23-REGULAR PARTITIONS AND MODULAR FORMS WITH COMPLEX MULTIPLICATION

DAVID PENNISTON

(Received 9 September 2022; accepted 29 October 2022; first published online 23 December 2022)

Abstract

A partition of a positive integer *n* is called *l*-regular if none of its parts is divisible by *l*. Denote by $b_{\ell}(n)$ the
number of *l*-regular partitions of *n*. We give a complete characterisation of the arithmetic number of *t*-regular partitions of *n*. We give a complete characterisation of the arithmetic of $b_{23}(n)$ modulo 11 for all *n* not divisible by 11 in terms of binary quadratic forms. Our result is obtained by establish 11 for all *n* not divisible by 11 in terms of binary quadratic forms. Our result is obtained by establishing a relation between the generating function for these values of $b_{23}(n)$ and certain modular forms having complex multiplication by $\mathbb{Q}(\sqrt{-69})$.

2020 *Mathematics subject classification*: primary 11P83.

Keywords and phrases: partitions, congruences, modular forms.

1. Introduction

A partition of a positive integer *n* is a nonincreasing sequence of positive integers whose sum is *n*. For $\ell > 1$, a partition is called ℓ -regular if none of its parts is divisible
by ℓ . Denoting by $h_{\ell}(n)$ the number of ℓ -regular partitions of *n* and adopting the by ℓ . Denoting by $b_{\ell}(n)$ the number of ℓ -regular partitions of *n* and adopting the convention $b_{\ell}(0) := 1$ we have the identity convention $b_{\ell}(0) := 1$, we have the identity

$$
\sum_{n=0}^{\infty} b_{\ell}(n)q^n = \prod_{n=1}^{\infty} \left(\frac{1-q^{\ell n}}{1-q^n}\right).
$$

A substantial body of results on the arithmetic of $b_{\ell}(n)$ modulo *m* has been established.
Perhaps the most closent of these concerns the perity of $h(n)$, where Euler's Perhaps the most elegant of these concerns the parity of $b_2(n)$, where Euler's pentagonal number theorem implies that $b_2(n)$ is odd precisely when $24n + 1$ is a perfect square. This result has been extended in a number of directions. For example, Ono and the author [\[4\]](#page-8-0) gave a description of the behaviour of $b_2(n)$ modulo 8 in terms of the arithmetic of the ring $\mathbb{Z}[\sqrt{-6}]$, while Gordon and Ono [\[3\]](#page-8-1) proved that if p is of the arithmetic of the ring $\mathbb{Z}[V-6]$, while Gordon and Ono [3] proved that if p is
a prime divisor of ℓ such that $p^a \mid \ell$ and $p^a \ge \sqrt{\ell}$, then for every positive integer *j*,
the congruence $h_{\ell}(n) = 0$ (mod the congruence $b_{\ell}(n) \equiv 0 \pmod{p^{j}}$ holds for almost all $n \ge 0$, that is, on a set of nonnegative integers of density one.

Addressing the case where ℓ and *m* are coprime, Ahlgren and Lovejoy [\[1\]](#page-8-2) showed
t if $n > 5$ is prime, then $h_2(n) = 0 \pmod{n}$ for at least $(n + 1)/2n$ of the values that if $p \ge 5$ is prime, then $b_2(n) \equiv 0 \pmod{p^j}$ for at least $(p + 1)/2p$ of the values

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

[2] 23-regular partitions 255

of *n*. In [\[5\]](#page-8-3), the author extended this work to odd primes $\ell \le 23$, and also proved
that $h_{22}(n) = 0$ (mod 11) for at least 10/11 of the values of *n* by showing that this that $b_{23}(n) \equiv 0 \pmod{11}$ for at least 10/11 of the values of *n* by showing that this congruence holds for almost all *n* not divisible by 11 (see, for example, [\[2,](#page-8-4) [9,](#page-9-0) [10\]](#page-9-1) for further results). In this paper, we use the theory of modular forms to refine the latter result, giving a complete characterisation of the arithmetic of $b_{23}(n)$ modulo 11 for *n* with $11 \nmid n$.

Our description can be phrased in terms of binary quadratic forms. To give a flavour here (see Section [3](#page-3-0) for complete results), for $a, b, c \in \mathbb{Z}$, let

$$
F_{a,b,c}(X,Y) = aX^2 + bXY + cY^2.
$$

Given an odd prime *p* with $\left(\frac{-69}{p}\right) = 1$, the classical theory implies that there exist integers *x* and *y* with

$$
p = F_{a,b,c}(x, y) \tag{1.1}
$$

for a unique triple (a, b, c) in the set

$$
\{(1,0,69), (3,0,23), (2,2,35), (6,6,13), (5,2,14), (7,2,10)\}.
$$

THEOREM 1.1. *Suppose n is a positive integer such that* $12n + 11 = p$ *is prime.*

- (i) $If(\frac{-69}{p}) = -1$, then $b_{23}(n) \equiv 0 \pmod{11}$.
- (ii) *If* $\left(\frac{-69}{p}\right) = 1$, *let x* and *y be integers satisfying* [\(1.1\)](#page-1-0) *and let* $\delta_p \in \{-1, 1\}$ *be defined as in Section* [3](#page-3-0) (*see* [\(3.1\)](#page-3-1)). Then

$$
b_{23}(n) \equiv \left(\frac{p}{11}\right) \cdot \delta_p \cdot 9yp^4 \pmod{11}.
$$

In particular, $b_{23}(n) \equiv 0 \pmod{11}$ *if and only if* 11 | *y*.

Theorem [1.1](#page-1-1) addresses the case where $12n + 11$ is prime. For general *n* with $11 \nmid n$, our description requires consideration of the prime factorisation of $12n + 11$.

The remainder of the paper is organised as follows. In Section [2,](#page-1-2) we provide the necessary background on modular forms and construct the forms we require. In Section [3,](#page-3-0) we state and prove our main results and illustrate their use.

2. Background and two CM-forms

Let *k* and *N* be positive integers and χ a Dirichlet character modulo *N*. We denote by $M_k(\Gamma_0(N), \chi)$ the space of holomorphic modular forms of weight *k* on $\Gamma_0(N)$ with Nebentypus χ , and by $S_k(\Gamma_0(N), \chi)$ the subspace of cusp forms (we suppress χ when it is the trivial character). Denote by χ_{23} the character defined by $\chi_{23}(\bullet) = \left(\frac{23}{\bullet}\right)$ and write $q := e^{2\pi i z}$ for complex *z* with $\text{Im}(z) > 0$.

We begin by stating a slight refinement of Theorem 2.1 in [\[5\]](#page-8-3) which implies that the values of $b_{23}(n)$ with $11 \nmid n$ can be realised modulo 11 as the Fourier coefficients of a modular form of integer weight. (Since this result can be established in the same way as Proposition 2.1 in [\[6\]](#page-8-5), we do not include the proof.)

PROPOSITION 2.1. *There exists a cusp form*

$$
H(z) \in S_{1330}(\Gamma_0(144 \cdot 11^3 \cdot 23), \chi_{23}) \cap \mathbb{Z}[[q]]
$$

such that

$$
H(z) \equiv \sum_{n=0}^{\infty} \left(\frac{n}{11}\right) b_{23}(n) q^{12n+11} \pmod{11}.
$$

Following closely the exposition in [\[7\]](#page-8-6), we now construct two normalised Hecke eigenforms with complex multiplication that turn out to be related to $H(z)$ modulo 11. Let $K = \mathbb{Q}(\sqrt{-69})$, a number field of discriminant $d = -276$, and define the ideal $\mathcal F$ of the ring of integers $O_K = \mathbb{Z}[\sqrt{-69}]$ by

$$
\mathcal{F}=(6,2\sqrt{-69}).
$$

We note that $N(F) = 12$, and from now on, we write $\theta := \sqrt{-69}$. One can verify that

$$
\{1, 5, 2+\theta, 4+\theta\}
$$

is a set of representatives of $(O_K/\mathcal{F})^*$, and since $(O_K/\mathcal{F})^* \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, it follows that the function $O: (O_K/\mathcal{F})^* \to \mathbb{C}^*$ defined by the function $\rho: (O_K/\mathcal{F})^* \to \mathbb{C}^*$ defined by

$$
\rho(1) = 1, \quad \rho(5) = -1, \quad \rho(2 + \theta) = 1, \quad \rho(4 + \theta) = -1
$$

is a group homomorphism.

Next, we define Hecke characters c_1 and c_2 on the fractional ideals of K coprime to $\mathcal F$. We begin by defining c_1 on principal ideals of O_K via

$$
c_1((a+b\theta)) = \rho(a+b\theta)(a+b\theta)^{49}
$$
 (2.1)

for $a, b \in \mathbb{Z}$. Since O_K has class number eight, we must extend c_1 . One can check that the class group is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ and is generated by the nonprincipal ideals $(5, 1 + \theta)$ and $(23, \theta)$ which satisfy $(5, 1 + \theta)^4 = (2 - 3\theta)$ and $(23, \theta)^2 = (23)$. Letting

$$
c_1((5, 1+\theta)) = \left(\frac{1}{2}\left(\sqrt{10 + 3\sqrt{6}} - i\sqrt{10 - 3\sqrt{6}}\right)\right)^{49} \tag{2.2}
$$

and

$$
c_1((23, \theta)) = (\sqrt{-23})^{49} = 23^{24}\sqrt{-23}
$$
 (2.3)

allows us to complete c_1 to a Hecke character of *K* with exponent 49 and conductor \mathcal{F} , which in turn yields a Dirichlet character ω_1 defined by

$$
\omega_1(n) = c_1(nO_K)/n^{49}
$$

for $n \in \mathbb{Z}$ coprime to 6. We define companion characters c_2 and ω_2 similarly, with c_2 extending to nonprincipal ideals via

$$
c_2((5, 1+\theta)) = ic_1((5, 1+\theta))
$$

and

$$
c_2((23,\theta)) = -c_1((23,\theta)).
$$

For $v \in \{1, 2\}$, let

$$
g_{\nu}(z) = \sum c_{\nu}(I)q^{N(I)} := \sum_{n=1}^{\infty} s_{\nu}(n)q^{n},
$$

where the first sum is over all ideals I of O_K coprime to $\mathcal F$. Then g_v is a normalised Hecke eigenform of weight 50, level $|d| \cdot N(\mathcal{F}) = 144 \cdot 23$ and character $\epsilon_K \omega_v$, where $\epsilon_K(p) = \left(\frac{-69}{p}\right)$ for any prime $p \notin \{2, 3, 23\}$. Note that for such a prime, we have $\omega_\nu(p) =$ $\rho(p) = \left(\frac{p}{3}\right)$. Then since $\left(\frac{-69}{p}\right)\left(\frac{p}{3}\right) = \left(\frac{23}{p}\right)$ by quadratic reciprocity, it follows that

$$
g_{\nu}(z) \in S_{50}(\Gamma_0(144 \cdot 23), \chi_{23}).
$$

The fact that $g_{\nu}(z)$ is an eigenform implies that

$$
s_v(mn) = s_v(m)s_v(n)
$$
 when $(m, n) = 1$ (2.4)

and

$$
s_{\nu}(p^{j+1}) = s_{\nu}(p)s_{\nu}(p^{j}) - \chi_{23}(p)p^{49}s_{\nu}(p^{j-1})
$$
\n(2.5)

for all primes $p \ge 5$ and $j \ge 1$.

3. Proofs of the main results

We begin by finding explicit expressions for the Fourier coefficients $s_y(p)$ of the CM-forms $g_{\nu}(z)$ which can be leveraged to evaluate the coefficients of two auxiliary forms (see $h_v(z)$ below) modulo 11. An odd prime p satisfying $\left(\frac{-69}{p}\right) = -1$ is inert in *K*, which implies that $s_v(p) = 0$. Since 23 ramifies in *K*, we have $s_v(23) = c_v((23, \theta))$. Now suppose *p* is an odd prime with $\left(\frac{-69}{p}\right) = 1$ and that *x*, *y* $\in \mathbb{Z}$ are as in [\(1.1\)](#page-1-0). Define δ_p by

$$
\delta_p = \begin{cases}\n\rho(x + y\theta) & \text{if } (a, b, c) = (1, 0, 69), \\
\rho((9x + 16y) - (x - y)\theta) & \text{if } (a, b, c) = (6, 6, 13), \\
\rho((5x + y) - y\theta) & \text{if } (a, b, c) = (5, 2, 14), \\
\rho((7x + y) + y\theta) & \text{if } (a, b, c) = (7, 2, 10), \\
\rho(23y + x\theta) & \text{if } (a, b, c) = (3, 0, 23), \\
\rho((5x - 32y) + (x + 3y)\theta) & \text{if } (a, b, c) = (2, 2, 35),\n\end{cases}
$$
\n(3.1)

and for $n \geq 1$, let

$$
t_1(n) = \begin{cases} s_1(n) & \text{if } n \equiv 1 \text{ (mod 12)}, \\ s_1(n)/i\sqrt{10 - 3\sqrt{6}} & \text{if } n \equiv 5 \text{ (mod 12)}, \\ s_1(n)/\sqrt{14 - 5\sqrt{6}} & \text{if } n \equiv 7 \text{ (mod 12)}, \\ s_1(n)/\sqrt{-23} & \text{if } n \equiv 11 \text{ (mod 12)}. \end{cases}
$$

We define $t_2(n)$ in the same way as $t_1(n)$ except that we divide $s_2(n)$ by $i\sqrt{10+3}$ √ 6 when $n \equiv 5 \pmod{12}$, and by $\sqrt{14 + 5}$ √ 6 when $n \equiv 7 \pmod{12}$. Our next result (in the proof of which we will see that $t_1(n) \in \mathbb{Z}$ [√ 6]) gives expressions for $t_1(p)$ modulo 11 in terms of the six reduced binary quadratic forms of discriminant −276 mentioned in in terms of the six reduced binary quader the introduction. Recall that $\theta = \sqrt{-69}$.

THEOREM 3.1. *Suppose p is an odd prime with* $\left(-\frac{69}{p}\right) = 1$ *. Let* $x, y \in \mathbb{Z}$ *be defined by* [\(1.1\)](#page-1-0), *replacing x* and *y by* −*x* and −*y if necessary so that* −*x* − 2*y* + $\sqrt{6}y$ > 0 *by* (1.1), replacing x and y by $-x$ and $-y$ if necessary so that $-x - 2y + \sqrt{6}y > 0$
if $(a, b, c) = (5, 2, 14)$ and $x - 2y - \sqrt{6}y > 0$ if $(a, b, c) = (7, 2, 10)$ *. Then, modulo the*
ideal of $\mathbb{Z}[\sqrt{6}]$ generated by 11 *ideal of* Z[6] *generated by* 11*,*

$$
\delta_p t_1(p) \equiv \begin{cases}\n2xp^4 & \text{if } (a, b, c) = (1, 0, 69), \\
(2x + y)p^4 \cdot \sqrt{6} & \text{if } (a, b, c) = (6, 6, 13), \\
(x + 2y + \sqrt{6}y)p^4 & \text{if } (a, b, c) = (5, 2, 14), \\
(x - 2y - \sqrt{6}y)p^4 & \text{if } (a, b, c) = (7, 2, 10), \\
9yp^4 & \text{if } (a, b, c) = (3, 0, 23), \\
yp^4 \cdot \sqrt{6} & \text{if } (a, b, c) = (2, 2, 35).\n\end{cases}
$$

PROOF. For the sake of brevity, we provide details for only two of the cases, as the others can be handled similarly.

For $(a, b, c) = (2, 2, 35)$, we begin with the ideal calculation

$$
(5, 1 + \theta)^2 (23, \theta)(47, 5 + \theta) = (46 - 19\theta).
$$

Combining this with (2.1) , (2.2) , (2.3) and the multiplicativity of $c₁$ yields

$$
c_1((47,5+\theta)) = \left(\frac{5+\theta}{\sqrt{2}}\right)^{49}.
$$

Now suppose that $p > 47$ is a prime with $p = 2x^2 + 2xy + 35y^2$ for some $x, y \in \mathbb{Z}$, and denote by \mathfrak{P} and \mathfrak{P}' the prime ideals of O_K lying above p. It is easy to verify that if $a + b\theta \in (47, 5 + \theta)$ for some $a, b \in \mathbb{Z}$, then $a \equiv 5b \pmod{47}$. Using this and the equalities

$$
47p = (5x - 32y)^2 + 69(x + 3y)^2 = (5x + 37y)^2 + 69(x - 2y)^2,
$$

we find that the elements

[6] 23-regular partitions 259

$$
\mu = (5x - 32y) + (x + 3y)\theta
$$
 and $v = (5x + 37y) + (x - 2y)\theta$

generate the principal ideals $(47, 5 + \theta)\mathfrak{P}$ and $(47, 5 + \theta)\mathfrak{P}'$. Since

$$
\mu v = -44x^2 - 44xy - 770y^2 + (10x^2 + 10xy + 175y^2)\theta,
$$

it follows that

$$
\rho(\mu)\rho(\nu) = \rho(\mu\nu) = \rho(4 + \theta) = -1,
$$

and hence $s_1(p) = c_1(\mathfrak{P}) + c_1(\mathfrak{P}')$ is equal to

$$
\rho(\mu) \Biggl[\Bigl(\sqrt{2}x + \frac{\sqrt{2}}{2}y + \frac{y}{2} \sqrt{-138} \Bigr)^{49} - \Bigl(\sqrt{2}x + \frac{\sqrt{2}}{2}y - \frac{y}{2} \sqrt{-138} \Bigr)^{49} \Biggr].
$$

A calculation now shows that $s_1(p)$ has the form $\rho(\mu) y C(x, y)$
 $\mathbb{Z}[x, y]$ is a homogeneous polynomial of degree 48. Using F −138, where *C*(*x*, *y*) ∈ $\mathbb{Z}[x, y]$ is a homogeneous polynomial of degree 48. Using Fermat's Little Theorem we find that *yC*(*x*, *y*) is congruent modulo 11 to $y(2x^2 + 2xy + 35y^2)^4$, and since $p \equiv$ 11 (mod 12), our result follows.

Now let $(a, b, c) = (7, 2, 10)$. We begin by using the equality

$$
(5, 1 + \theta)(23, \theta)(7, 6 + \theta) = (23 - 2\theta)
$$

as above to deduce that

$$
c_1((7,6+\theta)) = \left(\frac{1}{2}\left(\sqrt{14-5\sqrt{6}}+i\sqrt{14+5\sqrt{6}}\right)\right)^{49}.
$$

Combining this with

$$
c_1((7,6+\theta))c_1((7,1+\theta)) = c_1((7)) = \rho(7) \cdot 7^{49} = 7^{49}
$$

then gives

$$
c_1((7, 1 + \theta)) = \left(\frac{1}{2} \left(\sqrt{14 - 5\sqrt{6}} - i\sqrt{14 + 5\sqrt{6}}\right)\right)^{49}.
$$

Next suppose that $p > 7$ is a prime with $p = 7x^2 + 2xy + 10y^2$. Then $7p = (7x + y)^2 + 69y^2$ and by replacing x by $-x$ and y by $-y$ if necessary we may ensure that $x - 2y = 0$ $69y^2$, and by replacing *x* by $-x$ and *y* by $-y$ if necessary we may ensure that $x - 2y - 1$ $\sqrt{6}y > 0$. Let *z* be an integer such that

$$
z(7x + y) \equiv -69y \pmod{p}.
$$

One can verify that $z^2 \equiv -69 \pmod{p}$ (which implies that $(p, \pm z + \theta)$ are the prime ideals of O_K above *p*) and

$$
(7, 1 + \theta)(p, z + \theta) = ((7x + y) + y\theta).
$$

It follows that

$$
c_1((p, z + \theta)) = \rho((7x + y) + y\theta)
$$

$$
\cdot \left(\frac{1}{2}(\sqrt{2p + (-5x^2 - 8xy + 6y^2)\sqrt{6}} + s \cdot \sqrt{-2p + (-5x^2 - 8xy + 6y^2)\sqrt{6}})\right)^{49},
$$

where $s = sign(x^2 - 4xy - 2y^2)$.

<https://doi.org/10.1017/S0004972722001393>Published online by Cambridge University Press

Since $p \equiv 7 \pmod{12}$,

$$
c_1((p, z + \theta))c_1((p, -z + \theta)) = c_1((p)) = \rho(p)p^{49} = p^{49}.
$$

Hence, $c_1((p, -z + \theta)) = \overline{c_1((p, z + \theta))}$, and a calculation reveals that

$$
s_1(p) = \sqrt{14 - 5\sqrt{6}} \cdot \rho((7x + y) + y\theta)(x - 2y - \sqrt{6}y)D(x, y)
$$
(3.2)

with $D(x, y) \in \mathbb{Z}$ [6 [$(x, y]$. Our result now follows as in the previous case. \Box

REMARK 3.2. For our claim that $t_1(n) \in \mathbb{Z}$ √ 6], note that if $p = 5x^2 + 2xy + 14y^2$, then $p \equiv 5 \pmod{12}$, and an argument similar to the one given in our proof of [\(3.2\)](#page-6-0) for primes represented by *F*7,2,10 shows that

$$
s_1(p) = i\sqrt{10 - 3\sqrt{6}} \cdot \rho((5x + y) - y\theta)(x + 2y + \sqrt{6}y)E(x, y)
$$
(3.3)

for some $E(x, y) \in \mathbb{Z}$ [6][*x*, *y*]. Moreover, observe that

$$
i\sqrt{10-3\sqrt{6}}\cdot\sqrt{14-5\sqrt{6}} = (-2+\sqrt{6})\sqrt{-23}.
$$

REMARK 3.3. The parallel result to Theorem [3.1](#page-4-0) for $t_2(p)$ states that for each odd prime *p* with $\left(\frac{-69}{p}\right) = 1$,

$$
\delta_p t_2(p) \equiv \begin{cases}\n2xp^4 & \text{if } (a, b, c) = (1, 0, 69), \\
-(2x + y)p^4 \cdot \sqrt{6} & \text{if } (a, b, c) = (6, 6, 13), \\
(-x - 2y + \sqrt{6}y)p^4 & \text{if } (a, b, c) = (5, 2, 14), \\
(-x + 2y - \sqrt{6}y)p^4 & \text{if } (a, b, c) = (7, 2, 10), \\
-9yp^4 & \text{if } (a, b, c) = (3, 0, 23), \\
yp^4 \cdot \sqrt{6} & \text{if } (a, b, c) = (2, 2, 35).\n\end{cases}
$$

We now show that the behaviour of $b_{23}(n)$ modulo 11 for 11 $\nmid n$ is controlled by the Fourier coefficients of the CM-forms $g_{\nu}(z)$ defined in Section [2.](#page-1-2) We do this by establishing a relation between the coefficients of the form $H(z)$ from Proposition [2.1](#page-2-3) and those of two auxiliary forms built from the $g_{\nu}(z)$ which we now define.

For $n \geq 1$, write

$$
t_1(n) = \alpha_n + \beta_n \sqrt{6}
$$

with $\alpha_n, \beta_n \in \mathbb{Z}$. Using Theorem [3.1](#page-4-0) and Remark [3.3](#page-6-1) along with [\(2.4\)](#page-3-2) and [\(2.5\)](#page-3-3), it
is straightforward to show that $t_0(n) = -\alpha + \beta \sqrt{6}$ when $n = 11 \pmod{12}$. For each is straightforward to show that $t_2(n) = -\alpha_n + \beta_n \sqrt{6}$ when $n \equiv 11 \pmod{12}$. For each $n \in \{1, 2\}$ we define the modular form $v \in \{1, 2\}$, we define the modular form

$$
h_v(z) = \sum_{n \equiv 11 \pmod{12}} t_v(n) q^n \in M_{50}(\Gamma_0(144 \cdot 23), \chi_{23}).
$$

[8] 23-regular partitions 261

Next, let

$$
F(z) := \frac{h_1(z) - h_2(z)}{2} = \sum_{n \equiv 11 \pmod{12}} \alpha_n q^n
$$

and

$$
G(z) := \frac{h_1(z) + h_2(z)}{2\sqrt{6}} = \sum_{n \equiv 11 \pmod{12}} \beta_n q^n.
$$

THEOREM 3.4. Suppose n is a positive integer with $11 \nmid n$. Then

$$
b_{23}(n) \equiv \left(\frac{n}{11}\right) (\alpha_{12n+11} + 9\beta_{12n+11}) \pmod{11}.
$$

PROOF. Note first that if $H(z)$ is the modular form in Proposition [2.1,](#page-2-3) then our result is equivalent to the integral power series congruence

 $H(z) \equiv F(z) + 9G(z)$ (mod 11).

Recall the weight ten normalised Eisenstein series

$$
E_{10}(z) = 1 - 264 \sum_{n=1}^{\infty} \sigma_9(n) q^n \in M_{10}(\Gamma_0(1)),
$$

where $\sigma_9(n) = \sum_{d|n} d^9$. Since $F(z) + 9G(z) \in M_{50}(\Gamma_0(144 \cdot 23), \chi_{23})$,

$$
(F(z) + 9G(z))E_{10}(z)^{128} \in M_{1330}(\Gamma_0(144 \cdot 23), \chi_{23}),
$$

and hence both $(F(z) + 9G(z))E_{10}(z)^{128}$ and $H(z)$ lie in the space

 $M_{1330}(\Gamma_0(144 \cdot 11^3 \cdot 23), \chi_{23})$.

Since $E_{10}(z) \equiv 1 \pmod{11}$, on checking that the coefficients of the Fourier expansions of $H(z)$ and $F(z) + 9G(z)$ agree modulo 11 as far as the Sturm bound [\[8\]](#page-9-2), our proof is complete.

REMARK 3.5. Theorems [3.1](#page-4-0) and [3.4,](#page-7-0) when used in conjunction with [\(2.4\)](#page-3-2), [\(2.5\)](#page-3-3), the value of *s*₁(23) and the fact that *s*₁(*p*) = 0 for odd primes *p* with $\left(\frac{-69}{p}\right)$ = -1, allow one to evaluate $b_{23}(n)$ modulo 11 for any *n* not divisible by 11.

To illustrate, first let $n = 197$. Since $12n + 11 = 5³ \cdot 19$, we begin by noting that

 $5 = F_{5,2,14}(-1,0)$ and $19 = F_{7,2,10}(-1,-1)$.

By [\(3.3\)](#page-6-2) and [\(3.2\)](#page-6-0),

$$
s_1(5) = i\sqrt{10 - 3\sqrt{6}} \cdot \rho(-5)(-1)E(-1,0) = -i\sqrt{10 - 3\sqrt{6}} \cdot E(-1,0)
$$

and

$$
s_1(19) = \sqrt{14 - 5\sqrt{6}} \cdot \rho(-8 - \theta)(1 + \sqrt{6})D(-1, -1) = \sqrt{14 - 5\sqrt{6}} \cdot (-1 - \sqrt{6})D(-1, -1).
$$

262 D. Penniston [9]

Then (2.5) yields

$$
s_1(5^2) = (-10 + 3\sqrt{6})E(-1,0)^2 + 5^{49}
$$

and

$$
s_1(5^3) = -i\sqrt{10 - 3\sqrt{6}} \cdot [(-10 + 3\sqrt{6})E(-1,0)^3 + 2\cdot 5^{49}E(-1,0)],
$$

and so [\(2.4\)](#page-3-2) allows us to conclude that $s_1(5^3 \cdot 19)$ is equal to

$$
(4 - \sqrt{6})D(-1, -1)[(-10 + 3\sqrt{6})E(-1, 0)^3 + 2\cdot 5^{49}E(-1, 0)]\sqrt{-23}.
$$

Since $D(-1,-1) \equiv 19^4 \equiv 4 \pmod{11}$, $E(-1,0) \equiv 5^4 \equiv 9 \pmod{11}$ and $5^{49} \equiv$ 9 (mod 11), it follows that

$$
t_1(5^3 \cdot 19) \equiv 4 + \sqrt{6} \pmod{11}
$$
.

Theorem [3.4](#page-7-0) then yields

$$
b_{23}(197) \equiv \left(\frac{197}{11}\right)(4+9\cdot 1) \equiv 9 \pmod{11},
$$

which one may verify using the exact value $b_{23}(197) = 2626664703430$.

Now let $n = 102$. Since $12n + 11 = 5 \cdot 13 \cdot 19$, we proceed by noting that $13 =$ $F_{6,6,13}(0,1)$, which gives

$$
s_1(13) = t_1(13) \equiv \rho(16 + \theta)(1)(13^4)\sqrt{6} \equiv 6\sqrt{6} \pmod{11}.
$$

Combining this with our values of $s₁(5)$ and $s₁(19)$, we can calculate

$$
t_1(5 \cdot 13 \cdot 19) \equiv 2 + 6\sqrt{6} \pmod{11}
$$

and hence Theorem [3.4](#page-7-0) implies that

$$
b_{23}(102) \equiv \left(\frac{102}{11}\right)(2+9\cdot 6) \equiv 1 \pmod{11},
$$

which can be checked against $b_{23}(102) = 226889906$.

References

- [1] S. Ahlgren and J. Lovejoy, 'The arithmetic of partitions into distinct parts', *Mathematika* 48(1–2) (2001), 203–211.
- [2] E. Boll and D. Penniston, 'The 7-regular and 13-regular partition functions modulo 3', *Bull. Aust. Math. Soc.* 93(3) (2016), 410–419.
- [3] B. Gordon and K. Ono, 'Divisibility of certain partition functions by powers of primes', *Ramanujan J.* 1(1) (1997), 25–34.
- [4] K. Ono and D. Penniston, 'The 2-adic behavior of the number of partitions into distinct parts', *J. Combin. Theory Ser. A* 92(2) (2000), 138–157.
- [5] D. Penniston, 'Arithmetic of ℓ -regular partition functions', *Int. J. Number Theory* **4**(2) (2008), 295–302 295–302.
- [6] D. Penniston, '11-regular partitions and a Hecke eigenform', *Int. J. Number Theory* 15(6) (2019), 1251–1259.
- [7] J.-P. Serre, 'Sur la lacunarité des puissances de η', *Glasg. Math. J.* ²⁷ (1985), 203–221.

[10] 23-regular partitions 263

- [8] J. Sturm, 'On the congruence of modular forms', in: *Number Theory*, Lecture Notes in Mathematics, 1240 (eds. D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn and M. B. Nathanson) (Springer, Berlin–Heidelberg, 1984), 275–280.
- [9] S. Treneer, 'Congruences for the coefficients of weakly holomorphic modular forms', *Proc. Lond. Math. Soc. (3)* 93(2) (2006), 304–324.
- [10] J. J. Webb, 'Arithmetic of the 13-regular partition function modulo 3', *Ramanujan J.* 25(1) (2011), 49–56.

DAVID PENNISTON, Department of Mathematics,

University of Wisconsin Oshkosh, Oshkosh, WI 54901-8631, USA e-mail: pennistd@uwosh.edu