BuLL. AUSTRAL. MATH. SocC. 11k06, 11k31, 1160, 11104, 11371, 11r06
VoL. 76 (2007) [433-440]

ON THE POWERS OF SOME TRANSCENDENTAL NUMBERS

ARTURAS DUBICKAS

We construct a transcendental number @ whose powers a™, n = 1,2,3,..., modulo
1 are everywhere dense in the interval [0,1]. Similarly, for any sequence of positive
numbers § = (8,)°2,, we find a transcendental number @ = a(d) such that the
inequality {a"} < &, holds for infinitely many n € N, no matter how fast the sequence
é converges to zero. Finally, for any sequence of real numbers (r,)32, and any
sequence of positive numbers (4,)32,, we construct an increasing sequence of positive
integers (gn)32, and a number a > 1 such that |[a® - r,|| < &, for each n > 1.

1. INTRODUCTION

Throughout this paper, we shall denote by {z}, [z] and ||z|| the fractional part of
a real number z, the integral part of z, and the distance from z to the nearest integer,
respectively. Clearly, z = [z]+ {z} and ||z|| = min ({z},1—{z}). By N and Q we denote
the set of positive integers and the set of rational numbers, respectively.

Let a > 1 be a real number. Koksma (7} proved that for almost all @ > 1 the
fractional parts {a"}22, are uniformly distributed in the interval [0,1]. However, for
most specific o, the distribution of the sequence {a"}32, is an open question. The
“exceptional” « in this respect (in the sense that for them the distribution of the sequence
{a"}%, in [0,1] is quite well-known) are Pisot and Salem numbers. See, for instance,
Salem’s book [14] and some recent papers on this kind of problems [3, 5, 6, 9, 17]. In
general, the problem of the distribution of the fractional parts {a"}22, goes back to Weyl
[16]. Later, some unsolved problems about the distribution of the powers of the number
a = 3/2 were raised by Vijayaraghavan [15] and Mahler [11]. The current status of these
problems is described in a recent review of Adhikari and Rath [1].

Since we shall be concerned with Pisot numbers later on, let us recall that a real
algebraic integer o > 1 is called a Pisot number if its conjugates over Q, except for a
itself, all lie in the open unit disc |z| < 1. For each Pisot number «, we have ||a”]| = 0 as
n — oo (see also [5, 6, 9] for some related problems). In contrast, for a Salem number a,
by a result of Pisot and Salem [13], the sequence {a"}32, is everywhere dense in [0, 1],
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but not uniformly distributed in [0,1]. Hence, for every o which is an mth root of a
Salem number with some m € N, the sequence {a"}32, is also everywhere dense in [0, 1].

However, if @ > 1 is an algebraic number which is neither a Pisot number nor a
root of a Salem number, then the distribution of the sequence {@"}%, is not known.
Moreover, if ¢ is a transcendental number, say, o = e, ,log3 or similar, then it is not
even known whether the sequence {a"}2, has just one or more than one limit point. One
of the results of Pisot [12] implies, for example, that there are arbitrarily large numbers «
for which {o"} € [1/2—-1/a,1/2+1/a] forevery n > ng. It is clear that such an « cannot
be a Pisot number or a Salem number. So, generally speaking, the sequence {a"}32, need
not even be dense in (0, 1] for some o that are not Pisot numbers. It is quite tempting
to conjecture that if @ > 1 is an algebraic number, but not a Pisot number, then the
sequence {a"}32, is dense in [0, 1]. However, such a problem is far beyond reach even for
a = v/2. Curiously, but except for an unpublished manuscript of Lerma [8] who gives a
(quite complicated) construction of some a > 1 whose powers are uniformly distributed
in [0,1] it seems like that there is no method known which would allow the explicit
construction of a transcendental number a whose powers modulo 1 are everywhere dense
in [0, 1], although, by the above mentioned result of Koksma, almost all transcendental
numbers have this property. We thus begin with the following construction of a by a
recurrent sequence similar to [2]. For such a, the sequence {a"}, is everywhere dense,
because its subsequence {a™}32, is everywhere dense.

THEOREM 1. Let (1), be a sequence of real numbers in [0,1) which is every-
where dense in [0, 1) such that r, = 0 for infinitely many indices n. Suppose that z; :=1
and z,, =1+ [(z,._l + Tp-1) — r,,] for n > 2. Then the limit a := nlir{.lo(z,, +r)V > 1
exists, it is a transcendental number, and the sequence {o™}%, is everywhere dense in
[0,1].

We can take, for instance, r, to be the nth term of the sequence of blocks of Farey
fractions that are separated by one zero

1/2)0) 1/3’2/3’011/4?3/4a0’1/512/573/5!4/510a1/615/6a0)

The problem of the distribution of the sequence {a"}32, in [0, 1] is related to a purely
diophantine problem of how close the elements of this sequence are to 0 and 1. Recently,
Corvaja and Zannier [4] generalised an old result of Mahler [10] and proved that if o > 1
is an algebraic number such that, for some positive § < 1, the inequality ||la”|| < (1 —6)*
has infinitely many solutions in positive integers n then a™ is a Pisot number for some
m € N. Earlier, Mahler proved this result for rational numbers a using a version of
Roth’s theorem. In principle, using some properties of Pisot numbers, one can derive our
next theorem from [4]. However, since the condition on J, is much stronger than the one
considered in [4], we shall give a simple direct proof without using the results of [4].
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THEOREM 2. Let o be a real number and let (6,)32, be a sequence of positive
numbers sat1sfymg lim 65/ = 0. If the inequality lle®|| < 6, has infinitely many solutions
—00
inn € N then exther o is a transcendental number or a™ is an integer for some m € N.

In addition, it is shown in [4] that there exists a transcendental number o > 1
such that [la”|| < 27" for infinitely many n € N. In this direction, for any sequence
8 = (0,)2, of positive numbers, we construct a transcendental number a = «(§) such
that the inequality ||a™|| < 4, holds for infinitely many n € N, no matter how fast the
the sequence & converges to 0.

THEOREM 3. Leté = (6,)32, be a sequence of positive numbers. Set =, := 1 and
T, = 2Zp~, + 1 forn > 2, where uy = 1, uz, us, ... are some positive integers depending
on & (see the proof how). Then the limit a := Jlim g/ tva-¥n) 5 1 exists, it is a
transcendental number, and the inequality {a"} < 6,, bolds for infinitely many n € N.

In fact, not only zero but also any given sequence can be “copied” by some powers
of @ modulo 1 with any prescribed accuracy. In our final theorem, we do not bother
about the arithmetical nature of the limit @. (One can easily ensure that the number
a in Theorem 4 below is transcendental, for example, by adding infinitely many “extra
terms” r, = 0 and by increasing the “gaps” between consecutive g,’s if necessary.) Also,
we replace 1+ [z] by the ceiling function [z] and construct the approximants to o directly
rather than via integer parts of their powers as in Theorems 1 and 3. More precisely,
we show that, for any sequence of real numbers (r,)%2,, there is a number a > 1 whase
powers a’", where g, are some positive integers, tend to the numbers r,, (with respect to
the metric || - ||) with any prescribed rate.

THEOREM 4. Letd = (0,)32, be a sequence of positive numbers, and let (r,)2
be a sequence of real numbers. Suppose that yo > 2 and y, := ([y%",] +7n)"/% forn > 1
where q; < g2 < g3 < ... are any positive integers satisfying gn+1 2 qn + 10g,(1/68,) + 3
forn 2 1. Then the limit o := hm Yn =2 2 exists, and, for this o, the inequality
lla%® — r,|| < 8, holds for each n € N

In particular, Theorem 4 implies that, for any sequence of real numbers (r;)%, and
any sequence of positive integers q; < ¢ < ¢3 < ... satisfying '.1_1{{:0 (gn+1 — ¢a) = o0,
there is an & > 2 such that lim lla® — 74|l = 0. Also, setting 6, = ¢ for n € N, taking
gn = mn for n € N with some fixed m 2 log,(1/€) + 3, and writing a for o™, we deduce
the following corollary:

COROLLARY 5. Let (r,)32, be a sequence of real numbers. Then, for any € > 0,
there is an a > 1 such that ||a® — r,|| < € for each n € N.

The construction itself and all of the proofs in this paper are similar to those in [2].
In the next section, we first give a self-contained proof of Theorem 2 and then derive
from it an auxiliary lemma. The proofs of Theorems 1 and 3 given in Section 3 are based
on the lemma. In Section 4 we shall prove Theorem 4.
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2. ON THE APPROXIMATION OF THE POWERS OF A NUMBER

PROOF OF THEOREM 2: If |a| < 1 then ||a®|| = |a|* for each n > n,(a), so
la| = [Ja™||'/* < 64'™ has infinitely many solutions in n € N only if @ = 0. For o = +1,
the claim is also trivial. So, without loss of generality, we can assume that la| > 1.

Let I be the infinite set of indices n for which ||a"|] < 8,. Suppose that a is
an algebraic number, say, of degree d with conjugates oy = @, 03,...,a4 over Q. Let
also a4 € N be the leading coefficient of the minimal polynomial of o over Q. Put

d
z, := 0" +1/2]. Consider the product P, := aj [ (a} - z.). It is a rational integer.
j=t

If P, = 0, then o} = z, for some index j. By considering any automorphism of the
normal extension Q(a, ..., aq)/Q which maps a; — o and using the fact that z, is an
integer, we obtain that o™ = z,. This implies that ™ is an integer for some m € N. If
P, #0, then |P,| > 1. For each n € I, we have |a® — z,| < é,. Hence

d
a36s [ ] lof — za] > |Pal 2 1.
=2
Putting ¢ := max;¢j<q|@;| and using |z,| < |a|® +1/2 < ¢® + 1, we obtain that

1 < a6, (|2al + )7 < @36, (2" + 1)4! < 6,07,

where b is a positive constant depending on « only (and not on n). Hence 1/b < &/r

for every n € I. This is a contradiction with lim = 0, which implies that « is a
n—o0

transcendental number. 0

LEMMA 6. Let (r,)32, be an arbitrary sequence of real numbers in [0, 1) satisfying
rp = 0 for infinitely many indices n. Suppose that z; := 1 and

= 1 (B0t + Fact)™ = 2]
for n > 2, where v; = 1, vy, v3, ... are positive integers. Then
a:= lim (zn + rn)l/(ﬂ!"wz...v,.)
n—o00
is a transcendental number greater than 1 and
T +Tn < Q™ Ty 41y + (T + 1) TN

for each n > 2.

PROOF: Observe that the sequence (z, + r,,)'/("*1-#) is increasing. Indeed, by the
definition of z,,

Tntra=1+ [(xn—l +7Tp1)™" = rn] +7n > (Ta-1 + Ta-1)™".
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Next, we shall show that the sequence (Tn + Tn + (T + 7o) "¥n+1)/(Plv1-tn) jg de-
creasing. To prove this, we need to show that

Tn+Tq + (xn + ”'n)-’wmH < (In-l +Tp1 + (zn-l + Tn-l)—(n—l)un)'wn'
Indeed, using z, +7n < 1+ (Zn-1 +7n-1)™" and v, > 1, we deduce that, for each n > 3,

(zn_l + oy + (zn—-l + Tﬂ_l)—("_l)v")m’"
2 (zn—l + Tn_l)'w" + n’l)ﬂ(l‘n_l + Tﬂ_l)nv"—l—(n—l)u,.
(Zn-1 +10=1)" +00p 2 (Tpoy + Tao)™ + 3

2
2 ZTn+Ta+2> Tp+ o+ (Tn +1,) 7"

It follows that the sequences zi/™"'*») n = 1,2,..., (which is increasing) and
(Tn + Tn + (Ta + 7)) "na1)V/(Moren) -y — 2 3 ..., (which is decreasing) tend to cer-
tain limits, say, o and 7, respectively, as n tends to infinity. Obviously, a < 7, so

Tn+Th < an!ul...v,. S ,yn!ul...vn < T, +Tn + (-Tn +Tn)—nv,.+1

for each n 2> 2. Note that, since the right hand side is at most z,, + 7, + 1, we have a =«
(although we shall not need it). It is clear that & > 1.

Next, we shall prove that the number « is transcendental. Let I be the infinite set
of indices n for which 7, = 0. Denote V,, := nlv; ...v,. We have z, < a"* < 1, +z;"+
< zTp+z;" <z, + 1. Fix B € (1,a). Then a"» — 1 > % for each sufficiently large
n. Hence |la™|| < z;" < (a" ~ 1)™" < B~™"» for each sufficiently large n € I. By
Theorem 2, either « is a transcendental number or o™ € N for some m € N. However, if
a™ is an integer, then a¥* must be an integer too for every n > m, because V,, = nlv; ...v,
is divisible by m. This is, however, not the case, because a** € (z,,z, + 1) for n > 2.
Consequently, « is a transcendental number.

3. PROOFS OF THEOREMS 1 AND 3

PrOOF OF THEOREM 1: Let us apply the lemma for v; = v, = v3 = --- = 1.
The lemma implies that & := lim zi/™ is a transcendental number greater than 1 and
n—o0

In+Th <o <zTo+1,+z;" forn>2

Fix y € (0,1). In order to prove that y is a limit point of the sequence {a™}%,
it is sufficient to show that, for any positive number ¢ satisfying € < 1 — y, there is an
n € N such that {a™} € (y,y + €). Indeed, the interval (y,y + £/2) contains infinitely
many r,’s. Let I be the set of corresponding n’s. We claim that {a™} € (y,y +¢) for all
sufficiently large n € I. For this, it is sufficient to show that

Tn+y<a¥ <z, +y+e.
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Indeed, adding two inequalities y < 7, and z, + m, < @™, we immediately get the first
inequality z,+y < o™. The second inequality, namely, a™ < z,+y+¢ would follow from
the inequalities r, < y+¢/2 (which holds by the definition of I) and ™ < z,+r, +€/2.
From a™ < z, + r, + z;", we see that the required inequality holds if z? > 2/e. This is
indeed the the case, because z, > a™ —r, - 1, 50 T, = 00 as n — co. Finally, since the
sequence {0™'}®, is everywhere dense in (0, 1), it is everywhere dense in [0, 1]. 0
PROOF OF THEOREM 3: This time, we shall apply the lemma with r), =r, =73 =

- = 0 and with u, = nv,. Here, v,, n =1,2,..., are some positive integers to be chosen

later. Then the lemma implies that « := lim al/("*1-*») i 3 transcendental number and
n—=00

1 -—
In < & < gy 2

Fix any B € (1,a). For each n large enough, say n > n;, we have z, > o™+ — 1
> f™vi-vn Hence logz, > nlv;...v,log8. The inequality {a’'} < &5 holds for every
number N = nlv; ...v, provided that z;"»+! < §y, that is, nv,4,logz, > log(l/dN).
So we can simply put v; =+ -+ = v,;; = 1 and, for each n > n;, take any positive integer
Uns1 greater than log(1/8p,. 4. )/ (nlv1 ... vanlog B), which is always possible. 1]

In particular, let us consider the sequence z; := 1 and z,4; := z2 + 1 for each
n = 1. As above, the sequence x,l./ 2", n = 1,2,..., is increasing, whereas the sequence
(za+1/ (2:5,.))1/ 2", n=1,2,..,, is decreasing. They both thus tend to the same limit £.
Since the inequality

{67} < 1/(2zn) < 1/(2(€" - 1)) < (1/&)*

holds for all sufficiently large n, the theorem of Corvaja and Zannier [4] implies that
either the number £ is transcendental or there is an m € N such that £™ is a Pisot
number. The second possibility seems very unlikely. We thus conclude this section with
the following transcendence type problem: prove that the number £ is transcendental.

4. PROOF oF THEOREM 4

Without loss of generality we may assume that r, € [0, 1) for each n > 1. Also, we
can assume that 8, < 1/2, s0 gp4+1 — gn 2 4. Since

Un = ([y82,] + )% > (y2, + )9 > oy,

the sequence (y,)32, is non-decreasing. Also, yI* — r,, is an integer, so that {y"} =,
for every n € N.
From [yd" ] <y, + 1 and r, < 1, we have

Yn/Un-1 < (1 +2y75)Y% < 14 2/(gap?,).
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Hence yn —yYn-1 < 2/ (q,,y:’"‘__ll). Adding n such inequalities (for y, — ¥n—1, fOr Yn—1 — Yn-2,

., for 1 — o) and using y; > yo for j = 1,2,...,n — 1, we obtain that y, — yo is
bounded from above by 2/(g1y8* ~*(yo — 1)), so the limit a := lim yn exists. Obviously,
it is greater than or equal to 39 > 2. e

Next, we shall estimate the quotient (yx41/yx)? for k > n. Since ¢,/gx+1 < 1 and
> 2, we have

(ka1 fyk)™ < (1 + 2y, )0/ < 1 4 20,/ (™) < 1+ 2/yPH < 1+ y,:q"““.

It follows that, for every fixed n € N,

(a/yﬂ)q'I = 1—[(y1:+1/yk)qﬂ < H(] + yk"lk+1+l)‘
k=n k=n

o0
In order to estimate the product ] (1+73), where 7, := y %++!

k=n

, we shall first bound it

o0 o0
as exp ( > Tk) and then use the inequality exp(r) < 1+ 27, because the sum 7 = Y_ 7
k=n k=n

turns out to be bounded by 1. Indeed, using the inequality yx > y, = 2, we obtain that

—qugr+1 1 ~gn
= Zy k41 < q“+1_2(y — 1) < ynq +1+42
n

k=n

(which is at most 1), hence (a/y,)™ < 1+ 2/yi+~2 < 1+ 1/y#+1~3. Therefore 0 <
a% —yir < 1/yin+1-00—3 £ 1/29+1-9-3_ Using {yd*} = r,,, we conclude that ||a® —r,|| <
2-tn+1+02+3 for each n € N. The right hand side of this inequality does not exceed 4,
provided that g,+; > gn + log,(1/6,) + 3. This completes the proof of Theorem 4.

If the sequence (gn)3%, is not growing very fast, then the arithmetical nature of the
limit obtained by this kind of iterations seems to be quite mysterious even in the simplest
casery =1y =713 = --- = 0 and ¢, = n. For instance, let us start with y, € (1,\/2_], and
consider the sequence (y,)?%, obtained by the following iterations

= [yr':—l] Hn

for n > 2. Then y, = 2Y/2,y; = 313,y = 5Y/4, ys = 81/5,y = 13Y/,.. .. By the same
argument as above, the limit { := hm Yn exists: prove that( is a transcendental number.
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