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Abstract

We establish a boundary Schwarz lemma for solutions to nonhomogeneous biharmonic equations.
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1. Introduction and main result

The classical Schwarz lemma says that an analytic function f from the unit disk D =

{z ∈ C : |z| < 1} into itself with f (0) = 0 must map each smaller disk {z ∈ C : |z| < r < 1}
into itself. Further, | f ′(0)| ≤ 1 and | f ′(0)| = 1 if and only if f is a rotation of D. This is
a very powerful tool in complex analysis. An elementary consequence of the Schwarz
lemma is that if f extends continuously to some boundary point α, then | f (α)| = 1 and,
if f is differentiable at α, then | f ′(α)| ≥ 1 (see, for example, [8, 14]).

There are many versions of the Schwarz lemma and boundary Schwarz lemma.
Burns and Krantz [4] obtained a Schwarz lemma at the boundary for holomorphic
mappings defined on D as well as on balls in Cn. They also obtained similar results for
holomorphic mappings on strongly convex and strongly pseudoconvex domains in Cn.
Liu and Tang [10] obtained the boundary Schwarz lemma for holomorphic mappings
defined on the unit ball in Cn. We refer to the survey article by Krantz [9] for a brief
history of the Schwarz lemma at the boundary.

The Schwarz lemma at the boundary plays an important role in complex analysis.
For example, by using the Schwarz lemma at the boundary, Bonk [3] improved the
previously known lower bound for the Bloch constant. The boundary Schwarz lemma
is also a fundamental tool in the study of the geometric properties of functions of
several complex variables (see [10–12]). In this paper, we establish a boundary
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Schwarz lemma for functions which satisfy certain partial differential equations,
namely, nonhomogeneous biharmonic equations.

We now give some notation and preliminary observations which are required to state
our result. We denote by T = ∂D the boundary of D and by D = D ∪ T the closure of
D. For any subset Ω of C and m ∈ N ∪ {0}, we denote by Cm(Ω) the set of all complex-
valued m-times continuously differentiable functions from Ω into C. In particular,
C(Ω) := C0(Ω) denotes the set of all continuous functions in Ω.

For a real 2 × 2 matrix A, we use the matrix norm

‖A‖ = sup{|Az| : z ∈ T}

and the matrix function
λ(A) = inf{|Az| : z ∈ T}.

For z = x + iy ∈ C with x, y ∈ R, the formal derivative of a complex-valued function
f = u + iv is given by

D f =

ux uy

vx vy

 ,
so that

‖D f ‖ = | fz| + | fz| and λ(D f ) =
∣∣∣| fz| − | fz|∣∣∣,

where
fz = 1

2 ( fx − i fy) and fz = 1
2 ( fx + i fy).

The Jacobian of f is
J f := det D f = | fz|2 − | fz|2.

Let f ∗, g ∈ C(D), ϕ ∈ C(T) and f ∈ C4(D). We consider the nonhomogeneous
biharmonic equation defined in D:

∆(∆ f ) = g, (1.1)

with the Dirichlet boundary values fz = ϕ on T,
f = f ∗ on T,

(1.2)

where
∆ f = fxx + fyy = 4 fzz

is the Laplacian of f .
In particular, if g ≡ 0, then any solution to (1.1) is biharmonic. For the properties

of biharmonic mappings, see [5, 15]. Chen et al. [7] discussed the Schwarz-
type lemma, Landau-type theorems and bi-Lipschitz properties for the solutions of
nonhomogeneous biharmonic equations (1.1) satisfying (1.2). The solvability of the
nonhomogeneous biharmonic equations has also been studied in [13].
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We introduce the biharmonic Green function and (harmonic) Poisson kernel in D,

G(z,w) = |z − w|2 log
∣∣∣∣∣1 − zw

z − w

∣∣∣∣∣2 − (1 − |z|2)(1 − |w|2)

and

P(z, eiθ) =
1 − |z|2

|1 − ze−iθ|2
(θ ∈ [0, 2π]).

It follows from [2, Theorem 2] that all the solutions to the Equation (1.1) satisfying
the boundary conditions (1.2) are given by

f (z) = P f ∗(z) +
1

2π
(1 − |z|2)

∫ 2π

0
f ∗(eit)

zeit

(1 − zeit)2 dt − (1 − |z|2)Pϕ1 (z) −
1
8

G[g](z),

(1.3)

where

P f ∗(z) =
1

2π

∫ 2π

0
P(z, eit) f (eit) dt, Pϕ1 (z) =

1
2π

∫ 2π

0
P(z, eit)ϕ1(eit) dt, (1.4)

ϕ1(eit) = ϕ(eit)e−it and G[g](z) =
1

2π

∫
D

g(w)G(z,w) dA(w). (1.5)

Here dA(w) denotes the Lebesgue area measure in D.
Let us recall the following version of the boundary Schwarz lemma for analytic

functions proved in [10].

Theorem 1.1 [10, Theorem 1.1′]. Suppose that f is an analytic function from D into
itself. If f (0) = 0 and f is analytic at z = α ∈ T with f (α) = β ∈ T, then:

(1) β f ′(α)α ≥ 1;
(2) β f ′(α)α = 1 if and only if f (z) ≡ eiθz, where eiθ = βα−1 and θ ∈ R.

This result has attracted much attention and has been generalised in various ways
(see, for example, [6, 17]). Recently, Wang and Zhu [16] obtained a boundary Schwarz
lemma for the solutions to Poisson’s equation. By analogy with the studies in [16], we
derive the following boundary Schwarz lemma for functions with the form (1.3). A
different form of the boundary Schwarz lemma for functions with the form (1.3) was
proved in [7].

Theorem 1.2. Suppose that f ∈ C4(D) and g ∈ C(D) satisfy
∆(∆ f ) = g in D,
fz = ϕ on T,
f = f ∗ on T,

where ϕ ∈ C(T), f ∗ ∈ C(D), f ∗ is analytic in D and f (D) ⊂ D. If f is differentiable at
z = α ∈ T, f (α) = β ∈ T and f (0) = 0, then

Re[β( fz(α)α + fz(α)α)] ≥
2
π
− 3‖Pϕ1‖∞ −

1
64
‖g‖∞, (1.6)

where Pϕ1 and ϕ1 are defined in (1.4) and (1.5), respectively.
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In particular, when ‖Pϕ1‖∞ = ‖g‖∞ = 0, the following inequality is sharp:

Re[β( fz(α)α + fz(α)α)] ≥
2
π
. (1.7)

Remark 1.3. For analytic functions, the value of β f ′(α)α in Theorem 1.1 is a real
number. However, this is not true for the case of the solutions to the equation (1.1)
(see Example 3.1 below). Hence, in Theorem 1.2, we consider the real part of the
quantity β( fz(α)α + fz(α)α).

The lower bound for the quantity Re[β( fz(α)α + fz(α)α)] in (1.6) is always positive
for all ϕ1 and g with (‖Pϕ1‖∞, ‖g‖∞) ∈ {(x, y) : x ≥ 0, y ≥ 0, 3x + y/64 < 2/π}.

2. Proof of Theorem 1.2

We start with the following lemma.

Lemma 2.1. Suppose that g ∈ C(D) and h ∈ C4(D) satisfy
∆(∆h) = g in D,
hz = ψ on T,
h = h∗ on T,

where ψ ∈ C(T), h∗ ∈ C(D), h∗ is analytic in D and h(D) ⊂ D. If h is differentiable at
z = 1, h(1) = 1 and h(0) = 0, then

Re[hz(1) + hz(1)] ≥
2
π
− 3‖Pψ1‖∞ −

1
64
‖g‖∞,

where ψ1(eit) = ψ(eit)e−it.
In particular, when ‖Pψ1‖∞ = ‖g‖∞ = 0, the following inequality is sharp:

Re[hz(1) + hz(1)] ≥
2
π
. (2.1)

Proof. The assumptions of the lemma ensure that h has the form (1.3), that is,

h(z) = Ph∗(z) +
1

2π
(1 − |z|2)

∫ 2π

0
h∗(eit)

zeit

(1 − zeit)2 dt − (1 − |z|2)Pψ1 (z) −
1
8

G[g](z).

Since the analyticity of h∗ in D gives

1
2π

∫ 2π

0
zeith∗(eit)

1 − |z|2

(1 − zeit)2 dt = 0, (2.2)

we obtain

|h(z)| =
∣∣∣∣∣Ph∗(z) − (1 − |z|2)Pψ1 (z) −

1
8

G[g](z)
∣∣∣∣∣

≤

∣∣∣∣∣Ph∗(z) −
1 − |z|2

1 + |z|2
Ph∗(0)

∣∣∣∣∣ + (1 − |z|2)
∣∣∣∣∣Pψ1 (z) −

1 − |z|2

1 + |z|2
Pψ1 (0)

∣∣∣∣∣
+

1 − |z|2

1 + |z|2
(|Ph∗(0) − Pψ1 (0)| + |z|2|Pψ1 (0)|) +

∣∣∣∣∣18G[g](z)
∣∣∣∣∣. (2.3)
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By the proof of Theorem 1.1 in [7], we have the following estimates:∣∣∣∣∣Ph∗(z) −
1 − |z|2

1 + |z|2
Ph∗(0)

∣∣∣∣∣ ≤ 4
π
‖Ph∗‖∞ arctan |z|,∣∣∣∣∣Pψ1 (z) −

1 − |z|2

1 + |z|2
Pψ1 (0)

∣∣∣∣∣ ≤ 4
π
‖Pψ1‖∞ arctan |z|

and
|G[g](z)| ≤ 1

8‖g‖∞(1 − |z|2)2.

Moreover, it follows from the assumption h(0) = 0 that

Ph∗(0) − Pψ1 (0) = 1
8G[g](0)

and so
|Ph∗(0) − Pψ1 (0)| ≤ 1

64‖g‖∞.

Based on these estimates, together with ‖Ph∗‖∞ ≤ 1, the inequality (2.3) takes the
form

|h(z)| ≤
4
π

arctan |z| +
1 − |z|2

1 + |z|2

( 1
64
‖g‖∞ + |z|2‖Pψ1‖∞

)
+

4
π
‖Pψ1‖∞(1 − |z|2) arctan |z| +

1
64
‖g‖∞(1 − |z|2)2 =: M(|z|). (2.4)

Since h is differentiable at z = 1,

h(z) = 1 + hz(1)(z − 1) + hz(1)(z − 1) + o(|z − 1|),

where o(x) means a function with limx→0 o(x)/x = 0. Then we deduce from (2.4) that

2Re[hz(1)(1 − z) + hz(1)(1 − z)] ≥ 1 − M2(|z|) − o(|z − 1|).

Letting z = r ∈ (0, 1) and r→ 1−,

Re[hz(1) + hz(1)] ≥ lim
r→1−

M′(r) =
2
π
− 3‖Pψ1‖∞ −

1
64
‖g‖∞.

To finish the proof of the lemma, it remains to check the sharpness of the inequality
(2.1). For this, we borrow the following function from [1, page 127]:

h(z) =


2
π

arctan
z + z

1 − |z|2
if z ∈ D,

1 if z ∈ T.
(2.5)

It can be seen that h is harmonic in D with h(0) = 0 and h(1) = 1. Since

hz(z) =
2
π

1 + z2

(1 − |z|2)2 + (z + z)2 and hz(z) =
2
π

1 + z2

(1 − |z|2)2 + (z + z)2 , (2.6)
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both hz and hz are continuous at z = 1. This guarantees the differentiability of h at this
point. Let

h
∗(z) = 1

in D. It is clear that h∗ is analytic in D and h = h∗ on T. Further, the harmonicity of h
in D, together with [7, (1.5)] and (2.2), ensures that

Pψ1 = 0.

Since (2.6) leads to

Re[hz(1) + hz(1)] =
2
π
,

we see that h is an extremal function for the sharpness of (2.1). The proof of the lemma
is complete. �

Proof of Theorem 1.2. Let

h(z) = β f (αz) in D,

g(z) = βg(αz) in D,

ψ(ξ) = βαϕ(αξ) on T,

h∗(z) = β f ∗(αz) in D.

From Lemma 2.1,

Re[hz(1) + hz(1)] ≥
2
π
− 3‖Pϕ1‖∞ −

1
64
‖g‖∞,

from which the inequality (1.6) in Theorem 1.2 follows since

Re[β( fz(α)α + fz(α)α)] = Re[hz(1) + hz(1)].

The inequality (1.7) is obvious. For its sharpness, let

f(z) =
2β
π

arctan
αz + αz
1 − |z|2

in D. Then
f(z) = βh(αz),

where the function h is defined in (2.5). By the discussions on the sharpness of the
inequality (2.1) in the proof of Lemma 2.1, we see that f demonstrates the sharpness
of the inequality (1.7). The theorem is proved. �

3. An example

In this section, we construct an example to show that it is reasonable to consider the
real part of the quantity β( fz(α)α + fz(α)α) in Theorem 1.2.
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Example 3.1. Assume that

g(z) = 32M[2 − 3i(z2 + z2)] and f (z) = (1 − M)z2 +
Mi
4

(1 − |z|4)(z2 + z2) + M|z|4

in D, where 0 < M < 2
√

5(3 −
√

2)/35π. Then:

(1) f and g satisfy the nonhomogeneous biharmonic equation ∆2 f = g and all the
other assumptions in Theorem 1.2 with α = β = 1;

(2) Re( fz(1) + fz(1)) = 2(1 + M), Im( fz(1) + fz(1)) = −2M , 0, ‖Pϕ1‖∞ =
√

5M and

‖g‖∞ = 64
√

10M, where ϕ1(ζ) = 1
2 M(4 − i(ζ2 + ζ

2
)) on T.

Proof. Elementary computations yield

fz(z) = 2(1 − M)z +
Mi
2

[z(1 − |z|4) − zz2(z2 + z2)] + 2Mzz2, (3.1)

fz(z) =
Mi
2

[z(1 − |z|4) − z2z(z2 + z2)] + 2Mz2z (3.2)

and
∆2 f = g.

Obviously, f (0) = 0 and f (1) = 1. Let

ϕ(ζ) =
M
2
ζ(4 − i(ζ2 + ζ

2
)) on T and f ∗(z) = (1 − M)z2 + M in D.

Then f ∗ is analytic in D and fz = ϕ and f ∗ = f on T. For z ∈ D,

| f (z)| ≤ |z|2
(
1 −

M
2

(1 − |z|2)2
)
< 1

and so f (D) ⊂ D. The differentiability of f at z = 1 can be seen from the continuity of
its partial derivatives (see (3.1) and (3.2)). This gives the first statement of the example.

The equalities

Re
(
fz(1) + fz(1)

)
= 2(1 + M) and Im[ fz(1) + fz(1)] = −2M , 0

easily follow from (3.1) and (3.2) and elementary computations give

‖Pϕ1‖∞ = max
z∈D

{ M
2
|4 − i(z2 + z2)|

}
=
√

5M

and
‖g‖∞ = max

z∈D
{32M|2 − 3i(z2 + z2)|} = 64

√
10M.

This gives the second statement of the example and completes the proof. �

Remark 3.2. The reason for the condition 0 < M < 2
√

5(3 −
√

2)/35π in Example 3.1
is to guarantee that

3‖Pϕ1‖∞ +
1
64
‖g‖∞ <

2
π
,

that is, the quantity 2/π − 3‖Pϕ1‖∞ − ‖g‖∞/64 is positive.
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