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Abstract. The extreme-ultraviolet (EUV) imagers onboard the planned Solar Dynamics Obser-
vatory (SDO) and Solar Orbiter (SO) will offer us the best chance yet of using observations of
post-flare loop oscillations to probe the fine structure of the corona. Recently developed magne-
tohydrodynamic (MHD) wave theory has shown that the properties of loop oscillations depend
on their plasma fine structure. Up to this point, many studies have concentrated solely on the
effect of plasma density stratification on coronal loop oscillations. In this paper we develop
MHD wave theory which models the effect of an inhomogeneous magnetic field on coronal loop
oscillations. The results have the potential to be used in testing the efficacy of photospheric
magnetic field extrapolations and have important implications regarding magneto-seismology of
the corona.
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1. Introduction
The next decade will be an exciting time for observing the upper solar atmosphere

with new space based missions such as Hinode, Solar TErresrial Relations Observa-
tory (STEREO), Solar Dynamics Observatory (SDO), Solar Orbiter (SO) and ground
based projects such as the Advanced Technology Solar Telescope (ATST ) and Frequency
Agile Solar Radiotelescope (FASR). These instruments will give observers an opportunity
to directly measure crucial coronal plasma parameters such as magnetic field strength
and plasma density with more accuracy than ever before. However, to do this one must
also have additional information regarding elemental abundances and at which height
and temperature in the solar atmosphere spectral lines are formed. Unfortunately, the
values for these latter physical quantities may have large uncertainties. Furthermore,
methods employed to make direct measurements, ideally need to have simultaneous ob-
servations from different lines of sight. Unfortunately for all the new missions (apart from
STEREO), this will not be possible. Therefore we will still need alternative methods to
verify the accuracy of direct measurements. An obvious way forward is to compare the
predictions of theoretical models with the observables. This also has the advantage of
testing theories for completeness and correctness.

Magneto-seismology will be an invaluable tool in this regard (see the most recent
reviews by Erdélyi 2006a,b and Banerjee et al. 2007). Recently developed magnetohy-
drodynamic (MHD) wave theory in this field has shown that the plasma fine structure of
coronal loops determines their oscillatory response to solar flares. Hence, if observers es-
timate that an active region coronal loop has a particular magnetic structure and plasma
density distribution through direct measurement and this is consistent with the oscilla-
tory response of that loop to a flare, then this will provide strong evidence that we have
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accurately measured the fundamental plasma parameters and that our theory models the
process very well (see reviews by De Pontieu & Erdélyi 2006 and Erdélyi 2006a,b).

Any inconsistency may suggest that refinement is needed in our theoretical models
and/or direct measurement techniques. Of course, inconsistency may even lead to the
outright rejection of a theory. Either way, such a process is likely to enhance our under-
standing of the Sun’s outer atmosphere fine structure and the interaction of magnetic
fields and plasma under these conditions.

2. MHD wave theory of post-flare transversal loop oscillations
Post-flare transversal coronal loop oscillations have been observed many times using

the high-resolution EUV imager onboard the Transition Region And Coronal Explorer
(TRACE ) (see e.g., Aschwanden et al. 1999a, 2002; Nakariakov et al. 1999; Verwichte
et al. 2004; Jess et al. 2007). These oscillations were identified as the fundamental mode of
the standing fast-kink wave from MHD wave theory developed by e.g., Edwin & Roberts
(1983). The basic theory models a coronal loop as a straight magnetic cylinder with
different external and internal plasma densities, both of which are taken to be constants.

However, it is now clear from EUV observations using, e.g, EIT (Extreme-ultraviolet
Imaging Telescope) onboard SOHO (SOlar and Heliospheric Observatory) and TRACE,
that even in “static” active region coronal loops, the spatial and temporal behaviour of
plasma is far more complex. Using emission measures, there is observational evidence
that there is density stratification in coronal loops. In younger active regions there have
been measurements of “super-hydrostatic” density scale heights that are up to four times
higher than expected (Aschwanden et al. 2000, 2001). On the other hand, loops have been
observed in older active regions that are close to hydrostatic equilibrium (Aschwanden
et al. 1999b) with density scale heights that can be explained by gravitational stratifica-
tion. The implications of this for coronal loop oscillations have been considered by e.g.,
Ofman & Wang (2002) and Mendoza-Bricẽno et al. (2004). To complicate matters fur-
ther, significant dynamical behaviour has also been observed in “static” loops , e.g., flows
(Brekke et al. 1997; Winebarger et al. 2001, 2002) and cooling events (Winebarger et al.
2003; Schrijver 2001). This is an important point because background flows can cause
complex interactions between MHD waves. Theoretically, the effect of steady state flows
on MHD waves in a uniform magnetic slab-geometry was investigated by e.g. Nakariakov
& Roberts (1995), Tirry et al. (1998), Joarder et al. (1997). They found the disper-
sion relation for such steady states and also have shown the presence of negative energy
waves. Joarder and Narayanan (2000), Somasundaram et al. (1999) and Narayanan (1991)
generalised the slab studies to flux tubes but their derivation is valid only for limited
parameters. A detailed and comprehensive derivation of steady flow effects on uniform
MHD waveguides in cylindrical geometry (with stratification due to gravity ignored) can
be found e.g. in Terra-Homem et al. (2003). They derived the dispersion relation for
photospheric and coronal flux tubes, and determined the propagation windows that are
Doppler shifted when compared to their static counterparts.

In light of the exciting observations from TRACE, much work has been done devel-
oping more realisitic theory of fast kink waves in coronal loops. E.g., models have been
developed with inhomogeneous plasma density equilibria. Firstly, spatial variation of
density in the radial direction has been included in the analysis leading to a change in
period and damping of the MHD waves (Ruderman & Roberts 2002; Goossens et al.
2002; Aschwanden et al. 2003; Van Doorsselaere et al. 2004; Arregui et al. 2007). Sec-
ondly, spatial variation of density in the longitudinal direction has been included in the
analysis leading to changes in the ratios of the periods of the overtone modes to that of
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Figure 1. The equilibrium plasma density and magnetic field.

the fundamental mode and to deviations of the eigenfunctions from a single sine term in
the longitudinal direction (Dı́az et al. 2002; Andries et al. 2005b; Dymova & Ruderman
2005; Arregui et al. 2006; Goossens et al. 2006; McEwan et al. 2006; Erdélyi & Verth
2007; Verth & Erdélyi 2007; Verth 2007; Verth et al. 2007).

To develop a more complete theory of fast kink waves coronal loops, in this paper, it
is proposed to quantify the effects of both inhomogeneous plasma density and magnetic
equilibria. At present, the structure of the magnetic field along coronal loops is probably
even less well understood from observation than plasma density stratification (see e.g.,
Lopéz et al. 2006). The indirect observational evidence so far has been rather puzzling.
A study of TRACE loops (Watko & Klimchuk 2000) has shown that the cross-sectional
width remains relatively constant with increasing height above the photosphere. The
flux tube interpretation suggests that magnetic field is therefore almost constant along
loops but this contradicts potential and force-free field extrapolations using data from the
Michelson Doppler Imager (MDI) onboard SOHO, where the field lines always diverge
with height. Klimchuk et al. (2000) suggested that by twisting a loop this could reduce the
amount of width expansion with height. They performed a force-free extrapolation with a
twisted loop embedded in a magnetic dipole and found that although the twist did reduce
the expansion of the loop they could still not match the observed relatively constant
thickness. It is therefore crucial that theoretical models are developed which can predict
how different magnetic field structures in loops affect the properties of loop oscillations.
Much work has already been done, particularly regarding the effect of magnetic twist on
loop oscillations by Bennet et al. (1998), Erdélyi & Fedun (2006, 2007) and Ruderman
(2007). Furthermore, the effect of a twisted shell, i.e., tube within a tube, was studied
by Erdélyi & Carter (2006) and Carter & Erdélyi (2007). It is hoped that models of
this type that have more complex magnetically structured tubes can be tested against
observations and help further advance the field of magneto-seismology.
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3. Magnetic field and plasma density equilibrium
Using cylindrical coordinates (r, θ, z), a magnetic flux tube of length 2L is modelled

with arbitrary external and internal plasma densities ρe(z) and ρi(z). To model a mag-
netic field equilibrium that decreases in strength with height above the photosphere, we
construct an expanding flux tube with rotational symmetry (see Fig. 1). To do this one
must have

�B = Br (r, z)�er + Bz (r, z)�ez (3.1)

so that the solenoidal and force-free (potential) conditions are satisfied. For convenience
we shall use the vector potential �A, defined by

�B = ∇× �A, (3.2)

which automatically satisfies condition solenoidal condition. To find the required form of
�B given by (3.1) that also satisfies the force-free condition, we define �A with an azimuthal
component only such that,

�A =
ψ(r, z)

r
�eθ . (3.3)

The vector potential described by (3.3) is convenient since ψ is constant along field
lines (see e.g. Browning & Priest 1982). The force-free condition means that the follwing
equation must be satified,

∂2ψ

∂r2 − 1
r

∂ψ

∂r
+

∂2ψ

∂z2 = 0. (3.4)

Let rf and ra denote the flux tube radius at the footpoints and apex. Using the same
convention as Fig. 1, it is required that the maximum r and z components of the magnetic
field at the footpoints are

Br (rf ,±L) = ∓Br, f (3.5)

and

Bz (rf ,±L) = Bz, f , (3.6)

where Br, f � 0 and Bz, f > 0. By the observations that ro � L and Br � Bz , to a good
approximation, the particular solution to Eq. (3.4) at the tube boundary ro is

ψ(ro , z) ≈ Bz, f r2
o

2

{
1 +

(
1 − Γ2

)
Γ2

[cosh (z/L) − cosh(1)]
1 − cosh(1)

}
. (3.7)

where

Γ =
ra

rf
, (3.8)

is the expansion factor of the flux tube (see e.g, Klimchuk 2000). By Eq. (3.7), at the
loop footpoints the boundary value of ψ is

ψ(rf , ±L) ≈
Bz, f r2

f

2
. (3.9)

Hence using Eqs. (3.7) and (3.9) and the fact that the magnetic surface denoting the
boundary of the flux tube has a constant ψ value, an explicit expression is obtained for
ro as a function of z only given by
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ro(z) ≈ rf

{
1 +

(
1 − Γ2

)
Γ2

[
cosh

(
z
L

)
− cosh(1)

]
1 − cosh(1)

}− 1
2

. (3.10)

Similarly, expressions for Br and Bz can be derived at the tube boundary as functions
of z only,

Br (z) ≈ −Bz, f

L

(
1 − Γ2

)
2Γ2

sinh
(

z
L

)
sinh(1)

ro(z) (3.11)

and

Bz (z) ≈ Bz, f

{
1 +

(
1 − Γ2

)
Γ2

[
cosh

(
z
L

)
− cosh(1)

]
1 − cosh(1)

}
. (3.12)

4. Linearising the MHD equations with inhomogeneous magnetic
field

The cold and ideal MHD equations are linearised by assuming small perturbations of
the magnetic field, �b = (br , bθ , bz ) about the force-free magnetic equilibrium (3.1) and
velocity perturbations, �v = (vr , vθ , vz ) about a plasma in static equlilibrium. From the
equilibrium magnetic field shown in Fig. 1, it is clear that perturbations normal to the
surface of the tube will have both r and z components. The linearised MHD equations
give the following relation between the r and z components of velocity,

vz = −Br

Bz
vr . (4.1)

Since Br � Bz , Eq. (4.1) shows the z component of the velocity perturbation is only
a small correction to the total perturbation. Therefore, in the following analysis we
shall concentrate primarily on the dominant r component. The equation governing the r
component of plasma motion is

µρ

Bz

∂2vr

∂t2
=

∂2

∂z2

(
B2

Bz
vr

)
− ∂2bz

∂r∂t
+

∂

∂z

{
Br

Bz

[
∂bz

∂t
+

1
r

∂

∂r

(
B2

Bz
rvr

)]}
(4.2)

where B2 = B2
r + B2

z . It can be seen from Eq. (4.2) that the r velocity component is
dependent on the z component of the magnetic perturbation which is governed by the
following equation,

∂2bz

∂t2
= −1

r

∂

∂r

[
r
B2

µρ

(
∂br

∂z
− ∂bz

∂r

)]
+

Bz

µρ

1
r

[
D‖

(
∂

∂r
(rbr ) + r

∂bz

∂z

)
+

µ

r

∂2P

∂θ2

]
, (4.3)

where operator D‖ is defined as

D‖ ≡ Br
∂

∂r
+ Bz

∂

∂z
, (4.4)

and P is the total perturbation to magnetic pressure,

P =
�B ·�b
µ

. (4.5)

Eq. (4.3) contains both z and r magnetic field perturbations but it can be shown using
observed relations that ro � L and Br � Bz that these are effectively decoupled. This
decoupling helps simplify the mathematical analysis considerably in the following section.
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5. Governing equation and analysis
By Fourier analysing Eqs. (4.2) and (4.3), using the thin flux tube approximation and

the fact the Br � Bz , it can be shown that the governing equation of radial motion at
the tube boundary (where all quantities can be expressed as functions of z only as shown
in Sect. 3) is(

Bzvr

rm−1
o

)′′
+

m

2ro

(
Br

Bz
+ 4r′o

)(
Bzvr

rm−1
o

)′

+

{(
ω

ck

)2

+
m

2ro

(
Br

Bz

)′
+ m

[
(2m − 1)

(
r′o
ro

)2

+
r′′o
ro

]}
Bzvr

rm−1
o

= 0, (5.1)

where operator ′ ≡ d/dz, ω is the angular frequency, m is the azimuthal wave number
(a positive integer) and

c2
k (z) =

2B2
z (z)

µ (ρi(z) + ρe(z))
(5.2)

is the fast kink speed. In the case of constant Bz , Eq. (5.1) simply reduces to

d2vr

dz2 +
(

ω

ck

)2

vr = 0 (5.3)

which is independent of m, in agreement with the results of Dymova & Ruderman (2005)
and Erdélyi & Verth (2007). Analytical solutions to Eq. (5.3) have been extensively
studied by Dymova & Ruderman (2005), Erdélyi & Verth (2007) and Verth et al. (2007).
Two possible observable signatures of density stratification are anti-node peak shift of the
first harmonic towards the loop footpoints (see Verth et al. 2007) and frequency ratio of
the first harmonic and the fundamental mode, ω2/ω1 being less than 2 (see e.g., Andries
et al. 2005a).

When there is magnetic stratification for the observed fast kink mode (m = 1),
Eq. (5.1) becomes

(Bzvr )
′′ +

1
2ro

(
Br

Bz
+ 4r′o

)
(Bzvr )

′

+

[(
ω

ck

)2

+
1

2ro

(
Br

Bz

)′
+

(
r′o
ro

)2

+
r′′o
ro

]
Bzvr = 0. (5.4)

Assuming constant densities, ρe and ρi and using the explicit expressions for equilibrium
quantities from Eqs. (3.10), (3.11) and (3.12), Eq. (5.4) is equivalent to

[
a1 cosh2

( z

L

)
+ a2 cosh

( z

L

)
+ a3

]
v′′

r + sinh
( z

L

) [
a4 cosh

( z

L

)
+ a5

]
v′

r

+

[
a6 cosh2

( z

L

)
+ a7 cosh

( z

L

)
+ a8 + a9 ω2

]
vr = 0, (5.5)

where an are constants. Unfortunately, we know of no analytical solution to equations
of general type Eq. (5.5). However, Eq. (5.5) is trivial to solve numerically by e.g., the
shooting method. Solving Eq. (5.5) for the fundamental mode and first harmonic, the
observable signatures of magnetic stratification are plotted in Fig. 2 for Γ ∈ [1, 2]. In
contrast to the case of density stratification with constant magnetic field (see Verth et al.
2007), the anti-node shift of the first harmonic is towards the loop apex (see Fig. 2a).
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Figure 2. (a) Comparison of 1st harmonic amplitude profiles with constant magnetic field
(Γ = 1) and magnetic stratification (Γ = 1.5). (b) Anti-node shift ∆zA N /L for 1st harmonic
plotted against Γ. (c) Frequency ratio of 1st harmonic and fundamental mode ω2/ω1 against Γ.

The normalised anti-node shift of the first harmonic, ∆zAN /L is plotted against Γ in
Fig. 2b. Note that for Γ approximately less than 1.5 there is almost a linear relationship
with ∆zAN /L. In further contrast to the case of density stratification with constant
magnetic field (see Andries et al. 2005a), the frequency ratio of the first harmonic to the
fundamental mode, ω2/ω1 is greater than 2 (see Fig. 2c).

There have been various studies to calculate the value of Γ for coronal loops in both
soft X-ray and EUV. Using Yohkoh data, Klimchuk (2000) found that the mean value of
Γ for a sample of 43 soft X-ray loops was 1.30. In another study using EUV TRACE data,
Watko & Klimchuk (2000) found that the mean Γ value for post-flare loops was 1.13.
However there may have been large uncertainties in these results since loop width was
often at the resolution threshold of these instruments. Errors could also have been intro-
duced by e.g., incorrect background subtraction and line of sight effects. Even allowing
for a relatively small expansion factor of Γ = 1.13, this should give measurable observable
effects. E.g., a loop half length L = 100 Mm and fundamental mode period 5 minutes,
Γ = 1.13 will give an anti-node shift of 3.5 Mm and a change in the period of the first
harmonic of -6.23 seconds. Certainly, spatial changes to the amplitude profile of a few
Mm is within the current resolution of TRACE. Measuring changes in frequency down
to the order of seconds may be possible with the fastest time cadences of the planned
EUV imagers onboard SDO and SO (signal to noise ratio permitting).

Physically, it is reasonable to expect that both the plasma density and magnetic field
strength decrease from the footpoints of a coronal loop towards its apex. If we observe
a loop oscillating with ω2/ω1 < 2 then density stratification is likely to be the pre-
vailing factor and if ω2/ω1 > 2 then magnetic field divergence is probably dominating.
Quantifying the relative contribution from is each effect is more problematic.

To illustrate this, suppose that a semi-circular coronal loop has an exponentially den-
sity stratification with scale height H. Let us assume that both the density and magnetic
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Figure 3. (a) Plot showing how a non-constant magnetic field affects the measurement of
L/H from the ratio ω2/ω1 . (b) Plot showing how a non-constant magnetic field affects the
measurement of L/H using the ratios of both ω2/ω1 and ω3/ω1 .

field profiles are non-constant (L/H > 0 and Γ > 1) and that density stratification is
the dominant effect so that ω2/ω1 < 2. If we want to measure L/H from the observed
value of ω2/ω1 and wrongly assume that the magnetic field is constant then L/H will
be underestimated (see Figure 3a). If the frequency of another mode, e.g., ω3 is also
measured and the ratios of ω2/ω1 and ω3/ω1 are plotted against L/H it is apparent that
assuming a constant magnetic field results in two inconsistent values for L/H (see Fig-
ure 3b). However, there will be a unique value of Γ that results in two consistent values
for L/H.

6. Conclusions
Hitherto, the magneto-seismological technique of using observations of the fast kink

body mode to determine the density scale height of coronal loops has neglected to take
into account corrections due to magnetic stratification. The MHD wave theory presented
here shows that to carry out more precise magneto-seismology one must accurately quan-
tify the effect of magnetic stratification on the amplitude profile and/or frequency of loop
oscillations. This is problematic since, as mentioned previously, the precise fine structure
of the magnetic field along coronal loops is not well understood at this time. It is hoped
that Hinode will give a us greater understanding of the structure of the magnetic field
in the photosphere, since for first time we will be able to measure the full magnetic field
vector. This in turn should lead to more accurate nonlinear force-free magnetic field ex-
trapolations from which we will better be able to determine the magnetic field structure
along coronal loops.

Although, the magnetic field for the model presented in this paper has a relatively
simple force-free (potential) structure, this maybe a reasonable approximation for many
active region loops. E.g., extrapolations from the magnetogram data of the predominantly
dipolar active region (AR 8270) where the first transversal loop oscillations were observed
using TRACE (14th July 1998) show that magnetic field is approximately potential
(see e.g., Ofman 2007). Therefore, the results described in Sect. 5 could be employed
as a valuable new magneto-seismological tool to complement both emission measure
and magnetic field extrapolation studies of suitable active regions. This in turn, could
ultimately provide us with a more complete understanding of plasma fine structure in
the solar corona.

Acknowledgements

G.V. is grateful to the Engineering and Physical Sciences Research Council (EPSRC),
UK for the financial support received.

https://doi.org/10.1017/S1743921308014774 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308014774


Magneto-seismology 131

References

Andries, J., Arregui, I., & Goossens, M. 2005a, ApJ (Letters) 624, L57
Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., & Van Doorsselaere, T. 2005b, A&A 430,

1109
Arregui, I., Andries, J., Van Doorsselaere, T., Goossens, M., & Poedts, S. 2007, A&A 463, 333
Arregui, I., Van Doorsselaere, T., Andries, J., Goossens M., & Kimpe, D. 2006, Phil. Trans. R.

Soc. A 384, 529
Aschwanden, M. J., De Pontieu, B., Schrijver, C. J., & Title, A. M. 2002, Solar Phys. 206, 99
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999a, ApJ 520, 880
Aschwanden, M. J., Newmark, J. S., Delaboudinière, J., Neupert, W. N., Klimchuk, J. A., et al.

1999b, Apj 515, 84
Aschwanden, M. J., Nightingale, R. W., & Alexander, D. 2000, ApJ 541, 1059
Aschwanden, M. J., Nightingale, R. W., Andries, J., Goossens, M., & Van Doorsselaere, T. 2003,

ApJ 598, 1375
Aschwanden, M. J., Schrijver, C. J., & Alexander, D. 2001, ApJ 550, 1036
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