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Scientific literature provides the authoritative data source for most scientific fields. Numerous microscopy 

images rich in information, in particular, are contained within scientific publications. The retrieval of these 

imaging data currently requires a keyword search and labor-intensive human reading of individual articles. 

An efficient image retrieval tool would be significantly beneficial for researchers. 

  

Information retrieval [5] engines have been widely used for searching scientific articles with one or a few 

keywords. However, such tools are not accurate and efficient for image retrieval because images in 

scientific literature are not always well labeled by textual description. To this end, we propose a hybrid 

image retrieval tool to retrieve images from scientific literature. In the proposed system, we take advantage 

of recent progress in content-based image retrieval approaches [4, 8, 9, 10], which directly measure the 

similarity between images by encoding images into fix-length feature vectors. Specifically, the proposed 

image retrieval system uses both the content of images and textual information (extracted from the image 

or given from the user) for image retrieval. First, keywords provided by the user are fed into the Image 

Acquisition Module, which selects relevant articles from different journals and extracts candidate images 

to build the database. Then both the query and all the images in the collected database are fed into the 

Image Analysis Module, which encodes the content of images into feature vector and extracts important 

textual information from the images. Finally, we compute the distance between the query image and the 

images in the database with both visual information and texture information and retrieve the most similar 

ones. 

  

More details about the proposed image retrieval system are shown in Fig. 1. With the keyword provided 

by the user (e.g. “nano”), we apply the EXSCLAIM! [1, 2] Pipeline to search relevant scientific articles 

from journals (e.g. Nature, ACS family) and extract microscopy images (e.g. ~64k) as candidate images 

to build the database. Then we build the image analysis module with an off-the-shelf feature extractor [3, 

4] and a scale bar detector [6, 7]. The feature extractor encodes the content of the image into a 2048-d 

feature vector and the scale bar detector detects the scale bar information from each image. As shown in 

Fig. 2, we first sort the candidates with the visual distance (e.g. cosine distance between feature vectors) 

between images and then use the scale bar information to re-rank the candidates. 

  

As future work, caption information will be included in the hybrid image retrieval system, since authors 

tend to include essential description in the caption. For materials imaging data, retrieving images with 

only the content of the image is not sufficient to give confident results. Different materials may look 

visually similar in a certain scale. In this paper, we use scale bar information to eliminate the candidates 

that are measured in a different scale, but it could fail in case when scale bar information is not available 
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in the image. Thus, incorporating the information from the captions could provide extra information to 

improve the performance of the image retrieval system. 
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Figure 1. The pipeline of the proposed image retrieval system. 
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Figure 2. An example of the image retrieval system. “vd” and “s” denotes the visual distance and scale 

bar label, respectively. 
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