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In this paper, we prove the uniqueness of ground states to the following fractional
nonlinear elliptic equation with harmonic potential,

(−Δ)su +
(
ω + |x|2) u = |u|p−2u in R

n,

where n � 1, 0 < s < 1, ω > −λ1,s, 2 < p < 2n/(n − 2s)+, λ1,s > 0 is the lowest
eigenvalue of (−Δ)s + |x|2. The fractional Laplacian (−Δ)s is characterized as
F((−Δ)su)(ξ) = |ξ|2sF(u)(ξ) for ξ ∈ R

n, where F denotes the Fourier transform.
This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ.
21 (2021), 671–697.] concerning the uniqueness of ground states.
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1. Introduction

In this paper, we study the uniqueness of ground states to the following fractional
nonlinear elliptic equation with harmonic potential,

(−Δ)su+
(
ω + |x|2)u = |u|p−2u in R

n, (1.1)

where n � 1, 0 < s < 1, ω > −λ1,s, 2 < p < 2∗s := 2n/(n− 2s)+ and λ1,s > 0 is the
lowest eigenvalue of (−Δ)s + |x|2, which is defined by

λ1,s := inf
u∈Σs

{〈(
(−Δ)s + |x|2)u, u〉 : ‖u‖2 = 1

}
, Σs := Hs(Rn) ∩ L2(Rn; |x|2 dx).

(1.2)
The fractional Laplacian (−Δ)s is characterized as F((−Δ)su)(ξ) = |ξ|2sF(u)(ξ)
for ξ ∈ R

n, where F denotes the Fourier transform defined by

F(u)(ξ) :=
∫

Rn

e−2πix·ξu(x) dx.

For 0 < s < 1, the fractional Sobolev space Hs(Rn) is defined by

Hs(Rn) :=
{
u ∈ L2(Rn) :

∫
Rn

(
1 + |ξ|2s

) |F(u)|2 dξ <∞
}
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2 T. Gou

equipped with the norm

‖u‖2
Hs =

∫
Rn

(
1 + |ξ|2s

) |F(u)|2 dξ.

The problem under consideration arises in the study of standing waves to the
following time-dependent Schrödinger equation,

i∂tψ + (−Δ)sψ + |x|2ψ = |ψ|p−2ψ in R × R
n. (1.3)

Here a standing wave to (1.3) is a solution of the form

ψ(t, x) = e−iωtu(x), ω ∈ R.

It is simple to see that ψ is a solution to (1.3) if and only if u is a solution to
(1.1). Equation (1.1) is of particular interest in fractional quantum mechanics and
originates from the early work of Laskin [8, 9].

For the case s = 1, the uniqueness of ground states to (1.1) was achieved in
[5, 6]. However, for the case 0 < s < 1, the uniqueness of ground states to (1.1) is
open so far. The aim of this paper is to make a contribution towards this direction.

In the present paper, we are only concerned with the uniqueness of ground states
to (1.1), the existence of which is a simple consequence of the use of mountain pass
theorem, see [11, Theorem 1.15], and the fact that Σs is compactly embedded into
Lq(Rn) for any 2 � q < 2∗s, see [1, Lemma 3.1]. Moreover, in view of the maximum
principle, we can further obtain that any ground state to (1.1) is positive. The main
result of the paper reads as follows.

Theorem 1.1. Let n � 1, 0 < s < 1, ω > −λ1,s and 2 < p < 2∗s. Then ground state
to (1.1) is unique up to translations.

Due to the nonlocal feature of the fractional Laplacian operator, the well-known
ODE techniques often adapted to discuss the uniqueness of ground states to non-
linear elliptic equations with s = 1 are not applicable to our problem. Therefore, to
establish theorem 1.1, we shall make use of the scheme developed in [3, 4].

Remark 1.2. Theorem 1.1 answers an open question posed in [10] with respect to
the uniqueness of ground states to (1.1), which also extends the uniqueness results
in [5, 6] for s = 1 to the case 0 < s < 1.

Notation 1.3. For 1 � q � ∞, we denote by ‖ · ‖q the standard norm in the
Lebesgue space Lq(Rn). Moreover, we use X � Y to denote that X � CY for some
proper constant C > 0 and we use X ∼ Y to denote X � Y and Y � X.

2. Proof of theorem 1.1

In this section, we are going to establish theorem 1.1. To do this, we first present
the nondegeneracy of ground states.
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Uniqueness of ground states 3

Lemma 2.1. Let n � 1, 0 < s < 1, ω > −λ1,s and 2 < p < 2∗s. Let u ∈ Σs be a
ground state to (1.1). Then the linearized operator

L+,s := (−Δ)s +
(
ω + |x|2)− (p− 1)|u|p−2

has a trivial kernel.

Proof. To prove this lemma, one can follow closely the line of the proof of
[10, Theorem 2]. Let us now sketch the proof. First we observe that L+,s |{u}⊥� 0.
On the other hand, we find that

〈L+,su, u〉 = −(p− 2)
∫

Rn

|u|p < 0.

It then follows that L+,s has only one negative eigenvalue. From [10,
Proposition 7], we actually know that the eigenvalue is simple. Using spherical
harmonics and the representations of fractional Schrödinger operators introduced
in [10], we can write that

L+,s =
∞⊕

l=0

L+,s,l := L+,s,0

⊕
L+,s,�1,

where the operator L+,s,l acting on L2
rad(R

n) is given by

L+,s,l :=
(
−∂rr − n− 1

r
∂r +

l(l + n− 2)
r2

)s

+
(
ω + |x|2)− (p− 1)|u|p−2, l = 0, 1, · · · , k, · · · .

It is clear that

σ(L+,s) =
∞⋃

l=0

σ(L+,s,l),

L+,s,0 < L+,s,1 < · · · < L+,s,k < · · · .
At this point, to conclude the proof, we only need to verify that the second small-
est eigenvalue of L+,s,0 is positive and L+,s,�1 � δ > 0. This can be achieved by
applying [10, Propositions 8–9]. Thus, the proof is completed. �

In order to establish theorem 1.1, we shall closely follow the strategies developed
in [3, 4]. For this, we now introduce some notations. Let n � 1, 0 < s < 1, ω > −λ1,s

and 2 < p < 2∗s. Define

Xp :=
{
u ∈ L2(Rn) ∩ Lp(Rn) : u is radially symmetric and real-valued and

‖xu‖2 < +∞}
equipped with the norm

‖u‖Xp
:= ‖u‖2 + ‖u‖p + ‖xu‖2.
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4 T. Gou

Lemma 2.2. Let n � 1, 0 < s < 1, ω > −λ1,s and 2 < p < 2∗s and u ∈ Xp be a
solution to (1.1). Then u ∈ Hs(Rn).

Proof. First we show that u ∈ H1(Rn). Since v ∈ Xp be a solution to (1.1), then

(−Δ)su+
(
ω + |x|2)u+ 2λu = 2λu+ |u|p−2u, (2.1)

where λ > 0 satisfies ω + λ > 0. Note that

(−Δ)s +
(
ω + |x|2)+ 2λ > (−Δ)s + λ > 0.

This leads to

0 <
(
(−Δ)s +

(
ω + |x|2)+ 2λ

)−1
< ((−Δ)s + λ)−1

. (2.2)

It then follows from Young’s inequality that

∥∥∥((−Δ)s +
(
ω + |x|2)+ 2λ

)−1
u
∥∥∥

2
�
∥∥∥((−Δ)s + λ)−1

u
∥∥∥

2

= ‖K ∗ u‖2 � ‖u‖2 � ‖u‖H−s , (2.3)

whereH−s(Rn) denotes the dual space ofHs(Rn) and K is the fundamental solution
to the equation

(−Δ)su+ λu = 0 (2.4)

and K ∈ L1(Rn) by [4, Lemma C. 1]. This indicates that the operator ((−Δ)s +
(ω + |x|2) + 2λ)−1 maps H−s(Rn) to L2(Rn). Using dual theory, we then see that
((−Δ)s + (ω + |x|2) + 2λ)−1 maps L2(Rn) to Hs(Rn). Observe that

∥∥∥((−Δ)s +
(
ω + |x|2)+ 2λ

)−1
u
∥∥∥

Hs
�
∥∥∥((−Δ)s + λ)−1

u
∥∥∥

Hs
� ‖u‖H−s � ‖u‖p′ ,

(2.5)
where the last inequality is from the dual to the Sobolev embedding ‖u‖p � ‖u‖Hs .
This indicates that the operator ((−Δ)s + (ω + |x|2) + 2λ)−1 maps Lp′

(Rn) to
Hs(Rn). In fact, this can observe that

u =
(
(−Δ)s +

(
ω + |x|2)+ 2λ

)−1 (
2λu+ |u|p−2u

)
and

2λu+ |u|p−2u ∈ L2(Rn) + Lp′
(Rn).

Then the desired result follows. This completes the proof. �

Lemma 2.3. Let sn → s as n→ ∞, then λ1,sn
→ λ1,s as n→ ∞.
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Uniqueness of ground states 5

Proof. To prove this, we only need to show that Asn
→ As in the norm-resolvent

sense as n→ ∞, where

Asn
:= (−Δ)sn + |x|2, As := (−Δ)s + |x|2.

Let z ∈ C be such that Im z �= 0, then

Asn
+ z = (−Δ)sn + |x|2 + z = (−Δ)s + |x|2 + z + (−Δ)sn − (−Δ)s

=
(
1 + ((−Δ)sn − (−Δ)s) (As + z)−1

)
(As + z) .

Then we see that

(Asn
+ z)−1 − (As + z)−1

= (As + z)−1

((
1 + ((−Δ)sn − (−Δ)s) (As + z)−1

)−1

− 1
)
. (2.6)

Note that ∥∥∥((−Δ)sn − (−Δ)s) (As + z)−1
∥∥∥

L2→L2
= on(1).

In addition, we see that (As + z)−1 is bounded from L2(Rn) to L2(Rn). As a
consequence, from (2.6), we can conclude that∥∥∥(Asn

+ z)−1 − (As + z)−1
∥∥∥

L2→L2
= on(1).

This completes the proof. �

Lemma 2.4. Let 0 < s0 < 1 and 2 < p < 2∗s0
. Suppose that u0 ∈ Xp solves (2.1) with

s = s0 such that the linearized operator

L+,s0 = (−Δ)s0 +
(
ω + |x|2)− (p− 1)|u0|p−2

has a trivial kernel on L2
rad(R

n), where w > −λ1,s0 . Then there exist δ0 > 0 and a
map u ∈ C1(I;Xp) with I = [s0, s0 + δ0) such that

(i) us solves (1.1) for s ∈ I, where us := u(s) for s ∈ I.

(ii) There exists ε > 0 such that us is the unique solution to (1.1) for s ∈ I in the
neighbourhood {

u ∈ Xp : ‖u− u0‖Xp
< ε
}
,

where us0 = u0.

Proof. Let δ0 > 0 be a small constant to be determined later and λ1,s > 0 be the
lowest eigenvalue of (−Δ)s + |x|2 for s ∈ [s0, s0 + δ0). Define a mapping F : Xp ×
[s0, s0 + δ0) → Xp by

F (u, s) := u− ((−Δ)s +
(
ω + |x|2)+ 2λ

)−1 (
2λu+ |u|p−2u

)
,

where ω > 0 satisfies ω > −λ1,s and λ > 0 satisfies λ1,s < λ for any s ∈ [s0, s0 + δ0).
Due to ω > −λ1,s0 , by lemma 2.3, then there exists δ0 > 0 small such that ω > −λ1,s
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is valid for any s ∈ [s0, s0 + δ0). Moreover, observe that Σ1 ⊂ Σs, then

λ1,s � inf
u∈Σs

{〈(−Δ + |x|2)u, u〉 : ‖u‖2 = 1
}

� λ1,1,

where λ1,1 > 0 is defined by

λ1,1 := inf
u∈Σ1

{〈(−Δ + |x|2)u, u〉 : ‖u‖2 = 1
}
.

This then justifies that there exists λ > 0 such that λ1,s < λ for any s ∈ [s0, s0 + δ0).
First we check that F is well-defined. As an immediate consequence of the

proof of lemma 2.2, we see that F (u, s) ∈ L2(Rn) ∩ Lp(Rn) for any u ∈ Xp and
s ∈ [s0, s0 + δ0). Let us now check that F (u, s) ∈ L2(Rn; |x|2 dx) for any u ∈ Xp

and s ∈ [s0, s0 + δ). Define

f :=
(
(−Δ)s +

(
ω + |x|2)+ 2λ

)−1 (
2λu+ |u|p−2u

)
.

As the proof of lemma 2.2, we find that f ∈ Hs(Rn). This further gives that

(−Δ)s
f +

(
ω + |x|2) f + 2λf = 2λu+ |u|p−2u.

Therefore, we have that

∫
Rn

| (−Δ)s/2
f |2 dx+

∫
Rn

(
ω + |x|2) |f |2 dx

+ 2λ
∫

Rn

|f |2 dx = 2λ
∫

Rn

uf dx+
∫

Rn

|u|p−2uf dx

� 2‖u‖2‖f‖2 + ‖u‖p−1
p ‖f‖p < +∞,

where we used Hölder’s inequality for the inequality. It then leads to the desired
result.

To apply the implicit function theorem, we are going to check that F is of class
C1. First we show that ∂F/∂u exists and

∂F

∂u
= 1 − ((−Δ)s +

(
ω + |x|2)+ 2λ

)−1 (
2λ+ (p− 1)|u|p−2

)
.

For simplicity, we shall define

G(u, s) :=
(
(−Δ)s +

(
ω + |x|2)+ 2λ

)−1 (
2λu+ |u|p−2u

)
.

Indeed, it suffices to prove that ∂G/∂u exists and

∂G

∂u
=
(
(−Δ)s +

(
ω + |x|2)+ 2λ

)−1 (
2λ+ (p− 1)|u|p−2

)
.
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Uniqueness of ground states 7

Observe that, for any h ∈ Xp,∥∥∥∥G(u+ h, s) −G(u, s) − ∂G

∂u
(u, s)h

∥∥∥∥
L2∩Lp

=
∥∥∥((−Δ)s +

(
ω + |x|2)+ 2λ

)−1 (|u+ h|p−2(u+ h)

− |u|p−2u− (p− 1)|u|p−2h
) ∥∥∥

L2∩Lp

�
∥∥∥((−Δ)s + λ)−1 (|u+ h|p−2(u+ h) − |u|p−2u− (p− 1)|u|p−2h

)∥∥∥
L2∩Lp

�
∥∥|u+ h|p−2(u+ h) − |u|p−2u− (p− 1)|u|p−2h

∥∥
p

p−1
= o(‖h‖p) = o(‖h‖L2∩Lp),

where we used the fact that the fundamental solution K to (2.4) satisfies K ∈
Lp/2(Rn) ∩ L2p/p+2(Rn) and Young’s inequality. Define

g :=
(
(−Δ)s +

(
ω + |x|2)+ 2λ

)−1 (|u+ h|p−2(u+ h) − |u|p−2u− (p− 1)|u|p−2h
)
.

Since

|u+ h|p−2(u+ h) − |u|p−2u− (p− 1)|u|p−2h ∈ Lp′
(Rn),

then g ∈ Hs(Rn) by arguing as the proof of lemma 2.2. Then we write

(−Δ)s
g +

(
ω + |x|2) g + 2λg = |u+ h|p−2(u+ h) − |u|p−2u− (p− 1)|u|p−2h.

It then follows that∫
Rn

| (−Δ)s/2
g|2 dx+

∫
Rn

(
ω + |x|2) |g|2 dx+ 2λ

∫
Rn

|g|2 dx

=
∫

Rn

(|u+ h|p−2(u+ h) − |u|p−2u− (p− 1)|u|p−2h
)
g dx = o(‖h‖p)‖g‖p.

Using the fact that Hs(Rn) is continuously embedded into Lp(Rn) and Young’s
inequality, we then obtain that

‖g‖L2(Rn;|x|2 dx) � o(‖h‖2).

Consequently, there holds that∥∥∥∥G(u+ h, s) −G(u, s) − ∂G

∂u
(u, s)h

∥∥∥∥
L2(Rn;|x|2 dx)

=
∥∥∥((−Δ)s +

(
ω + |x|2)+ 2λ

)−1 (|u+ h|p−2(u+ h)

−|u|p−2u− (p− 1)|u|p−2h
) ∥∥∥

L2(Rn;|x|2 dx)

= ‖g‖L2(Rn;|x|2 dx) � o(‖h‖2).

Thus, we conclude that∥∥∥∥G(u+ h, s) −G(u, s) − ∂G

∂u
(u, s)h

∥∥∥∥
Xp

� o(‖h‖Xp
).

The desired result follows.
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Next we are going to verify that ∂F/∂u is continuous. Indeed, it suffices to show
that ∂G/∂u is continuous. For this aim, we shall demonstrate that, for any ε > 0,
there exists δ > 0 such that ‖u− ũ‖Xp

+ |s− s̃| < δ, then, for any h ∈ Xp,∥∥∥∥
(
∂G

∂u
(u, s) − ∂G

∂u
(ũ, s̃)

)
h

∥∥∥∥
Xp

< ε‖h‖Xp
. (2.7)

Observe that(
∂G

∂u
(u, s) − ∂G

∂u
(ũ, s̃)

)
h = (As −As̃)

(
2λ+ (p− 1)|u|p−2

)
h

+As̃

(
2λ+ (p− 1)

(|u|p−2 − |ũ|p−2
))
h,

where

As :=
(
(−Δ)s +

(
ω + |x|2)+ 2λ

)−1
, As̃ :=

(
(−Δ)s̃ +

(
ω + |x|2)+ 2λ

)−1

.

Note that

‖f‖L2∩Lp �
∥∥∥((−Δ)sp/2 + 1

)
f
∥∥∥

2
, 0 < sp :=

(p− 2)n
2p

< s.

Then, by Plancherel’s identity, the mean value theorem and Young’s inequality,
there holds that∥∥(As −As̃)

(
2λ+ (p− 1)|u|p−2

)
h
∥∥

L2∩Lp

�
∥∥∥((−Δ)sp/2 + 1

)
(As −As̃)

(
2λ+ (p− 1)|u|p−2

)
h
∥∥∥

2

� |s− s̃| (‖h‖2 + ‖h‖p + ‖u‖p−2
p ‖h‖p

)
.

In addition, we see that∥∥(As −As̃)
(
2λ+ (p− 1)|u|p−2

)
h
∥∥

L2(Rn;|x|2 dx)

� |s− s̃| (‖h‖2 + ‖h‖p + ‖u‖p−2
p ‖h‖p

)
.

Notice that

‖Asf‖L2(Rn;|x|2 dx) � ‖f‖2, ‖Asf‖L2(Rn;|x|2 dx) � ‖f‖p/p−1.

Further, we can conclude that∥∥As̃

(
2λ+

(|u|p−2 − |ũ|p−2
))
h
∥∥

Xp
� ‖h‖2 + ‖h‖p +

∥∥|u|p−2 − |ũ|p−2
∥∥

p/p−2
‖h‖p.

Note that∥∥|u|p−2 − |ũ|p−2
∥∥

p/p−2
�
∥∥|u− ũ|p−2

∥∥
p/p−2

= ‖u− ũ‖p−2
p , 2 < p � 3

and ∥∥|u|p−2 − |ũ|p−2
∥∥

p/p−2
�
∥∥(|u|p−3 + |ũ|p−3

) |u− ũ|∥∥
p/p−2

�
(‖u‖p−3

p + ‖ũ‖p−3
p

) ‖u− ũ‖p, p > 3.

Consequently, from the calculations above, (2.7) holds true. This implies that
∂F/∂u is continuous. By a similar argument, we are also able to show that ∂F/∂s
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Uniqueness of ground states 9

exists and

∂F

∂s
= − ((−Δ)s log(−Δ))

(
(−Δ)s +

(
ω + |x|2)+ 2λ

)−2 (
2λu+ |u|p−2u

)
.

In addition, we can prove that ∂F/∂s. Thus, we have that F is of class C1.
Now we employ the implicit function theorem to establish theorem. Note first

that F (u0, s0) = 0 and

∂F

∂u
(u0, s0) = 1+K, K := − ((−Δ)s0 +

(
ω + |x|2)+ 2λ

)−1 (
2λ+ (p− 1)|u0|p−2

)
.

It is simple to see that K is compact on L2
rad(R

n). Moreover, from lemma 2.1, we
have that −1 �∈ σ(K). Then 1 +K is invertible. Furthermore, arguing as before, we
can show that 1 +K is bounded from Xp to Xp. This implies that (1 +K)−1 is
bounded from Xp to Xp. It then follows from the implicit function theorem that
theorem holds true. This completes the proof. �

In the following, we shall consider the maximum extension of the branch us for
s ∈ [s0, s∗), where s∗ > s0 is given by

s∗ := sup
{
s0 < s̃ < 1, us ∈ C1([s0, s̃);Xp), us satisfies the assumptions

of lemma 2.4 for s ∈ [s0, s̃)
}
.

Lemma 2.5. There holds that∫
Rn

(
w + |x|2) |us|2 dx ∼

∫
Rn

|(−Δ)s/2us|2 dx ∼
∫

Rn

|us|p dx ∼ 1

for any s ∈ [s0, s∗).

Proof. Define

Ms := w

∫
Rn

|us|2 dx, Hs :=
∫

Rn

|x|2|us|2 dx, Ts

:=
∫

Rn

|(−Δ)s/2us|2 dx, Vs :=
∫

Rn

|us|p dx.

Since us ∈ Hs(Rn) is a solution to (1.1), then

Ts +Ms +Hs = Vs. (2.8)

In addition, we have that us satisfies the following Pohozaev identity,

N − 2s
2

Ts +
N

2
Ms +

N + 2
2

Hs =
N

p
Vs. (2.9)

Combining (2.8) and (2.9), we see that

sTs −Hs =
N(p− 2)

2p
Vs. (2.10)
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It follows from (2.8) and (2.10) that

s0Ms + (1 + s0)Hs � sMs + (1 + s)Hs =
2ps−N(p− 2)

2p
Vs <

2ps∗ −N(p− 2)
2p

Vs

and

s∗Ms + (1 + s∗)Hs > sMs + (1 + s)Hs =
2ps−N(p− 2)

2p
Vs � 2ps0 −N(p− 2)

2p
Vs.

Consequently, we have that Ms +Hs ∼ Vs for any s ∈ [s0, s∗). It follows from (2.8)
and (2.10) that

(1 + s0)Ts � (1 + s)Ts +Ms =
N(p− 2) + 2p

2p
Vs

and

(1 + s∗)Ts > (1 + s)Ts +Ms =
N(p− 2) + 2p

2p
Vs.

This leads to Ts ∼ Vs for any s ∈ [s0, s∗). Therefore, we obtain that

Ms +Hs ∼ Ts ∼ Vs (2.11)

for any s ∈ [s0, s∗). Since 2 < p < ps0 , there exists 0 < θ < 1 such that p = 2θ +
(1 − θ)ps0 . From Gagliardo–Nirenberg’s inequality and Hölder’s inequality, we then
get that

Vs � Mθ
s

(∫
Rn

|us|ps0 dx
)(1−θ)

� (Ms +Hs)
θ

(∫
Rn

|(−Δ)s0/2us|2 dx
)ps0 (1−θ)/2

.

(2.12)
In addition, there holds that

∫
Rn

|(−Δ)s0/2us|2 dx �
(∫

Rn

|us|2 dx
)s−s0/s(∫

Rn

|(−Δ)s/2us|2 dx
)s0/s

. (2.13)

Utilizing (2.11), (2.12) and (2.13) then implies that

Ms +Hs ∼ Ts ∼ Vs � 1

for any s ∈ [s0, s∗). Arguing as the proof of [4, Lemma 8.2], we can obtain that
Vs � 1 for any s ∈ [s0, s∗). This in turn implies that

Ms +Hs ∼ Ts ∼ Vs � 1

for any s ∈ [s0, s∗). This completes the proof. �

Lemma 2.6. Let n � 1, s0 � s � 1, ω > −λ1,s0 and 2 < p < 2∗s0
. Suppose that us ∈

Xp is a ground state to (1.1). Then there exists μs > 0 such that

lim inf
σ→s−

L+,σ |{uσ}⊥� μs. (2.14)
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Proof. Define

αs := inf {〈L+,sf, f〉 : f⊥us, ‖f‖2 = 1} . (2.15)

Obviously, we have that αs � 0. First we shall verify that αs > 0 is attained.
Let {fk} be a minimizing sequence to (2.15) such that fk⊥us, ‖fk‖2 = 1 and
〈L+,sfk, fk〉 = αs + ok(1). Observe that {fk} is bounded in Σs. Therefore, there
exists a function f ∈ Σs such that fk ⇀ f in Σs and fk → f in Lq(Rn) for any
q ∈ [2, 2∗s) as n→ ∞. This leads to f⊥us, ‖f‖2 = 1 and 〈L+,sf, f〉 = αs. Contrar-
ily, we assume that αs = 0. When s < 1, using the fact that Ker[L+,s] = {0} by
lemma 2.1 and arguing as the proof of [10, Proposition 6], we are able to reach a
contradiction. This in turn shows that αs > 0 and

〈L+,su, u〉 � αs‖u‖2
2, ∀ u⊥us.

While s = 1, using the fact that Ker[L+,1] = {0} and following the spirit of the
proof of [10, Proposition 6], we can also derive that α1 > 0 and

〈L+,1u, u〉 � α1‖u‖2
2, ∀ u⊥u1.

Thus, the proof is completed. �

Lemma 2.7. Let us0 > 0 be a solution to (1.1) with s = s0. Then, for any s ∈
[s0, s∗), there holds that us(x) > 0 for x ∈ R

n and us(x) � |x|−n for |x| � 1.

Proof. In the spirit of the proof of [4, Lemma 8.3], we need to verify that the
operator L−,s enjoys the Perron–Frobenius type property, where

L−,s := (−Δ)s +
(
ω + |x|2)− |u|p−2.

In addition, we need to check that L−,s̃ → L−,s as s̃→ s in norm-resolvent sense.
Define H := (−Δ)s + |x|2, which generates a semigroup e−tH with positive inte-

gral kernel. Then we have that e−tH acting on L2(Rn) is positivity improving. Next
we show that w + |u|p−2 belongs to Kato class, i.e.

lim
λ→∞

∥∥(H + λ)−1
(
ω + |u|p−2

)∥∥
L∞→L∞ = 0. (2.16)

Note that H + λ > (−Δ)s + λ, then

(H + λ)−1
< ((−Δ)s + λ)−1

.

Let K be the fundamental solution to the equation

(−Δ)su+ λu = 0.

Then we have that

K(x) =
∫ +∞

0

e−λtH(x, t) dt,

where

H(x, t) :=
∫

Rn

e2πix·ξ−t|ξ|2s

dξ.

https://doi.org/10.1017/prm.2024.44 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.44


12 T. Gou

From (A4) in [2, Appendix A], we find that

0 < H(x, t) � min
{
t−n/2s, t|x|−n−2s

}
.

This gives that, for any q � 1,

‖H‖q �
(∫

|x|�t1/2s

t−nq/2s dx

)1/q

+

(∫
|x|�t1/2s

tq|x|−(n+2s)q dx

)1/q

� t−n/2s(1−(1/q)).

It then follows that

‖K‖q �
∫ +∞

0

e−λt ‖K(·, t)‖q dt �
∫ +∞

0

e−λtt−n/2s(1−(1/q)) dt � λn/2s(1−(1/q))−1,

where q � 1 satisfies

n

2s

(
1 − 1

q

)
< 1.

Using Young’s inequality, we then get that, for any f ∈ L∞(Rn),

‖ ((−Δ)s + λ)−1 (
ω + |u|p−2

)
f‖∞ � λ−1ω‖f‖∞ + λn/2s(1−(2/q))−1‖f‖∞,

which readily yields that

‖ ((−Δ)s + λ)−1 (
ω + |u|p−2

) ‖L∞→L∞ = oλ(1).

Thus, (2.16) holds true and the desired result follows. Arguing as the proof of
[3, Lemma C.2], we conclude that the operator L−,s enjoys Perron–Frobenius type
property.

Next we prove the convergence of the operator in norm-resolvent sense. Observe
first that

L−,s̃ + z = (−Δ)s +
(
ω + |x|2)− |u|p−2 + z + (−Δ)s̃ − (−Δ)s

=
(
1 +

(
(−Δ)s̃ − (−Δ)s

)
(L−,s + z)−1

)
(L−,s + z) .

Therefore, we have that

(L−,s + z)−1 − (L−,s̃ + z)−1

= (L−,s + z)−1

(
1 −

(
1 +

(
(−Δ)s̃ − (−Δ)s

)
(L−,s + z)−1

)−1
)
.

As the proof of lemma 2.3, we can show that∥∥∥(L−,s + z)−1 − (L−,s̃ + z)−1
∥∥∥

L2→L2
→ 0, as s̃→ s.

This indicates that L−,s̃ → L−,s in the norm-resolvent sense as s̃→ s. Thus, the
proof is completed. �
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Lemma 2.8. Let {sn} ⊂ [s0, s∗) be a sequence such that sn → s∗ as n→ ∞ and
usn

> 0 for any n ∈ N. Then there exists u∗ ∈ Xp such that usn
→ u∗ in Xp as

n→ ∞. Moreover, there holds that u∗ > 0 and it solves the equation

(−Δ)s∗u∗ +
(
ω + |x|2)u∗ = up−1

∗ . (2.17)

Proof. From lemma 2.5, we know that usn
is bounded in Σs0 . Thus, there exists

u∗ ∈ Σs0 such that usn
⇀ u∗ in Σs0 and usn

→ u∗ in Lq(Rn) for any q ∈ [2, 2∗s0
).

Since usn
> 0, then u∗ � 0. It follows from lemma 2.5 that u∗ �= 0. Note that

usn
=
(
(−Δ)sn +

(
ω + |x|2)+ 2λ

)−1 (
2λusn

+ up−1
sn

)
.

Since usn
→ u∗ in L2(Rn) ∩ Lp(Rn) as n→ ∞, then

u∗ =
(
(−Δ)s∗ +

(
ω + |x|2)+ 2λ

)−1 (
2λu∗ + up−1

∗
)
.

This implies that u∗ solves (2.17) and usn
→ u∗ in Xp as n→ ∞. Thus, the proof

is completed. �

Lemma 2.9. Let u0 ∈ Xp be a ground state to (1.1) with s = s0. Then its maximum
branch us with s ∈ [s0, s∗) extends to s∗ = 1.

Proof. Define

L+,s := (−Δ)s +
(
ω + |x|2)− (p− 1)|us|p−2.

Reasoning as the proof of the norm-resolvent convergence of L−,s in lemma 2.7, we
can also show that L+,s̃ → L+,s in the norm-resolvent sense as s̃→ s. This gives
that

N−,rad(L+,s) = N−,rad(L+,s0) = 1, s ∈ [s0, s∗).

Let {sn} ⊂ [s0, s∗) be such that sn → s∗. Since u0 ∈ Xp is a ground state to (1.1)
with s = s0, then u0 > 0. In view of lemma 2.7, then usn

> 0. From lemma 2.8,
we know that there exists u∗ > 0 solving (2.17). Note that L+,sn

→ L+,s∗ in the
norm-resolvent sense as n→ ∞. By the lower semicontinuity of the Morse index,
we have that

1 = lim inf
n→∞ N−,rad(L−,sn

) � N−,rad(L+,s∗).

This implies that N−,rad(L+,s∗) � 1. On the other hand, since u∗ solves (2.17),
then we see that

〈u∗,L+,s∗u∗〉 = −(p− 2)
∫

Rn

|u∗|p dx < 0.

Thus, we conclude that N−,rad(L+,s∗) = 1, which yields that u∗ is a ground state to
(2.17). As a result, we have that s∗ = 1. On the other hand, by the nondegeneracy
of L+,s∗ , then us can be extended beyond s∗. This is impossible and the proof is
completed. �

Now we are ready to prove theorem 1.1.
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Proof of theorem 1.1. Let n � 1, 0 < s0 < 1 and 2 < p < 2∗s0
. Let us0 > 0 and ũs0 >

0 be two different ground states to (1.1) with s = s0, which are indeed radially
symmetric. From lemma 2.1, we obtain that the associated linearized operators
around us0 and ũs0 are nondegenerate. Then, by lemmas 2.4 and 2.9, we have that
us ∈ C1([s0, 1);Xp) and ũs ∈ C1([s0, 1);Xp). Moreover, by the local uniqueness of
solutions derived in lemma 2.4, we get that us �= ũs for any s ∈ [s0, 1). It follows
from lemma 2.8 that there exist u∗ ∈ Xp and ũ∗ ∈ Xp such that us → u∗ and ũs →
ũ∗ inXp as s→ 1−. In addition, u∗ > 0 and ũ∗ > 0 solve (2.17) with s∗ = 1. Thanks
to [5, Theorem 1.3] and [6, Theorem1.2], then we have that u∗ = ũ∗. This implies
that ‖us − ũs‖Xp

→ 0 as s→ 1−. Note that the linearized operator L+,1 around u∗
is nondegenerate, see [7, Theorem 0.2]. Remark that, from the proof of [7, Theorem
0.2], it is simple to see that the result also holds true for n = 1. Then, by the implicit
function theorem, there exists a unique branch ûs ∈ C1((1 − δ, 1];Xp) solving (1.1)
with û1 = u∗ for some δ > 0. This contradicts with us �= ũs for any s ∈ [s0, 1).
Thus, the proof is completed. �
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