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Frozen water might appear opaque since gas bubbles can get trapped in the ice during the
freezing process. They nucleate and then grow near the advancing solidification front, due
to the formation of a gas supersaturation region in its vicinity. A delicate interplay between
the rate of mass transfer and the rate of freezing dictates the final shapes and sizes of the
entrapped gas bubbles. In this work, we experimentally and numerically investigate the
initial growth of such gas bubbles that nucleate and grow near the advancing ice front.
We show that the initial growth of these bubbles is governed by diffusion and is enhanced
due to a combination of the presence of the background gas concentration gradient and
the motion of the approaching front. Additionally, we recast the problem into that of mass
transfer to a moving spherical object in a homogeneous concentration field, finding good
agreement between our experimental data and the existing scaling relations for that latter
problem. Lastly, we address how fluid flow around the bubble might further affect this
growth and qualitatively explore this through numerical simulations.

Key words: solidification/melting, bubble dynamics

1. Introduction

While slowly freezing an aqueous suspension, the dispersed objects might either be
engulfed into the ice or rejected by the advancing solidification front (Shangguan, Ahuja &
Stefanescu 1992; Rempel & Worster 2001; Dedovets, Monteux & Deville 2018; Tyagi et al.
2020; Meijer, Bertin & Lohse 2023a). The conditions that govern this are of significant
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importance in material science as the arrangement of these dispersed particles profoundly
shapes the microstructure and, consequently, the functional attributes of the solidified
material (Deville et al. 2006; Deville, Saiz & Tomsia 2007; Deville 2008, 2010). Especially
during repulsion of objects by the moving front, typically occurring at low freezing
velocities, the objects tend to accumulate (Tyagi, Monteux & Deville 2021, 2022), forming
a concentration profile of the objects that can evolve in space and time. Similarly, since
gases are soluble in a large variety of liquids, e.g. water, silica (Yokokawa 1986), metals
(Shapovalov & Boyko 2004) and sapphire (Bunoiu, Duffar & Nicoara 2010; Ghezal et al.
2012), but not in their solid states, during the solidification process, accumulation of gases
at the front occurs.

For example, when freezing water, gas bubbles nucleate at the advancing solidification
front (Carte 1961; Maeno 1967; Bari & Hallett 1974; Lipp et al. 1987), as the dissolved
gases are rejected by the growing ice crystal, and accumulate at the front, leading to
a favourable environment for bubbles to grow. While immiscible, ‘soft’ particles, such
as drops, are subjected to stresses (Gerber et al. 2022) during the encapsulation into
the ice, leading to potential deformation (Tyagi et al. 2021, 2022; Meijer et al. 2023b;
Meijer, Kant & Lohse 2024), the complexity during bubble entrapment is amplified due
to additional mass transfer. The shapes and sizes of the entrapped gas bubbles in ice,
ranging from very small and barely deformed to elongated vertical cylinders, are set by a
delicate interplay between the rate of freezing and the rate of mass transfer, and have been
studied extensively (Carte 1961; Maeno 1967; Bari & Hallett 1974; Alley & Fitzpatrick
1999; Wei et al. 2000, 2004; Yoshimura, Inada & Koyama 2008; Chu et al. 2019; Shao
et al. 2023; Thiévenaz et al. 2024). The initial growth of the bubbles near an advancing
solidification front has, however, received only little attention (Bari & Hallett 1974; Lipp
et al. 1987) and forms the main focus of this work. Given the presence of gradients in both
gas concentration (due to accumulated gases at the front) and temperature (governing the
overall freezing process), in combination with the fact that the bubble is approached by a
solid interface, a non-trivial growth of these bubbles is ensured. In addition, complex fluid
flow structures might emerge around the growing bubble, further affecting its growth. In
this work, we aim to delineate the importance of the different processes involved through a
combination of experiments and numerical simulations. We will show that this seemingly
simple configuration of a bubble near an ice front underlies truly rich physics, making it a
prime example of a physicochemical hydrodynamical system out of equilibrium (Lohse &
Zhang 2020).

After introduction of the experimental and numerical procedures in § 2, we continue
by addressing the front propagation in § 3. We then turn to the main observation of
this work which is the bubble growth near the advancing solidification front (§ 4). More
specifically, we address the experimentally observed growth at early stages and compare
the results with our numerical simulations. This process occurs simultaneously with the
overall freezing process but at much smaller time scales. In § 4.3 we then address the
enhanced mass transfer in more detail. We end with conclusions and an outlook in § 5. In
the Appendix we also discuss the potential effect of fluid flow around the growing bubble
and find it to be small.

2. Experimental procedure and numerical methods

2.1. Experimental procedure
The aim of the experimental set-up is to freeze a sessile water drop on a cold substrate.
During the freezing process, bubbles will naturally nucleate and grow at and near the
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Figure 1. The experimental Hele-Shaw set-up (a) and schematic side views of a freezing sessile drop
sandwiched between the two acrylic plates (b). A thermocouple is used to measure Tb(t) and the substrate
temperature is fixed at Ts. For the analysis we distinguish between front propagation driven by thermal effects
(§ 3), and the more rapid (diffusive) bubble growth near the front (§ 4).

advancing solidification front. To avoid lensing effects we are interested in freezing only
a thin slice of purified water (Milli-Q), which we will refer to as ‘drop’ in the remainder
of the text. In order to achieve such a quasi-two-dimensional drop, an aluminium mount is
placed on top of a freezing stage (BFS-40 MPA, Physitemp) that allows two acrylic plates
to be pressed against a thin metal strip (see figure 1). The gap between the plates is 1 mm
and the temperature of the substrate close to the base of the drop, Tb, is measured by a
thermocouple that is placed inside a groove at the side of the metal strip. We make sure
that the desired substrate temperature has been reached well within ±0.1 K for several
minutes before starting the experiment (see Appendix A). A needle (Nordson) and a
syringe pump (PHD 2000 Infusion, Havard Apparatus) are used to deposit drops of equal
volume (Vd = 25 µl) between the plates, resulting in drop heights of roughly 3 mm. To
guarantee freezing as soon as the (room temperature) water touches the substrate and to
avoid supercooling, we only deposit the drop once ice crystals have formed on top of
the thin metal strip. A gentle flow of nitrogen along the outsides of the plates prevents
fog and frost formation that otherwise would obscure the view. The drop is illuminated
with a diffused cold LED to avoid local heating. The freezing process is recorded in side
view using a camera (Nikon D850) connected to a long working distance lens (Thorlabs,
MVL12X12Z). Once the freezing process is complete, the plates are dismounted, the
frozen drop is removed and the experimental set-up is cleaned. Experiments are then
repeated for different substrate temperatures.

Whereas the overall freezing process, driven by thermal effects, and the front
propagation are extensively discussed in § 3, the growth of gas bubbles near the front,
occurring at much smaller time scales, forms the focus of § 4. Before reporting on all
the experimental observations, we briefly go over the technical details of our numerical
simulations, for the interested reader, that are used in § 4.2 and Appendix C, and that
mimic the bubble growth near the moving front.

2.2. Numerical simulation
For a more detailed analysis of the growth of the bubbles near an advancing solidification
front (discussed in § 4.2 and Appendix C), we rely on axisymmetric numerical simulations
that account for all the relevant physical mechanisms and allow for a comparison
with the experimental observations. To this end, we use a sharp-interface arbitrary
Lagrangian–Eulerian finite element method from the PYOOMPH package (Diddens &

996 A22-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

77
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.777


J.G. Meijer and others

Rocha 2024), based on OOMPH-LIB (Heil & Hazel 2006) and GINAC (Bauer, Frink &
Kreckel 2002). The domains here are represented by a triangular mesh.

In our simulations, we consider a rectangular domain with a hole representing the
bubble. The bubble has an initial radius of R0 = 10 µm and is centred at the axis of
symmetry, located 125 µm from the bottom boundary. The sidewalls of the domain are far
enough from the bubble (25R0) to neglect any boundary effects. We assume the dissolved
gases in the water to be a single species (see § 4.2). The gas concentration, i.e. the mass
of dissolved gas per volume, denoted by C, evolves according to an advection–diffusion
equation, see (2.1). If thermal effects are considered, the temperature field T is governed
by the heat equation, see (2.2). We neglect thermophoresis effects (Piazza 2008) as our
tests indicate that their inclusion is of no significance. The fluid motion in the liquid
surrounding the bubble is described by the incompressible Navier–Stokes equations (see
(2.3a,b)), leading to a system of equations that reads

∂tC + u · ∇C = D∇2C, (2.1)

∂tT + u · ∇T = κ∇2T, (2.2)

∇ · u = 0 and ρl (∂tu + u · ∇u) = −∇pl + μ∇2u, (2.3a,b)

where u is the fluid flow velocity, D and κ the gas and thermal diffusivity, respectively, ρl
is the liquid density, μ its dynamic viscosity and pl the pressure in the liquid.

At the interface of the bubble, we impose a constant gas concentration, specifically the
saturation concentration Csat. Additionally, we take the fluid velocity at the interface to be
continuous and consider a dynamic boundary condition, including Marangoni stresses

p + μn · (∇u + (∇u)T) · n = σK, (2.4)

μn · (∇u + (∇u)T) · t = ∇Γ σ · t. (2.5)

Here, p = −pl + pg, with pl the pressure in the liquid and pg the gas pressure in the bubble;
σ(T) is the (temperature-dependent) surface tension, K is the curvature of the interface,
n and t are the outwards-pointing normal and tangent to the bubble–liquid interface,
respectively, and ∇Γ is the surface gradient operator.

Despite not modelling the flow inside the bubble, it is crucial to consider the pressure
exerted by the bubble on the surrounding fluid. The mass of gas within the bubble, denoted
by mg = ρgVg, where ρg is the gas density and Vg the bubble volume, increases due to the
gas mass transfer from the surrounding supersaturated liquid, i.e. locally C > Csat, into
the bubble through diffusion. More specifically,

∂tmg =
∫

∂Ω

−j dA, with j = ρgD∇C · n, (2.6)

where ∂Ω is the bubble–liquid interface domain, j is the mass transfer rate and A is the
interfacial area of the bubble. The kinematic boundary condition satisfies

ρg(u − ∂tR) · n = −j, (2.7)

with ∂tR the Lagrangian interface velocity. It is important to note that ρg may not remain
constant during the bubble growth. We therefore assume it to evolve according to the ideal
gas law, pgVg = mgR̄Tg, where R̄ is the gas constant, and Tg the temperature within the
bubble, considered constant.

Lastly, to account for the planar solidification front that approaches the bubble during its
growth, we let the bottom boundary advance with a prescribed velocity Vfront (see § 3.2).
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Ts = –5 °C t = 5.1 s t = 24.4 s t = 40.5 s t = 121.5 s t = 202.7 s

Ts = –10 °C t = 3.8 s t = 11.3 s t = 31.4 s t = 62.9 s t = 94.4 s

Ts = –20 °C t = 1.4 s t = 4.2 s t = 11.7 s t = 23.4 s t = 35.0 s

(b)

(c)

(a)

Figure 2. Sequences of images (supplementary movies 1–3 available at https://doi.org/10.1017/jfm.2024.
777) highlighting the differences when freezing a sessile drop of equal volume (Vd = 25 µl) sandwiched
between two acrylic plates at three different substrate temperatures, i.e. (a) Ts = −5 ◦C, (b) Ts = −10 ◦C, and
(c) Ts = −20 ◦C from top to bottom, respectively. All scale bars (right panels) are 1 mm.

Its temperature is kept constant and is set to the melting temperature of water Tm = 0 ◦C.
We assume no significant action of volume-change convection at the wall (Davis 2001), i.e.
n · u = Vfront(1 − ρi/ρl) = 0, thereby disregarding any density difference between water
(ρl) and ice (ρi). The top boundary, which is sufficiently distanced from the bubble, moves
with the bottom boundary to mimic an infinite domain at each time step. Its temperature
and gas concentration are kept constant at Ttop and C0, respectively (see Appendices A
and B).

The evolution of the gas pressure, volume and mass is implemented using three
Lagrange multipliers, each representing one of these quantities. These are coupled as
described in the system of equations and solved monolithically. While the liquid–gas
interface is allowed to grow, its centre position is fixed via an additional Lagrange
multiplier. We do so, in order to account for the experimentally observed pinning of
the bubble (see § 4.2), which likely occurs on the acrylic plate. This imposes a force in
the liquid bulk to offset the hydrostatic pressure, ensuring the bubble remains neutrally
buoyant. Before solving the system of equations transiently, we first satisfy the stationary
diffusive conditions for the gas concentration and temperature fields around the bubble.
This is achieved by solving (2.1) and (2.2) with the appropriate mentioned boundary
conditions while disregarding the velocity and time-dependent terms, i.e. ∇2C = 0
and ∇2T = 0, respectively. We track the resulting bubble radius at each time step by
calculating it from the value of the Lagrange multiplier representing its volume and
compare with the experimental results in the subsequent sections.

3. Front propagation

3.1. General experimental observations
When the room temperature drop is deposited onto the cooled, frosted substrate, it
immediately starts to freeze from the bottom up. The freezing processes for three different
substrate temperatures are shown as sequences of images in figure 2. In all cases, we
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observe the immediate emergence of a shaded region around the drop that slowly fades
away as the drop solidifies, which is known as a ‘frost halo’ (Jung, Tiwari & Poulikakos
2012). Due to the rapid phase change at very early times (shock freezing), an excess
amount of released latent heat causes the drop to evaporate. The water vapour consequently
condensates at the inside of the cold acrylic plates before slowly evaporating once more.
Apart from the significant differences in time it takes the drops to solidify (203 s, 95 s, 35 s
for Ts = −5 ◦C, −10 ◦C, −20 ◦C, respectively), discussed in more detail in § 3.2, we
observe that the base width of the deposited drop, wb (see figure 1), becomes smaller when
the substrate temperature is reduced. As the drop is deposited from a certain height, which
might slightly vary from case to case, the spreading dynamics is governed by an interplay
between contact line motion and phase transition phenomena (Koldeweij et al. 2021; Grivet
et al. 2022), leading to an earlier arrest of the contact line on colder substrates. During the
solidification process the roughly planer ice front advances at a velocity Vfront = dyfront/dt
(see figure 1 and § 3.2). As the water solidifies into a crystalline structure, i.e. ice, the gases
dissolved in water are expelled and accumulate at the moving front (Tiller et al. 1953).
This lowers the threshold for bubbles to nucleate at the front, after which they start to
grow. The initial growth of such bubbles is the main focus of the second part of this paper,
see § 4. The number of nucleated bubbles and their final shapes and sizes when engulfed
in the ice are governed by the rate of freezing, and hence the substrate temperature (see
figure 2(a)–(c)), as well as the locally available gas content (Carte 1961; Maeno 1967; Bari
& Hallett 1974). Whereas many small bubbles are trapped in the ice when Ts = −20 ◦C,
fewer and more elongated ones are formed when increasing the substrate temperature to
Ts = −10 ◦C and eventually Ts = −5 ◦C (see most right panels in figure 2(a)–(c)). At
even lower freezing rates bubbles do not nucleate anymore and clear ice is formed (Bari
& Hallett 1974). Finally, at the latest stage of the freezing process, we recover the iconic
pointy tip of a frozen water drop (Marin et al. 2014), albeit less pronounced compared with
the three-dimensional case due to confinement.

3.2. Rate of freezing
Before addressing the bubble growth near the ice front, we first briefly turn to the
solidification dynamics of the drop, quantified by the position of the ice front yfront(t).
For several drops at three different substrate temperatures we measure the ice thickness
as a function of time and observe repeatably that, as expected, faster freezing occurs at
lower substrate temperatures (see figure 3). Given the quasi-two-dimensional nature of the
experiments, we model the rate of freezing by simply considering the heat balance at a
planar solid–liquid interface in the absence of bulk flow, which is given by Fourier’s law
of heat conduction (Davis 2001)

ρiLVfront = (ki∇Ti − k�∇T�) · n. (3.1)

Here, ρi is the mass density of ice, L the latent heat of solidification, k the thermal
conductivity of ice (i) and water (�), respectively, T the temperature in both phases and
n the normal vector to the interface. Assuming that all the heat conducted through the
ice contributes to its growth and that heat conduction through the liquid can be neglected,
(3.1) simplifies to

ρiLdyfront

dt
= ki

Tm − Tb

yfront
= λ (Tb − Ts) , (3.2)

where Tm is the melting temperature of water, Tb the bottom temperature and Ts the
imposed temperature on the substrate. We model the heat flux from the substrate to the
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Figure 3. Position of the ice front, yfront, as a function of time on linear (a) and double-logarithmic (b) scale,
for repeated experiments (different symbols) at three different substrate temperatures (different colours). The
solid red lines in (a) correspond to (3.3).

boundary using a heat-transfer coefficient λ = ks/d, where ks is the thermal conductivity
of the (aluminium) substrate and d its (effective) thickness. The second equation in (3.2)
is solved to determine Tb( yfront) (see Appendix A), and to extract values for λ. The first
equation in (3.2) then yields

dyfront

dt
= ki

ρiL
1

yfront

[
Tm − kiTm + λTsyfront

ki + λyfront

]
, (3.3)

which is solved numerically and compared with the experimental observations (see red
lines in figure 3(a)), resulting in a good agreement when Ts = −20 ◦C, −10 ◦C and
an over-prediction when Ts = −5 ◦C. We argue that this discrepancy stems from the
additional heat loss, potentially through the acrylic plates, that becomes more important
at later times during slower freezing, and is not taken into account in the model. As
yfront → ∞, the right-hand term in the brackets of (3.3) approaches Ts and it follows that
yfront(t) ≈ (2κi St t)1/2, where κi = ki/(ρicp) ≈ 1 × 10−6 m2 s−1 is the thermal diffusivity
in the ice, and where the Stefan number, St = L/cp(Tm − Ts) is defined as the ratio of
latent to sensible heat, with cp the heat capacity of ice. At the later stages of the freezing
process we converge to the appropriate scaling of yfront ∼ t1/2 (see figure 3(b)). The
observed deviations between experiment and theory at the end, especially for the case
where Ts = −20 ◦C, are most likely a consequence of the non-planer geometry of the
drop.

4. Bubble growth

In this section we elaborate on the gas accumulation at the moving ice front and the initial
growth of bubbles near the advancing front, which forms the main focus of this paper.

4.1. Gas accumulation at the moving ice front
Gases are naturally dissolved in water. As water turns into ice, these gases are expelled
and accumulate at the advancing solidification front. Under steady conditions, at times
long compared with the diffusive time D/(KV2

front), where K is the partition coefficient,
and for constant front propagation Vfront, the expression of the steady concentration profile
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of the accumulated gases at the front reads (Tiller et al. 1953; Pohl 1954; Carte 1961)

C( y) = C0

(
1 + 1 − K

K
exp

[
−Vfront

D
y
])

, (4.1)

where D ≈ 1 × 10−9 m2 s−1 is the gas diffusion coefficient (Bari & Hallett 1974), K =
0.037 ± 0.007 is the partition coefficient for the gases in a water–ice system and C0 =
(9 ± 3) mg l−1 the gas concentration in water far away from the front, both determined
experimentally (see Appendix B).

Nucleated bubbles grow in this enriched environment near the moving ice front at a
sufficiently high rate, as we will show, that it allows for the quasi-steady approximation on
the front propagation in (4.1) to be used. Additionally, any thermal effects on the bubble
growth itself are neglected, as the thermal gradient in the liquid ahead of the ice front
is sufficiently small (see Appendix A). Given the typical size of the bubble, the water
is therefore assumed to be isothermal at a value close to Tm, during its growth. Thermal
effects only govern the overall freezing process of the droplet, which occur at a much larger
time scale.

4.2. Bubble growth near the approaching ice front
Bubbles nucleate at the moving ice front since the gases dissolved in water are expelled
by the growing ice crystal, accumulate at the front and consequently locally lower the
nucleation threshold. It is important to note that the content of these bubbles can differ
significantly compared with the composition of air in the atmosphere (≈0.79/0.21/4 ×
10−4 vol. for N2/O2/CO2). The reason for this is the substantial difference in solubility
of the individual gases in water in combination with the different partial pressures of
the respective components under standard conditions (Lohse & Hilgenfeldt 1997). Using
Henry’s law we estimate a bubble composition that is enriched in O2 and CO2 compared
with air (≈0.59/0.38/0.03 vol. for N2/O2/CO2), in line with experimental observations
(Bruns 1937; Matsuo & Miyake 1966; Tsurikov 1979). For the remainder of the text we will
refer to the content of the bubble as ‘gas’ and assume parameter values for the individual
(dominant) components N2 and O2 (see Appendix C).

Although the majority of bubbles nucleate at the solidification front, where the rough
ice surface functions as favourable nucleation site, occasionally, but not too sparsely,
we observe bubble nucleation near, but not at, the advancing solidification front (see
figure 4(a)). At a certain initial distance from the front a nucleation site might be present
in the form of a scratch in the acrylic plate, a dust particle or some other type of impurity,
hence assuming some kind of nucleation crevice (Atchley & Prosperetti 1989). The size of
this initial crevice is below our optical resolution (see supplementary movie 4). As the ice
front approaches, and with that the accumulated gases, this nucleation site experiences a
rapidly changing and gas-enriched environment, causing it to grow into a spherical bubble,
whose size is characterised by Rbub (see figure 4(b)). Initially, when Rbub � δC, where
δC = D/Vfront ≈ 100 µm is the typical length of the diffusion boundary layer at the front
(see (4.1)), it might be assumed that the bubble experiences a homogeneous background
concentration field (Bari & Hallett 1974; Lipp et al. 1987). During this stage, the bubble
growth is dominated by diffusion and is well described by the steady Epstein–Plesset
model (Epstein & Plesset 1950)

dRbub

dt
= D
C

ρg

1
Rbub

, and thus R2
bub = 2D
C

ρg
(t − t0) , (4.2)
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Figure 4. (a) Sequence of images (supplementary movie 4) showing the growth of a bubble ahead of the
solidification front, as well as (b) the bubble radius Rbub(t) as function of time t, for several different bubbles
(different colours). (c) Bubble growth normalised by the final bubble size Rbub,∞, before it is engulfed into
the ice, as compared with (4.2) (dashed black line). We define t − t0 < 0 as the time when Rbub would have
been zero. The inset shows the initial concentration difference, 
C, governing the initial growth rate (see
(4.2)) as a function of the advancing velocity Vfront. (d) Schematic of the bubble near the ice moving front
in a supersaturated environment. For all cases we find that H ≈ H0 − Vfrontt, with H0 the initial bubble-front
distance, meaning that bubble centres remain stationary during their growth. The typical length of the diffusion
boundary layer at the front is denoted by δC.

with ρg the mass density of the gas and 
C = C(H0) − Csat the initial concentration
difference between that at the bubble interface and the far field. We define t − t0 < 0
as the time when Rbub would have been zero and find, rather surprisingly, that for all
cases the bubble-front distance H (see figure 4(d)) linearly decreases according to the front
velocity Vfront. Consequently, the centres of the bubbles considered in this work remain
stationary during their growth and show no migration towards or away from the front,
and do not rise due to buoyancy. The reason presumably is some sort of pinning to the
sidewalls.

The initial concentration difference, 
C, depends on (among others) the initial size of
the bubble, setting the saturation concentration Csat at the interface, the initial bubble-front
distance (H0 ≈ 125 µm, see Appendix B), and the advancing velocity of the front (see
inset figure 4(c)). We obtain 
C by fitting the slopes of the experimental data according
to (4.2). Rescaling by the size of the bubble as it touches the ice, Rbub,∞, and the typical
diffusion time, tdiff = ρgR2

bub,∞/(2D
C), shows that the initial bubble growth for all
cases indeed follows (4.2) (see figure 4(c)). However, as the bubble grows and the front
approaches, its growth deviates from that of pure diffusion under initial conditions and is
enhanced.

To pinpoint the origin of the enhanced bubble growth, we perform numerical simulation
to study their dynamics under various conditions (see § 2.2 for technical details).
We ensure that all physical parameters are known from the literature or obtained
experimentally, and that we do no rely on any adjustable fitting parameters. Initially,
advection is omitted and we only consider growth through diffusion. The effect of
advection around the bubble is addressed in more detail in Appendix C.
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Figure 5. (a) Comparison between experiments (data points) and numerical simulations (solid lines)
(supplementary movie 5) on the growth of a bubble near a solidification front, namely when considering
(b) no advection for (I) a homogeneous background concentration with a static front, and for a background
concentration gradient according to (4.1) with a static (II) or moving (III) front. The panels show the
concentration profiles around the bubbles 5 s after initialisation. The initial bubble radius is R0 = 10 µm,
Csat = 0.029 kg m−3 and Vfront = 10 µm s−1 (for III only).

For the numerical simulations we consider three distinct cases. Firstly, we take the
case of a bubble growing in a homogeneous background concentration, with the front,
located at a distance H0 = 125 µm, remaining static. We retrieve a behaviour very similar
to (4.2) (see black line figure 5(a)), where the deviation at the end is a consequence
of the presence of the static interface, bounding the domain, and slightly altering the
concentration field around the bubble (see panel I in figure 5(b)). Secondly, we assume
a background concentration gradient according to (4.1), resulting in a significantly faster
growth of the bubble (see blue line and panel II in figure 5(b)). Thirdly, we consider the
front to be in motion with velocity Vfront and to approach the growing bubble, which further
enhances its growth (see green line and panel III in figure 5(b)). The determined bubble
growth of the latter agrees very nicely with our experimental observations, where the
faster growth originates from a combination of the background gas concentration gradient
and the motion of the interface, causing an accumulation of the iso-concentration lines at
the bottom of the bubble (see panel III in figure 5(b)). This alters the local concentration
gradient close to the interface of the bubble, leading to an enhanced mass transfer and thus
a more rapid growth.

4.3. Enhanced mass transfer
To further rationalise the observed enhanced mass transfer, we recast our problem of a
bubble growing near an advancing solidification front into that of the well-studied case of
mass (or equivalently heat) transfer to a moving spherical object in an infinite domain with
a constant background concentration (or temperature). The dimensionless diffusional flux
to the moving object can then be expressed as (Levich 1962)

Sh ∝ (Re Sc)1/2 , (4.3)

where the dimensionless Sherwood, Reynolds and Schmidt numbers are defined as

Sh = 2RbubṘbubρg

D
C
, Re = ρUR

μ
, and Sc = μ

ρD
, (4.4a–c)
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Figure 6. Value of Sh vs Re Sc for different bubbles growing near the advancing solidification front,
represented by different colours. The data tend towards the limits Sh = 2 and Sh ∼ (Re Sc)1/2 (dashed black
lines) (Levich 1962).

with Ṙbub = dRbub/dt the growth rate of the bubble and U the relative fluid velocity at the
equator of the spherical object. Whereas the Sherwood number is defined as the ratio of
the convective mass transfer rate to diffusive mass transport, the product of Reynolds and
Schmidt numbers is equivalent to a Péclet number, i.e. Re Sc = Pe, which is defined as the
ratio of the rate of advection to that of diffusion. In the limit that (Re Sc) → 0 the solution
to this classical case is Sh = 2, where the concentration field looks similar to that depicted
in panel I of figure 5(b). As the object moves through the (homogeneous) concentration
field, the iso-concentration lines tend to accumulate at one end (Steinberger & Treybal
1960; Frossling 1963; Ihme, Schmidt-Traub & Brauer 1972; Oellrich, Schmidt-Traub &
Brauer 1973), similar to panel III of figure 5(b), leading to an enhanced mass transfer
according to (4.3).

In our case, the bubble is stationary and the background concentration is not constant.
To account for the moving background concentration gradient the bubble experiences, we
introduce an effective velocity as

Ueff =
∣∣∣∣dC

dy

∣∣∣∣ R
C0

Vfront. (4.5)

Considering that U = Ueff , we obtain that our experimental observations are in line with
(4.3) as we approach the limit (Re Sc) → ∞ (see dashed black line in figure 6). In the
opposite limit, when the bubble and the background concentration gradient are both
small, i.e. (Re Sc) → 0, the system undergoes a transition towards a different scaling,
approaching Sh ≈ 2, where the notable scatter arises from inaccuracies in determining
the bubble growth rate Ṙbub for smaller bubbles.

5. Conclusions and outlook

To conclude, we have investigated the freezing of a quasi-two-dimensional sessile drop on
a cooled substrate. During the freezing process, gases dissolved in water are rejected by
the growing ice crystal and accumulate at the moving ice front, creating a supersaturated
region which favours the nucleation of gas bubbles. These bubbles then grow, before
eventually being engulfed into the ice. Their final shape and size in the ice are governed
by a delicate interplay between the rate of freezing and the rate of mass transfer towards
the bubble (Bari & Hallett 1974; Lipp et al. 1987).

In this work, we focused on the experimental and numerical investigation of the initial
growth of those bubbles that nucleate not at but near the solidification front. We show
that at the early stages the growth is dominated by diffusion and is enhanced due to
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a combination of the presence of the background gas concentration gradient and the
motion of the approaching front. We rationalised that, based on the numerical simulations,
which agree nicely with the experimental observations, the iso-concentration lines tend
to accumulate at the bottom of the bubble, leading to an enhanced mass transfer across
the interface of the bubble, and hence a faster growth. We have additionally shown that
our problem can be recast into that of mass transfer to a moving spherical object in
a homogeneous concentration field, finding good agreement between our experimental
data and the existing scaling relations. Finally, through numerical simulations we have
qualitatively addressed how fluid flow around the bubble might further affect its growth
(see Appendix C).

Our findings shed new light on the diverse processes that might govern the growth
of bubbles near a moving interface, subjected to gradients in both concentration and
temperature. Besides any solidification process of pure or multi-component liquids, such
as metals, silica or sapphires, where these findings might be relevant, they might also bring
new insight into the formation of gas bubbles in hailstones (Bari & Hallett 1974) and lake
ice (Swinzow 1966; Gow & Langston 1977) under various conditions. As continuation, it
might be interesting to investigate how the bubble growth is altered when freezing liquids
that are saturated with a more (less) soluble gas, such as CO2 (Ar), to further explore the
relevance of our findings.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.777.
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Appendix A. Bottom and drop temperatures during freezing

While measuring the bottom temperature Tb during the freezing process, we observe a
rapid increase in temperature when the drop, which is at room temperature, is deposited.
After this deposition, the measured temperature slowly decays back towards the set
substrate temperature (see figure 7(a)). Using the second equation of (3.2) we can derive
an expression of Tb as a function of yfront as

Tb = kiTm + λTsyfront

ki + λyfront
, (A1)

with ki = 2.2 W m−1 K−1 the thermal conductivity of ice, Tm its melting temperature,
Ts the set substrate temperature and λ a (fitted) heat-transfer coefficient. Combining
the results of figure 3(a) with figure 7(a), and fitting (A1) through the experimental
data (see figure 8), we find λ = 2.4 × 104 W m−2 K−1, 7.9 × 104 W m−2 K−1, 9.7 ×
104 W m−2 K−1 for Ts = −5 ◦C, −10 ◦C, −20 ◦C, respectively.
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Figure 7. (a) Measured bottom temperature Tb(t) underneath the deposited (at t = 0) drop, which was initially
at room temperature, for three different substrate temperatures. During the freezing process (indicated by the
red dashed lines) Tb(t) deviates from the fixed substrate temperature Ts. (b) Temperature Td within the droplet
measured at three fixed distances when Ts = −10 ◦C.
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Figure 8. Measured bottom temperature Tb(t) underneath the deposited drop as a function of the position
of the ice front, yfront(t) (see figure 3), for three different substrate temperatures. The solid red lines
correspond to (A1) with fitted values for λ. We have λ = 2.4 × 104 W m−2 K−1, 7.9 × 104 W m−2 K−1,
9.7 × 104 W m−2 K−1 for Ts = −5 ◦C, −10 ◦C, −20 ◦C, respectively.

Additionally, to have a rough estimate on the temperature within the drop as it solidifies,
we use a thermocouple immersed in the drop to measure the liquid temperature at
three fixed distances from the advancing front (see figure 7(b)) when Ts = −10 ◦C.
This allows for a first-order estimation of the temperature gradient. We obtain dTd/dy ≈
2.5 × 103 K m−1 (see inset figure 7(b)).

Appendix B. Concentration and surface tension profiles at the front

In order to determine the concentration profile at the solidification front, we rewrite (4.2)
to obtain (Bari & Hallett 1974; Lipp et al. 1987)


C = C( y) − Csat = ρgRbub

D
dRbub

dt
, with Csat = λN2

(
patm + 2σ

Rbub

)
, (B1)

where λN2 = 1.7 × 10−7 kg m−3 Pa−1 is the Henry’s law constant for N2 in water. We
relate the time dependence R(t) to a position dependence R( y) by tracking the centre of
mass altitude H(t) of the bubble with respect to the approaching front (see figure 4(d)).
From this we obtain our experimental result for C( y), see figure 9(a). The initial, diffusive
growth is fitted with (4.1) in order to determine the partition coefficient (K = 0.037 ±
0.007) and the far-field gas concentration in water (C0 = (9 ± 3) mg l−1). This allows us to
then determine the gas supersaturation C/C0 at the front (see figure 9(b)). The dependency
of surface tension on the gas supersaturation is taken from the literature and shown in
figure 9(c).
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Figure 9. (a) Gas concentration C as a function of distance y to the advancing front, for different bubbles,
represented by different colours, as determined by (B1). (b) Gas supersaturation C/C0 in water as a function
of distance. (c) Surface tension σ as function of the supersaturation for O2 and N2 in water (Massoudi & King
1974; Jain & Qiao 2017).

Parameter Value Parameter Value

〈Rbub〉 (m) 25 × 10−6 (see figure 4(b)) RaT ≈3 × 10−4

dρ/dT (kg m−3 K−1) ≈0.05 for 0 ◦C < T < 4 ◦C RaC ≈2 × 10−3

dρ/dC O2: 3.1 × 10−2 [1] MaT ≈56
N2: −0.232 [1,2]

dσ/dT (N m−1 K−1) −1.3 × 10−4 MaC ≈6
dσ/dC (m3 s−2) Num. O2: −1.95 × 10−2 ([3], see Appendix B) — —

Exp. O2: −7.7 × 10−3 ([4], see Appendix B)
Exp. N2: −1.99 × 10−2 ([4], see Appendix B)

dT/dy (K m−1) ≈2.5 × 103 (see Appendix A) — —
dC/dy (kg m−4) ≈ − 3 × 103 (see Appendix B) — —
dCsat/dT (kg m−3 K−1) ≈ − 7 × 10−4 — —

Table 1. Physical parameters and their values, either taken from the literature or determined experimentally.
They are necessary to compute the dimensionless numbers introduced in (C1a,b) and (C2a,b). [1]: (Watanabe
& Iizuka 1985) [2]: (Soto et al. 2019) [3]: (Jain & Qiao 2017) [4]: (Massoudi & King 1974).

Appendix C. Effect of fluid flow around the bubble

In the main part of the paper we have considered that the bubble growth is governed by
diffusion, which tends to account well for our experimental observations. Nonetheless,
given the configuration of our system, in principle flow around a bubble at an advancing
solidification front might emerge in the form of solutal/thermal natural convection
(Enríquez et al. 2014; Dietrich et al. 2016; Soto et al. 2019) or solutal/thermal self-induced
Marangoni advection (Young, Goldstein & Block 1959; Li et al. 2019, 2021; Zeng et al.
2021; Li, Meijer & Lohse 2022; Meijer et al. 2023c). Due to the presence of both
concentration and temperature gradients and the dependency of mass density and surface
tension on each, four potential origins of such flow arise: thermal or solutal natural
convection, or thermal or solutal Marangoni flow. In this appendix we explore whether
any of such flow could be of relevance for the growing bubble at the ice front. We will
conclude this appendix that this is not the case.

Thermal and solutal natural convection would give rise to an upwards flow, since the
colder/more N2-saturated and hence lighter liquid is located at the moving front, i.e.
[(dρ/dT)(dT/dy), (dρ/dCN2)(dC/dy)] > 0 (see table 1). To quantify their importance
with respect to the diffusive process we define a thermal and solutal Rayleigh number

996 A22-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

77
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.777


Enhanced bubble growth near solidification front

IV VIII

0.5 1.0 1.50

0.5

1.0 III
IV

V

Downwards flow

Upwards flow

No flow

(R
bu

b/
R b

ub
,∞

)2

2D�C/ρgR2
bub,∞ (t – t0)

0.1 0.2

C (kg m–3)

0.3

(b)(a)

Figure 10. (a) Numerical simulations (supplementary movie 6) on the growth of a bubble near an advancing
solidification front considering (b) downwards (IV) and upwards (V) advection at the interface of the bubble.
The panels show the streamlines of the flow superimposed on the concentration profiles around the bubbles,
3 seconds after their initialisation. White-coloured (black-coloured) streamlines indicate (anti-)clockwise
rotation. The initial bubble radius is R0 = 10 µm, Csat = 0.029 kg m−3 and Vfront = 10 µm s−1 (for all cases).

as the ratio of the natural convection time scale to the diffusion time scale (Li et al. 2022)

RaT = gR4

μD
dρ

dT
dT
dy

and RaC = gR4

μD
dρ

dC
dC
dy

, (C1a,b)

where g is gravitational acceleration and μ the dynamic viscosity of water. Other physical
parameters and their corresponding values are tabulated in table 1. When evaluating these
Rayleigh numbers for our specific case, it becomes apparent that diffusion dominates over
natural convection and RaT and RaC are very small, see table 1.

We now turn to the self-induced Marangoni advection. Whereas the thermal Marangoni
advection around a bubble is well understood (Young et al. 1959) and would cause
a downwards flow, i.e. (dσ/dT)(dT/dy) < 0 (see table 1), its solutal counter-part
requires a more elaborate discussion. Considering thermodynamic equilibrium at the
bubble interface, the local concentration of the dissolved gases is set by the saturation
concentration, Csat, governed by Henry’s law (Yang et al. 2018; Massing et al. 2019).
Given the temperature dependence of the Henry coefficient, the thermal gradient present
in the water (see Appendix A) might induce an opposing upwards solutal Marangoni flow
(Lubetkin 2003), since the saturation concentration decreases with increasing temperature,
i.e. (dCsat/dT) < 0, and surface tension decreases with increasing concentration, i.e.
(dσ/dC) < 0, leading to (dT/dy)(dCsat/dT)(dσ/dC) > 0 (see table 1). Additionally,
surface active species such as dissolved gases (Lubetkin 2002), surfactants (Meulenbroek,
Vreman & Deen 2021) or ions (Park et al. 2023) might also induce concentration gradients
along the interface, altering the surface tension locally and hence inducing a solutal
Marangoni flow. We can compare the ratio of the advection time scale, due to the
self-induced Marangoni flows, with the diffusive time scale, expressed as two Marangoni
numbers (Li et al. 2022)

MaT = VM,TR
D

= −1
2

R2

μD
dσ

dT
dT
dy

and MaC = VM,CR
D

= 1
2

R2

μD
dσ

dC
dCsat

dT
dT
dy

,

(C2a,b)
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where VM is the self-induced thermal (T) or solutal (C) Marangoni velocity at the equator
of the bubble (Young et al. 1959; Li et al. 2022). The physical parameters and their
corresponding values are tabulated in table 1. Although the determined values of the
Marangoni numbers are moderate (also see table 1), efforts to experimentally visualise
the flow around the growing bubbles through particle tracking velocimetry did not yield
valuable insights at the time.

Alternatively, we once again turn to the numerical simulations to obtain qualitative
insights on how fluid flow around the growing bubble might affect its growth. By altering
the strength of the Marangoni advection artificially, we are able to generate flow at the
interface of the growing bubble in upwards and downwards direction. These imposed flow
structures alter the local concentration profile in the vicinity of the bubble and therefore
hinder or accelerate its growth, compared with the purely diffusive case discussed earlier
(panel III in figure 5(b)). Whereas the emergence of a downwards flow retards the bubble
growth, as advection depletes the supersaturated region around the bubble (see panel IV in
figure 10(b)), the growth is accelerated when the flow is upwards. The liquid in the vicinity
of the bubble becomes more and more enriched, leading to a significantly more rapid
growth (see panel V in figure 10(b)). This is in contrast to our experimental observations,
and therefore we think that also Marangoni flows do not play a role in the bubble growth
process under investigation.
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