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Introduction

Figure 1.1 Oil distribution in the 2010 Deepwater Horizon oil spill in the Gulf of
Mexico. Apparent barriers to the transport of oil are readily observable. Image: Daniel
Beltrá (used with permission).

Flows in nature tend to generate striking patterns in the tracers they carry. An example is the
oil spill distribution in Fig. 1.1, which is framed by apparent barriers to the spread of the oil
in certain directions. More often than not, one’s primary interest is to find such barriers and
hence understand the overall direction and rate of transport without necessarily identifying
pointwise oil concentration values with high accuracy. Figure 1.1 also conveys the strong
technological and societal needs for uncovering, forecasting and shaping such barriers.

We think of transport barriers as observed inhibitors of the spread of substances in flows.
They offer a simplified global template for the redistribution of those substances without
the need to simulate or observe numerous different initial distributions in detail. Because of
their simplifying role, transport barriers are broadly invoked as explanations for observations
in several physical disciplines, including geophysical flows (Weiss and Provenzale, 2008),
fluid dynamics (Ottino, 1989), plasma fusion (Dinklage et al., 2005), reactive flows (Rosner,
2000) and molecular dynamics (Toda, 2005).

Despite their frequent conceptual use, however, transport barriers are rarely defined pre-
cisely or extracted systematically from data. The purpose of this book is to survey effective
andmathematically groundedmethods for defining, locating and leveraging transport barriers
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2 Introduction

in numerical simulations, laboratory experiments, technological processes and nature. In the
rest of this Introduction, we briefly survey the main topics that we will be covering in later
chapters.

1.1 The Mathematics of Transport Barriers
Throughout this book, we will adopt the geometric view of nonlinear dynamical systems
theory on transport. That is, rather than focusing on individual fluid particle positions or
pointwise concentration values, we seek to identify key invariant surfaces with a major
impact on shaping transport patterns.

To illuminate the significance of such invariant surfaces, we note that models of transport
phenomena are often tested based on their ability to reproduce the evolution of an initial con-
dition or initial distribution. Due to their inherent sensitivity on initial conditions, parameters
and uncertainties, however, even predictions from highly accurate models can ultimately
display vast discrepancies with individual observations. A more meaningful way to test the
validity of models is to assess their ability to reproduce transport barriers of the physical
process accurately.

Figure 1.2 shows a conceptual example in which a highly accurate dynamical model (black
dots) for the true dynamics (solid red) makes a vastly inaccurate prediction for the evolution
of a single initial condition (blue), yet reproduces a transport barrier (the unstable manifold
of a saddle point) of the true dynamics with high accuracy. Clearly, it is the latter metric in
which the model should be assessed and found very accurate.
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barrier  
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Figure 1.2 A good model for a transport process should accurately predict transport
barriers but not necessarily individual trajectories.

A transport barrier can only block transport locally if its dimension is precisely one
less than the dimension of the flow domain, as in Fig. 1.2. Such smooth surfaces are
called codimension-one invariant manifolds in dynamical systems theory. They are curves
in two-dimensional flows and two-dimensional surfaces in three-dimensional flows. While
the impact of transport barriers is apparent in Figs. 1.1–1.9, their ever-shifting location, life
span and intrinsic properties are not readily recoverable from instantaneous snapshots of an
unsteady flow.
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1.2 The Physics of Transport Barriers 3

Our underlying assumption will be that either the velocity field or a set of its trajectories is
available either from observations or numerical simulations. With this assumption, the two
fundamental questions we seek to answer are:

(1) What defines the fundamental barriers to the transport of active and passive tracers in
the flow?

(2) Howcanwe locate themost influential transport barrierswithout solving their underlying
transport equation?

To review the technical material needed to answer these questions, Chapter 2 recalls relevant
concepts from the geometric theory of dynamical systems and continuum mechanics in the
context and language of fluid mechanics. In later chapters, we will build on these concepts
to answer the two main questions posed above under increasingly fewer assumptions. The
order of chapters will roughly mirror actual chronological developments in fluid mechanics
and applied mathematics, each describing ideas and results of interest in their own right.

1.2 The Physics of Transport Barriers
While the techniques for transport-barrier detection we put forward in this book are quite
diverse, we will set one common physical requirement for all of them: their predictions
must be experimentally verifiable. Experimental verifiability for predicted transport barriers
means that they should be detectable via material tracers such as dye, weakly diffusive smoke
or small particles.

The requirement of unambiguous experimental reproducibility has an important implica-
tion: any self-consistent description of transport barriers must be independent of the frame
of reference of the observer. For instance, barriers framing the evolution of an oil spill, such
as the one shown in Fig. 1.1, are clearly identified as the same set of material points by
an observer on the beach, another one on a ship and a third one in a circling helicopter, as
illustrated in Fig. 1.3.

Figure 1.3 Observed transport barriers highlighted by tracers must be objectively
defined, i.e., independently of the observer’s frame of reference.
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4 Introduction

These material barriers move on different orbits in each observer’s frame of reference, yet
all three observers agree exactly on where the edges of the oil spill are at any time instance.
Accordingly, any self-consistent definition or detection method for transport barriers should
be objective, i.e., indifferent to the observer and return the same set of material points forming
the barrier in any observer frame. Beyond its theoretical significance, this litmus test for the
self-consistency of barrier theories has a very practical motivation. If resource allocation or
countermeasures are planned based on the location of transport barriers in a flow, there is no
room for disagreement among observers.

In Chapter 3, we will discuss the principle of material frame indifference in detail and
explore its use as a litmus test for the self-consistency of various views on transport barriers.

1.3 Idealized Transport Barriers vs. Finite-Time Coherent Structures
Aswewill see in Chapter 4, purely advective transport barriers can be defined unambiguously
in flows that are known for all times. Such definitions, e.g., those requiring saddle-type
behavior for a material surface for all times, exploit properties of the barriers that make
them locally unique in the flow. The area of transport studies concerned with such idealized
systems is generally referred to as chaotic advection. In its idealized setting, chaotic advection
provides very helpful motivation for the main types of material barriers one encounters in
nature. It also turns out that some approaches to diffusive and dynamically active transport
barriers also yield steady velocity fields (barrier vector fields) that can be analyzed by the
methods we review for steady flows in Chapter 4.

In practical problems, however, finite-time transport is of interest. Flow behavior over a
finite time interval is continuous: all close enough trajectories remain close to each other.
Consequently, infinitely many neighboring trajectories will satisfy any barrier definition
phrased via inequalities that involve continuous quantities. As a result, the defining features
of barriers exploited in chaotic advection no longer yield unique material surfaces.

One way to address this nonuniqueness problem is to identify barriers that act as observed
centerpieces of material deformation over a finite time interval of interest. We perceive
a surface to assume this role if it remains coherent, i.e., keeps its spatial integrity without
developing smaller scales (filaments) during its temporal evolution.Wewill call such uniquely
resilient material sets Lagrangian coherent structures (LCSs), as first coined by Haller and
Yuan (2000). These LCSs act, for instance, as surfaces bounding the globally complex but
temporally coherent cloud patterns in the atmosphere of Jupiter, as shown in Fig. 1.4.

Instantaneous limits of these material coherent structures are called objective Eulerian
coherent structures (OECSs), which represent short-term, approximately material barriers.
Unlike LCSs, OECSs are not material and hence can frame the creation, collision, break-up
and disappearance of transport barriers in the flow. We will discuss LCSs and OECSs in
detail in Chapter 5.

1.4 Transport Barriers in Flow Separation and Attachment
Flow separation involves the detachment of fluid from a rigid boundary, resulting in either
the creation of a local recirculation zone (separation bubble) or the global breakaway of fluid
particles from the boundary. Highly unsteady flows often display both types of separation,
as illustrated by the separation patterns behind the airfoil shown in Fig. 1.5.
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1.4 Transport Barriers in Flow Separation and Attachment 5

Figure 1.4 Enhanced image of cloud patterns in the atmosphere of Jupiter, as seen
by the Juno mission in 2020. As we show in later chapters, such patterns are created
and shaped by hidden Lagrangian coherent structures (LCSs), such as material jets,
eddies and fronts. Image: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt /Seán
Doran.

Figure 1.5 Visualization of aerodynamic separation and reattachment along transport
barriers attached to an airfoil in a wind tunnel. Image: German Aerospace Center
(DLR), CC-BY 3.0.

Separation depletes the kinetic energy content of the flow near the wall, leading to a
degradation in the operational performance of engineering devices. Specifically, separation
on a bluff body can increase the pressure drag significantly, whereas separation in a diffuser
decreases the pressure recovery. Flow attachment is the opposite phenomenon, involving the
sustained convergence of fluid elements toward a well-defined boundary location. Local sep-
aration necessarily involves a reattachment of the flow that forms the downstream boundary
of the separation zone, as seen in Fig. 1.5.

While separation has a clear impact on aerodynamic forces acting on the flow boundary,
its experimental detection exploits its impact of fluid particle transport. Indeed, flow visu-
alizations of the type shown in Fig. 1.5 are only possible because particles in the separated
and unseparated flow regions are kept apart from each other by material transport barriers.
These separation surfaces collect nearby particles along the boundary and eject them into
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the mean flow. In contrast, reattachment surfaces guide particles from the mean flow to the
wall and then repel them along the boundary.

While typical wall-anchored material surfaces will stretch and fold, separation and reat-
tachment surfaces distinguish themselves by remaining coherent. Therefore, using the termi-
nology introduced in §1.3, we can view separation surfaces as attracting LCSs and attachment
surfaces as repelling LCSs.

Unlike general LCSs, however, separation and reattachment surfaces exert weak attrac-
tion and repulsion near flow boundaries characterized by no-slip boundary conditions. In
dynamical systems terms, these surfaces are nonhyperbolic invariant manifolds, unless the
boundary can be characterized with free-slip conditions. This makes most LCS diagnostic
tools inefficient in a small neighborhood of a no-slip boundary. At the same time, the direct
connection of these LCSs with the boundary facilitates their more detailed local analysis.
This in turn enables the identification of separation and reattachment surfaces near the wall
solely based on the derivatives of the velocity field along the boundary, without material
advection. We will discuss these results for LCSs and OECSs forming separation surfaces
and separation spikes in Chapter 6.

1.5 Transport Barriers in Inertial Particle Motion

Patterns formed by finite-size (or inertial) particles carried by fluid flows are often notably
different from those seen for fluid particles in dye visualizations. Specifically, while fluid
elements in an incompressible fluid cannot exhibit clustering or scattering, both phenomena
are well documented in inertial particle motion in incompressible fluids. A spectacular albeit
alarming example of inertial clustering is the Great Pacific Garbage Patch, which covers an
area of about 1.6 million square kilometers (three times the size of France) (see Fig. 1.6).

Figure 1.6 A transport barrier formed by inertial particles: the Great Pacific Garbage
Patch, a floating island of accumulating garbage in the Pacific Ocean. Image: Ocean
Cleanup.
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Microplastics constitute about 94%of the roughly 1.8 trillion pieces of plastic in this patch,
even though they only make up 8% of the total mass of 80,000 tons.1 Given the characteristic
length scales of the ocean, all objects forming the garbage patch can be considered inertial
particles.

In Chapter 7, we will discuss the fundamentals of transport barriers for inertial particle
motion. It turns out that these barriers can be uncovered by applying the LCS methods of
Chapter 5 to a modification of the carrier fluid velocity field that accounts for inertial effects.

1.6 Barriers to Diffusive and Stochastic Transport
In Chapter 8, we will discuss barriers to the transport of passive tracers whose diffusion
cannot be ignored relative to their advective redistribution over the time scales of interest.
An example is the long-term mixing of dye in a gently stirred glass of water, as shown in
Fig. 1.7. To model such a mixing process accurately, we can no longer set the diffusivity to
zero in the advection–diffusion equation governing the spread of the dye.

Figure 1.7 Diffusive mixing of dye framed by transport barriers in a glass of water.
Image: Nathan Dumlao at unsplash.com.

One might wonder why we bother defining and identifying transport barriers in diffusive
tracer fields, given that they are readily seen in numerical simulations and experiments such
as the one shown in Fig. 1.7. To understand our motivation, one must remember that observed
surfaces with large concentration drops across them are not necessarily intrinsic barriers to
tracer transport. Rather, many of them are remnants of high gradients in the initial tracer
distribution. Indeed, the large concentration drop across the boundary of the initial dye drop
in the experiment shown in Fig. 1.7 will persist as a slowly diffusing dye-fluid interface for
very long times.

Similarly, the lack of large concentration gradients in a given flow domain may simply be
due to the concentration being fully mixed or fully absent in that domain. Indeed, there are
also transport barriers in the region yet unpenetrated by the dye in the experiment shown in
Fig. 1.7. Those barriers will impact other concentration fields (say, the water temperature)
with a different initial distribution carried by the same flow.
1 Most of that mass has been found to be made up of abandoned fishing gear (Lebreton et al., 2018).
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8 Introduction

Finally, one should consider that while large concentration drops seen in finite-time tracer
evolution will often reflect the impact of transport barriers, these drops will not coincide with
the barriers themselves. The amount of discrepancy between concentration drop locations and
actual transport barriers is generally unclear: convergence of the latter to the former can only
be expected in flows with well-defined asymptotic behavior. Identifying intrinsic transport
barriers that are free from these idiosyncrasies of a specific observed tracer distribution is
essential for universal conclusions valid for the transport of all tracer fields.

A closely related passive transport problem, stochastic transport, is concerned with the
transfer of material fluid elements across spatial domains by a velocity field subject to
uncertainties. These uncertainties are most often modeled using Brownian motion.

Fig. 2. Observed drifter trajectories from February 1996 to February 1997 with a total of 194 drifters.
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Figure 1.8 Drifter trajectories released and tracked in the Gulf of Mexico over a
period of one year. The drifters do not cross an apparent transport barrier acting as
the boundary of a forbidden zone west off the Florida coastline. (Occasional straight
lines indicate captured and transported drifters.) Image: Yang, H. et al. (1999).

For example, drifter trajectories in the Gulf of Mexico, along with an apparent barrier they
never cross (see Fig. 1.8), are complex enough to view as trajectories of a random flow.

The connection between trajectory distribution in such a random flow and the evolution
of a diffusive scalar field under the deterministic component of the velocity field is given
by a classic result: the probability density function of the random flow satisfies the Fokker–
Planck equation, which can be recast as an advection–diffusion equation driven by the drift
component of the velocity field. Using this connection, we will discuss the definition and
properties of barriers to stochastic transport in Chapter 8.

1.7 Barriers to Dynamically Active Transport

In contrast to the passive transport concepts we have discussed so far, active transport
involves the transfer of dynamically active tracers. Such active tracers are scalar or vector
fields impacting the flow velocity directly rather than simply being carried by it. Active
tracers of practical interest include the kinetic energy, vorticity and linear momentum.
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Framing the spatiotemporal evolution of these dynamically active fields informally using
the concept of transport barriers is common practice in the literature. As a relevant example,
Fig. 1.9 shows apparent barriers to vorticity transport in the turbulent flow near a spinning
rotor.

Figure 1.9 Apparent transport barriers in the instantaneous vorticity distribution on a
cutting plane for a spinning rotor. Image: Neal M. Chaderjian, NASAAmes Research
Center.

Studying dynamically active fields, however, is even more challenging than the transport
problems we have already discussed. First, the transport equation for these quantities is
a nonlinear partial differential equation (PDE) for the velocity field. For fluid flows, this
PDE is the Navier–Stokes equation, whose solution structure in three dimensions is still not
fully understood. Second, unlike passive scalar concentration fields, all physically relevant
dynamically active fields are nonobjective: they depend on the frame of the observer. This
frame dependence is a serious challenge if one wants to conform to the basic requirement of
objectivity for transport barriers that we formulated in §1.2.

In Chapter 9, we will discuss how barriers to dynamically active transport can also be char-
acterized and located in an observer-independent way. This in turn makes the experimental
visualization of these barriers via material tracers feasible in practice.

1.8 Coherent Sets, Coherence Clusters and Coherent States
We close this Introduction by mentioning three notions of coherence that we will not be
discussing in further detail here. They are beyond the scope of this book because their
primary focus is not transport barriers.

The first such notion is that of a coherent set: an equivalence class of trajectories that stay
closer to each other during their evolution than to other trajectories. Specifically, finite-time
coherent sets comprise trajectories that disperse slower than others over a given finite time in-
terval of interest (see, e.g., Froyland et al., 2010; Froyland, 2013; Bollt and Santitissadeekorn,
2013). This view of coherence focuses on sets enclosed by closed transport barriers as op-
posed to the barriers themselves. A coherent set is defined as a region of initial conditions that
continues to have significant overlap with its deterministically advected final position even if
a small random perturbation (or diffusion) is added to its originally deterministic advection.
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Available approaches seek to locate such coherent sets based on properties of the transfer
operator (or Frobenius–Perron operator), which maps passive, scalar-valued functions de-
fined over initial positions of fluid particles into the evaluations of the same functions over
later positions of those particles.2 More recent reformulations and extensions of the transfer
operator approach are given by Froyland (2015); Froyland and Kwok (2017); Froyland et al.
(2020) and the references cited therein.

The transfer operator can be approximated by its finite-dimensional discretization P,
constructed as a matrix of transition probabilities within a finite partition of the flow domain.
The second (left) singular vector of P is then expected to characterize a dominant coherent
set after appropriate thresholding. Further coherent structures are expected to appear from
the appropriate thresholding of higher singular vectors of P. The number of singular vectors
to consider and the applied thresholding are typically determined empirically by inspection
of the unprocessed singular vectors of P. Transport barriers are then inferred by implication
as boundaries of the coherent sets obtained in this fashion.

A notion related to coherence sets is the coherence cluster, which comprises a group of
trajectories that are more similar to each other than to other groups. Methods for identifying
clusters in data sets were originally developed in the computer science literature (see, e.g.,
Everitt et al., 2011). Using such ideas, Froyland and Padberg-Gehle (2015) use fuzzy C-
means clustering to identify clusters of initial conditions that remain close to the same
virtual cluster center. Hadjighasem et al. (2016) seek clusters as sets of trajectories that
maintain small relative distances to each other. They note that clusters can be identified
by applying the technique of spectral clustering to the eigenvectors of matrix (the graph
Laplacian) that encodes the average distances among trajectories. Schlueter-Kuck and Dabiri
(2017) use the same clustering approach but with a different distance function. Banisch and
Koltai (2017) apply the spectral clustering approach in the transfer operator framework.

These spectral methods targeting coherent sets or coherence clusters are different in spirit
from the geometric approaches we will be surveying in this book. First, we will focus on
barriers minimizing advective, diffusive, stochastic or active transport of a physical quantity
without requiring the barriers to be closed. In contrast, barrier surfaces inferred from spectral
methods have to be closed. As a consequence, spectral methods are inapplicable to some of
the most frequently observed barriers, such as jets and fronts in the ocean, just because they
happen to be open. Second, spectral approaches require empirical user input in the selection
of the relevant singular vectors, which is not the case for the geometric methods we will
survey. To illustrate the differences between probabilistic and geometric approaches on a
specific flow, Fig. 1.10 shows a comparison of coherent sets obtained from transfer operator
methods with transport barriers obtained from LCS methods in a two-dimensional, spatially
double-periodic turbulence simulation.

A third frequently used notion of coherence in contemporary fluid mechanics is that of an
exact coherent state3 (or ECS), which refers to an exact, nonlinear solution of the Navier–
Stokes equation in canonical shear flows, such as plane Couette, Poiseuille and pipe flows
(Waleffe, 1998, Graham and Floryan, 2021). These solutions display simple spatiotemporal
2 Technically speaking, the transfer operator is the pushforward operation carried out by the flow on measurable
functions.

3 Exact coherent states are sometimes called exact coherent structures, causing occasional confusion with the
coherent structures discussed in §1.3 and elsewhere in this book.
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tem _x ¼ vðx; tÞ. We use the auxiliary gird approach with the
distance q ¼ 10 3 to construct the FTLE, FSLE, meso-
chronic, and shape coherence diagnostic fields. The same
auxiliary distance is used to compute the Cauchy–Green
strain tensor as well as the vorticity for the geodesic and
LAVD methods, respectively.

Most plots in Figure9 indicate several vortex-type struc-
tures, except for the shape coherence and transfer operator
methods. While the boundaries of the large-scale coherent
sets identified by the latter method indeed do not grow

coherent sets. Most of these patches appear to be examples
of coincidental, rather than physical, coherence with respect
to the coherence metric imposed by the method. An addi-
tional issue with the hierarchical transfer operator method
is its convergence on this example. The method sets a thresh-
old on the relative improvement of the coherence with
respect to the reference probability measure
to be computed and satisfied over consecutive refinements of
coherent pairs. However, at each iteration,
initial numerical di�usion imposed by the box covering. As

Coherent sets:
thresholded singular
vectors of the transfer
operator and its
hierarchical version

Transport barriers:
hyperbolic (open) 
and elliptic (closed)
Lagrangian coherent 
structures

n

Figure 1.10 Coherent sets obtained as thresholded second singular vectors of the
transfer operator approach and from its hierarchical version, which applies the original
algorithm again within each coherent set recursively n times (Ma and Bollt, 2013).
Also shown are transport barriers obtained as Lagrangian coherent structures (LCSs)
from the finite-time Lyapunov exponent (FTLE) and from the Lagrangian-averaged
vorticity deviation (LAVD). The FTLE highlights hyperbolic LCSs and the LAVD
highlights elliptic LCSs, as we will discuss in Chapter 5. Adapted from Hadjighasem
et al. (2017).

behavior that is nevertheless reminiscent of coherent features of turbulent solutions that
arise recurrently. This is because ECSs are of saddle type and hence other time-evolving
Navier–Stokes velocity fields may, from time to time, pass by ECSs. These passing solutions
will mimic some of the spatial features of the approached ECSs for a while before departing.
Examples of ECSs include steady-state, time-periodic or traveling-wave solutions, such as
the one shown in Fig. 1.11.

Features of ECSs have traditionally been assessed via heuristic visualization tools, such as
instantaneous level surfaces of a velocity component (see, e.g., Fig. 1.11). This visualization
approach is useful in a direct comparison between the features of ECS velocity fields and
those of turbulent velocity fields. However, the surfaces obtained in this fashion tend to
differ from experimentally observable material coherent structures even in two-dimensional
steady flows (see §3.7.1 for examples). In summary, while the transport barriers and coherent
structures we discuss here are special material surfaces of a given velocity field, the ECSs are
special velocity fields themselves. Their particular transport barriers and coherent structures
can nevertheless be studied by the methods discussed in the upcoming chapters of this book.
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Figure 4. Perspective, side and top view of level curves of streamwise velocity u at y = 0 overlayed
with isosurfaces of streamwise vorticity (±60% max[!x(x, y, z)], the maximum occurs at the wall).
Positive vorticity blue, negative red. Upper branch at Re = 376, R⌧ ⇡ 55. Flow is toward positive x.

solutions are virtually identical to the free-slip solutions except for extra high-vorticity
regions at the wall, below the vortices, in the no-slip case and an additional symmetry
in plane Couette flow. The lower branch solution (figure 5) develops a distinct and
more complex structure. The lower branch streaks are stronger and less wavy than in
the upper branch solution. They are flanked by staggered nearly streamwise vortices
that split into two pieces, one of which straddles the streak. A second set of similar
vortices, slightly weaker and shifted by about half a period, also exists.

Both of these branches of solutions are unstable to perturbations with the same
wavelengths and symmetry. The unstable eigenvalues consists of a complex conjugate
pair and one real eigenvalue on the lower branch and a complex conjugate pair on
the upper branch. The real part of the complex pair on the upper branch is almost
independent of Re, for the range of Re presented here (252 6 Re 6 423), with a
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Figure 1.11 Exact coherent state (ECS) in a channel flow moving in the positive x-
direction of a channel at Reynolds number Re = 376. Level curves of the streamwise
velocity in the y = 0 plane are shown together with isosurfaces of the streamwise
vorticity. Positive vorticity is shown in blue, negative in red. Adapted from Waleffe
(2001).
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