 ^ dim u S 2. If u ¥= w <E uN, then 
wP Q uN and P:P„, ^ 2. Also, there is c e a 0 V with P:PC ^ 2. Now 
dim Pcw ^ 3, and Pcw <3 Vc vv. Not being simple, Vc w ^ G2. From V = AP 
follows dim V ^ 21, dim V̂  ^ 13, and (B) implies / ^ 7. 

If t = 7, then V induces an irreducible group on ©, and K = P n Cs © 
acts freely on W\{u, v} since a" is not contained in any proper subplane. 
The radical P/K consists of scalar multiplications of 0 = R and P:K ^ 1. 
But this would imply 6 ^ dim w ^ 2. For / = 8, finally, P^w is solv­
able and compact by (B, iv) and hence contains a torus T in contradiction 
to [12, (1.9)]. 

If a group acts transitively on R , then a maximal compact semisimple 
subgroup is transitive on S and contains G2, see [7 or 22]. Therefore, (3) 
has the following corollary: 

(4) No subgroup of A has a transitive representation on R . 

(5) If Y is semisimple, then V is even simple. 

Proof, (a) Assume Tv < T. Then T acts faithfully and completely 
reducibly on T = R" by (E) and semisimplicity. Hence there are b e a 
and c <E #H such that A = Tl

h fixes a quadrangle and T:A ^ n < 16. 
Now dim A ^ 25 — n ^ 10 in contradiction to (B') and (F). This shows 
T = TV. 

(b) T[H/j = 1 by (H) and (a) and the fact that av is not fixed. 
(c) The centre Z of T is trivial: If uZ ¥* u e W, then A = Tl

cu fixes a 
quadrangle, and dim A â 17 — f in contradiction to (B'). 

(d) Each involution in T is planar: a reflection would have center v or 
axis av by (b). Because of (1), the elation group Trv ^ would be a 
commutative normal subgroup of positive dimension. 

(e) Consider an involution a e T, the subplane & of its fixed elements, 
a connected subgroup ^ in the centralizer of a in T, and the effective 
action ^ = t / O on ^ The kernel satisfies dim O ^ 3 by (A, v), 
and ^ : 0 ^ 4 + 11 by [11, (*) ]. Moreover, if SF is quasisimple, then 
dim ^ < 14, because SF cannot act doubly transitively on the points 
of W\v i n J^by [19], cp. [15, (1.1) ], and * is not of type G2 by [11, (**) 
and (f ) ]. 

(f) Note that Z = 1 by (c). If T = A X B, where A is a proper simple 
factor, apply (e) to an involution a e A. Then successively dim B ^ 18, 
dim A ^ 8, O = 1, dim B < 14 and B is simple, dim B ^ 10, dim A ^ 10, 
but dim T ^ 25. 

(6) r is not semisimple. 
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Proof. If r is simple, then 25 ^ dim V ^ 30 by (D), and V = PSL4C or 
r is an orthogonal group PS08(r). With the notation of (5e), there is a 
group ^ = SL3C or S06(r) respectively in the centralizer of some 
involution a. This contradicts the last part of (5e). 

The next aim is to show that the elation group E = T^v av^ has dimension 
> 1. The proof is rather involved. It will follow from (H) if V contains any 
homology, from (6) otherwise. 

(7) If 1 ¥= Z <d T, then dim £ â 2. 

Proof. The orbit iT Q W\v is invariant under Tu, and 17 ^ dim Tu ^ 
dim S + 7 + 8 by (B'). (In the case 0 = R8 use the dual of (2).) 

(8) If T contains a {non-trivial) homology with axis av or with center v, 
then dim E > 4 by (H) and (1). 

(9) If Y does not contain homologies with axis av or center v, then T acts 
effectively on W. 

Proof. Assume T ^ ¥^ 1. Then (H) implies Consequently, 
T is connected and A T = dim T < 16. Choose w e W\v and 
put again V = TX

U. Then dim V ^ 18. By (E) and because & is not a 
translation plane, 0 < r = dim TM < 8. 

(a) lu = R7 and Tv = R8: From (H), (F) and (2) follows 

(*) 25 - r ^ dim V S 7 + r ' + dim A, 

where A fixes a quadrangle. Applying (B) to TM instead of 0 , this gives 
r = 7 or dim A = 6 = r. But the latter is impossible by (*) and (G). Hence 
Tw = R7 for any u ¥= v. Similarly, dim Tv > 6, and Tv is transitive 
by (T). 

(b) V does not contain any reflection, and each involution has 
4-dimensional eigenspaces in Tv: If a is a reflection, then o has center a, 
and r° = T~ for each T G T = R , but the negative eigenspace of a has 
even dimension because V is connected. 

(c) V acts faithfully and irreducibly on Tv: By (4) there is some b e a u\a 
with dim V̂  ^ 12. Let ^ = Vx

b and consider a minimal ^-invariant 
subgroup 0 j of Tv. From (B) follows dim 0 j ^ 6 so that ^ is faithful 
and irreducible on 0 j . The radical \/ty induces real or complex scalar 
multiplications on 0 j ([2, (19.17)], cp. [17, p. 186]). Now (b) implies 
•y/^r ^ C x and dim ^ ' ^ 11. Being semisimple, SP acts completely 
reducibly on Tv, and (B) shows that Tv cannot split into proper invariant 
subgroups. 

(d) V is semisimple and 17 ^ dim V ^ 21 by (c), (Br), (2) and (4). 
(e) V induces also an irreducible action on Ju: From (d), (B) and (2) 

follows easily that Tw is not a sum of two invariant subgroups. 
Noting that each involution in V is planar and hence has proper 
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eigenspaces in Ju and Tv, a study of the possible representations will reveal 
a contradiction. The details will be given in Section 3 where a few similar 
situations will be treated together. 

For steps (10)-(14), assume in view of (8) and (9) that T does not contain 
any homology so that, in particular, T acts effectively on W. Changing the 
previous notation, 0 = R' shall denote a minimal T-invariant subgroup of 
Tv, it need no longer be normal in A. 

(10) r has a minimal normal subgroup 2 = Rs. 

Proof. Because of (6) there is either a normal vector group or a central 
torus, but the latter is impossible by (5e). 

(11) 2 o 0 = 1 and 2 acts freely on W\v. 

Proof From (B') follows as in (7) that s + t ë 9 or / = 1 and s ^ 6. 
If / < s, then obviously 2 = Rs cannot act faithfully on ©. If s ^ /, then 
s ^ 2 by (7), and t ^ 5. Because © is minimal, T acts irreducibly on ©, 
and 2 induces a group of real or complex scalar multiplications, so that 
again 

l ^ S n C s 0 < r . 

Now 2 =̂ Cs 0 by (7) and the minimality of 2. Consequently, 2 fixes each 
point of tfM, and (1) implies vT ¥^ u for each u e W\v. Because 2 is 
commutative, 2M induces the identity on the subplane IF generated by aM 

and u~. From (Br) follows dim u~ > 4 or t > 4 and hence F = 9 and 

(12) s < 8 or s = t. 

Proof If s = 8, then \f = W\v. By assumption, V = Tu does not 
contain any homology. Hence (10) implies that V acts faithfully and 
irreducibly on 2 . Now V is semisimple, \/V ^ C x , and 16 ^ dim V ^ 
22. For t < 8 this possibility will be excluded in Section 3, case (ft). 

(13) / > 1. 

Proof If 0 = R, then ^ - V n Cs 0 acts faithfully on 2, 6 S s ^ 7 
and dim ^ = 16 by (B'), (4) and (12). Moreover, SP is transitive on a 
6-dimensional invariant subgroup 2j ^ 2 or irreducible on 2 = R . 

(a) In the first case, (G) implies easily SP = SL3C and hence s = 6. For 
w =̂  w e w~ the stabilizer % fixes a 2-dimensional subset of u~ pointwise, 
and dim ^ = 10. This contradicts (A, iv). 

(b) In the second case, SP' is semisimple and dim >P' ^ 15. Therefore, ty 
contains a 2-torus 0 which fixes some w e W~\W. NOW ^ is compact by 
(A, ii), and dim % â 9. But this is impossible by (A, iii) and (3). 

(14) 2 /ijces each line through v and hence consists of dations in 

E ^ ^[v,av]' 

https://doi.org/10.4153/CJM-1987-045-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-045-4


916 HELMUT SALZMANN 

Proof. By (12) and (13) either s ^ / or 1 < / < s < 8. In the latter case, 
(B, iii) and (4) imply t ^ 5. If s = 6 and c e aG\a, then dim Vc = 12 
and Vc is transitive on 2 . This contradicts (G) and shows s = 1. Let 
R ^ P < 2, * = T@ n Cs P and x € W U av. Then ^ fixes each point 
of x ¥= x and 

dim ^x ^ 25 4- * - s - 16 > 6. 

If JC is not contained in a line, then ^ x = SU3 by (B) and (C). This is only 
possible if / = 6 and s = 7. In that case, T is not transitive on 2 by (4), 
and there is some P such that dim ^x > 8 for all x. Hence xp is contained 
in a line L = Lp, and L n W = v by (11). Now P S 2 [v ] â E, and 
H = 2 ^ because H is a minimal normal subgroup of T. 

The result of (7-10) and (14) is 

(15) dim E > 1. Dually, dim lu > 1 for each u e W\v. 

As before, put V = Tu and consider minimal V-invariant subgroups 
Ft ^ TM, S ^ E, and © ^ Tv of dimensions r, 5, and f respectively. Remem­
ber that & is not a translation plane. Hence up to duality 

(16) s ^ r ^ l,and dim V ^ 20 by (Br) W (4). 

On the other hand, dim V ^ 17. Applying the dual of (B) to 2 and 0 , we 
obtain 

(17) r, s, t ^ 5. Moreover, r -\- s ^ 12 by (G). 

(18) istfc/i involution in V is planar. 

Proof. If the connected group V contains a reflection with center v, then 
dim E = 6 and dim V > 18 by the dual of (H). But (4) and the dual of 
(B, iii) imply dim V ^ 3 • 6. If there is a reflection with axis av or with 
center a, then dim Tw = 6, and an analogous argument leads to a 
contradiction. 

Consider an involution a e V, the subplane J*" of its fixed elements, the 
connected component ^ of V n Cs a and its effective action ^ = ty/Q 
on J*T Then, [11, (*) and (£*) ] and (A, v) imply 

(19) ^ : 0 < 11 or P̂VO w isomorphic to the stabilizer of a triangle 
in the quaternion plane, and O is a subgroup of Spin3. In particular, 
dim ^ ^ 14. 

Because of (17), 

V n Cs n n Cs 2 = 1. 

Hence V acts faithfully on the external direct product I I X S (which is not 
a subgroup of A), and irreducibly on each factor: V is reductive, in 
particular, V is semisimple and the radical y^V is in the centre of V, see 
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[1, I, Section 6, no. 4 or 21, Theorem 3.16.3] for the corresponding Lie 
algebras. \/V induces real or complex scalar multiplications on II and H 
and does not contain any involution by (19). Now \/V n Cs H is a 
closed proper subgroup of C x , and dim \/V < 3. Hence 

(20) V is semisimple, dim \/V ^ 2 and dim V ^ 15. 

In Section 3, case (y), the representations of V on n and H and 
statement (19) will be used to show that no group with the above 
properties can exist; this will then complete the proof of the theorem. 

3. The stabilizer of a triangle. With the previous notation and 
conventions, the situations encountered in Section 2, (9), (12), and (20) 
have the following in common: V is a reductive Lie group without 
reflections acting irreducibly on two of the vector groups S, II, and 0 and 
faithfully on their product. V is semisimple and the radical ^/V is a vec­
tor group of dimension at most 2. Moreover, 17 ^ dim V ^ 22 by (D). 
The respective additional information obtained in the three cases is 

(a) II = R7, 0 = R8, V ^ Aut 0, and 17 ^ dim V ^ 21. 

08) 0 9É R8 = S, V ^ Aut 2, and 16 ^ dim V. 

(y) n = H = R6 or n = R7, and 5 ^ dim H ^ 7. 

Moreover, 2 consists of dations and dim V ^ 20. 
It will turn out that V is then necessarily quasisimple. In the few 

remaining cases, the representations of V will reveal non-planar 
involutions, a contradiction. For a list of simple (real) Lie groups and their 
representations see [20]. 

(1) V is quasisimple. Hence V is a complex group A2 or B2 of (real) 
dimension 16 or 20 or a real form of type A3 and dimension 15 or of type B3 

or C3 and dimension 21. 

Proof Let V = AB where A ¥= V is a quasisimple factor of minimal 
dimension and A o B = 1. Since V has a faithful linear representation, 
there is an involution a e A to which Section 2 (19) can be applied. 
Choose a so that il = A Pi SP" has maximal dimension. Then ^ = S2B, 
dim B < 14, dim A ^ 6, and dim(B' n O) = 0 by minimality of A. 
Hence dim B' < 11 and B' is quasisimple. If dim A = 6, then dim il = 2, 
dim B' = 10, and Spin3 = O ^ il, a contradiction. Now dim A ^ 8, 
A: il =4, dim B' = 8 = dim A, and again Spin3 = O ^ il for each admis­
sible choice of a. Therefore, A is compact and so is B'. But the fixed points 
of a on Inform a 4-sphere, and SU3 cannot act on S , cp. [11, (f) ]. 

(2) dim V < 21. Consequently, V has no irreducible representation in 
dimension 7. 
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Proof. This is true in case (y). In the other two cases, V has an 
irreducible representation in dimension 8. But each linear group of type B3 

or C3 contains a torus T which cannot act on R in such a way that each 
involution has 4-dimensional eigenspaces. 

The second part of (2) excludes case (a) and reduces (y) to II = 
S = R6 

(3) dim V = 17. 

Proof. The group Sp4C of type B2 can only act on R8, and dim V â 16. 
Moreover, V:V â 1 in case (p), and (G) implies dim V < 18 in case 
(Y)-

(4) V is locally isomorphic to SL3C. 

Proof. The only other possibility is dim V = 15 in case (y). Then V is 
transitive on II or on S by (B, iii), and V induces a group S0 6 by (G). 
Hence V would contain a central involution. 

(5) Case (ft) is impossible. 

Proof. Denote again by & the subplane of the fixed elements of an 
involution a e V. Then 

t = V ' n C s a = GL2C. 

Because of (B) either 0 = R or 0 = R6. In the first case 0 o ^ = 1 and 
dim ^ = 7 by (A, v), but this contradicts [11, (**) ]. In the second 
case, V acts on 0 in the standard way, and SF' fixes the positive 
eigenspace 0 ^ = R element-wise. Now [11, (2.5') or (*) ] would imply 
dim * ' < 6. 

Now V = SL3C acts equivalently on II and E. For 1 ¥= £ e H let 

A = V n Cs £. 

Then dim A = 10, and the fixed elements of A form a 4-dimensional 
subplane. This final contradiction proves that 0> or its dual is a translation 
plane. 

Remark. Presumably, the same is still true if dim A = 40, but several 
steps of the proof depend essentially on the stronger assumption. With the 
techniques of this paper, the following can be shown, however: 

THEOREM. A compact %-dimensional plane with dim 2 = IS is a 
translation plane (and hence belongs to one of the 3 families of planes of Lenz 
type V determined by Hàhl). 
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