
Bull. Aust. Math. Soc. 109 (2024), 77–88
doi:10.1017/S0004972723000345

ARITHMETICITY OF C-FUCHSIAN SUBGROUPS OF SOME
NONARITHMETIC LATTICES

YUEPING JIANG, JIEYAN WANG and FANG YANG�

(Received 22 December 2022; accepted 24 March 2023; first published online 28 April 2023)

Abstract

We study the arithmeticity of C-Fuchsian subgroups of some nonarithmetic lattices constructed by Deraux
et al. [‘New non-arithmetic complex hyperbolic lattices’, Invent. Math. 203 (2016), 681–771]. Our results
give an answer to a question raised by Wells [Hybrid Subgroups of Complex Hyperbolic Isometries,
Doctoral thesis, Arizona State University, 2019].
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1. Introduction

Whether a group is arithmetic is a significant question for discrete subgroups and
lattices in semisimple Lie groups. Margulis’ celebrated super-rigidity and arithmeticity
theorems demonstrate that a lattice in a semisimple Lie group is arithmetic when
its real rank is at least two. This means that nonarithmetic lattices only exist in real
rank one, where the associated symmetric spaces are real hyperbolic spaces, complex
hyperbolic spaces, quaternionic hyperbolic spaces and the octonionic hyperbolic
plane. In the last two spaces, all lattices are arithmetic due to the work of Corlette
and Gromov–Schoen. In real hyperbolic spaces, where the Lie group is PO(n, 1),
Gromov and Piatetski-Shapiro showed that nonarithmetic lattices exist in PO(n, 1) for
all n ≥ 2. For the case of complex hyperbolic spaces, where the Lie group is PU(n, 1),
the existence of nonarithmetic lattices has not been widely investigated.

Let H be a Hermitian matrix with signature (2, 1) on C3. The projective unitary
group PU(2, 1) of H acts as the holomorphic isometry group on the complex
hyperbolic plane H2

C
. The first nonarithmetic lattices in PU(2, 1) were constructed

by Mostow [9]. These lattices are the equilateral triangle groups S(p, τ), which are
generated by a complex reflection R1 with order p and an order three isometry J with
tr(R1J) = τ. The equilateral triangle groups with some given values of τ are called
sporadic triangle groups (see [3]). In [1], the authors gave a conjectural list of sporadic
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triangle groups and proved, by computer experimentation, that only finitely many of
these sporadic triangle groups are lattices. Following this, in [2, 3], they showed which
sporadic triangle groups are lattices and found new nonarithmetic lattices in PU(2, 1),
by using a systematic approach to produce their fundamental domains.

Suppose that Γ is a discrete subgroup of PU(2, 1). The Fuchsian subgroups of Γ
are defined as the intersection of Γ with Lie subgroups isomorphic to PSL(2,R). A
Fuchsian subgroup is C-Fuchsian if it stabilises a complex line. In [12], Stover showed
that a complex hyperbolic lattice, which contains a complex reflection, must contain
a C-Fuchsian subgroup. Let the complex line Lj be the fixed point set of the complex
reflection Rj for j = 1, 2, 3. In his doctoral thesis [16], Wells studied the C-Fuchsian
subgroup stabilising the complex line L1 of the complex hyperbolic lattice S(p, τ) for
p = 3, 4, 5, 6, 8, 12 and τ = −(1 + i

√
7)/2. He gave the generators of the C-Fuchsian

subgroup and proved that this group is a lattice in SU(1, 1). Additionally, he asked the
following question.

QUESTION 1.1. Let Ri be the complex reflection of order p so that Ri fixes the complex
line Li for i = 1, 2, 3. Assume that R1, R2, R3 are the generators for S(p, τ), where
p = 3, 4, 5, 6, 8, 12 and τ = −(1 + i

√
7)/2. Set

G1 = 〈(R1R2)2, (R1R3)2, (R1R2R3R−1
2 )3, (R1R−1

3 R2R3)3〉.

Then G1 is a C-Fuchsian subgroup stabilising L1. Is the group G1|L1 arithmetic?

Takeuchi [14] studied and characterised arithmetic Fuchsian groups of finite
covolume. Subsequently, in [15], applying these results to triangle groups in SL(2,R),
he gave a necessary and sufficient condition for a triangle group to be arithmetic
and derived a complete list of all arithmetic triangle groups. Maclachlan and Reid
in [7] generalised Takeuchi’s methods to Kleinian groups and obtained a similar
characterisation of arithmetic Kleinian groups. More effective criteria for arithmetic
Fuchsian groups and Kleinian groups can be found in [4, 6, 8].

Note that S(p, τ) in Question 1.1 is arithmetic when p = 3. Thus, G1|L1 is arithmetic
for p = 3. In the present paper, our main goal is to study the arithmeticity of the
C-Fuchsian subgroups of nonarithmetic lattices. Our general procedure to prove the
arithmeticity or nonarithmeticity of each group is as follows. Firstly, we explore
a transformation interchanging the original Hermitian form into a more familiar
Hermitian form. Then we transform the generators of each group into elements in
SU(1, 1) and these elements can be turned into elements in SL(2,R) since there exists
a bijection between SU(1, 1) and SL(2,R). Finally, we check the arithmeticity of each
group according to the criteria for the arithmeticity of a Fuchsian group. We obtain the
following result.

THEOREM 1.2. The group G1|L1 is nonarithmetic for p = 4, 5, 6, 8, 12.

Recently, Sun [13] also considered the C-Fuchsian subgroups of some complex
hyperbolic lattices S(p, τ) appearing in [2, 3]. For each C-Fuchsian subgroup, she
forced all pyramids of the side representatives to have the same base L1, and obtained
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a polygon in L1 which is a fundamental domain of the C-Fuchsian subgroup. Applying
the Poincaré polygon theorem, she gave the following presentation for each C-Fuchsian
subgroup.

THEOREM 1.3 [13]. Let R1, R2, R3 be three complex reflections of order p so that Ri
fixes a complex line Li for i = 1, 2, 3. Suppose that R1, R2, R3 are the generators for
S(p, τ). Then there exist C-Fuchsian subgroups fixing the complex line L1 that have
the following structure according to (τ, p).

(i) τ = −1 + i
√

2, p = 3, 4, 6: Γ1 = 〈g1, g2, g3, g4, g5〉, where

g1 = (R1R−1
3 R2R3)2, g2 = (R1R3)3, g3 = (R1R2)3,

g4 = (R1R2R3R−1
2 )2(R1R2)3,

g5 = (R1R2R3R2R−1
3 R−1

2 )3(R1R2R3R−1
2 )2(R1R2)3.

(ii) τ = −1 + i
√

7/2, p = 3, 4, 5, 6, 8, 12: Γ2 = 〈g1, g2, g3〉, where

g1 = (R1R2)2, g2 = R2R3R−1
2 R1JR1J, g3 = (R1R3)2.

(iii) τ = 1 +
√

5/2, p = 3, 4, 5, 10: Γ3 = 〈g1, g2, g3〉, where

g1 = R1R−1
3 R−1

2 R3R2R3, g2 = R1R3R1R2R−1
1 R−1

3 ,

g3 = (R1R−1
3 R2R3)3R1R−1

3 R−1
2 R3R2R3.

A natural question is whether these C-Fuchsian subgroups are arithmetic. Notice
that the groups S(3,−(1 + i

√
7)/2) and S(p, (1 +

√
5)/2) for p = 3, 4, 5, 10 are arith-

metic. Hence, their C-Fuchsian subgroups are also arithmetic. For the remaining cases,
we prove the following theorem.

THEOREM 1.4. The C-Fuchsian subgroups Γ1 and Γ2 have the following properties.

• The group Γ1|L1 is nonarithmetic for p = 3, 4, 6.
• The group Γ2|L1 is nonarithmetic for p = 4, 5, 6, 8, 12.

2. Preliminaries

In this section, we recall some basic material on the complex hyperbolic plane,
equilateral triangle groups and the arithmeticity of Fuchsian groups.

2.1. The complex hyperbolic plane. Let C2,1 be the complex vector space of
dimension three equipped with a Hermitian form of signature (2, 1). For H a Hermitian
matrix of signature (2, 1), the Hermitian form is defined as 〈z, w〉 = w∗Hz. Consider
the subsets

V− = {z ∈ C2,1 | 〈z, z〉 < 0},
V0 = {z ∈ C2,1 − {0} | 〈z, z〉 = 0},
V+ = {z ∈ C2,1 | 〈z, z〉 > 0}.
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Let P : C2,1 − {0} → CP2 denote the projection map. Then the complex hyperbolic
plane is H2

C
= P(V−) and its boundary is defined to be ∂H2

C
= P(V0). Let ρ(z, w) be

the distance between two points z, w ∈ H2
C

. The Bergman metric on H2
C

is given by

cosh2
(
ρ(z, w)

2

)
=
〈z, w〉〈w, z〉
〈z, z〉〈w, w〉 ,

where z, w ∈ C2,1 are lifts of z, w. Note that the Bergman metric is independent of the
lifts of z and w.

A matrix A ∈ U(2, 1) is unitary if 〈Az, Aw〉 = 〈z, w〉 for z, w ∈ C2,1. A unitary matrix
preserves the Bergman metric. The holomorphic isometry group of H2

C is

PU(2, 1) = U(2, 1)/{eiθI | 0 ≤ θ < 2π},

where I is the identity matrix in U(2, 1).
Let n be a vector in V+ and let n⊥ be the orthogonal complement of n with respect

to H. Then the intersection of the projective line P(n⊥) with H2
C

is a complex line L.
The vector n is called the polar vector to the complex line L.

2.2. Equilateral triangle groups. Let p ∈ Z. Equilateral triangle groups S(p, τ) are
generated by three reflections R1, R2, R3 of order p (p ≥ 2) with the property that there
is a regular elliptic element J of order three such that these reflections satisfy the
relationships R2 = JR1J−1 and R3 = JR2J−1. They can be parametrised by the order p
of the generators and the complex parameter τ = tr(R1J).

For i = 1, 2, 3, the fixed point set of Ri is the complex line Li. Let ni be the polar
vector to Li and set u = e2πi/3p. By the trace formula of tr(R1J), the parameter τ can be
written as

τ = tr(R1J) = (u2 − ū)
〈nj+1, nj〉
‖nj+1‖ ‖nj‖

.

Let vectors n1, n2, n3 be a basis of C3. We write

n1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , n2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , n3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
We obtain matrices for the Hermitian form H and the permutation isometry J, given
explicitly by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
α β β̄
β̄ α β
β β̄ α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where α = 2 − u3 − ū3 and β = (ū2 − u)τ. For H to have signature (2, 1), its determi-
nant must be negative, namely,

α3 + 2Re(β3) − 3α|β|2 < 0.
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TABLE 1. Values of p, τ such that S(p, τ) are lattices.

τ p

−1 + i
√

2 3, 4, 6
−(1 + i

√
7)/2 3, 4, 5, 6, 8, 12

e−πi/9(−e−2πi/3 − (1 −
√

5)/2) 2, 3, 4
(1 +
√

5)/2 3, 4, 5, 10

According to the formula of the complex reflection,

R1(z) = e−iφ/3z + (e2iφ/3 − e−iφ/3)
〈z, n1〉
〈n1, n1〉

n1,

where φ = 2π/p, and we have a representation of R1 in SU(2, 1) given by

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
u2 τ −uτ̄
0 ū 0
0 0 ū

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The corresponding matrices of R2, R3 can be obtained from the relationships

R2 = JR1J−1, R3 = JR2J−1.

It is difficult to determine the values of p and τ such that the equilateral triangle
group is a lattice or discrete. A necessary condition for a group in PU(2, 1) to be
discrete is that all its elliptic elements have finite order. For an equilateral triangle
group, assume that R1J and R1R2 are elliptic. If this assumption holds, then the
equilateral triangle group is a Mostow lattice or a subgroup of a Mostow lattice, or a
sporadic triangle group (see [10]). Following this, the conjectural list of lattices among
sporadic triangle groups is given and proved in detail (see [1–3]). The values of p and
τ for a sporadic triangle group S(p, τ) to be a lattice are listed in Table 1.

2.3. Arithmetic Fuchsian groups. To state the criteria for the arithmeticity of
Fuchsian groups, we recall the notion of the trace field and the invariant trace field. Let
Γ be a finitely generated group of SL(2,R). The trace field of Γ is the field generated
over Q by the traces of the elements in Γ, and is denoted by Q(tr(Γ)). We write tr(γ) as
the trace of an element γ in Γ and set tr(Γ) = {tr(γ) | γ ∈ Γ}.

The subgroup Γ(2) of Γ is generated by the set {γ2 | γ ∈ Γ}. Since Γ is finitely
generated, Γ(2) is a normal subgroup of finite index. The invariant trace field of Γ is

kΓ = Q(tr(Γ(2))),

which is an invariant of commensurability class of Γ (see [11]). The following two
propositions provide an easy computation for the invariant trace field kΓ.

PROPOSITION 2.1 [6]. Let γ1, . . . , γn be in SL(2,C) such that tr(γi) � 0 for i = 1, . . . , n.
Let Γ be 〈γ1, . . . , γn〉 and let ΓSQ be 〈γ2

1, . . . , γ2
n〉. Then Q(tr(Γ(2))) = Q(tr(ΓSQ)).
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PROPOSITION 2.2 [8]. Let Γ be generated by γ1, γ2, . . . , γn, where γi ∈ SL(2,C) for
i = 1, . . . , n and γ ∈ Γ. Then tr(γ) is an integer polynomial in {tr(δ) | δ ∈ Q}, where

Q = {γi1 · · · γir | r ≥ 1 and 1 ≤ i1 < · · · < ir ≤ n}.

Next, we state results about the arithmeticity of Fuchsian groups.

THEOREM 2.3 [6]. A finitely generated subgroup Γ of SL(2,R) is arithmetic if and
only if Γ(2) is derived from a quaternion algebra.

THEOREM 2.4 [14]. Let Γ be a Fuchsian group of finite covolume. Then Γ is a Fuchsian
group derived from a quaternion algebra if and only if Γ satisfies the following
conditions.

(i) If k1 is the field Q(tr(Γ)), then k1 is an algebraic number field of finite degree and
tr(Γ) is contained in the ring Ok1 of integers of k1.

(ii) If ϕ is any isomorphism of k1 = Q(tr(Γ)) into C such that ϕ is not the identity, then
ϕ(tr(Γ)) is bounded in C.

PROPOSITION 2.5 [14]. Let Γ be a Fuchsian group of finite covolume. Assume that
Γ satisfies conditions (i) and (ii) of Theorem 2.4. Then k1 = Q(tr(Γ)) is totally real.
Moreover, if ϕ is any isomorphism of k1 into R such that ϕ is not the identity, then
ϕ(tr(Γ)) is contained in the interval [−2, 2].

From Theorems 2.3 and 2.4 and Proposition 2.5, we have the following corollary.

COROLLARY 2.6. Suppose that Γ is an arithmetic Fuchsian group of finite covolume.
If ϕ is any isomorphism from kΓ to R such that ϕ is not the identity, then ϕ(tr(Γ(2))) is
contained in the interval [−2, 2].

It is more convenient to determine the arithmeticity of a noncocompact Fuchsian
group by the following theorem.

THEOREM 2.7 [6]. A finitely generated noncocompact lattice Γ of SL(2,R) is derived
from a quaternion algebra if and only if the following conditions hold.

(i) tr(γ) is an integer for all γ ∈ Γ.
(ii) Q(tr(Γ)) = Q.

3. Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. The group G1 is the subgroup
stabilising L1, and hence it is naturally identified with a subgroup of SU(1, 1). Since
there is a bijection between SU(1, 1) and SL(2,R), this group in SU(1, 1) can be
transformed into the corresponding group in SL(2,R), which is denoted by G11.
The procedure of obtaining G11 can be seen below. After that, we determine its
nonarithmeticity by using Theorem 2.3, Corollary 2.6 and Theorem 2.7.

The C-Fuchsian subgroup G1 is generated by x1, x2, x3, x4, where

x1 = (R1R2)2, x2 = (R1R3)2, x3 = (R1R2R3R−1
2 )3, x4 = (R1R−1

3 R2R3)3.
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Let R1, R2, R3, H, n1, u,α and β be defined as in Section 2.2. Then every point in L1
has the form [z,−(αz + β̄)/β, 1]t ∈ H2

C
for a complex parameter z.

We start by choosing a suitable transformation P. Let v1 = [1/
√
α, 0, 0]t,

v2 = [0,−β̄/β, 1]t, v3 = [a,−(aα + β̄)/β, 1]t, where a = (β̄3 − 2α|β|2 + β3)/(α2β−αβ̄2).
The vector v1 is orthogonal to L1 and the vector v3 satisfies 〈v3, v2〉 = 0 and v3 ∈ L1.
Normalising these vectors to have unit norm, we take

ṽ1 =
v1√
〈v1, v1〉

, ṽ2 =
v2√
〈v2, v2〉

, ṽ3 =
v3

i
√
−〈v3, v3〉

.

Let P denote the matrix [ṽ1, ṽ2, ṽ3]. Then

P∗HP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = H1.

For i = 1, 2, 3, 4, the element xi preserves the Hermitian form H, so yi = P−1xiP
preserves the Hermitian form H1, and, by a straightforward calculation,

yi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ai 0 0
0 bi ci
0 di ei

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where ai, bi, ci, di, ei ∈ C.

We now work in the Hermitian form H1. Let L̃1 = P−1(L1) be the corresponding
complex line. Then the polar vector of L̃1 is P−1(n1) = [

√
α, 0, 0]t with respect to H1,

and hence each point in L̃1 has the form [0, z, 1]t ∈ H2
C

for a complex parameter z.
Consider the action of yi on L̃1, namely,

yi :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
z
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ �→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
biz + ci

diz + ei
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
If ui is the element in SU(1, 1) corresponding to the action of yi on L̃1, then

ui =
√

ai

[
bi ci
di ei

]
.

Let wi = σ(ui) ∈ SL(2,R), where σ is the bijection between SU(1, 1) and SL(2,R)
given by

σ : SU(1, 1)→ SL(2,R)[
A B
C D

]
�→ 1

2

[
A + B + C + D −i(A − B + C − D)

−i(−A − B + C + D) A − B − C + D

]
.

Then we obtain a Fuchsian group G11 = 〈w1, w2, w3, w4〉, which is isomorphic to G1|L1 .
Set

Q = {wi1 · · ·wir : r ≥ 1 and 1 ≤ i1 < · · · < ir ≤ 4}.
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We call wi for i = 1, . . . , 4 the corresponding matrices and G11 the corresponding
Fuchsian group. One computes that tr(wi) � 0; thereforeQ(tr(G(2)

11 )) = Q(tr(GSQ
11 )) from

Proposition 2.1.
For p = 4, Proposition 2.2 gives Q(tr(G(2)

11 )) = Q(tr(GSQ
11 )) = Q(

√
7). Consider the

isomorphism ϕ1 from Q(
√

7) to R given by ϕ1 : a + b
√

7 �→ a − b
√

7. A direct compu-
tation yields

ϕ1(tr(w2
2w2

3w2
4)) = −90 + 32

√
7 � [−2, 2].

By Corollary 2.6, G11 is nonarithmetic for p = 4.
For p = 5,

Q(tr(G(2)
11 )) = Q(tr(GSQ

11 )) = Q
(√

5,
√

7 ×
√

10 − 2
√

5
)
.

Consider the isomorphism ϕ2 from Q(
√

5,
√

7 ×
√

10 − 2
√

5) to R given by

ϕ2 : a + b
√

5 + c
√

7 ×
√

10 − 2
√

5 + d
√

35 ×
√

10 − 2
√

5

�→ a − b
√

5 − c
√

7 ×
√

10 + 2
√

5 + d
√

35 ×
√

10 + 2
√

5.

We calculate that

ϕ2(tr(w2
1w2

2w2
3w2

4)) =
839
2
− 185

√
5 −

535
√

7 ×
√

10 + 2
√

5

8

+
241
√

35 ×
√

10 + 2
√

5

8
� [−2, 2].

By Corollary 2.6, G11 is nonarithmetic for p = 5.
Similarly, in the case when p = 6, Q(tr(G(2)

11 )) = Q(tr(GSQ
11 )) = Q(

√
21). Consider

the isomorphism ϕ3 from Q(
√

21) to R given by ϕ3 : a + b
√

21 �→ a − b
√

21. A direct
computation yields

ϕ3(tr(w2
1w2

3w2
4)) = −212 + 45

√
21 � [−2, 2].

By Corollary 2.6, G11 is nonarithmetic for p = 6.
In the same manner, for p = 8, we obtain Q(tr(G(2)

11 )) = Q(tr(GSQ
11 )) = Q(

√
2,
√

7).
Consider the isomorphism ϕ4 from Q(

√
2,
√

7) to R given by

ϕ4 : a + b
√

2 + c
√

7 + d
√

14 �→ a − b
√

2 − c
√

7 + d
√

14.

A straightforward calculation yields

ϕ4(tr((w1w3)2)) = 10 − 4
√

2 − 2
√

7 + 3
√

14 � [−2, 2].

By Corollary 2.6, G11 is nonarithmetic for p = 8.
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For the case when p = 12, one can deduce that Q(tr(G(2)
11 )) = Q(tr(GSQ

11 )) =
Q(
√

3,
√

7). Consider the isomorphism ϕ5 from Q(
√

3,
√

7) to R given by

ϕ5 : a + b
√

3 + c
√

7 + d
√

21 �→ a − b
√

3 + c
√

7 − d
√

21.

A simple calculation yields

ϕ5(tr(w2
1w2

2w2
3w2

4)) = 34 − 37
√

3
2
+

25
√

7
2
− 7
√

21 � [−2, 2].

It follows, from Corollary 2.6, that G11 is nonarithmetic for p = 12.

4. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 using methods analogous to those used in the
proof of Theorem 1.2. Let R1, R2, R3, H, n1, u,α and β be defined as in Section 2.2.

τ = −1 + i
√

2. The C-Fuchsian subgroup Γ1 stabilises L1 and is generated by
g1, g2, g3, g4, g5, where

g1 = (R1R−1
3 R2R3)2, g2 = (R1R3)3, g3 = (R1R2)3, g4 = (R1R2R3R−1

2 )2(R1R2)3,

g5 = (R1R2R3R2R−1
3 R−1

2 )3(R1R2R3R−1
2 )2(R1R2)3.

A fundamental domain of Γ1 in L1 is a decagon with some vertices in L1 and others on
the boundary of L1 (see [13]). It follows that Γ1 is a noncocompact lattice.

By the procedure described in Section 3, we have a corresponding Fuchsian group
Γ11 = 〈t1, t2, t3, t4, t5〉 that is isomorphic to Γ1|L1 . Set

Q1 = {ti1 · · · tir | r ≥ 1 and 1 ≤ i1 < · · · < ir ≤ 5}.

(1) The cases p = 3, 4. Since Γ(2)
11 is a normal subgroup of finite index, it is

a noncocompact lattice. It follows, from Proposition 2.2, that tr(γ) is an integer
polynomial in {tr(δ) | δ ∈ Q1}. Observing that Q1 is a finite set, we check that the trace
of each element in Q1 is an algebraic integer. This implies that tr(γ) is an algebraic
integer for γ ∈ Γ11. Thus, the traces of elements in Γ(2)

11 are algebraic integers.
For i = 1, . . . , 5, note that tr(ti) � 0 and set si = t2

i and ΓSQ
11 = 〈s1, s2, s3, s4, s5〉.

According to Propositions 2.1 and 2.2 and a direct computation, for p = 3,

Q(tr(Γ(2)
11 )) = Q(tr(ΓSQ

11 )) = Q(
√

6) � Q.

Similarly, in the case when p = 4,

Q(tr(Γ(2)
11 )) = Q(tr(ΓSQ

11 )) = Q(
√

2) � Q.

Therefore, Γ(2)
11 is not derived from a quaternion algebra by Theorem 2.7. Thus, Γ11 is

nonarithmetic for p = 3, 4 by Theorem 2.3.

(2) The case p = 6. Again, Γ(2)
11 is a noncocompact lattice since Γ(2)

11 is a normal
subgroup of finite index. By Proposition 2.2, tr(γ) is an integer polynomial in

https://doi.org/10.1017/S0004972723000345 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000345


86 Y. Jiang, J. Wang and F. Yang [10]

{tr(δ) | δ ∈ Q1}. Since Q1 is finite, we can check that the trace of each element in Q1
is an algebraic integer. Thus, tr(γ) is an algebraic integer for γ ∈ Γ11 and the traces of
elements in Γ(2)

11 are also algebraic integers.
For the trace field of Γ(2)

11 , the case is a little different from the previous ones where
tr(t2) = tr(t3) = 0. Consider

Γ̃11 = 〈t1, t−1
1 t2, t−1

1 t3, t4, t5〉.

In fact, Γ̃11 = Γ11, but the traces of generators of Γ̃11 are not equal to 0. By a
computation,

Q(tr(Γ(2)
11 )) = Q(tr(Γ̃11

(2)
)) = Q(tr(Γ̃11

SQ
)) = Q(

√
6) � Q.

Therefore, Γ11 is a nonarithmetic lattice for p = 6.

τ = −(1 + i
√

7)/2. The C-Fuchsian subgroup Γ2 stabilises L1 and is generated by
g1, g2, g3, where

g1 = (R1R2)2, g2 = R2R3R−1
2 R1JR1J, g3 = (R1R3)2.

By the procedure described in Section 3, we construct a corresponding Fuchsian group
Γ21 = 〈t1, t2, t3〉 that is isomorphic to Γ2|L1 . Set

Q2 = {tr(t1), tr(t2), tr(t3), tr(t1t2), tr(t1t3), tr(t2t3), tr(t1t2t3)}.

A fundamental domain of Γ2 in L1 is a hexagon (see [13]).

(1) The cases p = 4, 6. Since some vertices of the hexagon are on the boundary of
L1, it follows that Γ21 is a noncocompact lattice, and the same is true for Γ(2)

21 .
It follows, from Proposition 2.2, that tr(γ) is an integer polynomial in Q2 and one

can check that every element in Q2 is an algebraic integer. Thus, tr(γ) is an algebraic
integer for γ ∈ Γ21 and the traces of elements in Γ(2)

21 are also algebraic integers. Note
that tr(t2) = 0. We consider the group Γ̃21 = 〈t1, t−1

1 t2, t3〉. In fact, Γ̃21 = Γ21, but the
traces of generators of Γ̃21 are not equal to 0. By computation, for p = 4,

Q(tr(Γ(2)
21 )) = Q(tr(Γ̃21

(2)
)) = Q(tr(Γ̃21

SQ
)) = Q(

√
7) � Q.

Similarly, in the case when p = 6,

Q(tr(Γ(2)
21 )) = Q(tr(Γ̃21

(2)
)) = Q(tr(Γ̃21

SQ
)) = Q(

√
21) � Q.

Consequently, Γ(2)
21 is not derived from a quaternion algebra by Theorem 2.7. Thus, Γ21

is nonarithmetic for p = 4, 6.

(2) The cases p = 5, 8, 12. As all vertices of the hexagon lie in L1, it follows that
Γ21 is a cocompact lattice.

It follows, from Proposition 2.2, that tr(γ) is an integer polynomial in the set Q2
and one can check that every element in Q2 is an algebraic integer. Hence, tr(γ) is
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an algebraic integer for γ ∈ Γ21 and the traces of elements in Γ(2)
21 are also algebraic

integers.
Observe that tr(t2) = 0 and tr(t−1

1 t2) � 0. Consider Γ̃21 = 〈t1, t−1
1 t2, t3〉. In fact,

Γ21 = Γ̃21. Let s1 = t2
1, s2 = (t−1

1 t2)2, s3 = t2
3 and Γ̃21

SQ
= 〈s1, s2, s3〉.

For p = 5,

Q(tr(Γ(2)
21 )) = Q(tr(Γ̃21

(2)
)) = Q(tr(Γ̃21

SQ
)) = Q

(√
5,
√

7 ×
√

10 − 2
√

5
)
,

which is totally real.

Consider the isomorphism ϕ2 from Q(
√

5,
√

7 ×
√

10 − 2
√

5) to R given by

ϕ2 : a + b
√

5 + c
√

7 ×
√

10 − 2
√

5 + d
√

35 ×
√

10 − 2
√

5

�→ a − b
√

5 − c
√

7 ×
√

10 + 2
√

5 + d
√

35 ×
√

10 + 2
√

5.

By a direct calculation,

ϕ2(tr(s2
2)) = 497 − 433

√
5

2
−

627
√

7 ×
√

10 + 2
√

5

8
+

285
√

35 ×
√

10 + 2
√

5

8
� [−2, 2].

It follows, from Corollary 2.6, that Γ21 is nonarithmetic for p = 5.
For p = 8,

Q(tr(Γ(2)
21 )) = Q(tr(Γ̃21

(2)
)) = Q(tr(Γ̃21

SQ
)) = Q(

√
2,
√

7).

Consider the isomorphism ϕ4 from Q(
√

2,
√

7) to R given by

ϕ4 : a + b
√

2 + c
√

7 + d
√

14 �→ a − b
√

2 − c
√

7 + d
√

14.

A direct computation yields

ϕ4(tr(s2
2)) = 284 − 164

√
2 − 88

√
7 + 76

√
14 � [−2, 2].

By Corollary 2.6, Γ21 is not arithmetic for p = 8.
In the case when p = 12,

Q(tr(Γ(2)
21 )) = Q(tr(Γ̃21

(2)
)) = Q(tr(Γ̃21

SQ
)) = Q(

√
3,
√

7).

Consider the isomorphism ϕ5 from Q(
√

3,
√

7) to R given by

ϕ5 : a + b
√

3 + c
√

7 + d
√

21 �→ a − b
√

3 + c
√

7 − d
√

21.

One computes that

ϕ5(tr(s2
2)) =

213
2
− 60
√

3 + 40
√

7 − 45
√

21
2
� [−2, 2].

It follows, from Corollary 2.6, that Γ21 is nonarithmetic for p = 12.
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