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Abstract

A partition of a positive integer n is called �-regular if none of its parts is divisible by �. Denote by b�(n) the
number of �-regular partitions of n. We give a complete characterisation of the arithmetic of b23(n) modulo
11 for all n not divisible by 11 in terms of binary quadratic forms. Our result is obtained by establishing
a relation between the generating function for these values of b23(n) and certain modular forms having
complex multiplication by Q(

√
−69).
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1. Introduction

A partition of a positive integer n is a nonincreasing sequence of positive integers
whose sum is n. For � > 1, a partition is called �-regular if none of its parts is divisible
by �. Denoting by b�(n) the number of �-regular partitions of n and adopting the
convention b�(0) := 1, we have the identity

∞∑
n=0

b�(n)qn =

∞∏
n=1

(1 − q�n

1 − qn

)
.

A substantial body of results on the arithmetic of b�(n) modulo m has been established.
Perhaps the most elegant of these concerns the parity of b2(n), where Euler’s
pentagonal number theorem implies that b2(n) is odd precisely when 24n + 1 is a
perfect square. This result has been extended in a number of directions. For example,
Ono and the author [4] gave a description of the behaviour of b2(n) modulo 8 in terms
of the arithmetic of the ring Z[

√
−6], while Gordon and Ono [3] proved that if p is

a prime divisor of � such that pa | � and pa ≥
√
�, then for every positive integer j,

the congruence b�(n) ≡ 0 (mod p j) holds for almost all n ≥ 0, that is, on a set of
nonnegative integers of density one.

Addressing the case where � and m are coprime, Ahlgren and Lovejoy [1] showed
that if p ≥ 5 is prime, then b2(n) ≡ 0 (mod p j) for at least (p + 1)/2p of the values
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of n. In [5], the author extended this work to odd primes � ≤ 23, and also proved
that b23(n) ≡ 0 (mod 11) for at least 10/11 of the values of n by showing that this
congruence holds for almost all n not divisible by 11 (see, for example, [2, 9, 10] for
further results). In this paper, we use the theory of modular forms to refine the latter
result, giving a complete characterisation of the arithmetic of b23(n) modulo 11 for n
with 11 � n.

Our description can be phrased in terms of binary quadratic forms. To give a flavour
here (see Section 3 for complete results), for a, b, c ∈ Z, let

Fa,b,c(X, Y) = aX2 + bXY + cY2.

Given an odd prime p with
(−69

p

)
= 1, the classical theory implies that there exist

integers x and y with

p = Fa,b,c(x, y) (1.1)

for a unique triple (a, b, c) in the set

{(1, 0, 69), (3, 0, 23), (2, 2, 35), (6, 6, 13), (5, 2, 14), (7, 2, 10)}.

THEOREM 1.1. Suppose n is a positive integer such that 12n + 11 = p is prime.

(i) If
(−69

p

)
= −1, then b23(n) ≡ 0 (mod 11).

(ii) If
(−69

p

)
= 1, let x and y be integers satisfying (1.1) and let δp ∈ {−1, 1} be defined

as in Section 3 (see (3.1)). Then

b23(n) ≡
( p
11

)
· δp · 9yp4 (mod 11).

In particular, b23(n) ≡ 0 (mod 11) if and only if 11 | y.

Theorem 1.1 addresses the case where 12n + 11 is prime. For general n with 11 � n,
our description requires consideration of the prime factorisation of 12n + 11.

The remainder of the paper is organised as follows. In Section 2, we provide
the necessary background on modular forms and construct the forms we require. In
Section 3, we state and prove our main results and illustrate their use.

2. Background and two CM-forms

Let k and N be positive integers and χ a Dirichlet character modulo N. We denote
by Mk(Γ0(N), χ) the space of holomorphic modular forms of weight k on Γ0(N) with
Nebentypus χ, and by Sk(Γ0(N), χ) the subspace of cusp forms (we suppress χ when it
is the trivial character). Denote by χ23 the character defined by χ23(•) = ( 23

•
)

and write
q := e2πiz for complex z with Im(z) > 0.

We begin by stating a slight refinement of Theorem 2.1 in [5] which implies that
the values of b23(n) with 11 � n can be realised modulo 11 as the Fourier coefficients
of a modular form of integer weight. (Since this result can be established in the same
way as Proposition 2.1 in [6], we do not include the proof.)
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PROPOSITION 2.1. There exists a cusp form

H(z) ∈ S1330(Γ0(144 · 113 · 23), χ23) ∩ Z[[q]]

such that

H(z) ≡
∞∑

n=0

( n
11

)
b23(n)q12n+11 (mod 11).

Following closely the exposition in [7], we now construct two normalised Hecke
eigenforms with complex multiplication that turn out to be related to H(z) modulo 11.
Let K = Q(

√
−69), a number field of discriminant d = −276, and define the ideal F of

the ring of integers OK = Z[
√
−69] by

F = (6, 2
√
−69).

We note that N(F ) = 12, and from now on, we write θ :=
√
−69. One can verify that

{1, 5, 2 + θ, 4 + θ}

is a set of representatives of (OK/F )∗, and since (OK/F )∗ � Z2 × Z2, it follows that
the function ρ : (OK/F )∗ → C∗ defined by

ρ(1) = 1, ρ(5) = −1, ρ(2 + θ) = 1, ρ(4 + θ) = −1

is a group homomorphism.
Next, we define Hecke characters c1 and c2 on the fractional ideals of K coprime to

F . We begin by defining c1 on principal ideals of OK via

c1((a + bθ)) = ρ(a + bθ)(a + bθ)49 (2.1)

for a, b ∈ Z. Since OK has class number eight, we must extend c1. One can check that
the class group is isomorphic to Z2 ⊕ Z4 and is generated by the nonprincipal ideals
(5, 1 + θ) and (23, θ) which satisfy (5, 1 + θ)4 = (2 − 3θ) and (23, θ)2 = (23). Letting

c1((5, 1 + θ)) =
(1
2

(√
10 + 3

√
6 − i
√

10 − 3
√

6
))49

(2.2)

and

c1((23, θ)) = (
√
−23)49 = 2324

√
−23 (2.3)

allows us to complete c1 to a Hecke character of K with exponent 49 and conductor F ,
which in turn yields a Dirichlet character ω1 defined by

ω1(n) = c1(nOK)/n49

for n ∈ Z coprime to 6. We define companion characters c2 and ω2 similarly, with c2
extending to nonprincipal ideals via

c2((5, 1 + θ)) = ic1((5, 1 + θ))
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and

c2((23, θ)) = −c1((23, θ)).

For v ∈ {1, 2}, let

gv(z) =
∑

cv(I)qN(I) :=
∞∑

n=1

sv(n)qn,

where the first sum is over all ideals I of OK coprime to F . Then gv is a normalised
Hecke eigenform of weight 50, level |d| · N(F ) = 144 · 23 and character εKωv, where
εK(p) =

(−69
p

)
for any prime p � {2, 3, 23}. Note that for such a prime, we have ωv(p) =

ρ(p) =
( p

3
)
. Then since

(−69
p

)( p
3
)
=
( 23

p

)
by quadratic reciprocity, it follows that

gv(z) ∈ S50(Γ0(144 · 23), χ23).

The fact that gv(z) is an eigenform implies that

sv(mn) = sv(m)sv(n) when (m, n) = 1 (2.4)

and

sv(p j+1) = sv(p)sv(p j) − χ23(p)p49sv(p j−1) (2.5)

for all primes p ≥ 5 and j ≥ 1.

3. Proofs of the main results

We begin by finding explicit expressions for the Fourier coefficients sv(p) of the
CM-forms gv(z) which can be leveraged to evaluate the coefficients of two auxiliary
forms (see hv(z) below) modulo 11. An odd prime p satisfying

(−69
p

)
= −1 is inert in

K, which implies that sv(p) = 0. Since 23 ramifies in K, we have sv(23) = cv((23, θ)).
Now suppose p is an odd prime with

(−69
p

)
= 1 and that x, y ∈ Z are as in (1.1). Define

δp by

δp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x + yθ) if (a, b, c) = (1, 0, 69),
ρ((9x + 16y) − (x − y)θ) if (a, b, c) = (6, 6, 13),
ρ((5x + y) − yθ) if (a, b, c) = (5, 2, 14),
ρ((7x + y) + yθ) if (a, b, c) = (7, 2, 10),
ρ(23y + xθ) if (a, b, c) = (3, 0, 23),
ρ((5x − 32y) + (x + 3y)θ) if (a, b, c) = (2, 2, 35),

(3.1)
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and for n ≥ 1, let

t1(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1(n) if n ≡ 1 (mod 12),

s1(n)/i
√

10 − 3
√

6 if n ≡ 5 (mod 12),

s1(n)/
√

14 − 5
√

6 if n ≡ 7 (mod 12),
s1(n)/

√
−23 if n ≡ 11 (mod 12).

We define t2(n) in the same way as t1(n) except that we divide s2(n) by i
√

10 + 3
√

6

when n ≡ 5 (mod 12), and by
√

14 + 5
√

6 when n ≡ 7 (mod 12). Our next result (in the
proof of which we will see that t1(n) ∈ Z[

√
6]) gives expressions for t1(p) modulo 11

in terms of the six reduced binary quadratic forms of discriminant −276 mentioned in
the introduction. Recall that θ =

√
−69.

THEOREM 3.1. Suppose p is an odd prime with
(−69

p

)
= 1. Let x, y ∈ Z be defined

by (1.1), replacing x and y by −x and −y if necessary so that −x − 2y +
√

6y > 0
if (a, b, c) = (5, 2, 14) and x − 2y −

√
6y > 0 if (a, b, c) = (7, 2, 10). Then, modulo the

ideal of Z[
√

6] generated by 11,

δpt1(p) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2xp4 if (a, b, c) = (1, 0, 69),
(2x + y)p4 ·

√
6 if (a, b, c) = (6, 6, 13),

(x + 2y +
√

6y)p4 if (a, b, c) = (5, 2, 14),
(x − 2y −

√
6y)p4 if (a, b, c) = (7, 2, 10),

9yp4 if (a, b, c) = (3, 0, 23),
yp4 ·

√
6 if (a, b, c) = (2, 2, 35).

PROOF. For the sake of brevity, we provide details for only two of the cases, as the
others can be handled similarly.

For (a, b, c) = (2, 2, 35), we begin with the ideal calculation

(5, 1 + θ)2(23, θ)(47, 5 + θ) = (46 − 19θ).

Combining this with (2.1), (2.2), (2.3) and the multiplicativity of c1 yields

c1((47, 5 + θ)) =
(5 + θ
√

2

)49
.

Now suppose that p > 47 is a prime with p = 2x2 + 2xy + 35y2 for some x, y ∈ Z, and
denote by P and P′ the prime ideals of OK lying above p. It is easy to verify that
if a + bθ ∈ (47, 5 + θ) for some a, b ∈ Z, then a ≡ 5b (mod 47). Using this and the
equalities

47p = (5x − 32y)2 + 69(x + 3y)2 = (5x + 37y)2 + 69(x − 2y)2,

we find that the elements

https://doi.org/10.1017/S0004972722001393 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001393


[6] 23-regular partitions 259

μ = (5x − 32y) + (x + 3y)θ and ν = (5x + 37y) + (x − 2y)θ

generate the principal ideals (47, 5 + θ)P and (47, 5 + θ)P′. Since

μν = −44x2 − 44xy − 770y2 + (10x2 + 10xy + 175y2)θ,

it follows that
ρ( μ)ρ(ν) = ρ( μν) = ρ(4 + θ) = −1,

and hence s1(p) = c1(P) + c1(P′) is equal to

ρ( μ)
[(√

2x +

√
2

2
y +

y
2

√
−138

)49
−
(√

2x +

√
2

2
y − y

2

√
−138

)49]
.

A calculation now shows that s1(p) has the form ρ( μ)yC(x, y)
√
−138, where C(x, y) ∈

Z[x, y] is a homogeneous polynomial of degree 48. Using Fermat’s Little Theorem
we find that yC(x, y) is congruent modulo 11 to y(2x2 + 2xy + 35y2)4, and since p ≡
11 (mod 12), our result follows.

Now let (a, b, c) = (7, 2, 10). We begin by using the equality

(5, 1 + θ)(23, θ)(7, 6 + θ) = (23 − 2θ)

as above to deduce that

c1((7, 6 + θ)) =
(1
2

(√
14 − 5

√
6 + i
√

14 + 5
√

6
))49

.

Combining this with

c1((7, 6 + θ))c1((7, 1 + θ)) = c1((7)) = ρ(7) · 749 = 749

then gives

c1((7, 1 + θ)) =
(1
2

(√
14 − 5

√
6 − i
√

14 + 5
√

6
))49

.

Next suppose that p > 7 is a prime with p = 7x2 + 2xy + 10y2. Then 7p = (7x + y)2 +

69y2, and by replacing x by −x and y by −y if necessary we may ensure that x − 2y −√
6y > 0. Let z be an integer such that

z(7x + y) ≡ −69y (mod p).

One can verify that z2 ≡ −69 (mod p) (which implies that (p,±z + θ) are the prime
ideals of OK above p) and

(7, 1 + θ)(p, z + θ) = ((7x + y) + yθ).

It follows that

c1((p, z + θ)) = ρ((7x + y) + yθ))

·
(1
2

(√
2p + (−5x2 − 8xy + 6y2)

√
6 + s ·

√
−2p + (−5x2 − 8xy + 6y2)

√
6
))49

,

where s = sign(x2 − 4xy − 2y2).
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Since p ≡ 7 (mod 12),

c1((p, z + θ))c1((p,−z + θ)) = c1((p)) = ρ(p)p49 = p49.

Hence, c1((p,−z + θ)) = c1((p, z + θ)), and a calculation reveals that

s1(p) =
√

14 − 5
√

6 · ρ((7x + y) + yθ)(x − 2y −
√

6y)D(x, y) (3.2)

with D(x, y) ∈ Z[
√

6][x, y]. Our result now follows as in the previous case. �

REMARK 3.2. For our claim that t1(n) ∈ Z[
√

6], note that if p = 5x2 + 2xy + 14y2, then
p ≡ 5 (mod 12), and an argument similar to the one given in our proof of (3.2) for
primes represented by F7,2,10 shows that

s1(p) = i
√

10 − 3
√

6 · ρ((5x + y) − yθ)(x + 2y +
√

6y)E(x, y) (3.3)

for some E(x, y) ∈ Z[
√

6][x, y]. Moreover, observe that

i
√

10 − 3
√

6 ·
√

14 − 5
√

6 = (−2 +
√

6)
√
−23.

REMARK 3.3. The parallel result to Theorem 3.1 for t2(p) states that for each odd
prime p with

(−69
p

)
= 1,

δpt2(p) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2xp4 if (a, b, c) = (1, 0, 69),
−(2x + y)p4 ·

√
6 if (a, b, c) = (6, 6, 13),

(−x − 2y +
√

6y)p4 if (a, b, c) = (5, 2, 14),
(−x + 2y −

√
6y)p4 if (a, b, c) = (7, 2, 10),

−9yp4 if (a, b, c) = (3, 0, 23),
yp4 ·

√
6 if (a, b, c) = (2, 2, 35).

We now show that the behaviour of b23(n) modulo 11 for 11 � n is controlled by
the Fourier coefficients of the CM-forms gv(z) defined in Section 2. We do this by
establishing a relation between the coefficients of the form H(z) from Proposition 2.1
and those of two auxiliary forms built from the gv(z) which we now define.

For n ≥ 1, write

t1(n) = αn + βn
√

6

with αn, βn ∈ Z. Using Theorem 3.1 and Remark 3.3 along with (2.4) and (2.5), it
is straightforward to show that t2(n) = −αn + βn

√
6 when n ≡ 11 (mod 12). For each

v ∈ {1, 2}, we define the modular form

hv(z) =
∑

n≡11(mod 12)

tv(n)qn ∈ M50(Γ0(144 · 23), χ23).
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Next, let

F(z) :=
h1(z) − h2(z)

2
=

∑
n≡11(mod 12)

αnqn

and

G(z) :=
h1(z) + h2(z)

2
√

6
=

∑
n≡11(mod 12)

βnqn.

THEOREM 3.4. Suppose n is a positive integer with 11 � n. Then

b23(n) ≡
( n
11

)
(α12n+11 + 9β12n+11) (mod 11).

PROOF. Note first that if H(z) is the modular form in Proposition 2.1, then our result
is equivalent to the integral power series congruence

H(z) ≡ F(z) + 9G(z) (mod 11).

Recall the weight ten normalised Eisenstein series

E10(z) = 1 − 264
∞∑

n=1

σ9(n)qn ∈ M10(Γ0(1)),

where σ9(n) =
∑

d|n d9. Since F(z) + 9G(z) ∈ M50(Γ0(144 · 23), χ23),

(F(z) + 9G(z))E10(z)128 ∈ M1330(Γ0(144 · 23), χ23),

and hence both (F(z) + 9G(z))E10(z)128 and H(z) lie in the space

M1330(Γ0(144 · 113 · 23), χ23).

Since E10(z) ≡ 1 (mod 11), on checking that the coefficients of the Fourier expansions
of H(z) and F(z) + 9G(z) agree modulo 11 as far as the Sturm bound [8], our proof is
complete. �

REMARK 3.5. Theorems 3.1 and 3.4, when used in conjunction with (2.4), (2.5), the
value of s1(23) and the fact that s1(p) = 0 for odd primes p with

(−69
p

)
= −1, allow one

to evaluate b23(n) modulo 11 for any n not divisible by 11.
To illustrate, first let n = 197. Since 12n + 11 = 53 · 19, we begin by noting that

5 = F5,2,14(−1, 0) and 19 = F7,2,10(−1,−1).

By (3.3) and (3.2),

s1(5) = i
√

10 − 3
√

6 · ρ(−5)(−1)E(−1, 0) = −i
√

10 − 3
√

6 · E(−1, 0)

and

s1(19) =
√

14 − 5
√

6 · ρ(−8 − θ)(1 +
√

6)D(−1,−1) =
√

14 − 5
√

6 · (−1 −
√

6)D(−1,−1).
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Then (2.5) yields

s1(52) = (−10 + 3
√

6)E(−1, 0)2 + 549

and

s1(53) = −i
√

10 − 3
√

6 · [(−10 + 3
√

6)E(−1, 0)3 + 2 · 549E(−1, 0)],

and so (2.4) allows us to conclude that s1(53 · 19) is equal to

(4 −
√

6)D(−1,−1)[(−10 + 3
√

6)E(−1, 0)3 + 2 · 549E(−1, 0)]
√
−23.

Since D(−1,−1) ≡ 194 ≡ 4 (mod 11), E(−1, 0) ≡ 54 ≡ 9 (mod 11) and 549 ≡
9 (mod 11), it follows that

t1(53 · 19) ≡ 4 +
√

6 (mod 11).

Theorem 3.4 then yields

b23(197) ≡
(197

11

)
(4 + 9 · 1) ≡ 9 (mod 11),

which one may verify using the exact value b23(197) = 2626664703430.
Now let n = 102. Since 12n + 11 = 5 · 13 · 19, we proceed by noting that 13 =

F6,6,13(0, 1), which gives

s1(13) = t1(13) ≡ ρ(16 + θ)(1)(134)
√

6 ≡ 6
√

6 (mod 11).

Combining this with our values of s1(5) and s1(19), we can calculate

t1(5 · 13 · 19) ≡ 2 + 6
√

6 (mod 11),

and hence Theorem 3.4 implies that

b23(102) ≡
(102

11

)
(2 + 9 · 6) ≡ 1 (mod 11),

which can be checked against b23(102) = 226889906.
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