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Abstract

Background. Emerging functional imaging studies suggest that schizophrenia is associated
with aberrant spatiotemporal interaction which may result in aberrant global and local
dynamic properties.
Methods. We investigated the dynamic functional connectivity (FC) by using instantaneous
phase method based on Hilbert transform to detect abnormal spatiotemporal interaction in
schizophrenia. Based on resting-state functional magnetic resonance imaging, two independ-
ent datasets were included, with 114 subjects from COBRE [51 schizophrenia patients (SZ)
and 63 healthy controls (HCs)] and 96 from OpenfMRI (36 SZ and 60 HCs). Phase
differences and instantaneous coupling matrices were firstly calculated at all time points by
extracting instantaneous parameters. Global [global synchrony and intertemporal closeness
(ITC)] and local dynamic features [strength of FC (sFC) and variability of FC (vFC)] were
compared between two groups. Support vector machine (SVM) was used to estimate the
ability to discriminate two groups by using all aberrant features.
Results. We found SZ had lower global synchrony and ITC than HCs on both datasets.
Furthermore, SZ had a significant decrease in sFC but an increase in vFC, which were mainly
located at prefrontal cortex, anterior cingulate cortex, temporal cortex and visual cortex or
temporal cortex and hippocampus, forming significant dynamic subnetworks. SVM analysis
revealed a high degree of balanced accuracy (85.75%) on the basis of all aberrant dynamic
features.
Conclusions. SZ has worse overall spatiotemporal stability and extensive FC subnetwork
lesions compared to HCs, which to some extent elucidates the pathophysiological mechanism
of schizophrenia, providing insight into time-variation properties of patients with other men-
tal illnesses.

Introduction

Although researchers are still far from understanding the underlying cause of schizophrenia,
increasing researches on brain imaging consistently suggest that schizophrenia is a disease
closely associated with alterations of brain structure and function (Fitzsimmons, Kubicki, &
Shenton, 2013; Friston, Brown, Siemerkus, & Stephan, 2016; Skudlarski et al., 2010). During
the last two decades, a hypothesis of functional disconnectivity for schizophrenia has attracted
intense attention (Friston, 1998; Friston & Frith, 1995). Researches have revealed abnormalities
of functional connectivity (FC) between brain regions or functional integration across brain
networks in schizophrenia (Baker et al., 2014; Calhoun, Eichele, & Pearlson, 2009; Du et al.,
2015; Lynall et al., 2010; Repovs, Csernansky, & Barch, 2011; Rotarska-Jagiela et al., 2010).
However, most of these studies plausibly assume that inter-regional interactions are temporally
stationary, and the brain FC is estimated by computing an average of the full-time series and
generate a static value to reflect the connection strength (Fornito, Zalesky, Pantelis, &
Bullmore, 2012; van den Heuvel & Fornito, 2014).

In recent years, there has been much interest in computing time-resolved connectivity
measures and successful applications in identifying biomarkers from dynamic connectivity
for mental disorders (Allen et al., 2014; Calhoun, Miller, Pearlson, & Adalı, 2014; Zalesky,
Fornito, Cocchi, Gollo, & Breakspear, 2014). In such analysis, brain FC can vary within a
short period rather than be considered as static over time. Such results tend to further expand
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the available information, and avoid the strong assumption that
brain activity is static over time. Importantly, the brain dynamic
functional architecture has been closely related with a wide
range of cognitive and affective processes such as learning
(Bassett et al., 2011), executive cognition (Braun et al., 2015), psy-
chological resilience (Long et al., 2019), and emotion (Betzel,
Satterthwaite, Gold, & Bassett, 2017), as well as multiple common
psychiatric and neurological disorders such as schizophrenia
(Long et al., 2020b), autism (Harlalka, Bapi, Vinod, & Roy,
2019), Alzheimer’s disease (Schumacher et al., 2019), and major
depressive disorder (MDD) (Long et al., 2020a; Wise et al.,
2017).

There are numerous methodologies used to estimate dynamic
functional connectivity (dFC). Among them, the sliding-window
technique is the most widely used approach (Hindriks et al., 2016;
Sakoğlu et al., 2010; Shakil, Lee, & Keilholz, 2016). For functional
magnetic resonance imaging (fMRI), by assessing FC in different
time-windows, one can easily expand existing static connectivity
strategies to be time-resolved, and the dFC can be evaluated by
measuring FC among regions of interest (ROIs) or voxels in a
sliding-window yielding multiple connectivity matrices.
Furthermore, the idea of dynamic connectivity based on the
segmentation of windows has already been practiced for a while
in the electroencephalogram (EEG) community. For instance,
Lehmann used a spatial approach of adaptively segmenting EEG
map series into time segments of variable length and stationary
spatial characteristics to investigate the functional states of brains
in detail (Lehmann, Ozaki, & Pal, 1987). Moreover, Khanna et al.
also summarized a method of EEG microstate analysis which has
been applied suitably to study resting-state EEG and assess global
functional states of the brain in health and disease in their review
(Khanna, Pascual-Leone, Michel, & Farzan, 2015). Although these
approaches have been extensively applied to estimate the dFC, a
considerable controversy has arisen over its lacking standards
for setting the window length. If the window length is too
short, the time points in each window could be too few to gener-
ate a robust estimation of connectivity strengths. In contrast, long
window length might decrease the temporal variations of FC, con-
sequently hindering from effectively detecting connectivity states
(Du et al., 2018b).

Several windowless methods have been proposed to avoid the
problem in selecting the window length. Bayesian approach
(Robinson, Atlas, & Wager, 2015; Taghia et al., 2017) has been
employed to investigate dynamic connectivity, which regards
extracting time-varying functional networks as selecting dynamic
models in the Bayesian setting. Variable parameter regression
model combined with the Kalman filtering method is used to
detect the dynamic interactions between different functional net-
works at all time points (Kang et al., 2011). The recently proposed
time-frequency analysis (Yaesoubi, Allen, Miller, & Calhoun,
2015) explored the connectivity by using multiple frequencies,
which can be conceptually seen as adapting the observation win-
dow to the frequency content of the original time courses.

In this paper, the instantaneous phase method based on
Hilbert transform is used to investigate the aberrant global and
local dynamic properties in schizophrenia. In the communication
system, using Hilbert transform to describe the envelope of amp-
litude modulation, phase modulation, instantaneous frequency,
and instantaneous phase of the signal will make the signal analysis
easier and more effective. Moreover, instantaneous phase syn-
chronization of resting-state fMRI based on Hilbert transform, a
windowless method with a simple calculation, can be used as a

measure for the dFC (Glerean, Salmi, Lahnakoski, Jääskeläinen,
& Sams, 2012) and is successfully used to reveal altered variability
of FC (vFC) among patients with MDD (Demirtaş et al., 2016).
The aims of this research are as follows: (1) explore the overall
spatiotemporal stability in schizophrenia patients (SZ) from the
perspective of the whole-brain; (2) locate specific subnetworks
or brain regions with aberrant dFC; (3) evaluate the ability of glo-
bal and local dynamic features to differentiate SZ from healthy
individuals.

Materials and methods

Participants

This study consists of two independent datasets. Dataset 1 comes
from a publicly available dataset (the Center for Biomedical
Research Excellence, COBRE), including 72 SZ diagnosed by
the Diagnostic and Statistical Manual of Mental Disorders
(Fourth Edition) (DSM-IV) and 75 healthy controls (HCs).
Dataset 2 comes from OpenfMRI (UCLA Consortium for
Neuropsychiatric Phenomics LA5c Study), in which a total of
50 SZ and 75 HCs were initially recruited by community adver-
tisements from the Los Angeles area and completed extensive
neuropsychological testing. The detailed inclusion and exclusion
criteria of both datasets were described in online Supplementary
material.

Data acquisition and preprocessing

Dataset 1 (COBRE dataset) was acquired with a 3-Tesla Siemens
Trio scanner (Siemens, Germany) (5 min). All resting-state fMRI
data were collected using a single-shot full k-space echo-planar
imaging with ramp sampling correction (TR/TE = 2000/29 ms;
flip angle = 75 degree; matrix = 64 × 64; slice number = 33; voxel
size = 3 × 3 × 4 mm3). Of note, the head motion can introduce
substantial alters in the time courses of resting-state fMRI data
(Van Dijk, Sabuncu, & Buckner, 2012; Yan et al., 2013; Zeng
et al., 2014); therefore, in addition to the head motion correction
via Friston 24-parameter model (Friston, Williams, Howard,
Frackowiak, & Turner, 1996), totally 20 SZ and 12 HCs were fur-
ther discarded with a significant head motion from the dataset
[excluding criteria: displacement >2 mm, rotation >2 degree, or
mean frame-wise displacement (mFD) > 0.5 mm] (Power,
Barnes, Snyder, Schlaggar, & Petersen, 2012), and one SZ was
excluded from the analysis due to the wrong scanning time points.
A total of 114 subjects were finally included (51 SZ and 63 HCs).

Dataset 2 (OpenfMRI dataset) was acquired on one of two 3 T
Siemens Trio scanners (304 s). The scan parameters associated
with resting-state fMRI are as follows: TR/TE = 2000/30 ms; flip
angle = 90 degree; FOV = 192 mm; matrix = 64 × 64; slice thick-
ness = 4 mm; slice number = 34, oblique slice orientation. Using
the same head motion excluding criteria as dataset 1 (14 SZ
and 15 HCs were excluded), totally 96 subjects were included in
the final analysis (36 SZ and 60 HCs). There was no significant
difference between the two groups regarding gender, age, and
handedness for two datasets. The detailed demographics of data-
sets were list in Table 1.

The Data Processing Assistant for Resting-State fMRI toolbox
(DPARSF, http://rfmri.org/dpabi) was used to carry out data pre-
processing (Yan, Wang, Zuo, & Zang, 2016), which included the
removal of first 10 volumes, slice timing correction, head motion
correction, normalized to Montreal Neurological Institute (MNI)
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space and further resampled to 3 × 3 × 3mm3, spatially smoothed by
convolution with an isotropic Gaussian kernel (FWHM= 4mm),
linear detrending, nuisance signal regression (including Friston
24 head motion parameters, white matter, and cerebrospinal
fluid signals), and bandpass filtering. The bandpass range was
selected as 0.04–0.07 Hz, which could reduce the influence of low-
frequency drift and high-frequency noise and make Hilbert trans-
form play a better performance (see online Supplementary mater-
ial for the detailed study of bandpass). Next, the brain was divided
into 90 ROIs by using the Automated Anatomical Labeling atlas
(Tzourio-Mazoyer et al., 2002), thus the average BOLD signal in
each brain region was obtained respectively.

Dynamic functional connectivity construction

The instantaneous phase method based on Hilbert transform was
used to assess the dFC in this study, which allowed us to define
and extract dynamic connectivity coefficient at each time point.
The Hilbert transform, S(t) = Acos((w(t))) of the preprocessed
BOLD signals broke the signal down to an analytical signal S(t)
with an instantaneous phase w(t) and amplitude A, where t indi-
cates the time point. Phase differences Δwij(t) at each time point
were then calculated between ROI i and ROI j (1⩽ i, j⩽ 90). The
following formula was used to adjust the phase difference between
0 and π:

Dwij(t ) =
|wi(t)− wj(t)| , if 0 ≤ |wi(t)− wj(t)|, p

2p− |wi(t)− wj(t)| , if p ≤ |wi(t)− wj(t)|, 2p

{

Then, instantaneous coupling matrices (ICMs) C(t) were con-
structed using the phase difference normalized between 0 and 1:

Cij(t) = 1− Dwij(t) / p, 1 ≤ i, j ≤ 90, t = 1–140

The closer Δwij(t) is to π (approximately perfect anti-
synchronization), the closer the value of Cij(t) is to 0, whereas
the closer the value of Cij(t) is to 1, the closer Δwij(t) is to 0
(approximately perfect synchronization). Thereby, the 90 × 90
matrix C(t) could be used to denote the dynamic correlation coef-
ficient at time point t for each subject.

Global dynamic features

Global synchrony
ICMs were binarized subsequently for each subject. When the dif-
ference between instantaneous phases of BOLD signals is small,
signals can be considered highly synchronized at that time
point. Therefore, a series of different thresholds were compared
for the criterion of high phase synchronization. Finally, π/8 was

chosen as the threshold to obtain the binarized matrix Cb
ij(t),

where i and j are indexes of each ROI (1⩽ i, j⩽ 90), and t indi-
cates time points. The percentage of non-zero connections at
each binary matrix ICM Cb

ij(t) was then defined as global
synchrony G(t), and average global synchrony (G(t)) was finally
computed for each subject when considering all scanning time
points. In our study, the method of instantaneous phase syn-
chrony between brain regions measured the phase similarity or
synchronization between the BOLD time series signals of two
brain regions (see online Supplementary material for more
details).

Intertemporal closeness
In order to quantify the temporal state stability of the whole-brain
dFC, the measure of intertemporal closeness (ITC) was defined.
The Pearson’s correlation coefficient was used to measure the
similarity between ICMs at different time points. A mean matrix
of all ICMs was firstly obtained (denoted as av-FC), then we got
140 coefficients between av-FC and ICMs of each time point,
respectively. Finally, 140 values were averaged to obtain a refer-
ence for each subject. Therefore, we defined ITC as the proportion
of observing greater similarity between ICMs than the reference
value of each subject. The larger the value of this proportion,
the higher the overall similarity between ICMs at different time
points. Moreover, due to the high correlation between neighbor-
ing ICMs (online Supplementary Figs S1 and S2), ITC with differ-
ent time-lags (1–20 s) was also considered to eliminate the effect
of adjacent time points. In order to illuminate this situation more
clearly, the ITC level of 0.05 was taken as an example to charac-
terize the time-lags differences between two groups in our study.
Finally, ITC without time-lag and ITC with the given time-lags
were extracted, respectively. ITC considers the similarity between
each temporal state characterized by ICMs. In such a way, lower
ITC indicates that the fluctuations in temporal states of subject’s
whole-brain dFC are higher (the dFC of whole-brain over time is
less stable), while higher ITC indicates that the dFC of whole-
brain is more stable over time (see online Supplementary material
for more details about the definition of ITC).

Local dynamic features

Strength and variability of functional connectivity
We further investigated the local alterations of the whole-brain
dFC. The strength of FC (sFC) between any pair of brain regions
was defined by averaging the ICM at all time points, in other
words, the sFC was defined as the mean matrix of ICMs at all
time points.

The vFC was defined to describe the dispersion degree or fluc-
tuation of the dFC (i.e. sample variance/sample mean) at all time

Table 1. Subject demographics

Characteristics

COBRE OpenfMRI

Patients (n = 51) HC (n = 63) p value Patients (n = 36) HC (n = 60) p value

Gender (M/F) 40/11 42/21 0.2379 28/8 36/24 0.1175

Age 38.14 ± 13.79 36.32 ± 12.10 0.4548 37.19 ± 9.32 33.70 ± 9.01 0.0726

Handedness (L/R/A) 5/44/2 1/60/2 0.1417 – – –

Note: For MRI studies, subjects with left-handedness were excluded from the OpenfMRI dataset. M, denotes male; F, denotes female; L, denotes left-handedness; R, denotes right-handedness;
and A, denotes ambidextrous.
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points between any pair of brain regions. Similarly, the 90 × 90
matrix of the vFC could be obtained for each subject (see online
Supplementary material for the relevant mathematical formulas
about the definition of sFC and vFC).

Primary analysis
The statistical analyses included in this study are as follows: (1)
For global features (G(t) and ITC), the non-parametric permuta-
tion test was performed to test significant differences between SZ
and HCs (10 000 permutations, p < 0.05). (2) For local features
(sFC and vFC), the Network-Based Statistics (NBS) method
(Zalesky, Fornito, & Bullmore, 2010) was performed to explore
subnetworks with significant differences between SZ and HCs.
In this context, a component in connected graph (i.e. a subnet-
work) was a set of supra-threshold connections for which a
path could be found between any two nodes. All connected com-
ponents could be efficiently identified with a breadth or depth
search. For each pair, a non-parametric permutation test was
performed 5000 times. The corrected p value for the connected
subnetwork was established as p < 0.05, and the significant
dynamic subnetworks were visualized through BrainNet toolbox
(http://www.nitrc.org/projects/bnv/) (Xia, Wang, & He, 2013).
(3) In order to further estimate the classification ability of global
and local features extracted by our instantaneous phase method
between two groups (SZ v. HC), the support vector machine
(SVM) analysis was used in our study as an auxiliary analysis
(please see online Supplementary material for more details
about the SVM modeling).

Repeatability and robustness analysis

To further validate the robustness of the instantaneous phase
method in our study, the statistical analysis processes in two data-
sets were implemented identically. Initial analysis was performed
using the COBRE dataset as a discovery dataset, then analysis was
repeated in the OpenfMRI dataset as a replication dataset.
Moreover, we compared the existing results with the results
obtained by the sliding-window approach frequently applied in
prior functional dynamics studies. The analysis flow chart of
this study was shown in Fig. 1.

Results

Global dynamic features

Two global dynamic features were defined to explore and quantify
the overall spatiotemporal stability of the dFC. We firstly com-
pared the distributions of average global synchrony between SZ
and HC using the Kolmogorov–Smirnov distance between cumu-
lative distribution functions. However, no significant difference
was found in the cumulative distribution function of average
global synchrony between two groups (Kolmogorov–Smirnov
test, D = 0.20635, p = 0.153, Fig. 2a). Then we compared the aver-
age global synchrony between two groups, as shown in Fig. 2b, the
SZ group showed a significantly lower mean of average global
synchrony than did the HC group ( p = 0.0107, permutation test).

Subsequently, ITC was defined to quantify the stability of the
dFC over time. As shown in Fig. 2d, the SZ group showed a sig-
nificantly lower mean of ITC than did the HC group ( p = 0.0294,
permutation test). On the other hand, in the SZ group, the ITC
value fell below the level of 0.05 at a lag of approximately
4.9588 s, while for the HC group, the time lag was approximately

5.5196 s (Fig. 2c). And significant differences were also found in
the mean of time-lag between two groups ( p = 0.0219, permuta-
tion test). Furthermore, ITC in the SZ group was always lower
than the HC group under the same time-lags condition, suggest-
ing the greater stability of the dFC in the HC group.

Local dynamic features

The NBS method was used to investigate the local alterations in
the whole-brain dFC. Compared to the HC group, the SZ group
showed significantly decreased sFC and increased vFC widespread
across the brain dynamic subnetworks (Fig. 2e, f, Table 2), sug-
gesting that the dFC of SZ is characterized by an abnormal pattern
of decreased strength and increased variability (5000 permuta-
tions). In addition, more than 80% of regions in significant sub-
networks of sFC and vFC were consistently located at the anterior
cingulate cortex (ACC), temporal cortex (including the temporal
pole), frontal cortex, fusiform gyrus, cuneus and the supplemen-
tary motor area (SMA), suggesting that for SZ, decreased strength
and increased variability of the dynamic FC occur in similar brain
regions.

SVM classification

In order to meticulously estimate the classification ability of glo-
bal and local dynamic features between SZ and HCs, SVM with
different types of dynamic features at global and local levels was
constructed. Under the condition of narrow filter range (0.04–
0.07 Hz), SVM models revealed 85.75% of balanced accuracy
(Brodersen, Ong, Stephan, & Buhmann, 2010) when classifying
SZ and HC by using all aberrant global and local dynamic fea-
tures. The relatively lower degree of balanced accuracy (79.75%)
when only using aberrant local features (sFC and vFC) was pre-
sented as input (see online Supplementary Table S2). The other
SVM results were presented in online Supplementary material.

Repeatability and robustness analysis

For the replication dataset, significant differences were found in
the cumulative distribution function of average global synchrony
between two groups (Kolmogorov–Smirnov test, D = 0.32779,
p = 0.0125, Fig. 3a). Furthermore, the SZ group also showed a sig-
nificantly lower mean of average global synchrony than did the
HC group ( p = 0.0005, permutation test, Fig. 3b). Subsequently,
SZ group showed a significantly lower mean of ITC than did
HC group (permutation test, p = 0.0016, Fig. 3d). In SZ group,
the ITC value fell below the level of 0.05 at a lag of approximately
5.1284 s, while for HCs, the time lag was approximately 5.4791 s
(Fig. 3c). Furthermore, although significant differences were
not found in the mean of time-lag between the two groups
( p = 0.1655, permutation test), ITC in SZ group was always
lower than the HC group under the same time-lags condition.
Therefore, we still suggested that the overall spatiotemporal stabil-
ity of SZ group was lower than that of HC group, which was con-
sistent with the discovery dataset. Therefore, it should be
considered that two independent datasets consistently showed
an abnormal pattern with less stable dynamic functional architec-
ture in SZ at the global level.

Subsequently, the NBS analysis on the dFC consistently found
significantly decreased sFC and increased vFC in SZ group
(Fig. 3e, f, online Supplementary Table S1). Specifically, more
than 55% of regions in significant subnetworks of sFC and vFC
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were consistently located at the hippocampus, parahippocampal
gyrus, temporal cortex (including the temporal pole) and the
rolandic operculum, while alterations of the prefrontal cortex

and ACC were only found in sFC and vFC, respectively. In con-
clusion, although specific regions with significant differences (sFC
and vFC) were different in the replication sample from those in

Fig. 1. The dynamic analysis flow chart of this study. We performed Hilbert transform on original blood oxygen level-dependent (BOLD) signals and obtained
instantaneous phases after narrow band filtering. Instantaneous phase differences between all brain regions were obtained, and the value of differences was finally
normalized between 0 and 1. The instantaneous coupling matrix (ICM) was defined to extract global dynamic features (average global synchrony and intertemporal
closeness) and local dynamic features [strength of FC (sFC) and variability of FC (vFC)] of all subjects. These features were finally used for support vector machine
(SVM) classification.
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Fig. 2. The results of the global and local dynamic properties in the COBRE dataset. (a) The comparison of cumulative distribution function between schizophrenia
patients (SZ) and healthy controls (HC) (Kolmogorov–Smirnov test: p = 0.153); (b) comparison of mean of average global synchrony (10 000 permutations,
p = 0.0107); (c) intertemporal closeness (ITC) with different time-lags in two groups (excluding nearby τ time points, 1–20 s), ITC value below the level of 0.05
was about 5.5196 s for HC group, and about 4.9588 s for SZ group; (d ) comparison of mean ITC without time-lag (10 000 permutations, p = 0.0294); (e, f ): dynamic
brain networks analysis of significantly decreased connections in the strength of functional connectivity (sFC) and significantly increased connections in the vari-
ability of functional connectivity (vFC) (SZ v. HC). The results are based on NBS using 5000 permutations, p value < 0.05 and maximum component threshold t > 4.0
(sFC) and t > 3.4 (vFC).
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the discovery sample, the abnormal pattern of the dFC with
decreased strength and increased variability was consistent across
two datasets.

To test the robustness of the results, we further used the
sliding-window approach to repeat the analysis of the dFC.
Consistently, the sFC was significantly decreased in the SZ
group compared to the HC group, although the alterations of
vFC were not found possibly due to the low temporal resolution
and analytical sensitivity of this approach (see online
Supplemental material and Fig. S4, Table S3 for more details
about the results derived from the sliding-window approach).

Discussion

In this study, the instantaneous phase method based on Hilbert
transform was used to investigate the overall spatiotemporal
stability and local alteration of the brain dynamic functional
architecture in SZ. The instantaneous phases of BOLD signals
were extracted and an ICM was provided for each time point,
thus dynamic interactions at global and local levels were finally
investigated. Our results firstly demonstrated decreased global
synchrony and temporal stability in SZ at the global level; sec-
ondly, we further found that the abnormal pattern of local altera-
tions in the dFC was characterized by significantly decreased
strength and increased variability; thirdly, our replication dataset
reinforced the robustness of the findings, which also showed
decreased global synchrony and less stable dFC at the global
level, along with the decreased strength and increased variability
of dFC at the local level in SZ; finally, machine learning models
as auxiliary analysis revealed a high degree of accuracy when

classifying SZ and HC by using all dynamic features (average glo-
bal synchrony and ITC at global levels, significantly decreased
strength and increased variability at local levels) as classification
features. Our study extended the disconnectivity investigation in
schizophrenia from static to dynamic functional architecture,
which may help to unravel the pathophysiologic mechanisms of
this severe mental disorder.

The dynamic properties were investigated in schizophrenia by
using the instantaneous phase method, which could adequately
consider the fluctuation or vFC over time. This method has
advantages of high temporal resolution, simple calculation, and
less time consumption. The dynamic analysis procedures in this
approach allow us to explore global and local properties of brains
in SZ, which are far different from the mainstream method such
as graph theory analysis (Du et al., 2016; Sun, Collinson, Suckling,
& Sim, 2019) and provide new insights into the aberrant dynamic
interaction in schizophrenia. Although the sliding-window
approach also detected the aberrant sFC to some extent in this
study, no aberrant subnetwork in vFC was found possibly due
to its low temporal resolution, which may support the advantages
of the instantaneous phase method on the exploration of the
dynamic functional architecture of the brain.

For global features, the average instantaneous phase difference
between BOLD signals was greater in SZ, and the overall phase
coupling was lower, indicating the lower global synchrony in SZ
during the scanning. Similarly, the ITC was significantly lower
in SZ, indicating worse state stability or more fluctuations of
the dFC over time, which was consistent with the results of Sun
in the global properties (higher temporal global efficiency repre-
sents more fluctuations of dynamic brain network backbone in

Table 2. Local alteration of brain networks for COBRE dataset (schizophrenia patients v. healthy controls)

Strength of functional connectivity (sFC) Variability of functional connectivity (vFC)

Connections T-statistic p value Connections T-statistic p value

SMA.R–DCG.L −4.38 2.63 × 10−5 ORBinf.L–DCG.R 3.94 1.40 × 10−4

SMA.R–DCG.R −4.06 8.96 × 10−5 ORBinf.R–DCG.L 3.46 7.59 × 10−4

IFGoperc.L–FFG.L −4.06 9.18 × 10−5 ORBinf.R–DCG.R 4.02 1.04 × 10−4

MOG.L–FFG.L −4.05 9.59 × 10−5 ROL.L–TPOmid.R 3.50 6.64 × 10−4

IFGoperc.L–IPL.L −4.03 1.01 × 10−4 SMA.R–DCG.L 4.01 1.13 × 10−4

DCG.R–STG.L −4.12 7.30 × 10−5 SMA.R–DCG.R 4.04 9.82 × 10−5

DCG.L–STG.R −4.35 3.08 × 10−5 SMA.R–CUN.L 3.57 5.20 × 10−4

DCG.R–STG.R −4.74 6.41 × 10−5 ORBsupmed.L–IPL.L 3.97 1.28 × 10−4

DCG.L–TPOsup.L −4.18 5.79 × 10−5 ORBsupmed.R–IPL.L 3.68 3.55 × 10−4

DCG.L–MTG.R −4.10 7.90 × 10−5 DCG.L–TPOsup.L 3.80 2.32 × 10−4

DCG.L–ITG.R −4.04 9.83 × 10−5 DCG.R–STG.R 3.47 7.38 × 10−4

CUN.L–FFG.R −4.38 2.72 × 10−5 DCG.R–TPOsup.L 3.45 8.01 × 10−4

CUN.R–FFG.R −4.56 1.32 × 10−5 CUN.L–FFG.R 3.64 4.12 × 10−4

LING.R–FFG.R −4.15 6.44 × 10−5 CUN.R–FFG.R 4.10 7.73 × 10−5

LING.R–TPOmid.R 3.43 8.51 × 10−4

IOG.L–TPOmid.R 3.85 1.96 × 10−4

IPL.L–TPOsup.L 3.47 7.45 × 10−4

STG.R–TPOmid.R 3.88 1.77 × 10−4

Note: L, denotes the left cerebral hemisphere; R, denotes the right cerebral hemisphere.
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Fig. 3. The results of the global and local dynamic properties in the OpenfMRI dataset. (a) The comparison of cumulative distribution function between schizo-
phrenia patients (SZ) and healthy controls (HC) (Kolmogorov–Smirnov test: p = 0.0125); (b) comparison of mean of average global synchrony (10 000 permutations,
p = 0.0005); (c) intertemporal closeness (ITC) with different time-lags in two groups (excluding nearby τ time points, 1–20 s), ITC value below the level of 0.05 was
about 5.4791 s for HC group, and about 5.1284 s for SZ group; (d ) comparison of mean ITC without time-lag (10 000 permutations, p = 0.0016); (e, f ): dynamic brain
networks analysis of significantly decreased connections in the strength of functional connectivity (sFC) and significantly increased connections in the variability of
functional connectivity (vFC) (SZ v. HC). The results are based on NBS using 5000 permutations, p value < 0.05 and maximum component threshold t > 3.55 (sFC)
and t > 3.3 (vFC).
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schizophrenia) (Sun et al., 2019). Moreover, in the case of ITC
with different time-lags, SZ was always lower than HCs under
the same condition. Therefore, our study based on two independ-
ent datasets suggests that the overall spatiotemporal stability in
schizophrenia is significantly decreased.

It is noteworthy that the indicator of global synchrony in our
study only considered the phase similarity (synchronization), but
not the case of inverse coupling (anti-synchronization), which
may lead to the indicator’s insensitivity to the synchronization
property of inverse coupling. It is also worth mentioning that,
in comparison with inter-regional high phase synchrony method
used in the current study, although the common cross-site phase
coherence in the EEG measure (Reiser, Wascher, Rinkenauer, &
Arnau, 2020) that similarly uses time-point specific phase angle
data known as inter-site phase coherence (i.e. coherence analysis)
is very similar with the correlation analysis in principle, coherence
analysis can only define and detect the overall correlation between
two signals in the frequency domain instead of exploring any cor-
relations between two signals at different time points. It focuses
not on the specific phase angle of the oscillation at a specific
time point at each of the two locations, but rather on the phase
angle difference between the locations over time, which suggest
that the global synchrony used in our study may be more suitable
for exploring the overall spatiotemporal stability of dFC over time.

For local features, our findings repeatedly highlighted an
abnormal pattern of the dFC with decreased strength and
increased variability in SZ. What should be noted is that the
local alterations were mainly located at the prefrontal cortex,
ACC, temporal cortex, and the visual cortex, no matter what
the strength or variability of the connections. Similarly, the
OpenfMRI dataset showed that the abnormal pattern of the
dFC was consistent with the COBRE dataset, although the main
regions with disconnectivity were different. Meanwhile, the aber-
rant subnetwork of the sFC by using the sliding-window approach
was also identified and located at the ACC and temporal cortex.
Moreover, regions with disconnectivity found in SZ were largely
overlapped with the regional findings of Sun in
schizophrenia-related significant increment of temporal regional
efficiency (Sun et al., 2019). Interestingly, our finding was in
line with the meta-analyses of structural imaging studies in
schizophrenia, suggesting that the most robust gray matter
changes occurring in the frontal and temporal regions may paral-
lel with those with aberrant dynamic functional properties
(Ellison-Wright, Glahn, Laird, Thelen, & Bullmore, 2008;
Fornito, Yücel, Patti, Wood, & Pantelis, 2009). The lesions in
the prefrontal regions were prone to mental disorders, and inves-
tigations related to the prefrontal of the brain were not rare
(Duncan & Owen, 2000; Pucak, Levitt, Lund, & Lewis, 1996).
FFG was thought to be critical for face recognition, which may
be associated with impaired facial recognition and interpretation
of facial expression in schizophrenia. Researches showed that
schizophrenia was associated with bilateral reduction in FFG
gray matter volume (Lee et al., 2002), and neuroanatomic FFG
abnormalities underlie at least some of the deficits associated
with facial recognition (Onitsuka et al., 2003). Heuristically, the
disconnectivity associated with the ACC was predominantly
found in SZ, which suggested that this area may be a key region
in the functional characterization of schizophrenia. However, sig-
nificant abnormalities of the posterior cingulate were consistently
discovered in most brain function studies related to schizophrenia
(Fletcher, McKenna, Friston, Frith, & Dolan, 1999; Garrity et al.,
2007). Thus, while the interpretation of case-control differences in

resting-state fMRI may not always be straightforward (Fornito &
Bullmore, 2010), aberrant dynamic subnetworks identified in
frontal, temporal, cingulate, or hippocampus regions using our
method in this study were consistent with pathological alterations
reported in the literature.

Moreover, models including dynamic analytical approaches or
measures have demonstrated a sound relationship with the psy-
chopathology of schizophrenia. Results from Kottaram at the
resolution of whole-brain networks showed that the severity of
positive symptoms was associated with a longer proportion of
time spent in states characterized by inactive default mode and
executive networks (Kottaram et al., 2019). Dynamic connectivity
analysis of auditory hallucinations found that connection-wise
variability in SZ was reduced between the left auditory perception
and speech-production brain areas (Zhang et al., 2018). Dynamic
graph analysis indicated that reduced stability of lateral occipital
cortex connectivity may be an important factor underlying neuro-
cognitive dysfunctions and symptom severity in schizophrenia
(Li, Sweeney, & Hu, 2020). Meanwhile, the dFC also shows func-
tional specificities in participants considered to be at risk of devel-
oping schizophrenia (Barber, Lindquist, DeRosse, & Karlsgodt,
2018; Bolton et al., 2020; Briend, Armstrong, Kraguljac,
Keilhloz, & Lahti, 2020; Du et al., 2018a). For instance, using
innovation-driven coactivation patterns (iCAPs) for dynamic
large-scale brain network analysis, Zöller et al. uncovered the
patterns of brain network activation duration and coupling
that were relevant with clinical risk for psychosis in 22q11.2
deletion syndrome, demonstrating that longer durations and
couplings of iCAPs were associated with the severity of positive
psychotic symptoms and anxiety, thus reinforcing the case for
relationships between decreased dFC and schizophrenia (Zöller
et al., 2019).

Our investigation was subject to various limitations. Firstly,
due to the absence of more detailed clinical and demographic
information (many clinical variables were not available in the
public dataset), we were unable to further explore the relevance
between clinical or behavioral information and our findings in
global or local features in our study; however, such information
and the corresponding analysis would still be important to evalu-
ate the clinical utility of this approach in future studies. Secondly,
Hilbert transform is only applicable to relatively narrow bandpass
signals, and the narrower the bandwidth of the target signal, the
better does the Hilbert transform produces an analytic signal with
meaningful envelope and phase (Bedrosian, 1963); thus, the per-
formance will be relatively reduced for some non-narrow band-
pass signals. Finally, our research was subject to the short scan
duration (scanning time of two datasets are 300 and 304 s respect-
ively), which might be insufficient for the stabilization of the dFC
in the resting-state and bias the results. Therefore, subjects with
relatively longer scan duration could be investigated to improve
the reliability of the dFC in future experiments.

In conclusion, quantitative assessment of the dFC in terms of
the global and local perspectives, as performed in this study, pro-
vided new insights into which to better our understanding of the
anomalous pattern of brain function during resting-state in
schizophrenia. Our study showed that beyond a significant
decrease in the overall spatiotemporal stability, there were local
aberrations of strength and variability of the dFC in schizophre-
nia. Further investigation of the relationship between the aberrant
dFC networks and physiological signification may provide more
clinical value with which to deepen comprehension in the patho-
physiology of schizophrenia.
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