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The interrelations among various spaces
of distributions

S. Jeyamma

In this paper we discuss the interrelations among various

spaces of distributions and show that none of them can be

linearly and differentiably homeomorphic to the space of

Mikusinski operators. It is also shown that the distributions

of Mikusinski-Sikorski can also be defined by the method

described by Temple as the completion of the space of continuous

functions after introducing a weaker notion of convergence in

this space.

In this paper we develop the theory of infinite distributions and the

interrelations among the various approaches to the theory of distributions.

Our development of the infinite distribution is different from the usual

methods of Schwartz or Mikusinski-Sikorski. In the various known theories

of distributions every distribution is ultimately realised as an abstract

finite derivative of a continuous function for each finite interval. This

realisation apparently establishes a one-to-one correspondence among the

various formulations of distributions - the only point to be checked up

here being the reconstitution into a distribution in the respective

defined sense starting with this realisation. As a matter of fact, in the

course of this paper we prove that barring LighthiI I's generalized

functions, Avner Friedman's distributions, Mikusinski's operators, the

spaces of distributions as developed in [4], [5], [7], [8], and our space

of distributions are essentially of the same structure. However, we find

that none of them can be linearly and differentiably homeomorphic to the
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264 S. Jeyamma

space of Mikusinski operators. Though it is obvious that the space of

Mikusinski operators, being a field, cannot be algebraically of the same

structure as other spaces, it is not so obvious that as a topological

translation vector space structure it is different from the other spaces

of distributions. We have proved earlier that the field of Mikusinski

operators is isomorphic topologically and algebraically to the quotient

field of the integrity domain of the right distributions of Schwartz.

Considering the space of generalized functions as defined by Lighthill

[3], we find that this is linearly and differentiably homeomorphic to the

space of tempered distributions of Schwartz which forms a subspace of the

space of distributions of Schwartz, and hence forms a subspace of our space

of distributions. Again when we consider Avner Friedman's distributions,

we observe that the space of Schwartz distributions is obtained as a

particular space of Avner Friedman's distributions.

Temple, in his classical paper on the theories and applications of

generalized functions makes the unproved assertion that the distributions

obtained by various authors can be obtained essentially by one process,

namely by completing the space of continuous functions, introducing a

weaker notion of convergence. It is known that the class of distributions

of Schwartz and the field of operators of Mikusinski can be obtained by

this process. Here we establish that the class of distributions of

Mikusinski-Sikorski can also be defined by this method.

Let I denote the collection of all finite open intervals in the real

line, and F the collection of all pairs (/, k) where f € C(-°°, °°) ,

k € Z . Consider a map a : I •+ F such that whenever Jj, J2 6 I and

II c j 2 we have (xTj = (fx, fci) and aJ2 = (/2, k2) satisfying

fi - fi is a polynomial P, , of degree less than or equal to

k\ + fe2 in Jj . If 3 is another such map define a % $ if for each

I t I , of = (/, k) and 61 = (g, m) satisfy f / - [ g = P, in

>m >k K

I . It can easily be seen that this relation ^ among the maps is an

equivalence relation.

DEFINITION 1. An equivalence class [a] defined in this sense will
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be called a (infinite) distribution. A distribution [a] is said to be a

finite distribution if the coset [a] contains at least one map which

associates the same (/, k) to every I € I .

We denote the class of distributions by V . In an obvious manner V

can be made into a vector space.

REMARK 2. A Mi kusi fiski-Si korski distribution over (a, b) can also

be thought of as a pair (/, k) where / £ C(a, b) and k £ Z+ in a

canonical way. Then there is a natural map t : V , -»• V where V is
n n+1 n n

the space of all distributions over (-W, n) for every n £ Z+ . The

topology is taken to be the one in Theorem 1 of [2].

Then we may state that the vector space V is isomorphic to the

projective limit of the vector spaces V of Mi kus i fiski-Si korski

distributions over (-«, n) .

Note 3. If for each interval I , al = (f, k) , define

a'J = (f, k+l) . From this it can be easily seen that if [a] (. V , also

[a1] € V . Anticipating Theorem h below we write [a1] = [a]1 and call

[a]1 the derivative of [a] .

In a similar manner, for each real number h , define T, .aJ = [f,, k)

where f, denotes the translation of the function / through a distance

h . We may check that if [a] £ V , then [Th
a] * p • We write

[ V a] = Th[a) .

We state the following theorem whose proof is easy:

Tfc[a]-[a]
THEOREM 4. Lt -~r = [a]1 where [a] € V .

Since it can be easily shown that whenever [a] converges to [a] ,

[a]' also converges to [a]1 , the space V becomes a C-D space, [2],

REMARK 5. The same procedure can be followed in the case of

half-line.

DEFINITION 6. A finite distribution [a] is said to have left
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bounded support if in the representation a! = (/, k) , f is a

polynomial of degree less than k in (-°°, a) for some a .

THEOREM 7. There exists a one-one bio continuous linear

differentiable map from the spaae of finite distributions of V with left

bounded support onto the spaae of distributional operators of Mikusinski.

The proof follows easily from the definitions of distributions of V

with left bounded support and distributional operators of Mikusinski [5]

and from the defintions of convergence in both the spaces.

THEOREM 8. There exists a one-one bicontinuous linear

differentiable map from the spaae V onto the spaae of Mikusinski

distributions [7 0] which maps every continuous function into itself.

Proof. If [a] d V , let a be a member of [a] . Let us further

assume that a is so chosen that if o,(-n, n) = [f , k ) and

<x(-n-l, n+1) = {fn+1, k ^ ) then J fn - J fn+1 = 0 in (-«, „)
n+1 n

kn
for all n = 1, 2, 3, ••• . Consider the fundamental sequence / II of

distributional operators. Obviously, the fundamental sequence is changed

into an equivalent such sequence by another similar choice of

representative in [a] . By the property of the map a , the

kn k

distributional operators / /I and f /I m are equivalent in (-n, n)

whenever n < m . Let 8 be the map from V to the space of Mikusinski

k k
distributions defined by 6[a] = / /I n where f / l n is the Mikusinski

kn
distribution represented by the fundamental sequence f /I • It is

clear that the map is well-defined and linear. If [a] ^ [$] then

a ^ 3 • Therefore, for at least one interval (-n, n) ,

ct(-n, n) ̂  3(-", «) . Consequently, 6[a] 1- 6[B] • The map 6 is also

kn
onto. Consider a Mikusinski distribution d = f /I . For any interval

J , consider the smallest integer interval (-n, n) bigger than J . Let

a be the map taking J to (g , k ) where g = f . If J is any

https://doi.org/10.1017/S0004972700046554 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046554


Spaces of distributions 267

interval bigger than I , we can easily verify that aJ and aK are

equivalent in I as elements of F . If we consider any other map 3

by choosing another fundamental sequence of the class defining g , then

3 ^ a . Thus [a] will define a distribution and evidently 6[a] = d .

It may be seen without any difficulty that 6 is also bicontinuous and

differentiable.

REMARK 9. Similar theorems can be established:

(i) between V and the space of Mikusinski-Sikorski distributions;

(ii) between V and the space of Schwartz distributions D' ; and

hence

(iii) between the space of Mikusinski-Sikorski distributions and the

space of Schwartz distributions.

THEOREM 10. There does not exist any one-to-one linear onto

bieontinuous map between the space D' and the operators of Mi kusi nski [5]

which is considered as a linear space over the real field.

Proof. The space of distributions of Schwartz does allow non-zero

continuous linear maps but the space of Mikusinski operators does not allow

any such continuous linear functional, [/]. Thus the result is clear.

By Remark 9 and Theorem 10, we have

THEOREM 11. There does not exist any one-to-one linear onto

bicontinuous map between the space of distributions of Mikusinski-Sikorski

and the space of operators of Mikusinski.

REMARK 12. We may identify each continuous function / in (-°°, °°)

with a distribution [/] by defining a map / : I •+ F as fl to be the

pair (/, 0) . Whenever a continuous function f has its ordinarily

defined derivative /' , it may be seen that [/] ' = [/"] . Even if it

happens that / is only a locally summable function, it may be identified

with a distribution [/] in V by defining fl = /, 1 .

THEOREM 13. There exists a one-to-one bicontinuous linear

differentiable map from the space of generalized functions of Lighthi I I

onto the space of tempered distributions of Schwartz.

Proof. Let F b e a generalized function o f Lighthi II. Then
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F = [fm] where fm is a regular sequence of good functions defining F .

To show that is can be viewed as a Schwartz distribution, we need show

that it is a continuous linear functional over the space of smooth

functions with compact support. That it is a linear functional is trivial.

To show that it is continuous we have to show that whenever a sequence *

of smooth compact functions converges to zero, (F, <}> > also converges to

zero. Now from [10] / is regular if and only if / = £ a G^k' and

(1+x2) G converges almost uniformly for some integer v where the G
m

are good functions.

Lt(F,
n n

= Lt
m

= Lt
m

= Lt
m

Lt

Lt
n

Lt
n

(l a G

(-1) <

>

m Ti

I amGm'

and this limit exists.

So every generalized function F can be thought of as a Schwartz

distribution. That the correspondence is one-to-one is obvious. To show

that the correspondence is also onto, consider a Schwartz distribution of

T obtained as a continuous linear functional over the spaces of good

functions. We know that S is dense in E . Therefore, by duality, we

have that E' is dense in S' . So, every tempered distribution in S'

is a limit of a sequence of compact distributions (that is, distributions

with compact support).

Now define

/ , (x-t) = 0 for |x-t| > 1/n

= e-£
2/e 2-(*-*) 2

 f o r |x_t| < 1/n .

Denote / w ^ * - * ) = ct^U-t) .

Now T*an = Lt (Tm*an) = ̂  .
m

Now g is a sequence of infinitely differentiable functions with
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compact support hence, a sequence of good functions.

Consider

< g , G> = <Lt [T *a ) , G\ (where G is a good function)
m

Lt Tm, an*ff\ (where a^x) = a^-x)) ;
m

Lt< g , G) = Lt Lt < T , a *G>a n ' m' n
n m n

= Lt< T , G) .
m'

m

The limit on the right hand side exists, and therefore, g is a regular

sequence. Hence, it defines a generalized function of Lighthill. That the

map is bicontinuous is obvious since the topologies of the two spaces are

identical. It is also easy to verify that the map is linear and

differentiable.

THEOREM 14. There exists a one-to-one bioontinuous linear

differentiable map from the space of distributions of Liverman onto the

space of distributions of Schwartz with right support which maps every

smooth function vanishing in a neighbourhood of -°° into itself.

Proof. Refer [4].

Temple in his paper [9] on the theories and applications of

generalized functions makes the unproved assertion that the distributions

obtained by various authors can be obtained essentially by one process,

namely the following: Introduce a weaker notion of convergence and obtain

the closure with respect to this convergence. Temple has stated that we

could start from abstract spaces instead of starting from the space of

continuous functions and introduce a notion of convergence with respect to

which this is closed and obtain distributions over this space. He has

taken up this idea from Mikusinski [6]. The idea is to consider three

spaces F, $, C and C is assumed to have a notion of convergence. It is

also assumed that there exists a definite mapping </,(()) of f £ F ,

(j> € <t> into C . This mapping </, <{>> is such that if <f, <}>> = (g, <j>>

for all • f $ then f = g . It can easily be seen that such a mapping

introduces a notion of convergence in F . Completing the space F under
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this convergence by the well known method of Cauchy, gives the class of

distributions obtained from F .

Keeping F, $, C to be the class of continuous functions on [0, <*>)

and defining </, (j>) = f{t-x)${x)dx we get the class of Mikusinski
J0

operators.

Keeping F, $ to be the class of smooth compact functions and C to

be the class of real numbers and defining </, ij>> = f(x)$(x)dx we get

the class of Schwartz distributions.

From Remark 9, we find that the Mikusinski-Sikorski distributions also

can be viewed as continuous linear functionals over the class of smooth

compact functions. Hence, the Mikusinski-Sikorski distributions could be

obtained from the Temple process.
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