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ON THE POWERS OF SOME TRANSCENDENTAL NUMBERS

ARTORAS DUBICKAS

We construct a transcendental number a whose powers an!, n = 1,2,3,..., modulo
1 are everywhere dense in the interval [0,1]. Similarly, for any sequence of positive
numbers S = (JnJJJLi, we find a transcendental number a = a(6) such that the
inequality {an} < Sn holds for infinitely many n € N, no matter how fast the sequence
S converges to zero. Finally, for any sequence of real numbers {rn)^L1 and any
sequence of positive numbers (J,,)^!, we construct an increasing sequence of positive
integers (gn)^=i and a number a > I such that \\aq" — rn|| < 6n for each n ^ 1.

1. INTRODUCTION

Throughout this paper, we shall denote by { i} , [x] and ||x|| the fractional part of
a real number x, the integral part of x, and the distance from x to the nearest integer,
respectively. Clearly, x — [x] + {x} and ||x|| = min ({x}, 1 — {x}). By N and Q we denote
the set of positive integers and the set of rational numbers, respectively.

Let a > 1 be a real number. Koksma [7] proved that for almost all a > 1 the
fractional parts {an}^=i are uniformly distributed in the interval [0,1]. However, for
most specific a, the distribution of the sequence { a " } ^ is an open question. The
"exceptional" a in this respect (in the sense that for them the distribution of the sequence
{a"}^- ! in [0,1] is quite well-known) are Pisot and Salem numbers. See, for instance,
Salem's book [14] and some recent papers on this kind of problems [3, 5, 6, 9, 17]. In
general, the problem of the distribution of the fractional parts {an}|Jl1 goes back to Weyl
[16]. Later, some unsolved problems about the distribution of the powers of the number
a = 3/2 were raised by Vijayaraghavan [15] and Mahler [11]. The current status of these
problems is described in a recent review of Adhikari and Rath [1].

Since we shall be concerned with Pisot numbers later on, let us recall that a real
algebraic integer a > 1 is called a Pisot number if its conjugates over Q, except for a

itself, all lie in the open unit disc \z\ < 1. For each Pisot number a, we have ||an|| —• 0 as
n -> oo (see also [5, 6, 9] for some related problems). In contrast, for a Salem number a,
by a result of Pisot and Salem [13], the sequence {an}%Li is everywhere dense in [0,1],
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but not uniformly distributed in [0,1]. Hence, for every a which is an mth root of a
Salem number with some m G N, the sequence {an}%L1 is also everywhere dense in [0,1].

However, if a > 1 is an algebraic number which is neither a Pisot number nor a
root of a Salem number, then the distribution of the sequence {a"}^.] is not known.
Moreover, if a is a transcendental number, say, a = e, 7r.log3 or similar, then it is not
even known whether the sequence {an}{Jli has just one or more than one limit point. One
of the results of Pisot [12] implies, for example, that there are arbitrarily large numbers a
for which {an} € [1/2 — I/a , 1/2+I/a] for every n > n0. It is clear that such an a cannot
be a Pisot number or a Salem number. So, generally speaking, the sequence { a " } ^ need
not even be dense in [0,1] for some a that are not Pisot numbers. It is quite tempting
to conjecture that if a > 1 is an algebraic number, but not a Pisot number, then the
sequence {an}^=l is dense in [0,1]. However, such a problem is far beyond reach even for
a = \/2. Curiously, but except for an unpublished manuscript of Lerma [8] who gives a
(quite complicated) construction of some a > 1 whose powers are uniformly distributed
in [0,1] it seems like that there is no method known which would allow the explicit
construction of a transcendental number a whose powers modulo 1 are everywhere dense
in [0,1], although, by the above mentioned result of Koksma, almost all transcendental
numbers have this property. We thus begin with the following construction of a by a
recurrent sequence similar to [2]. For such a, the sequence {a"}£Li is everywhere dense,
because its subsequence {an!}™=1 is everywhere dense.

THEOREM 1. Let (rn)%Li be a sequence of real numbers in [0,1) which is every-
where dense in [0,1] such that rn = 0 for infinitely many indices n. Suppose that xx := 1
and xn := 1 + [(in_i + rn_i)n - rn] for n > 2. Tien tie limit a := lim (xn + rnfl

n' > 1
exists, it is a transcendental number, and the sequence { a " 1 } ^ is everywhere dense in
[0,1].

We can take, for instance, rn to be the nth term of the sequence of blocks of Farey
fractions that are separated by one zero

1/2,0,1/3,2/3,0,1/4,3/4,0,1/5,2/5,3/5,4/5,0,1/6,5/6,0,....

The problem of the distribution of the sequence {an}^=1 in [0,1] is related to a purely
diophantine problem of how close the elements of this sequence are to 0 and 1. Recently,
Corvaja and Zannier [4] generalised an old result of Mahler [10] and proved that if a > 1
is an algebraic number such that, for some positive 6 < 1, the inequality ||an|| < (1 — 5)n

has infinitely many solutions in positive integers n then am is a Pisot number for some
m G N. Earlier, Mahler proved this result for rational numbers a using a version of
Roth's theorem. In principle, using some properties of Pisot numbers, one can derive our
next theorem from [4]. However, since the condition on Sn is much stronger than the one
considered in [4], we shall give a simple direct proof without using the results of [4].
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THEOREM 2. Let a be a real number and let {Sn)%Li be a sequence of positive

numbers satisfying lim 6nn = 0. If the inequality 11 a" 11 < <5n has infinitely many solutions
n-+oo

in n e N then either a is a transcendental number or a m is an integer for some m 6 N.
In addition, it is shown in [4] that there exists a transcendental number a > 1

such that | |an | | < 2~" for infinitely many n € N. In this direction, for any sequence

5 = (^n)^Li of positive numbers, we construct a transcendental number a = a(S) such

that the inequality | |a"| | < 6n holds for infinitely many n € N, no matter how fast the

the sequence S converges to 0.

THEOREM 3 . Let 5 = (<Sn)£Li be a sequence of positive numbers. Set xi := 1 and

xn := xjjlj + 1 /or n ^ 2, where ui = 1, U2, U3, •• • are some positive integers depending

on S (see the proof how). Then the limit a := lim xy ( u i U 2 " U n ) > 1 exists, it is a
n-+oo

transcendental number, and the inequality {an} < 6n holds for infinitely many n € N.
In fact, not only zero but also any given sequence can be "copied" by some powers

of a modulo 1 with any prescribed accuracy. In our final theorem, we do not bother

about the arithmetical nature of the limit a. (One can easily ensure that the number

a in Theorem 4 below is transcendental, for example, by adding infinitely many "extra

terms" rn = 0 and by increasing the "gaps" between consecutive qn's if necessary.) Also,

we replace 1 + [x] by the ceiling function fx] and construct the approximants to a directly

rather than via integer parts of their powers as in Theorems 1 and 3. More precisely,

we show that, for any sequence of real numbers (rn)^Lj, there is a number a > 1 whose

powers a ' n , where qn are some positive integers, tend to the numbers rn (with respect to

the metric || • ||) with any prescribed rate.

THEOREM 4 . Let S = (6n)^=l be a sequence of positive numbers, and let (rn)%Li

be a sequence of real numbers. Suppose that y0 ^ 2 and yn := (fj/n—I 1 +'"n)1// '" for n ^ 1,

where <7i < ft < 93 < • • • are any positive integers satisfying qn+\ ^ qn + Iog2(l/«5n) + 3

for n ~2 1- Tien the hmit a := lim yn ^ 2 exists, and, for this a, the inequality
n—foo

II"'" - rn\\ < 5n holds for each n e N.

In particular, Theorem 4 implies that, for any sequence of real numbers (rn)%Li and

any sequence of positive integers q\ < q-i < qz < ... satisfying lim (qn+i — qn) = co,
n too

there is an a > 2 such that lim \\a9n - rn\\ = 0. Also, setting <$„ = e for n e N, taking
71—*OO

qn = mn for n G N with some fixed m ^ Iog2(l/e) + 3, and writing a for a m , we deduce

the following corollary:

COROLLARY 5 . Let {rn)^=i be a sequence of real numbers. Then, for any e > 0,

tnere is an a > 1 such that \\ctn - rn\\ < e for each n € N .

The construction itself and all of the proofs in this paper are similar to those in [2j.

In the next section, we first give a self-contained proof of Theorem 2 and then derive

from it an auxiliary lemma. The proofs of Theorems 1 and 3 given in Section 3 are based

on the lemma. In Section 4 we shall prove Theorem 4.
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2. O N THE APPROXIMATION OF THE POWERS OF A NUMBER

P R O O F OF THEOREM 2: If |Q| < 1 then ||an|| = \a\n for each n ^ ni(a), so
|a | = | |an | |1 / n < 6l/n has infinitely many solutions in n € N only if a = 0. For a = ±1,
the claim is also trivial. So, without loss of generality, we can assume that \a\ > 1.

Let / be the infinite set of indices n for which ||an|| < <$„. Suppose that a is
an algebraic number, say, of degree d with conjugates a\ =• a,oi2,...,otd over Q. Let
also ad € N be the leading coefficient of the minimal polynomial of a over <Q>. Put

d
xn := [an + 1/2]. Consider the product Pn := ad Yl ( a? "* x»)- It is a rational integer.

i=i
If Pn = 0, then a" = xn for some index j . By considering any automorphism of the

normal extension Q(at\,..., a<f)/Q which maps a, t-̂  a and using the fact that xn is an
integer, we obtain that an = xn. This implies that am is an integer for some m e N. If
Pn 7̂  0, then \Pn\ ^ 1. For each n 6 / , we have \an — xn\ < <$„. Hence

j=2

Putting c := max^^d \atj\ and using |xn| ^ |a|n + 1/2 < c" + 1, we obtain that

1 < a2<Jn(|in| + c")""1 < an
dSn(2cn + I)"'1 < Snb

n,

where b is a positive constant depending on a only (and not on n). Hence 1/6 < 8n
ln

for every n € / . This is a contradiction with lim 6n
/n = 0, which implies that a is a

n->oo
transcendental number. D

LEMMA 6. Let (rn)n°=i be an arbitrary sequence of real numbers in [0,1) satisfying
rn = 0 for infinitely many indices n. Suppose that X\ := 1 and

xn := 1 + [(!„_! + r^i)""" - rn]

for n ~^ 2, where V\ = 1, V2, v$,... are positive integers. Then

a := lim (xn + rn)i/(»
!»i»a-»»)

n—KX>

is a transcendentai number greater tian 1 and

Xn + Tn <i Ot K. Xn ~r Tn ~r ^Xn T" Tnf

for each n ^ 2.

PROOF: Observe that the sequence (zn + rn)
1^niVi-Vn^ is increasing. Indeed, by the

definition of xn,

rn = - rn] +rn> (in_! + r^
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Next, we shall show that the sequence ( i n + rn + (xn + rn)-"»»+i)i/(n!»i-«») is de-

creasing. To prove this, we need to show that

xn + rn + (xn + rn)-™*+> < (*„_! + rn_! + (xn_x + 7-n_1)-("-1)"»)ni'".

Indeed, using xn + rn < 1 + (xn_i + rn^i)nVn and vn ^ 1, we deduce that, for each n ^ 3,

(*„_! + rn_! + (zB_i + rn_1)-<"-1>»»n»

n ^ (xB_i + rn_i)B1* + 3

7?xn + rn + 2>xn+rn + (xn + rn)-n""+'.

It follows that the sequences xi / ( n ! o 1 '"") , n = 1,2,..., (which is increasing) and
{xn + rn + (xn + rn)-n«»+i)i/(n!»,...«n)) n _ 2 ,3 , . . . , (which is decreasing) tend to cer-
tain limits, say, a and 7, respectively, as n tends to infinity. Obviously, a ^ 7, so

xn + rn < a""1"*- ^ 7""1-"" < xn + rn + (xn + r n ) - " - + l

for each n ^ 2. Note that, since the right hand side is at most xn + rn + 1 , we have a = 7
(although we shall not need it). It is clear that a > 1.

Next, we shall prove that the number a is transcendental. Let / be the infinite set
of indices n for which rn = 0. Denote Vn := n\vi ...vn. We have xn < aVn < xn + x~nv'+l

^ xn + x~n ^ xn + 1. Fix p e (l,a). Then aVn - 1 > Pv" for each sufficiently large
n. Hence ||aVn|| < x~n < (aVn - l ) " n < P~nVn for each sufficiently large n e I. By
Theorem 2, either a is a transcendental number or am € N for some m 6 N. However, if
am is an integer, then av" must be an integer too for every n^ m, because Vn = n\v\ ...vn

is divisible by m. This is, however, not the case, because aVn G (xn ,xn + 1) for n ^ 2.
Consequently, a is a transcendental number. D

3. PROOFS OF THEOREMS 1 AND 3

P R O O F OF THEOREM 1: Let us apply the lemma for v^ = v^ = i>3 = • • • = 1.
The lemma implies that a := lim Xn is a transcendental number greater than 1 and

n—>oo

xn + rn< an! < xn + rn + x~n for n ^ 2.
Fix y € (0,1). In order to prove that y is a limit point of the sequence {a"1}™.,

it is sufficient to show that, for any positive number e satisfying e < 1 — y, there is an
n 6 N such that {an !} G (y, y + e). Indeed, the interval (y,y + s/2) contains infinitely
many rn's. Let / be the set of corresponding n's. We claim that {an!} 6 (j/,2/ + e) for all
sufficiently large n e / . For this, it is sufficient to show that

, + y < ani < xn + y + e.
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Indeed, adding two inequalities y < rn and xn + rn < an!, we immediately get the first
inequality xn+y < ctn<- The second inequality, namely, an! < xn+y+e would follow from
the inequalities rn < y + e/2 (which holds by the definition of I) and an! < xn + rn + e/2.
From an! < xn + rn + x~n, we see that the required inequality holds if x" > 2/e. This is
indeed the the case, because xn > an! — rn — 1, so xn -> oo as n —• oo. Finally, since the
sequence {an!}*=1 is everywhere dense in (0,1), it is everywhere dense in [0,1]. D

PROOF OF THEOREM 3: This time, we shall apply the lemma with ri = r2 = r3 =
• • • = 0 and with un = nvn. Here, vn, n = 1,2,..., are some positive integers to be chosen
later. Then the lemma implies that a := lim ai/(n!"i"-«") is a transcendental number and

nK»

Fix any 0 e (l.ct)- For each n large enough, say n ^ nu we have xn > a"'"1"* - 1
> ^ " l - " " . Hence login > n\vi... unlog/?. The inequality {a^} < 6N holds for every
number N = nlvi.. .vn provided that x~nVn+l < 6N, that is, nvn+\ logarn > \og{\/8N).
So we can simply put Vi = • • • = vm = 1 and, for each n ^ n\, take any positive integer
vn+i greater than log(l/(JniUl...Un)/(n!ui.. .t;nnlogy9), which is always possible. D

In particular, let us consider the sequence x\ := 1 and xn+1 := x\ + 1 for each
n ^ 1. As above, the sequence Xn , n = 1,2,..., is increasing, whereas the sequence
(xn + l/(2xn)) , n = 1,2,..., is decreasing. They both thus tend to the same limit £.
Since the inequality

holds for all sufficiently large n, the theorem of Corvaja and Zannier [4] implies that
either the number f is transcendental or there is an m e N such that fm is a Pisot
number. The second possibility seems very unlikely. We thus conclude this section with
the following transcendence type problem: prove that the number £ is transcendental.

4. PROOF OF THEOREM 4

Without loss of generality we may assume that rn € [0,1) for each n ^ 1. Also, we
can assume that 5n < 1/2, so qn+i — qn ^ 4. Since

the sequence (j/n)£Li is non-decreasing. Also, y«" - rn is an integer, so that {y«n} = rn

for every n € N.

From fy^-il < yn
n-i + 1 and rn < 1, we have
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Hence yn-yn-\ < 2/{qny^). Addingn such inequalities (for yn-yn-i, for yn_i - y n - 2 ,
..., for 2/1 - y0) and using j/j ^ y0 for j = 1,2, . . . ,n - 1, we obtain that yn - y0 is
bounded from above by 2/(qiy^l~2(y0 — 1)), so the limit a := lim yn exists. Obviously,

n—*oo

it is greater than or equal to y0 ^ 2.
Next, we shall estimate the quotient (y/t+i/y*)17" for k ^ n. Since qn/<lk+i < 1 and

yk ^ 2, we have

< 1 + 2/yq
k
k+1

It follows that, for every fixed n € N,

Jb=n fc=n

oo
In order to estimate the product \\ ( 1+ T*). where r* := yk '*+ , we shall first bound it

Jfc=n
/ oo \ oo

as exp I J2 Tk I and then use the inequality exp(r) < 1 + 2r, because the sum r = X) r*
\lt=n / *=n

turns out to be bounded by 1. Indeed, using the inequality yk~£ yn^ 2, we obtain that

"" Vnn+l~2(y — l ) """

(which is at most 1), hence (a/j/n)?» < 1 + 2/j/«»+'-2 < 1 + l/y^1'3. Therefore 0 <
a«»-y»" < l/j/«"+1-«--3 < i/29»+'-«»-3. Using {?/*•} = rn , we conclude that | | a«»-r n | | <
2-?-.+i+9n+3 for e a c}j n g pj ^jjg r jg^t j j j ^ j gjjg of t n i g i n eqU ai i ty does not exceed 5n

provided that qn+i ^ qn + Iog2(l/<5n) + 3. This completes the proof of Theorem 4.

If the sequence (<zn)S?Li is n o t growing very fast, then the arithmetical nature of the
limit obtained by this kind of iterations seems to be quite mysterious even in the simplest
case ri = r2 = r3 = • • • = 0 and qn = n. For instance, let us start with j/i 6 (1, \ /2], and
consider the sequence (yn)%Li obtained by the following iterations

for n > 2. Then y2 = 21'2,y3 = 3 1 ' 3 , y4 = 5l/4,y5 = S 1 / 5 , ^ = 1 3 1 / 6 , . . . . By the same
argument as above, the limit £ := lim yn exists: prove that ( u a transcendental number.

n-»oo
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