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The initial singularity in the universe

The expansion of the universe is in many ways similar to the collapse
of a star, except that the sense of time is reversed. We shall show in
this chapter that the conditions of theorems 2 and 3 seem to be satis-
fied, indicating that there was a singularity at the beginning of the
present expansion phase of the universe, and we discuss the implica-
tions of space-time singularities.

In §10.1 we show that past-directed closed trapped surfaces exist
if the microwave background radiation in the universe has been
partially thermalized by scattering, or alternatively if the Copernican
assumption holds, i.e. we do not occupy a special position in the
universe. In §10.2 we discuss the possible nature of the singularity
and the breakdown of physical theory which occurs there.

10.1 The expansion of the universe
In §9.1 we showed that many stars would eventually collapse and
produce closed trapped surfaces. If one goes to a larger scale, one can
view the expansion of the universe as the time reverse of a collapse.
Thus one might expect that the conditions of theorem 2 would be
satisfied in the reverse direction of time on a cosmological scale, pro-
viding that the universe is in some sense sufficiently symmetrical, and
contains a sufficient amount of matter to give rise to closed trapped
surfaces. We shall give two arguments to show that this indeed seems
to be the case. Both arguments are based on the observations of the
microwave background, but the assumptions made are rather
different.

Observations of radio frequencies between 20 cm and 1 mm indicate
that there is a background whose spectrum (shown in figure 62 (i))
seems to be very close to that of a black body at 2.7 °K (see, for
example, Field (1969)). This background appears to be isotropic to
within 0.2% (figure 62(ii); see, for example, Sciama (1971) and
references given there for further discussion). The high degree of
isotropy indicates that it cannot come from within our own galaxy (we
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FIGURE 62
(i) The spectrum of the microwave background radiation. The plotted

points show the observed values of the * excess' background radiation. The
solid line is a Planck spectrum corresponding to a temperature of 2.7 °K.

(ii) The isotropy of the microwave background radiation. The temperature
distribution along the celestial equator is shown; more than two years of data
have been averaged to obtain these points.

From D. W. Sciama, Modern Cosmology, Cambridge University Press, 1971.
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350 THE INITIAL SINGULARITY [10.1

are not symmetrically placed in the plane of the galaxy) but must be of
extragalactic origin. At these frequencies we can see discrete sources
some of whose distances are known from other evidence to be of the
order of 1027cm, so we know that the universe is transparent to this
distance at these wavelengths. Thus radiation which is produced by
sources at distances greater than 1027 cm must have propagated freely
towards us for at least that distance.

Possible explanations of the origin of the radiation are:

(1) the radiation is black body radiation left over from a hot early
stage of the universe;

(2) the radiation is the result of superposition of a very large number
of very distant unresolved discrete sources;

(3) the radiation comes from intergalactic grains which thermalize
other forms of radiation (perhaps infra-red).

Of these explanations, (1) seems the most plausible. (2) seems im-
probable, as there do not appear to be sufficient sources with the right
sort of spectrum to produce an appreciable fraction of the observed
radiation in this frequency range. Further, the small scale isotropy of
the radiation implies that the number of discrete sources would have
to be very large (of the order of the number of galaxies) and most
galaxies do not seem to radiate appreciably in this region of the
spectrum. (3) also seems unlikely, since the density of interstellar
grains which would be needed is very large indeed. Although (1) seems
the most probable, we will not base our arguments on it, since to do so
would be to presuppose that the universe had a hot early stage.

The first argument involves the assumption of the Copernican
principle, that we do not occupy a privileged position in space-time.
We interpret this as implying that the microwave background radia-
tion would appear equally isotropic to any observer whose velocity
relative to nearby galaxies is small. In other words, we suppose there
is an expanding timelike geodesic congruence (expanding because the
galaxies are receding from each other, geodesic because they move
under gravity alone with unit tangent vector Fa, say), representing
the average motion of the galaxies, relative to which the microwave
radiation appears almost isotropic. From the Copernican principle it
also follows that most of the microwave background has propagated
freely towards us from a very long distance (~3 x 1027cm). This is
because the contribution to the background arising from a spherical
shell of thickness dr and radius r about us will be approximately
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10.1] THE EXPANSION OF THE UNIVERSE 351

independent of r, since the amount produced in the shell will be pro-
portional to r2 and the reduction of intensity due to distance will be
inversely proportional to r2. This will be the case until the redshift of
the sources becomes appreciable, source evolution takes place, or
curvature effects become significant. These effects will however only
come in at a distance of the order of the Hubble radius, ~ 1028 cm.
Thus the bulk of the radiation will have travelled freely towards us
from a distance > 1027cm. From the fact that it remains isotropic
travelling over such a long distance, we can conclude that on a large
scale the metric of the universe is close to one of the Robertson-
Walker metrics (§5.3). This follows from a result of Ehlers, Geren and
Sachs (1968), which we will now describe.

The microwave radiation can be described by a distribution func-
tion f(u, p) (u e J(, p e Tu) defined on the null vectors in T(<JK), which
can be regarded as the phase space of the photons. If the distribution
function f(u, p) is exactly isotropic for an observer moving with four-
velocity Fa, it will have the form/(w, E) where E = — Vapa. Since the
radiation is freely propagating, / must obey the Liouville equation in
T(cJf). This states that / is constant along integral curves of the
horizontal vector field X, i.e. along any curve (u(v)9 p(v)) where u(v) is
a null geodesic in Jt and p = d/dv.

Because f(u, E) is non-negative and must tend to zero as E -> oo
(since otherwise the energy density of radiation would be infinite),
there must be an open interval of E for which df/dE is non-zero. In
this interval, one can express £ a s a function off:E = g{u,f). Then
Liouville's equation implies that

dE/dv = g;ap
a (10.1)

on each null geodesic, where one regards g as a function on Jt with

/fixed. Also, d # / d v = _ d ( V
apa)ldv = - Va ;bp

apK (10.2)

One can decompose pa into a part along Va and a part orthogonal
to Va: pa = E(Va+ Wa), where WaWa = 1, WaVa = 0. Then from
(10.1) and (10.2),

^ W«W*> = 0

holds for all unit vectors Wa orthogonal to Fa, where dg/dt is the rate
of change of g along the integral curves of V. Separating out spherical
harmonics, ^ = 0? (10.3 a)

Va + (logg);a = ocVa, (10.3ft)

£0 = -d(logflr)/d*. (10.3 c)
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352 THE INITIAL SINGULARITY [10.1

Since we assumed that Va was zero, (10.36) shows that Va is orthogonal
to the surfaces {g = constant}, and this implies that the vorticity (o^
is zero. As ta = 0, V[atb] = 0. Thus one can write Va as the gradient of
a function t:Va = —ta.

The energy-momentum tensor of the radiation will have the form

where fir = jfEs dE. Since the motion of the galaxies relative to the
integral curves of Va is small, their contribution to the energy-
momentum tensor can be approximated by a smooth fluid with
density /io, four-velocity Va and negligible pressure. It now follows
that the geometry of the space-time is the same as that of a Robertson-
Walker model. To see this, note that

Multiplying this equation by hb
c = gb

c + VbVc, one finds

The left-hand side vanishes by the field equations. Thus 6 is constant
on the surfaces of constant t (which are also the surfaces of constant g).
One can define a function S(t) from 6 by S'/S = \0\ then the
Raychaudhuri equation (4.26) takes the form

which implies that fi — fiG + 2/iR is also constant on the surfaces
{t = constant}. Prom the definition of /iR we see that the terms fiQ and
/iR are separately constant on these surfaces.

The trace-free part of (4.27) shows that Cabcd V
bVd = 0. The Gauss-

Codacci equations (§2.7) now give for the Ricci tensor of the three-
spaces {t = constant} the formula

However for a three-dimensional manifold, the Riemann tensor is
completely determined by the Ricci tensor, as

This shows that each three-space {t = constant} is a three-space of
constant curvature K(t) = ^(Sn/i + A — ^d2). Integrating the Ray-
chaudhuri equation shows that

K(t) = %(8n/i + A-3S'2IS2) = kjS*, (10.4)
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10.1] THE EXPANSION OF THE UNIVERSE 353

where k is a constant. By normalizing S, one can set k = + 1, 0 or — 1.
The four-dimensional space-time manifold is the orthogonal product
of these three-spaces and the £-line. Thus the metric can be written in
comoving coordinates as

where dy2 is the metric of a three-space of constant curvature k. But
this is just the metric of a Robertson-Walker space (see §5.3).

We shall now show that in any Robertson-Walker space containing
matter with positive energy density and A = 0 there is a closed trapped
surface lying in any surface {t = constant}. To see this, we express dy2

in the form ^2 ^2 +

where f(x) = sin f̂, x o r sinh^; if k = + 1, 0 or — 1 respectively. Con-
sider a two-sphere ^ of radius Xo tymg m the surface t = t0. The two
families of past-directed null geodesies orthogonal to fT will intersect
the surfaces {t = constant} in two two-spheres of radius

(10.5)

The surface area of a two-sphere of radius x is 4:nS2(t)f2(x). Thus both
families of null geodesies will be converging into the past if, at t = tOi

holds for both values of x given by (10.5). This will be the case if

S(t0)

But by (10.4), this holds if

This will be the case if8(t0) Xo is taken to be greater than ^(3/877/JQ) for
k = 0 or — 1, and to be greater than min (̂ (3/877-/̂ ), \TT) if k = + 1.

An intuitive way of viewing this result is that at time t0 a sphere of
coordinate radius Xo will contain a mass of the order of %7T/ioS

z(to)Xoz>
and so will be within its Schwarzschild radius if S(to)xo is less than
%7T/ioS(to)

3Xo*> i-e- ̂  $(U#o is greater than the order of ^(^JSTT/IQ).

We shall call ^/(3/8TT/I0) the Schwarzschild length of matter density ju,0.
So far, we have assumed the microwave radiation is exactly iso-

tropic. This is of course not the case; and this corresponds to the fact
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354 THE INITIAL SINGULARITY [10.1

that the universe is not exactly a Robertson-Walker space. However,
the large scale structure of the universe should be close to that of
a Robertson-Walker model, at least back to the time when the radia-
tion was emitted or last scattered. (One can in fact use the deviations
of the microwave radiation from exact isotropy to estimate how large
the departures from a Robertson-Walker universe are.) For a suffi-
ciently large sphere, the existence of local irregularities should not
significantly affect the amount of matter in the sphere, and hence
should not affect the existence of a closed trapped surface round us at
the present time.

The above argument did not depend on the spectrum of the micro-
wave radiation, but it did involve the assumption of the Copernican
principle. The argument we shall now give does not involve the
Copernican principle, but does to a certain extent depend on the shape
of the spectrum. We shall assume that the approximately black body
nature of the spectrum and the high degree of small scale isotropy of
the radiation indicate that it has been at least partially thermalized
by repeated scattering. In other words, there must be enough matter
on each past-directed null geodesic from us to cause the opacity to be
high in that direction. We shall now show that this matter will be
sufficient to make our past light cone reconverge.

Consider a point p representing us at the present time, and let Wa

be a past-directed unit vector parallel to our four-velocity.
The affine parameter v on the past-directed null geodesies through p

may be normalized by KaWa = — 1, where K = d/dv is the tangent
vector to the null geodesies. The expansion 6 of these null geodesies
will obey (4.35) with (b = 0. Thus, providing RahK

aKh ^ 0, 0 will be
less than 2/v. It follows that at v = vx > vQ,

so 6 will become negative if there is some v0 such that

• 2/f>0.

Using the field equations with A = 0, this becomes

K \8nTabK
aKbdv > 1. (10.6)

At centimetre wavelengths, the largest ratio of opacity to density for
matter at reasonable densities is that given by Thomson scattering off
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10.1] THE EXPANSION OF THE UNIVERSE 355

free electrons in ionized hydrogen. Thus the optical depth to a distance
v will be less than -v

KP(K«Va)dv,
Jo

where K is the Thomson scattering opacity per unit mass, p is the
density of the matter, and Va is the local velocity of the gas. The
redshift z of the matter is given by z = KaVa — 1. Since no matter has
been seen with significant blue-shifts, we shall assume KaVa is always
greater than one on our past light cone, out to an optical depth unity.
As galaxies are observed at these wavelengths with redshifts of 0.3,
most of the scattering must occur at redshifts greater than this. (In
fact if quasars really are cosmological, the scattering must occur at
redshifts greater than two.) With a Hubble constant of 100Km/sec/
Mpc (~ 1010years~1), a redshift of 0.3 corresponds to a distance of
about 3x 1027cm. Taking this value for v0, the contribution to the
integral (9.9) of the matter causing the scattering is

v0

while the optical depth of the matter between v0 and vx is less than

6.6 xlO27 rip{KaVa)dv.

JSince KaVa ̂  1, it can be seen that the inequality (10.6) will be satisfied
at an optical depth of less than 0.2. If the optical depth of the universe
was less than 1, one would not expect either an almost black body
spectrum or such a high degree of small scale isotropy, unless there was
a very large number of discrete sources which covered only a small
fraction of the sky and each of which had a spectrum roughly the same
as a 3 °K black body but with much higher intensity. This seems rather
unlikely. Thus we believe that the condition (4) (iii) of theorem 2 is
satisfied, and so there should be a singularity somewhere in the
universe provided the other conditions hold.

Because of its generality, theorem 2 does not tell us whether the
singularity will be in our past or in the future of our past. Although it
might seem obvious that the singularity should be in our past, one can
construct an example in which it is in the future: consider a Robertson-
Walker universe with k = + 1 which collapses to a singularity at some
time t = t0, and which asymptotically approaches an Einstein static
universe for £-> —oo. This satisfies the energy assumption, and con-
tains points whose past light cones start reconverging (because they
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356 THE INITIAL SINGULARITY [10.1

meet up around the back). However the singularity is in the future.
Of course this is a rather unreasonable example but it shows that one
has to be careful. We shall therefore give an argument based on
theorem 3 which indicates that the universe contains a singularity in
our past, providing that the Copernican principle holds. Theorem 3
is similar to theorem 2, but requires that all the past-directed timelike
geodesies from a point shall start to reconverge, instead of all the null
geodesies. This condition is not satisfied in the example given above,
though it is there satisfied by the future-directed geodesies from any
point.

By an argument similar to that given above for the null geodesies,
the convergence 6(s) of the past-directed timelike geodesies from a
point p will be less than

3 C8RabV«Vbds,

where s is proper distance along the geodesies, V = djds and s > s0.
Let W be a past-directed timelike unit vector a,tp, and let c = — VaWa\p

(so c ^ 1). Then 6 will become less than — c within a distance RJc
along any geodesic if there is some Ro, Rx > Ro > 0, such that

a b ( l 0 ) (10.7)
RJc

along that geodesic. Condition (3) of theorem 3 will then be satisfied
with b = m&x(Rv (Se)-1).

To make (10.7) appear more similar to (10.6), we shall introduce an
affine parameter v = s/c along the timelike geodesies; then (10.7)
becomes rRx

±R0 RabK
aKbdv > 1 + JJBoe, (10.8)

JJRo

where K = djdv and ifaTFa|p = — 1. We cannot verify this condition
directly by observation as in the case of (10.6) because it refers to
timelike geodesies. We therefore have to appeal to the arguments
given in the first part of this section to show that the universe is close
to a Robertson-Walker universe model at least back to the time the
microwave background radiation was last scattered.

In a Robertson-Walker model, let W be the vector — djdt. Along
a past-directed timelike geodesic through p,

±(
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10.1] THE EXPANSION OF THE UNIVERSE 357

Therefore, providing that dS/dt > 0, WaK
a ̂  - 1 . However

WaKa = dt/dv;

thus for some e > 0, (10.8) will be satisfied for every geodesic provided
that there are times t2, t3 with t2 < t3 < tp such that

1dt > 1. (10.9)
3

By the field equations with A = 0,

RabK*K*> =

Therefore, providing p ^ 0,

Thus (10.9) will be satisfied if

t — t cl*
-2—^ 4n/idt > 1. (10.10)

3 Jtt

Assuming that the microwave radiation has a black body spectrum
at 2.7 °K, its energy density is about 10~34 gm cm"3 at the present time.
If this radiation is primaeval, its energy density will be proportional
to $~4. Since S~x = O(t~i) as t tends to zero, one can see that (10.10) can
be satisfied by taking t3 to be \tp and t2 to be sufficiently small. How
small t2 has to be depends on the detailed behaviour of S, which in turn
depends on the density of matter in the universe. This is somewhat
uncertain, but seems to lie between 10-31gmcm~3 and 5x 10~29gm
cm"3. In the former case, t2 will have to be such that S{tp)jS(t2) ^ 30,
and in the latter case, S{tp)jS(t2) ^ 300. Since the microwave radiation
seems to be all pervasive, any past-directed timelike geodesic must
pass through it. Thus an estimate based on the Robertson-Walker
models should be a good approximation for its contribution to (10.10),
provided that the radiation was not emitted more recently than t2,
and provided that a Robertson-Walker model is a good approximation
back that far. From the arguments at the beginning of this section, the
latter should be the case provided that the radiation has propagated
freely towards us since t2. However there may be ionized intergalactic
gas present with a density as high as 5 x 10~29gm cm~3, in which case
the radiation could be last scattered at a time t such that S(tp)/S(t) ~ 5.
The optical depth back to a time t is

C\/ig&sdt, (10.11)
Jt

where K is at most 0.5 if/* is measured in gm cm"3 and t in cm.
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358 THE INITIAL SINGULARITY [10.1

As before, there can be no significant opacity back to t = tp — 1017 sec,
since we see objects at distances of at least 3 x 1027cm. Taking t3 to
have this value, we see that the gas density will cause (10.11) to be
satisfied for a value of t2 corresponding to an optical depth of at most
0.5.

Thus the position is as follows. We assume the Copernican principle,
and that the microwave radiation has been emitted either before a
time t2 such that S(tp)/S(t2) « 300, or before the time corresponding to
the optical depth of the universe being unity, if this is less than t2. In
the former case, condition (2) of theorem 3 will be satisfied by the
radiation density, and in the latter case by the gas density. Thus if the
usual energy conditions and causality conditions hold, we can con-
clude that there should be a singularity in our past (i.e. there should be
a past-directed non-spacelike geodesic from us which is incomplete).

Suppose one takes a spacelike surface which intersects our past
light cone and takes a number of points on that surface; can one say
that there is a singularity in each of their pasts? This will be the case
if the universe is sufficiently homogeneous and isotropic in the past to
converge all the past-directed timelike geodesies from these points.
In view of the close connection between the convergence of timelike
geodesies and closed trapped surfaces, we would expect this to be the
case if the universe is homogeneous and isotropic at that time on the
scale of the Schwarzschild length (3/8nfi)b.

We have direct evidence of the homogeneity of the universe in our
past from the measurements of Penzias, Schraml and Wilson (1969),
who found that the intensity of the microwave background is isotropic
to within 4 % for a beam width of 1.4 x 10~3 square degrees. Assuming
that the microwave radiation has not been emitted since a surface in
our past corresponding to optical depth unity, the observed intensity
will be proportional to T4/( 1 + z)4 where T is the effective temperature
of the observed point on the surface and z is its redshift. Variations in
the observed intensity can arise in four ways:

(1) by a Doppler shift caused by our own motion relative to the
black body radiation (Sciama (1967), Stewart and Sciama (1967));

(2) by variations in the gravitational redshift caused by inhomo-
geneities in the distribution of matter between us and the surface
(Sachs and Wolfe (1967), Rees and Sciama (1968));

(3) by Doppler shifts caused by local velocity disturbances of the
matter at the surface; and

(4) by variations of the effective temperature of the surface.
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10.1] THE EXPANSION OF THE UNIVERSE 359

(In fact the division between (1), (2) and (3) depends on the standard
of reference and has heuristic value only.) Thus the observations indi-
cate that irregularities in the temperature with an angular size of 3' of
arc have relative amplitudes of less than 1 %, and that there are no
local fluctuations of the velocity of the matter, on the same scale, of
greater than 1 % of the velocity of light. A region on the surface which
had an angular diameter 3' of arc would correspond to a region which
had a diameter now of about 107 light years. If the surface of optical
depth unity is at a redshift of about 1000 (this is the most it could be),
the Schwarzschild length at that time would correspond to a region
whose present diameter was about 3 x 108 light years. Thus it would
seem that every point on the surface of optical depth unity should
have a singularity in its past.

More indirect evidence on the degree of homogeneity of the universe
in the early stages comes from the fact that observations of the helium
content of a number of objects agree with calculations of helium pro-
duction by Peebles (1966), and Wagoner, Fowler and Hoyle (1968),
who assumed the universe was homogeneous and isotropic at least
back to a temperature of about 109 °K. On the other hand calculations
of anisotropic models have shown that in these models very different
amounts of helium are produced. Thus if one accepts that there is a
fairly uniform density of helium in the universe (there are some doubts
about this), and that this helium was produced in the early stages of
the universe, one can conclude that the universe was effectively
isotropic and hence homogeneous when the temperature was 109°K.
One would therefore expect a singularity to occur in the past of each
point at this time.

Misner (1968) has shown that if the temperature reaches 2 x 1010 °K
a large viscosity arises from collisions between electrons and neutrinos.
This viscosity would damp out inhomogeneities whose lengths corre-
spond to present values of 100 light years, and reduce anisotropy
to a comparatively small value. Thus if one accepts this as the explana-
tion for the present isotropy of the universe (and it is a very attractive
one), one would conclude that there should be a singularity in the past
of every point when the temperature was about 1010°K.

10.2 The nature and implications of singularities
One might hope to learn something about the nature of the singu-
larities that are likely to occur by studying exact solutions with
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360 THE INITIAL SINGULARITY [10.2

singularities. However although we have shown that the occurrence
of a singularity is not prevented by small perturbations of the initial
conditions, it is not clear that the nature of the singularity which
occurs will be similarly stable. Although we have shown in §7.5 that
the Cauchy problem is stable under small perturbations of the initial
conditions, this stability applies only to compact regions of the
Cauchy development, and a region containing a singularity is non-
compact unless the singularity corresponds to imprisoned incom-
pleteness. In fact we can give an example where the nature of the
singularity is not stable. Consider a uniform spherically symmetric
cloud of dust collapsing to a singularity. The metric inside the dust will
be similar to that of part of a Robertson-Walker universe, while that
outside will be the Schwarzschild metric. Both inside and outside the
dust, the singularity will be spacelike (figure 63 (i)). Suppose now
one adds a small electric charge density to the dust. The metric outside
the dust now becomes part of the Reissner-Nordstrom solution for
e2 < m2 (figure 63 (ii)). There will be a singularity inside the dust, as
a sufficiently small charge density will not prevent the occurrence of
infinite density. The nature of the singularity inside the dust will
presumably depend on the charge distribution. However the im-
portant point is that once the surface of the dust has passed a point
p inside r = r+, whatever happens inside the dust cannot affect the
portion sq of the timelike singularity.

If one now increases the charge density so that it becomes greater
than the matter density, it is possible for the cloud to pass through the
two horizons at r = r+ and r = r_ and to re-expand into another
universe without any singularity occurring inside the dust, although
there is a timelike singularity outside the dust (J. M. Bardeen, un-
published), as indeed there ought to be by theorem 2 (see figure

This example is very important as it shows that there can be time-
like singularities, that the matter can avoid hitting the singularities,
and that it can pass through a 'wormhole' into another region of
space-time or into another part of the same space-time region. Of
course one would not expect to have such a charge density on a col-
lapsing star, but since the Kerr solution is so similar to the Reissner-
Nordstrom solution one might expect that angular momentum could
produce a similar wormhole. One might speculate therefore that prior
to the present expansion phase of the universe there was a contraction
phase in which local inhomogeneities grew large and isolated singu-
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Singularity (r = 0) Singularity (r = 0)
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(iii)

FIGURE 63
(i) Collapse of a spherical dust cloud.
(ii) Collapse of a charged dust cloud, where the charge is too small to prevent

the occurrence of a singularity in the dust.
(iii) Collapse of a charged dust cloud, where the charge is large enough to

prevent the occurrence of a singularity in the dust cloud; the singularity occurs
outside the dust, which bounces and re-expands into a second asymptotically
flat space.
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larities occurred, most of the matter avoiding the singularities and
re-expanding to give the present observed universe.

The fact that singularities must occur within the past of every point
at an early time when the density was high, places limits on the
separation of the singularities. It might be that the set of geodesies
which hit these singularities (i.e. which are incomplete) was a set of
measure zero. Then one might argue that the singularities would be
physically insignificant. However this would not be the case because
the existence of such singularities would produce a Cauchy horizon
and hence a breakdown of one^ ability to predict the future. In fact
this could provide a way of overcoming the entropy problem in an
oscillating world model since at each cycle the singularity could inject
negative entropy.

So far, we have been exploring the mathematical consequences of
taking a Lorentz manifold as the model for space-time, and requiring
that the Einstein field equations (with A = 0) hold. We have shown
that according to this theory, there should be singularities in our past
associated with the collapse of the universe, and singularities in the
future associated with the collapse of stars. If A is negative, the above
conclusions would be unaffected. If A is positive, observations of the
rate of change of expansion of the universe (Sandage, (1961, 1968))
indicate that A cannot be greater than 3 x 10~55 cm~2. This is equiva-
lent to a negative energy density of 3 x 10~27 gm cm"3. Such a value of A
could have an effect on the expansion of the whole universe, but it
would be completely swamped by the positive matter density in a
collapsing star. Thus it does not seem that a A term can enable us to
avoid facing the problem of singularities.

It may be that General Relativity does not provide a correct
description of the universe. So far it has only been tested in situations
in which departures from flat space are very small (radii of curvature
of the order of 1012 cm). Thus it is a tremendous extrapolation to apply
it to situations like collapsing stars where the radius of curvature
becomes less than 106cm. On the other hand the theorems on singu-
larities did not depend on the full Einstein equations but only on the
property that RahK

aKb was non-negative for any non-spacelike
vector Ka\ thus they would apply also to any modification of General
Relativity (such as the Brans-Dicke theory) in which gravity is always
attractive.

It seems to be a good principle that the prediction of a singularity
by a physical theory indicates that the theory has broken down, i.e. it
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no longer provides a correct description of observations. The question
is: when does General Relativity break down? One would expect it to
break down anyway when quantum gravitational effects become im-
portant; from dimensional arguments it seems that this should not
happen until the radius of curvature becomes of the order of 10~33 cm.
This would correspond to a density of 1094gmcm~3. However one
might question whether a Lorentz manifold is an appropriate model for
space-time on length scales of this order. So far experiments have
shown that assuming a manifold structure for lengths greater than
10~15 cm gives predictions in agreement with observations (Foley et al.
(1967)), but it may be that a breakdown occurs for lengths between
10~15 and 10~33cm. A radius of 10~15cm corresponds to a density of
1058gmcm~3 which for all practical purposes could be regarded as
a singularity. Thus maybe one should construct a surface by Schmidt's
procedure (§8.3) around regions where the radius of curvature is less
than, say, 10~15 cm. On our side of this surface a manifold picture of
space-time would be appropriate, but on the other side an as yet
unknown quantum description would be necessary. Matter crossing
the surface could be thought of as entering or leaving the universe, and
there would be no reason why that entering should balance that
leaving.

In any case, the singularity theorems indicate that the General
Theory of Relativity predicts that gravitational fields should become
extremely large. That this happened in the past is supported by the
existence and black body character of the microwave background
radiation, since this suggests that the universe had a very hot dense
early phase.

The theorems on the existence of singularities could possibly be
refined somewhat, but on our view they are already adequate. How-
ever they tell us very little about the nature of the singularities. One
would like to know what kind of singularities could occur in generic
situations in General Relativity. A possible way of approaching this
would be to refine the power series expansion technique of Lifshitz
and Khalatnikov, and to clarify its validity. It may also be that there
is some connection between the singularities studied in General
Relativity and those studied in other branches of physics (cf. for
instance, Thorn's theory of elementary catastrophes (1969)). Alterna-
tively one might try to proceed by brute force, integrating the
Einstein equations numerically on a computer. However this will
probably have to wait for a new generation of computers. One would
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like to know also whether the singularities produced by collapse from
a non-singular asymptotically flat situation would be naked, i.e.
visible from infinity, or whether they would be hidden behind an
event horizon.

The other main problem is to formulate a quantum theory of
space-time which will be applicable to strong fields. Such a theory
might be based on a manifold, or might allow changes of topology.
Some preliminary attempts in this line have been made by de Witt
(1967), Misner (1969, 1971), Penrose (see Penrose and MacCallum
(1972)), Wheeler (1968), and others. However the interpretation of
a quantum theory of space-time, and its relation to singularities, are
still very obscure.

Speculation and discussion on the subject of this book is not new.
Laplace essentially predicted the existence of black holes: 'Other
stars have suddenly appeared and then disappeared after having
shone for several months with the most brilliant splendour... All these
stars. . . do not change their place during their appearance. Therefore
there exists, in the immensity of space, opaque bodies as considerable
in magnitude, and perhaps equally as numerous as the stars.' (M. Le
Marquis de Laplace: 'The system of the world'. Translated by Rev. H.
Harte. Dublin, 1830, Vol. 2, p. 335.) As we have seen, our present
understanding of the situation is remarkably similar.

The creation of the Universe out of nothing has been argued,
indecisively, from early times; see for example Kant's first Antinomy
of Pure Reason and comments on it (Smart (1964), pp. 117-23 and
145-59; North (1965), pp. 389-406). The results we have obtained
support the idea that the universe began a finite time ago. However
the actual point of creation, the singularity, is outside the scope of
presently known laws of physics.
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