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Electrophoretic characterization of nano- and micro-metre scaled bubbles and drops is
increasingly important in environmental and health sciences. Despite more than a hundred
years of study, the interpretation of bubble electrophoresis data remains an unresolved
fundamental problem that bridges fluid mechanics and interfacial science. This paper
examines, from a theoretical perspective, how the electrophoretic mobility of small
drops and bubbles responds to the interfacial kinetic-exchange rate and interfacial-charge
mobility: factors that have been largely overlooked, but which provide new insights on the
interpretation of ζ -potentials, which are routinely used to assess surface charge density.
A variety of outcomes are demonstrated, each reflecting subtle balances of hydrodynamic
and electrical forces, modulated by interfacial thermodynamics and transport. Among
the findings is that irreversibly bound charge with low interfacial mobility furnishes
rigid-sphere behaviour; whereas interfacial charge with high mobility produces the
characteristically high electrophoretic mobilities of non-conducting, uniformly charged
fluid spheres. Outcomes are more complex when drops and bubbles have interfacial charge
that seeks local equilibrium with the immediately adjacent electrolyte. For example, the
present model shows that interfacial-charge mobility regularizes the singular behaviour
predicted by theories for fluid spheres bearing high, perfectly uniform surface charge.

Key words: bubbles, drops, electrokinetic flows

1. Introduction

Small drops and bubbles are often the microstructural foundation of dispersions, emulsions
and foams, and are of increasing significance in a broad range of environmental and health
related fields. Lyu et al. (2019) highlight nanobubble technologies being harnessed for
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biomedical applications and tackling environmental issues. Among these, nanobubbles
with size ∼100 nm have been demonstrated as effective in preventing surface fouling,
and for cleaning already fouled surfaces (Zhu et al. 2016). Bubbles in the environment
have recently been identified as responsible for an unexpectedly large portion of the
air–sea flux of oxygen, suggesting that oxygen levels in the deep ocean may be much
more sensitive to climate change than previously thought (Atamanchuk et al. 2020).
This seems to reflect a small size (low buoyancy) and stability to coalescence: factors
that may also play into the transport and fate of droplet-based environmental pollutants
(Adams, Brown & Hodson 2020). In biomedicine, the small size of ‘acoustic nanodrops’
(e.g. perfluorocarbons) avoids their detection by the immune system, enabling on-demand
vaporization for detection and manipulation with ultrasound (Borden et al. 2020).

Explanations of fluid-sphere stability to coalescence (Ho et al. 2022) and of nanobubble
existence (Zhang, Guo & Zhang 2020) are grounded on the interfacial-charge density,
which is typically ascertained from the ζ -potential (routinely used to assess surface
charge density) furnished by electrophoresis experiments. However, such experiments
are invariably interpreted as if bubbles and drops are rigid spheres. Although
steady electrophoresis is nowadays routinely performed using commercially available
electrophoretic light-scattering instruments, interpreting the electrophoretic mobility is
complicated by internal and external fluid dynamics, and an interface that permits
interfacial exchange and lateral transport of charged and uncharged surface-active
molecules.

It is noted here that interfacial-charge mobility and kinetic exchange have been long
recognized as pertinent to the electrophoretic mobility of rigid colloids, as exemplified
by the dynamic Stern-layer model of Zukoski & Saville (1986). However, few studies
have acknowledged these physics for fluid spheres, which is surprising given that these
mechanisms should be even more important for fluid–fluid interfaces. Such interfacial
physics were included in the fluid-sphere electrophoresis model of Baygents & Saville
(1991), but their results focussed on examples with vanishing surface diffusivity and local
equilibrium with the immediately adjacent electrolyte. It is not clear that these extremes
are justified from a physical perspective, and so the consequences of relaxing these are
known. Interfacial transport mechanisms were included in the dynamic mobility of fluid
spheres by Hill & Afuwape (2020) and Hill (2020), but these interpreted the dynamic
mobility spectra of emulsion drops from electrokinetic-sonic-amplitude experiments
(in the megahertz frequency range), not the steady mobilities furnished by ubiquitous
electrophoretic light-scattering instruments. There also remains the challenge of solving
the equations (continuum conservation relationships) for two bulk phases and an interface.

It is customary for experimentalists to report fluid-sphere electrophoretic mobilities as
ζ -potentials furnished by Henry’s theory, which is for rigid/solid spheres bearing low
surface potential (Russel, Saville & Showalter 1989); see Yang et al. (2001) and Takahashi
(2005) for contemporary examples in the context of microbubbles; Ushikuboa et al. (2010),
Nirmalkar, Pacek & Barigou (2018) and Jin et al. (2019) in the context of nanobubbles; and
Pullanchery et al. (2020) in the context of nanodrops. Although convenient, this practice
risks misinterpreting the ζ -potential in terms of the underlying surface charge (Hill 2020;
Hill & Afuwape 2020). Note that, in the context of fluid spheres, the ζ -potential is adopted
to identify the equilibrium electrostatic potential at the fluid–fluid interface, not necessarily
an apparent or electrokinetic potential at a ‘slipping plane’.

The pioneering fluid-sphere theory of Booth (1951) furnishes a convenient formula for
small ζ -potentials (Debye–Hückel regime), but is seldom adopted to interpret experiments
or directly test other theories and computations. Possible reasons for this will be elucidated
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Fluid-sphere electrophoresis

in the present study. Booth asserts a drop interface as maintaining a uniform charge density,
but a mechanistic justification for this is not clear. For example, Baygents & Saville (1991)
concluded consistency with Booth’s theory (for non-ion-conducting fluid spheres), but,
recall, this was achieved by setting the interfacial-charge mobility to nil and assuming
local equilibrium between the interface and immediately adjacent electrolyte.

Other theoretical studies have extended Booth’s theory with various embellishments,
albeit for interfaces that bear perfectly uniform charge. For example, Mahapatra, Ohshima
& Gopmandal (2022) addressed the dielectric contrast (εi/εo being the ratio of internal
and external dielectric permittivities for non-ion-conducting fluid spheres), providing
analytical formulas for low ζ -potentials and arbitrary κa (sphere radius a scaled with
the Debye length κ−1). A mobility that varies with dielectric permittivity contrast runs
counter to the assertion of Baygents & Saville (1991) that the mobility is independent of
the interior dielectric permittivity, as proved by O’Brien & White (1978) for rigid spheres.
Note that Mahapatra et al. also allowed for hydrodynamic slip at the fluid–fluid interface,
advancing closely related studies for uniform surface charge (Wu et al. 2021; Tsai et al.
2022; Tseng et al. 2023).

Despite more than a hundred years of experimental and theoretical investigation, there
is no satisfactory interpretation of pioneering electrophoresis experiments conducted on
air bubbles in water by Alty (1924) or others that follow, e.g. Whybrew, Kinzer & Gunn
(1952), Usui, Sasaki & Matsukawa (1981) and Kelsall et al. (1996). According to Schnitzer,
Frankel & Yariv (2013, 2014), the weak-field linearization underlying Booth’s theory, and
therefore Baygents & Saville (1991) and many others (including the present work), limits
the particle size and electric-field strength for which the linearization is valid.

For large bubbles (κa � 1) having a low viscosity (ηi/ηo � 1 being the ratio of internal
and external shear viscosities), Schnitzer et al. (2014) derived an electrophoretic mobility
(under a weak electric field E) that is proportional to ζ ∗3, with ζ ∗ being the ζ -potential
scaled with kBT/e. This departs radically from the foregoing linear electrokinetic models,
even in the Debye–Hückel regime. The theory is for large (but still spherical) bubbles, for
which shear stresses exerted by the gas on the gas–liquid interface are neglected due to
ηi/ηo � 1. This is motivated, in part, by the large κa limit of Booth’s theory predicting
a vanishing mobility ∼ ζ ∗ηi/ηo as ηi/ηo → 0. The theory of Schnitzer et al. (2014)
also goes beyond the weak-field linearization, seeking to address experimental evidence
of electrophoretic bubble velocities scaling as E2 (Kelsall et al. 1996). Schnitzer et al.
predict the mobility scaling as E2/3 when the reduced electric field strength Eae/(kBT) is
greater than a threshold that they numerically demonstrated to decrease with increasing
ζ ∗ (kBT/e is the thermal energy divided by the fundamental charge). Thus, caution
must be applied with respect to interpreting theories (including the present work) and
experiments that draw on the weak-field approximation. Similar caution may be required
when other independent dimensionless parameters are placed into asymptotically large or
small regimes.

Singular electrophoretic mobilities are predicted from the asymptotic theory of
Schnitzer et al. (2014) and the direct computations of Wu et al. (2021) for highly
charged, but perfectly uniform, fluid spheres. Such behaviour was not evident from the
model of Baygents & Saville (1991) or the theory of Booth (1951) (low charge). The
singular mobility has been suggested to reflect shortcomings of the Poisson–Boltzmann
equilibrium (Wu et al. 2021; Majhi & Bhattacharyya 2024), but evidence also points
to neglect of physically grounded interfacial exchange and/or interfacial-charge mobility
mechanisms, as addressed in the present work. Note also that, as pointed out by
an anonymous referee, singular velocity (at unrealistically high ζ -potentials) will
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be suppressed by finite/nonlinear advection effects that are absent in the linearized
electrokinetic models; this evidently reflects an imperfect pitchfork bifurcation in the
parameter space for highly charged interfaces.

Complementary to the theory of Booth (1951), but exclusively under the weak-field
assumption, is the model of Ohshima, Healy & White (1984) for mercury drops.
Assuming a uniform surface-charge density, an analytical formula was derived for low
ζ -potentials, depending on κa and the ratio of the internal and external shear viscosities
ηi/ηo. A formula was also derived for arbitrary ζ -potentials with κa � 1, and both
were tested by comparison with numerical solutions of the full electrokinetic model.
Schnitzer et al. (2013) extended the analysis for sufficiently large mercury drops when
the weak-field approximation breaks down. Interestingly, this independently furnished the
same mobility as the Levich–Frumkin formula, which Ohshima et al. (1984) had suggested
was in error due to the discrepancy with their model at higher ζ -potentials. It will be
demonstrated in the present work that a sufficiently high dielectric permittivity furnishes
the same fluid-sphere mobilities as the theory of Ohshima et al. (1984), independent
of the interfacial-charge mobility and kinetic exchange, now subject to the weak-field
approximation.

Consider now the physical basis on which extant models may be grounded on
an assumption of uniform surface charge. If one assumes irreversible surface-charge
adsorption, then a uniform surface charge might naively be assumed to reflect a high
interfacial-charge mobility, so that diffusion annihilates interfacial-charge perturbations
driven by electromigration and advection. However, it must be acknowledged that, at
least to a first approximation, charge mobility affects diffusion and electromigration
equally. Thus, a high interfacial mobility promotes a dominant balance of diffusion and
electromigration. However, this demands a non-uniform interfacial charge, violating the
initial assumption.

If one instead considers low or vanishing interfacial-charge mobility, then the interfacial
flux may become dominated by advection, which must be balanced by either interfacial
exchange or local/singular perturbations to the diffusion and electromigration. This
suggests a state of uniform charge as reflecting low interfacial mobility and fast interfacial
kinetics, i.e. large interfacial Péclet and Damkökler numbers. Indeed, the computations
of Baygents & Saville (1991) were undertaken with zero interfacial mobility (vanishing
surface diffusivity D → 0) and fast kinetic exchange (kinetic rate coefficients for
adsorption and desorption ka, kd → ∞). However, as already stated, it is not clear how
these conditions may be achieved from a physical perspective, since the kinetic-exchange
rates (for adsorption and desorption) are coupled by thermodynamics, thus prescribing the
equilibrium surface-charge density and ζ -potential.

To address the foregoing questions, the present study proposes a fluid-sphere
electrokinetic model with interfacial-exchange kinetics, interfacial-charge mobility and
Marangoni effects (Baygents & Saville 1991), under the weak-field assumption. The
computations undertaken are a steady-state application of the dynamic model of Hill
(2020). Here, analytical formulas for the steady internal fluid dynamics and electrostatic
polarization of the interior non-ionic/dielectric Newtonian fluid are coupled to a numerical
solution of the standard electrokinetic model for the unbounded exterior electrolyte
(O’Brien & White 1978). The internal and external fluids are coupled via an interfacial
phase, also demanding continuous tangential velocity (no interfacial slip), zero radial
velocity (due to surface tension maintaining a spherical interface) and a surface
population of interfacial charge subject to interfacial exchange, advection, diffusion and
electro-migration. An interfacial momentum balance accounts for fluid shear stresses
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Fluid-sphere electrophoresis

(on the internal and external sides), an interfacial electrical force (Maxwell stress) and
gradients of interfacial tension (Marangoni force).

Because the surface diffusion and electro-migration fluxes depend on a surface
diffusivity D, the principal dimensionless parameter reflecting the surface-charge mobility
(for a single adsorbing charged species) is an interfacial Péclet number

Pe = uca
D

= (kBT/e)2εoε0

ηoD
, (1.1)

where uc = (kBT/e)2εoε0/(ηoa) is a characteristic ‘Smoluchowski’ electrophoretic
velocity, independent of the applied electric-field strength (Russel et al. 1989). Here,
kBT/e ≈ 25 mV is the thermal energy per unit of fundamental electric charge, and εo and
ηo are the relative dielectric permittivity and shear viscosity of the external electrolyte. For
water at room temperature and D = 10−9 m2 s−1, which is representative of a small ion,
(1.1) furnishes Pe ≈ 0.5. Larger ions, such as surfactant macromolecules and Pickering
nano-particulates, immobilized at a viscous fluid interface could reasonably present much
lower surface mobilities (D � 10−9 m2 s−1), thus furnishing Pe � 1.

Electrophoretic velocities are often linear in the strength of the applied electric field,
i.e. uc ∼ μE, where μ is the electrophoretic mobility and E is the electric-field strength.
Under these conditions, another Péclet number, based on the actual electrophoretic
velocity, is

Pe = μEa
D

= μ∗ ηm

ηo
4πεoε0amaE/e, (1.2)

where μ∗ is a dimensionless/scaled electrophoretic mobility (defined in the results
section). The right-hand side of (1.2) expresses the diffusivity of the molecular tracer
in terms of the Stokes–Einstein diffusivity D = kBT/(6πηmam) (molecule radius am in an
environment with shear viscosity ηm). Thus, with a drop/bubble radius a = 100 nm, tracer
radius am = 0.1 nm, ηm/ηo ∼ 1 and an aqueous electrolyte at room temperature, Pe � 1
may be achieved by limiting the electric-field strength to E � (106/μ∗) V m−1, even if
Pe � 1.

The foregoing Péclet number neglects buoyant advection, which may – especially for
bubble electrophoresis (Takahashi 2005) – impart a significant translational velocity ug =
2�ρga2/(F∗9ηo) (density difference �ρ, gravitational acceleration g) for which there is
another Péclet number

Pg = uga
D

= 1
F∗

2�ρga3

9ηoD
, (1.3)

where F∗ ∼ 1 is the drag coefficient. The present work implicitly assumes ug � μE, which
is achieved for colloidal drops and bubbles with radius a � √

μEη/(g�ρ) ∼ 1 μm.
The present electrokinetic model for the external electrolyte is a standard one by

which perturbations in the ion concentrations, electrostatic potential and fluid velocity
are truncated to linear order in the applied electric field (O’Brien & White 1978).
These equations have been derived and applied in enumerable papers (predominantly
on rigid-particle electrophoresis) and, therefore, will not be repeated herein. The
computational solution is as detailed by Hill, Saville & Russel (2003) for steady
electrophoresis of soft, rigid spheres, modified for interfacial effects as detailed by Hill
(2020) in the context of dynamic fluid-sphere electrophoresis. The calculations also
furnish the steady drag coefficient F∗, which provides physical insight to help interpret
the electrophoretic mobility. The conductivity increment is available, but is reported only
to benchmark computations against those of Ohshima et al. (1984) for mercury drops.
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The interfacial transport model has not previously been applied in the context of steady
fluid-sphere electrophoresis, and so it is set out in the theory of § 2. Readers who are
not concerned with these details may proceed directly to the results in § 3. Section 3.1
considers fluid spheres with adsorbed charge that is irreversibly bound to the interface with
a low ζ -potential. Thus, with zero interfacial exchange and without Marangoni effects,
this sub-section focusses on interfacial-charge mobility in a context where comparisons
can be made with existing theories (valid in the Debye–Hückel regime). Section 3.2 turns
to fluid spheres bearing finite interfacial charge. This expedites direct comparisons with
Baygents & Saville (1991), exploring the consequences of a finite kinetic-exchange rate
and finite interfacial-charge mobility. Section 3.3 draws comparisons with bubble and
drop mobilities computed by Wu et al. (2021) based on the standard electrokinetic model
with uniform surface charge, and the asymptotic theory of Schnitzer et al. (2014) for
spherical bubbles with uniform surface charge. This identifies interfacial-charge mobility
and kinetic exchange as regularizing the singular mobilities that have been predicted by the
standard electrokinetic model for fluid spheres with a high, uniform surface charge. Section
3.4 examines select flows, electrostatic potential and ion-concentration perturbations.
Finally, § 3.5 turns to mercury drops (non-ion-conducting, highly polarizable fluid
spheres), exploring how interfacial-charge mobility impacts the conclusions drawn from
the long-standing model of Ohshima et al. (1984). The paper concludes with a brief
summary in § 4.

2. Interfacial electrokinetic model

For the external electrolyte, the electrostatic potential ψ , ion concentrations ni (in the
electrolyte), fluid velocity u and pressure p are subject to the standard electrokinetic
model (O’Brien & White 1978), linearized for an applied electric-field strength E that
is weak compared with the smaller of κkBT/e or kBT/(ae). As already highlighted in
the introduction, these equations and their numerical solution are well known. The fluid
sphere is an uncharged, non-ion-conducting, dielectric Newtonian fluid (relative dielectric
permittivity εi and shear viscosity ηi). The ion concentrations inside the sphere are zero,
with electrostatic potential and fluid dynamics that satisfy Laplace’s equation and the
steady Stokes equations, respectively. Thus, the internal and external fluids are coupled by
the interface, which is assumed spherical (radius a), hosting an interfacial population of
adsorbed ions. The model for the interface is adapted from that of Hill (2020) for dynamic
electrophoresis (in the megahertz frequency range). Whereas Baygents & Saville (1991)
assumed that the adsorption–desorption kinetics are rapid compared with ion transport by
advection, diffusion and electromigration, the present work adopts a kinetic model for the
local exchange of an adsorbing ion between the fluid-sphere interface and the immediately
adjacent electrolyte.

2.1. Conservation equations
The interfacial/surface concentration (per unit area) of an adsorbing ion is the sum of a
uniform equilibrium value c0 and a perturbation c′

c(x) = c0 + c′(x), (2.1)

where x = aer identifies position on the spherical interface, relative to the sphere centre
(radial unit vector er, tangential unit vector eθ ). For notational simplicity, a subscript i =
1, . . . ,N to distinguish ion species is discarded due to just one (i = 1) of these species
adsorbing in the present work.
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Fluid-sphere electrophoresis

The surface-ion-conservation equation is

0 = −∇s ·
(

−D∇sc′ − zec0 D
kBT

∇sψ
′ + uθc0

)
+ kan′(r = a)− kdc′, (2.2)

where ∇s is the surface-gradient operator and uθ is the interfacial (tangential)
velocity (in the sphere reference frame). The tangential flux comprises lateral diffusion
(interface/surface diffusivity D), electro-migration (charge ze) and advection. Note
that this flux is linearized with respect to perturbations (primed quantities) from the
equilibrium state (superscripts ‘0’). The interfacial ‘source’ terms incorporate (first-order)
adsorption and desorption coefficients (ka and kd) to model exchange between the interface
and the immediately adjacent (external) electrolyte.

The ion concentration in the external electrolyte at x = rer is

n(x) = n0(r)+ n′(x), (2.3)

where the equilibrium ion concentration is

n0(r) = n∞ exp(−ψ0(r)ze/(kBT)). (2.4)

Here, n∞ is the bulk ion concentration (as r → ∞), and ψ0(r) is the equilibrium
electrostatic potential furnished by a numerical solution of the nonlinear Poisson–Boltzmann
equation (with prescribed equilibrium surface potential ζ = ψ0(r = a) or equilibrium
surface-charge density σ 0).

At equilibrium, the adsorption and desorption rates in (2.2) are equal, and so the ratio
of the kinetic-exchange coefficients may be related to a prescription of the equilibrium
interfacial-charge density. Since the equilibrium concentration of the adsorbing ion at the
interface is n∞ exp(−ζ ze/(kBT)), it follows that

ka

kd
= c0

n∞ exp(−ζ ze/(kBT))
, (2.5)

where σ 0 = zec0. Note that the ratio has the dimension of length, since ka has dimensions
m s−1 (adsorption velocity), and kd has dimension s−1 (frequency).

In addition to the foregoing adsorbed-species conservation equation, there is an
interfacial tangential momentum conservation equation (zero interfacial inertia)

tθ (r = a−)+ tθ (r = a+)− γ 0β∇sc′ − σ 0∇sψ
′ = 0, (2.6)

where tθ (r = a−) and tθ (r = a+) are the (tangential) viscous tractions acting on the inside
and outside of the interface (outward unit normals −er and er, inside and outside shear
viscosities ηi and ηo, respectively), i.e.

tθ (r = a−) = −{−pI + ηi[∇u + (∇u)T]} · er · eθeθ
∣∣
r=a− , (2.7)

and

tθ (r = a+) = {−pI + ηo[∇u + (∇u)T]} · er · eθeθ
∣∣
r=a+ . (2.8)

Moreover, −γ 0β∇sc′ is the resultant interfacial tension/Marangoni traction (γ 0β ≡
∂γ 0/∂c0|c0 with γ 0 the equilibrium interfacial tension), and −σ 0∇sψ

′ the resultant
(tangential) electrical/Maxwell traction.
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Finally, Gauss’s law at the interface (x = aer) is

εiε0∇ψ ′ · er|r=a− − εoε0∇ψ ′ · er|r=a+ = σ ′(x), (2.9)

where the interfacial/surface-charge density is

σ(x) = σ 0 + σ ′(x) = σ 0 + zec′(x). (2.10)

Since there is no space charge inside the sphere, the equilibrium interfacial/surface-charge
density is

σ 0 = −εoε0
∂ψ0

∂r

∣∣∣∣
r=a+

. (2.11)

For the single adsorbing species, σ 0 = zec0, e.g. as furnished by an equilibrium adsorption
isotherm or prescribed equilibrium surface potential ζ = ψ0(r = a).

2.2. Linearized solution
From the solution of Stokes equations inside the sphere, the tangential velocity and
hydrodynamic traction at the interface (unit normal −er) can be written

uθ (r = a−) = C1acuX · eθeθ , (2.12)

and
tθ (r = a−) = −ηiC1ctX · eθeθ , (2.13)

where C1 is an integration constant that prescribes the interface velocity and viscous shear
stress. When the Stokes equations are scaled using κ−1 as the characteristic length, cu =
−2/(κa) and ct = −6/(κa). Note that X is either a uniform translation of the electrolyte
U (velocity relative to a stationary sphere) in the absence of an electric field or an electric
field E applied to a stationary sphere (O’Brien & White 1978).

The electrostatic potential satisfying Laplace’s equation inside the sphere (r < a) is

ψ(x) = ψ0 + ψ ′(x) = ψ0 + [ψ̂(r = a)(r/a)− r(E/X)]X · er, (2.14)

where ψ0 and ψ̂(r = a) are constants. Note that the electrostatic potential is continuous
across the interface, a consequence of implicitly prescribing zero interfacial dipole
moment (Baygents & Saville 1991).

Outside the sphere, there are differential conservation equations for N ionic species, and
fluid mass and momentum. With Gauss’s law, these furnish the standard electrokinetic
model (O’Brien & White 1978). The equations are solved (for r > a) in terms of the
following independent variables (ion concentrations, electrostatic potential and fluid
velocity):

ni(x) = n0
i (r)+ n̂i(r)X · er, i = 1, . . . ,N, (2.15)

ψ(x) = ψ0(r)− rE · er + ψ̂(r)X · er, (2.16)

and (Hill et al. 2003)
u(x) = U + ∇ × ∇ × [h(r)X ]. (2.17)

Superscripts ‘0’ identify (spherically symmetric) equilibrium, and hatted variables identify
spherically symmetric (radial) contributions to the total perturbation. One may also
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express the velocity as (Hill & Afuwape 2020)

u(x) = ∇ × [ f (r)X × er] = ( fr + fr−1)X + (−fr + fr−1)X · erer, (2.18)

giving

f = rU/(2X)− hr, fr = U/(2X)− hrr, and frr = −hr,rr = −g, (2.19a–c)

where g ≡ hr,rr is an auxiliary variable to avoid derivatives in the numerical solution for
h(r) that are higher than of second order.

To couple the N ion-conservation equations in the standard electrokinetic model to the
interface, the (Nernst–Planck) ion fluxes at the interface are required to satisfy(

−Di∇n′
i − ∇ψ ′zien0

i
Di

kBT
+ n0

i u
)

· er

∣∣∣∣
r=a

= kdc′
i − kan′

i(r = a), i = 1 (2.20)

(
−Di∇n′

i − ∇ψ ′zien0
i

Di

kBT
+ n0

i u
)

· er

∣∣∣∣
r=a

= 0, i = 2, . . . ,N, (2.21)

where i = 1 identifies the (single) adsorbing species (subscripts discarded above).
The foregoing may be generalized to multiple adsorbing species, albeit by introducing

additional kinetic-exchange coefficients. Note that Di are the ion diffusivities (in the
external electrolyte), which are generally prescribed as Di = kBT/γi with γi the friction
coefficient calculated from the limiting molar conductivity (λi).

At the interface (x = aer), linearity and symmetry require an interfacial concentration
perturbation of the form

c′(x) = dcX · er, (2.22)

where dc is a constant that measures the interfacial concentration polarization.

2.3. Computational implementation
Substituting (2.22) and the other independent variables into the foregoing conservation
equations and boundary conditions furnishes the following N + 5 independent (algebraic
and differential) relationships (boundary conditions) at r = a.

(i) Zero radial velocity
hr = aU/(2X). (2.23)

(ii) Interfacial (tangential) momentum conservation

−(ηi/ηo)C1ct − g = [γ 0βdc + σ 0(ψ̂ − aE/X)]/(aηo). (2.24)

(iii) Continuous tangential velocity

hrr = U/(2X)− C1acu. (2.25)

(iv) Interfacial Gauss condition

εiε0(ψ̂/a − E/X)− εoε0(ψ̂r − E/X) = zdce. (2.26)

(v) Interfacial species conservation (for the adsorbing ion species, i = 1)

−(D + kda2/2)dc + kan̂1a2/2 − (ψ̂ − aE/X)zec0 D
kBT

= −c0C1a2cu. (2.27)
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(vi) N radial ion fluxes

−kddc + kan̂i = Din̂i,r + ψ0
r zien̂i

Di

kBT
+ (ψ̂r − E/X)zien0

i
Di

kBT
, i = 1 (2.28)

0 = Din̂i,r + ψ0
r zien̂i

Di

kBT
+ (ψ̂r − E/X)zien0

i
Di

kBT
, i = 2, . . . ,N. (2.29)

These are coupled to N + 3 independent differential relationships (ordinary differential
equations) for the external electrolyte (r > a). More generally, with M adsorbing ions
(1 � M � N), the interfacial model contributes a net M + 1 independent relationships
to uniquely determine M + 1 unknowns (e.g. C1 and dc for M = 1).

2.4. Parametric considerations
When the interfacial model is expressed in a dimensionless form that is compatible
with the scaled electrokinetic conservation equations for the electrolyte (r > a), several
additional independent dimensionless parameters are revealed. In addition to κa,
ζe/(kBT), εi/εo and Pei = uc/(κDi) (Hill et al. 2003), there are Pe = uca/D (defined in
the introduction), ηi/ηo, kda2/D, kaa/D and

Ma = γ 0β

kBT
= Mac

ηoD
kBTc0a

. (2.30)

These characterize the internal fluid dynamics, interfacial Marangoni effects (due to
surface tension and interfacial transport) and exchange kinetics. The concentration
Marangoni number

Mac = γ 0βc0a
ηoD

, (2.31)

compares interfacial diffusion and surface-tension relaxation times, whereas Ma is a
dimensionless combination of intrinsic interfacial properties (comparing interfacial and
thermal energy) (Hill & Afuwape 2020).

Note that, since ka and kd are constrained by the equilibrium condition (2.5), adopting
kd as the independent kinetic-exchange rate, its dimensionless counterpart is a Damköhler
number

Da = kaa
D

= kda
D

c0

n∞e−ζ ∗z , (2.32)

which compares the kinetic-exchange rate ka with a diffusion velocity. Another convenient
Damköhler number (comparing kd with a diffusion frequency D/a2) is kda2/D. Of course,
other (dependent) dimensionless groups may be formed, e.g. drawing on Pe to assess the
role of interfacial advection, etc.

In this work, a combination of dimensionless and dimensional variables is adopted
in presenting the results. This is motivated, in part, by familiarity with customary
dimensionless variables, such as κa and ζ ∗, and the less familiar dimensional kd and D,
which separately target interfacial exchange and interfacial mobility, but appear combined
in (2.32). For this, it is necessary to consider whether or not n∞ in (2.32) varies with the
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Fluid-sphere electrophoresis

Debye length and ionic strength

κ−1 =
√
εoε0kBT

2Ie2 , I = 1
2

N∑
i=1

z2
i n∞

i . (2.33a,b)

Thus, if the adsorbing ion has a trace concentration (e.g. an ionic surfactant) among those
in a supporting electrolyte (comprising only non-adsorbing species), then n∞ may be
considered independent of κ−1, in which case Da will vary only according to the coupling
of ζ and σ 0 by κa. On the other hand, if the adsorbing ion is part of the electrolyte that
dominates the bulk ionic strength I, then Da may also vary (perhaps significantly) with
n∞ ∼ I ∼ κ2 when kd is a prescribed constant. The highly coupled physics and resulting
distribution of kd and D (and others) among multiple dimensionless groups motivates a
more physically motivated, hybrid approach for exploring the broader parameter space.

3. Results

The electrophoretic mobility μ = −U/E is the ratio of the electrophoretic velocity −U to
the strength of the applied electric field E. The results below are presented in terms of a
scaled electrophoretic mobility defined as

μ∗ = μ
3ηo

2εoε0kBT/e
. (3.1)

For weakly charged spheres, the mobility is linear in the scaled surface potential

ζ ∗ = ζ
e

kBT
, (3.2)

thus motivating plots of μ∗/ζ ∗. As convenient points of reference, the well-known Hückel
and Smoluchowski values for rigid spheres when |ζ | � kBT/e ≈ 25 mV are μ∗ = 1 and
3/2 for κa � 1 and κa � 1, respectively.

A drag coefficient is defined as

F∗ = Fd

6πηoaU
, (3.3)

which is the ratio of the drag force Fd under translation at velocity −U to the Stokes drag
force, 6πηoaU. For uncharged rigid spheres (without electro-viscous effects), F∗ = 1,
and, for uncharged inviscid spheres (ηi/ηo → 0), the well-known Hadamard–Rybczynski
theory

F∗ = 2/3 + ηi/ηo

1 + ηi/ηo
(3.4)

furnishes F∗ = 2/3.

3.1. Debye–Hückel regime, irreversibly bound charge
This subsection focusses on weakly charged interfaces for which analytical formulas are
available to provide benchmark points of reference. The computations are undertaken with
an aqueous electrolyte containing two pairs of ions: Na+ and DS− (dodecyl sulphate)
having (trace) bulk concentration 10−10 mol l−1; and Na+ and Cl− (added salt) having a
bulk concentration that is adjusted to achieve a prescribed value of κa. Here, DS− is the

1005 A1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
62

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1062


R.J. Hill

(irreversibly) adsorbing ion for which kd = 0. Note that the calculations do not seek to
model the surfactant adsorption, since this would demand the surface-charge density (and
ζ -potential) to be a specific function (isotherm) of the bulk electrolyte composition.

In the Debye–Hückel regime for which |ζ ∗| � 1 and μ∗ is proportional to ζ ∗, the ratio
μ∗/ζ ∗ is plotted vs κa for viscosity ratios ηi/η0 in the range 10−3–103. Note that, with
fixed |ζ ∗| � 1, the interfacial-charge density varies with κa according to

ζ = σ 0a
εoε0(1 + κa)

. (3.5)

Thus, an increase in κa when κa � 1 is implicitly accompanied by a commensurate
increase in σ 0.

In figure 1, the surface potential is extremely small (ζ ∗ = −0.001, corresponding to ζ ≈
−0.025 mV) with an extremely high (unphysical) interfacial mobility (D = 10−6 m2 s−1

furnishing Pe ≈ 5.15 × 10−4). In panel (a) with εi/εo � 1, the computations agree with
the theory of Booth (1951), but only when κa � 100. For rigid spheres (achieved with
ηi/η0 � 1), the computations furnish the well-known Henry mobility (Russel et al. 1989).
In panel (b) with εi/εo = 1, Booth’s theory, evaluated here with (internal conductivity
parameter) λ ≈ 0 (equi-conducting sphere), furnishes the Hückel mobility, independent
of the viscosity. Note that the computations are in good agreement with the theory of
Mahapatra et al. (2022) when κa � 100; departures from the analytical theories in panels
(a,b) when κa � 1 are attributed to the interfacial-charge mobility, as explored below by
varying Pe and ζ ∗.

The very large value of εi/εo for the results in figure 1(c) is difficult to justify from a
practical perspective, since there are few, if any, non-ion-conducting fluids with a higher
dielectric permittivity than of water. Nevertheless, these results test the computational
fidelity and provide physical insight, e.g. addressing how large εi/εo must be for the
mobility to approximate that of a metallic fluid, such as mercury. Here, the computations
cannot be distinguished from the theory of Mahapatra et al. (2022) at any value of κa,
thus validating, in part, the computational accuracy. The small quantitative departure of
the theory of Ohshima et al. (1984) (dotted lines) from the computations when κa � 100 in
panel (c) reflects the large but finite value of εi/εo = 103, whereas the mobilities according
to Ohshima et al. (1984) for mercury drops emerge as εi/εo → ∞.

Note that the accompanying drag coefficients (not shown) are computed equal to
their respective Hadamard–Rybczynski values; this indicates fluid-behaving interfaces
without electro-viscous effects, as is to be expected at low interfacial-charge densities.
The velocity scale for mercury drops (and therefore the electrophoretic mobility) is
O(κa) larger than the Smoluchowski scale uS = (kBT/e)2εoεi/(ηoa) (Schnitzer et al.
2013). This is evident upon recognizing the interfacial charge per unit area from (3.5) as
∼ ζκεoε0, the interfacial electric field (on the diffuse part of the double layer) as ∼ E, thus
furnishing an interfacial Maxwell stress ∼ ζκεoε0E. Balancing this with ∼ (ηo + ηi)uc/a
the viscous stress from each side of the interface furnishes a large characteristic mobility
uc/E ∼ κaζ εoε0/(ηo + ηi). In this thin double-layer limit, the theory of Schnitzer et al.
(2013) furnishes corrections to the weak-field approximation, which emerge at moderate
ζ -potentials, as highlighted in § 3.5.

Note that computations (not shown) with ζ ∗ = −0.001 (as in figure 1), but with a much
lower interfacial-charge mobility (Pe ≈ 515) furnished electrophoretic mobilities that are
practically the same as in figure 1 (Pe � 1). The drag coefficients, however, deviate
moderately from their Hadamard–Rybczynski values when κa � 1, even with ζ ∗ =
−0.001. Since the interfacial charge is irreversibly bound to the interface here (kd = 0),
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Figure 1. Scaled electrophoretic mobility μ∗ vs κa for extremely weakly charged drops and bubbles:
ζ ∗ = −0.001; ηi/ηo = 0.001 (blue), 0.25, 0.5, 1, 2, 4, 103 (ruby); εi/εo = 10−3 (a), 1 (b), 103 (c). Solid
lines are computations (with no surface exchange or Marangoni stresses, high surface diffusivity furnishing
Pe � 1). Dashed lines are the theory of Booth (1951) with λ ≈ 0.5 (a, non-conducting/polarizable), 0 (b,
equi-conducting/polarizable, independent of ηi/ηo) and −1 (c, highly conducting/polarizable); dashed-dotted
lines in (b) are the theory of Mahapatra et al. (2022), which equals Booth’s theory in (a) and overlaps the full
computations in (c); and dotted lines in (c) are the theory of Ohshima et al. (1984), which is equivalent to
the theory of Mahapatra et al. when εi/εo → ∞. Computed drag coefficients (not shown) are the respective
Hadamard–Rybczynski values for all κa.

a vanishing interfacial mobility demands a stationary interface, since otherwise there
would be a non-zero interfacial divergence of the surface flux. In this limit, hydrodynamic
friction exerted on a stationary interfacial ion population arrests the interface; this state
may also be considered as arising from the tangential electrical (Maxwell) traction being
balanced by hydrodynamic shear, which must be attributed to the external electrolyte when
ηi/ηo � 1.

In figure 2, the surface potential has been increased to furnish |ζ ∗| = 0.1. Despite being
well within the Debye–Hückel regime, the mobilities for εi/εo = 10−3 and 1 in panels
(a,b) are completely different than their counterparts in figure 1. These now exhibit striking
departures from the theory of Booth (1951) in panel (a) and from the theory of Mahapatra
et al. (2022) in panel (b). Note that the computed mobilities exclusively increase with
κa and decrease with increasing ηi/ηo, as for highly polarizable but non-ion-conducting
spheres. With εi/εo = 103 in panel (c), the mobilities depart only slightly from the theories
of Ohshima et al. (1984) (εi/εo = ∞, dotted lines) and Mahapatra et al. (2022) (evaluated
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Figure 2. The same as figure 1 (Pe � 1), but with ζ ∗ = −0.1: εi/εo = 10−3 (a), 1 (b), 103 (c). These
mobilities (solid lines) exemplify fluid spheres behaving as highly polarizable fluid spheres on account of
high interfacial-charge mobility. Computed drag coefficients (not shown) depart weakly from their respective
Hadamard–Rybczynski values.

here with εi/εo = ∞, dashed-dotted lines). Note that the accompanying drag coefficients
(not shown) exceed their respective Hadamard–Rybczynski values when κa � 1.

Computations (not shown) with ζ ∗ = −1 and Pe � 1 furnished the same scaled
mobilities as in figure 2 with ζ ∗ = −0.1 and Pe � 1. Thus, figure 2 unveils high
interfacial-charge mobility as suppressing the interfacial tangential electric field, so that
the electrical force on the diffuse part of the double layer is balanced by hydrodynamic
shear. Since the charge in the double layer increases in proportion to κa when κa � 1, the
shear rates must increase in proportion to κa, manifesting in a proportional increase in the
mobility.

Figure 3 shows that decreasing the interfacial-charge mobility to furnish Pe � 1 (with
|ζ ∗| = 1) transforms fluid spheres with εi/εo = 10−3 and 1 in panels (a,b) to their almost
perfectly rigid counterparts. The accompanying drag coefficients (not shown) suggest rigid
interfaces without significant electro-viscous effects, i.e. F∗ ≈ 1 for all κa. Accordingly,
the electrophoretic mobilities are well approximated by the Henry theory (|ζ ∗| � 1,
arbitrary κa). With εi/εo = 103 in panel (c), the drag coefficients demonstrate a much
more gradual, but significant, transition from fluid to rigid behaviour when increasing κa.
Interestingly, with κa � 1, the mobilities depart from all the extant theoretical formulas,
tending to the theory of Ohshima et al. (1984) for small viscous spheres (κa � 1, ηi/ηo �
1), otherwise to the Henry theory when ηi/ηo � 1.
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Figure 3. The same as figure 1, but with ζ ∗ = −1 and Pe ≈ 515: εi/εo = 10−3 (a), 1 (b), 103 (c). These
mobilities (solid lines) exemplify fluid spheres behaving as rigid spheres on account of low interfacial-charge
mobility. Panel (d) shows the drag coefficients and their respective Hadamard–Rybczynski values (dashed
lines) accompanying the mobiles in panel (c). The drag coefficients accompanying the mobilities in (a,b) (not
shown) are F∗ ≈ 1 (Stokes drag for rigid spheres).

3.2. Drops with finite ζ -potentials: Baygents & Saville (1991)
This section revisits figure 1 of Baygents & Saville (1991), which is for non-conducting
fluid spheres in an aqueous KCl electrolyte with κa = 100 and zero interfacial-charge
mobility for which ‘ions adsorbed in the interface are equilibrated with those in solution
immediately adjacent to the surface’. Accordingly, the results in figure 4 were calculated
with adsorption of the K+ ion (consistent with ζ ∗ > 0), D → 0 and kd → ∞.

In the Debye–Hückel regime (|ζ ∗| � 1), (2.32) and (3.5) identify the Damköhler number
varying with κa and ζ ∗ as

Da = kd
kBTεoε0

zDn∞e2 (1 + κa)eζ
∗zζ ∗, (3.6)

with σ 0 = zec0 and zζ ∗ > 0. For an aqueous electrolyte at room temperature with n∞ =
1 mM and D = 10−9 m2 s−1, the dimensional factor kd,0 ≡ Dn∞e2/(kBTεε0) ∼ 106 s−1

identifies a characteristic scale for kd. While the prescription of D → 0 corresponds to
Da → ∞, it should be noted that kinetic exchange also couples with diffusion in the
external electrolyte, for which another Damköhler number Da D/D1 remains finite and,
therefore, potentially influential when varying κa and ζ ∗.
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Figure 4. Scaled electrophoretic mobility μ∗ (a) and drag coefficient F∗ (b) vs ζ ∗ for the non-conducting fluid
spheres considered in figure 1 of Baygents & Saville (1991) (aqueous KCl electrolyte, shown as dots): κa =
100 (a = 500 nm), ηi/ηo = 0.01 (blue), 1 (red), 100 (yellow). Other parameters: εi/εo = 10−3, Pe � 1 (D =
10−15 m2 s−1), kd = 1012 s−1. Dashed lines in (a) are the theory of Booth (1951) with λ = 0.5 (non-conducting
drops), and the solid black line in (a) is the Smoluchowski mobility (rigid spheres, ζ ∗ � 1, κa � 1). Dashed
lines in (b) are the Hadamard–Rybczynski drag coefficients.
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Figure 5. The same as figure 4 (κa = 100), but with kd = 100 s−1 and ηi/ηo = 0.01. Calculations with
ηi/ηo = 1 and 100 (not shown) produce the same mobilities, which are those of rigid spheres in KCl according
to O’Brien & White (1978). The drag coefficient is computed F∗ ≈ 1 for all ζ ∗ � 0.2.

Similarly to Baygents & Saville (1991), the mobilities in figure 4 for small enough
ζ ∗ agree with Booth’s theory (dashed lines). At higher values of ζ ∗, however, there are
notable departures of the present model from the computations of Baygents & Saville. For
the low-viscosity drops (ηi/ηo = 0.01, blue lines), Baygents & Saville report exclusively
positive mobilities (for ζ ∗ > 0), whereas the mobilities in figure 4 take negative values at
intermediate ζ -potentials. For high-viscosity drops (ηi/ηo = 100, yellow lines), Baygents
& Saville register mobilities that are very close to those of rigid spheres, as computed by
O’Brien & White (1978) (see figure 5 for κa = 100).

Note that calculations with other small but finite values of εi/εo did not affect the
results, neither did other large but finite values of kd. The mobilities were also invariant
to a significant decrease in the sphere radius (e.g. from a = 500 to 5 nm), provided that
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the values of κa and kda2/D1 were maintained by adjusting κ and kd accordingly (with
D1 ≈ 1.96 × 10−9 m2 s−1 for K+).

Consider now the mobilities of the high-viscosity drops (ηi/ηo = 100) with high
ζ -potentials. With zero interfacial-charge mobility, the interfacial current (surface-ion
flux) is solely by interfacial advection, which vanishes with sufficiently high drop
viscosity. Nevertheless, the interfacial charge may still adjust to local changes in
the concentration of the adsorbing ion in the immediately adjacent electrolyte.
Moreover, for highly charged interfaces, electromigration polarizes the electrolyte, thus
producing an excess and deficit of the adsorbing ion at opposite poles of the drop.
Therefore, under conditions that conventionally lead to strong diffuse-layer polarization,
e.g. |ζ ∗| � 1, there is also an interfacial-charge polarization that causes the mobilities
in figure 4 (ηi/ηo = 100, yellow lines) when ζ ∗ is large to depart from those of rigid
spheres bearing uniform surface charge (O’Brien & White 1978) (see figure 5 for
κa = 100).

Note that experimental evidence for a change in the sign of the electrophoretic
mobility for small spherical bubbles was reported by Alty (1924). These authors
noted a change in the direction of bubble migration occurring for intermediate bubble
sizes during a progressive decrease in the bubble size (due to gas absorption). This
occurred only for the first bubble introduced into their electrophoresis cell when
using highly purified (twice distilled and boiled) water. The observation serves to
highlight an extreme sensitivity of bubble mobilities to interfacial phenomena, as
explored briefly below by varying κa and kd. Taken together, the effects of bubble size,
interfacial-charge density and kinetic-exchange rate may explain some of the unusual
observations of Alty (1924). Note, however, that there is no obvious reason to believe
that any of the charge on the bubbles in their experiments had a vanishing interfacial
mobility.

Figure 5 shows the mobility for the same drops in figure 4, but with a much smaller
kinetic-exchange rate, kd = 100 s−1. Because D is so small, this still furnishes kda2/D ∼
104 � 1, but now the kinetic-exchange rate is small compared with the characteristic
interfacial advection rate, thus furnishing a kda2/(D Pe) ∼ 0.1 with Pe ∼ 105 and
kda2/D1 ∼ 0.01. This makes the adsorption practically irreversible (on the advective time
scale), so the vanishing interfacial mobility and kinetic exchange require a vanishing
interfacial velocity, since otherwise (in the absence of interfacial electromigration and
diffusion) there would be a non-zero divergence of the interfacial current (surface-ion
flux). Accordingly, the interfaces are completely arrested, irrespective of the drop
viscosity, and the drop mobilities are those of rigid spheres bearing uniform surface charge.
It is readily verified that the fluid-sphere mobilities in figure 5 are those of rigid spheres
in KCl electrolyte, as furnished by the standard electrokinetic model (O’Brien & White
1978). Note that the same conclusions are drawn from computations with κa = 1 under
these conditions.

Figure 6 shows the mobility and drag coefficient with κa = 1 and 10, all other
parameters the same as in figure 4. These highlight the transition from Booth’s fluid-sphere
mobilities at low ζ -potentials to the rigid-sphere mobilities of O’Brien & White (1978) at
high ζ -potentials. The transition is accompanied by increases in the drag coefficient from
the Hadamard–Rybczynski values to those of rigid spheres (enhanced by electro-viscous
effects at high ζ ∗, furnishing F∗ > 1). Whereas the mobilities for κa = 10 depart from
those of Baygents & Saville (1991) at intermediate ζ -potentials, the values for κa = 1 are
practically indistinguishable. This seems to reflect the total polarization being dominated
by that of the diffuse layer when κa = 1.
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Figure 6. The same as figure 4 (kd = 1012 s−1), but with κa = 10 (a,b) and 1 (c,d). Dotted lines in (a) are
from Baygents & Saville (1991) (aqueous KCl electrolyte). Solid black lines in (a,c) are, respectively, the
Smoluchowski and Hückel mobilities (rigid spheres, ζ ∗ � 1).

3.3. Bubbles with finite ζ -potentials: Schnitzer et al. (2014) and Wu et al. (2021)
Computations were undertaken to compare with the thin double layer of Schnitzer et al.
(2014) which, recall, predicts a bubble mobility under the weak-field approximation
scaling as μ∗ ∼ ζ ∗3 for |ζ ∗| � 1. Here, the electrolyte comprises Na+ and DS− ions
with the surface charge attributed to the adsorption of DS−, which is prescribed a surface
diffusivity D = 3.94 × 10−10 m2 s−1, thus furnishing Pe ≈ 1.31.

Figure 7 shows the mobilities and drag coefficients for fluid spheres (corresponding
to bubbles) having small but finite ηi/ηo = 0.01, εi/εo = 10−3 and κa = 500. Booth’s
theory (dashed lines) prevails in the Debye–Hückel regime only when the kinetic-exchange
rate kd is sufficiently high. Note that increasing kd by two orders of magnitude beyond
the largest value (green lines with kd = 108 s−1) produced very little change. Schnitzer
et al. (2014) noted Booth’s theory as furnishing a mobility that vanishes as κa → ∞.
This limit is approached very slowly, manifesting in figure 7(a) as a shift down the
logarithmic mobility axis. Whereas the theory of Schnitzer et al. (2014) predicts a singular
mobility at a ζ -potential that varies according to the bulk electrolyte-ion mobilities (as
parameterized by their α parameter, termed a primitive Péclet number), calculations with
a lower interfacial-charge mobility produced a continuous (non-singular) change in the
sign of the mobility at intermediate ζ -potentials, but only with the largest values of kd.
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Figure 7. Scaled electrophoretic mobility −μ∗ (a,b) andμ∗/ζ ∗ (c) vs −ζ ∗ for bubbles with a thin double layer:
κa = 500; ηi/ηo = 0.01; εi/εo = 10−3, kd = 0 (blue), 104, 105, 106, 108 (green) s−1. The electrolyte comprises
Na+ and DS− ions with Pe+ = uca/D+ ≈ 7.43 × 10−4κa and Pe− = uca/D− ≈ 2.62 × 10−3κa, respectively,
fixed ionic strength/concentration (I = 0.1 M) and particle radius (a ≈ 481 nm). There is no consideration of
Marangoni stresses or micellization. The surface diffusivity of the adsorbing ion (DS−), which maintains the
prescribed ζ -potential, is set to D = 3.94 × 10−10 m2 s−1, furnishing Pe ≈ 1.31. Solid lines (blue through
green) are computations. Solid black line in (a) is the Smoluchowski mobility μ∗ = 3ζ ∗/2 (rigid spheres,
κa � 1). Dashed lines in (a–c) are the theory of Booth (1951) (κa = 500, ηi/ηo = 0.01, λ = 0.5); and the
dashed-dotted lines are the theory of Schnitzer et al. (2014) (α = 0.5). (d) Drag coefficient accompanying the
mobilities in (a–c).

To explore further, calculations were undertaken to compare with Wu et al. (2021). Their
computations extend Booth’s model (for drops and bubbles) to higher ζ -potentials, albeit
for non-conducting spheres that they termed ‘dielectric’ fluid droplets. In the context of
the present model, this corresponds to εi/εo → 0. Among their computations exploring
the ηi/ηo and ζ ∗ spaces, Wu et al. (2021) demonstrated the mobility of highly charged,
low-viscosity spheres (bubbles) as being singular when κa ≈ 8 for ηi/ηo = 0.01. They
noted the singularity as consistent with the theory of Schnitzer et al. (2014), but did not
address the notable disparity with the non-singular, single-signed mobilities of Baygents
& Saville (1991) under similar conditions.

Wu et al. (2021) suggested that the singular behaviour (with a uniform surface
charge) might be attributed to shortcomings of the Poisson–Boltzmann model. While
this has motivated studies of finite-ion-size effects (Majhi & Bhattacharyya 2024),
figure 8 demonstrates that finite interfacial-charge mobility is sufficient to regularize the
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Figure 8. Scaled electrophoretic mobility μ∗ (a) and drag coefficient F∗ (b) vs κa for the highly charged
‘dielectric’ fluid spheres from figure 10 of Wu et al. (2021) (ζ ∗ = 5). Mobilities from their figure 10
with ηi/ηo = 0.01 (dots) are singular at κa ≈ 8, transitioning to large negative values (not shown) when
κ � 8. Computations (solid lines) are undertaken with an electrolyte comprising Na+ and DS− ions with
ζ ∗ = −5: kd = 0 (blue), 106 (red), 108 s−1 (yellow). Other parameters: D = D1 = 3.94 × 10−10 m2 s−1

(DS−), a = 50 nm, ηi/ηo = 0.01, εi/εo = 10−3. Dashed lines in (a) are the theory of Booth (1951)
with λ = 0.5 (non-conducting drops) for ηi/ηo = 0.01 (blue) and 100 (red). Dashed lines in (b) are the
Hadamard–Rybczynski drag coefficients for ηi/ηo = 0.01 (blue) and 100 (red).

mobility. Despite the three kinetic-exchange rates spanning eight orders of magnitude
(kd = 0–108 s−1, e.g. kda2/D ≈ 636 with kd = 108 s−1), the kinetic-exchange rate is seen
to have a relatively weak influence here. This reflects the high interfacial-charge density
immobilizing the interface due to a strong tangential Maxwell stress. This is also evident
from the large drag coefficient in panel (b), which is clearly enhanced by electroviscous
effects (F∗ > 1). Whereas the mobilities in figure 8 of Wu et al. (2021) (with slightly
lower ζ ∗ = 4) appear to grow indefinitely with κa when ηi/ηo = 0.01, the present model
(evaluated with ζ ∗ = −4) predicts (finite) mobilities, similar to those in figure 8, albeit
shifted by approximately one dimensionless mobility unit.

3.4. Flows, electrostatic potential and ion-concentration perturbations
This section examines selected flow, electrostatic potential and ion-concentration
perturbations underpinning the mobilities in § 3.2. These provide additional insights into
the changes that finite interfacial exchange and charge mobility bring to the calculations
of Baygents & Saville (1991), as highlighted in figures 4–6.

Figure 9 compares the electric-field-induced perturbations for the low- and
high-viscosity drops in figure 4 with ζ ∗ = 2 and κa = 100. Whereas the electrostatic
potential and cation-concentration perturbations are qualitatively the same (as expected
based on a small Péclet number Pe � 1), it should be noted that the electroosmotic
flow in panel (a) with ηi/ηo = 0.01 is in the opposite direction to that in panel (d)
with ηi/ηo = 100. This reflects the interface velocity for the low-viscosity drop having
a large magnitude in the direction of the electrical force acting on the interfacial charge.
For the high-viscosity drop, the interface is arrested by the high drop viscosity, so the
electroosmotic flow at the interface is in the direction of the electrical force acting
on the diffuse-layer/counter charge. Despite the local (diffuse-layer) fluid velocities in
figures 9(a) and 9(d) being so different, the electrostatic potential and co-ion-concentration
perturbations are similar when viewed here on the particle length scale. Much clearer
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Figure 9. Streamlines (a,d), electrostatic potential perturbation (b,e) and co-cation-concentration perturbation
(c, f ) for stationary drops subjected to an electric field (from left to right): ζ ∗ = 2, κa = 100, ηi/ηo = 0.01
(a–c), 100 (d–f ). Other parameters are the same as in figure 4. The concentration perturbations are positive
(negative) at the left (right) poles.

views of perturbations within the diffuse layer are unveiled in figure 10 with κa = 1 and
ζ -potential in the Debye–Hückel regime.

Figure 11 demonstrates the flow under electrophoresis in panel (c) as the linear
superposition of an electro-viscous flow when subjected to a uniform flow in the absence
of an electric field (panel a) and electroosmotic flow when subjected to an electric field
in the absence of translation (panel b). The much thicker Debye length (κa = 5) than in
figure 9 unveils qualitative features of the flows that may otherwise be absent due to the
interface being arrested by the Maxwell stress (or internal viscous stresses), or completely
obscured by a very small Debye length (κa � 1).

Figure 12 compares the co-cation-concentration perturbations induced by translation
in the absence of an electric field (a,c,e) with those induced by an electric field
in the absence of translation (b,d, f ). Here, the kinetic-exchange rate kd is seen to
have a significant influence on the concentration perturbation induced by the drop
translation (a,c,e). For example, the left panel in (a) shows the flow-induced perturbation
when there is no kinetic exchange (irreversible adsorption, kd = 0). The upstream pole
(flow from left to right) establishes an excess co-cation concentration, since ions from
the bulk are advected into the diffuse double layer, which, at equilibrium, bears a
co-cation deficit. Increasing kd enables the adsorbed cation population to establish
local equilibrium with ions in the immediately adjacent electrolyte. In panels (e, f )
with kd = 105 s−1, the upstream and downstream poles now establish, respectively,
a deficit and excess of co-cations (negative concentration dipole), as necessary for
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Figure 10. Streamlines (a,d), electrostatic potential perturbation (b,e) and co-cation-concentration
perturbation (c, f ) for stationary drops subjected to an electric field (from left to right): ζ ∗ = 0.5, κa = 1,
ηi/ηo = 0.01 (a–c), 100 (d–f ). Other parameters are the same as in figure 4.
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Figure 11. Streamlines (in the drop frame) for a low-viscosity drop subject to (a) uniform (left-to-right)
far-field flow; (b) uniform (left-to-right) electric field; and (c) force-free electrophoresis: ζ ∗ = 1, κa = 5,
ηi/ηo = 0.01. Other parameters are the same as in figure 4.

ions released from the downstream pole to diffuse to the upstream sink. Note that a
further increase in kd under these conditions did not further change the concentration
perturbations.
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Figure 12. Co-cation-concentration perturbations (blue/negative, yellow/positive) for stationary drops
subjected to a uniform (left-to-right) far-field flow (a,c,e) and a uniform (left-to-right) electric field (b,d, f ):
ζ ∗ = 1, κa = 5, ηi/ηo = 0.01, kd = 0 (a,b), 104 (c,d) and 105 s−1 (e, f ). Other parameters are the same as in
figure 4.
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3.5. Mercury drops
Computations were undertaken (with zero interfacial exchange, without Marangoni
effects) to expedite comparisons with Ohshima et al. (1984) for mercury drops
in KCl electrolytes. Here, however, the electrolyte is prescribed according to
§ 3.1, i.e. with a trace bulk concentration of the adsorbing ion. Moreover, the
present model demands an extremely high dielectric permittivity for the drop to
mimic how the electronic conductivity of mercury suppresses the interfacial electric
field.

The results (provided in the Appendix) may be compared directly with those of Ohshima
et al. (1984), demonstrating the mobilities (and conductivity increment) being very close
to, but not exactly the same as, those of Ohshima et al. Drop mobilities with |ζ ∗| � 1
and κa � 1 were found to be especially sensitive to the large but finite value of εi/εo: the
computations reported in the Appendix were undertaken with εi/εo = 104, whereas the
model of Ohshima et al. (1984) corresponds to εi/εo → ∞. Note that correspondence is
achieved with Pe � 1, thus demanding an unphysically high interfacial-charge mobility
that mimics the effect a perfectly polarizable drop maintaining a perfectly uniform surface
potential.

Mobilities and drag coefficients for the mercury drops of Ohshima et al. (1984), but
with a NaCl electrolyte (zero interfacial exchange, without Marangoni effects), are shown
in figure 13 for interfacial-charge mobilities furnishing Pe ≈ 0, 0.515 and 51.5. Here,
the ionic strength of the electrolyte has been adjusted to achieve the same values of
κa as Ohshima et al. However, only the results in panel (a) with Pe ≈ 0 correspond
to those of Ohshima et al. The mobilities for drops with large ζ -potentials are lower
than those computed by Ohshima et al. for NaCl electrolyte. This is attributed to the
diffuse-layer polarization being enhanced by the lower mobility of the Na+ counterion ion
as compared with K+; also shifting the mobility maxima to slightly larger ζ ∗. Figure 13(a)
establishes close correspondence with the thin-double-layer theory of Ohshima et al.
(dashed lines, κa � 1) when explicitly accounting for the contrasting Na+ and Cl− ion
mobilities.

Correspondence with the thin-double-layer theory of Schnitzer et al. (2013) (dash-dotted
lines) is demonstrated at moderate ζ -potentials and large κa by evaluating their ‘primitive’
ion Péclect number α = 2Pe1Pe2/(Pe1 + Pe2), verified here to furnish the same as the
Levich–Frumkin formula provided by Ohshima et al. (1984). According to Schnitzer
et al. (2013), the discrepancy at higher ζ -potentials is to be interpreted based on two
asymptotically small dimensionless parameters: their theory applying when 1/(κa) � 1
is sufficiently smaller than β = Eae/(kBT) � 1.

Whereas the consistency of the present model and the mercury-drop model of
Ohshima et al. (1984) achieved in figure 13(a) occurs with a very high (unphysical)
interfacial-charge mobility (Pe � 1), the drop mobilities in panels (b,c), which are
notably lower, arise from much lower (and perhaps more realistic) interfacial-charge
mobilities (Pe ≈ 0.515 and Pe ≈ 51.5). Superficially, this suggests that the correspondence
with mercury drops might reflect a high surface-charge mobility maintaining a uniform
concentration. However, computations (not shown) undertaken with even larger values
of εi/ε0 were found to bring the drop mobilities increasingly closer to those in panel
(a). This demonstrates that the drop mobilities in panels (b,c) depart from the theory
of Ohshima et al. (1984) due to a finite Maxwell stress acting on the interfacial charge
(even though εi/εo = 104). Now, given that the results in figure 13 have irreversibly bound
charge (kd = 0), one might reasonably ask: what are the roles of interfacial exchange
and charge mobility if the value of εi/ε0 is even higher? To this, computations were
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Figure 13. Scaled electrophoretic mobility −μ∗ (a,c,e) and drag coefficient F∗ (b,d, f ) vs −ζ ∗ for the mercury
drops of Ohshima et al. (1984), albeit for an aqueous NaCl electrolyte: κa = 0.1 (blue), 1 (red), 10 (yellow), 20
(violet), 30 (green), 50 (cyan), 100 (ruby), 200 (blue). Other parameters: kd = 0 (irreversibly bound charge),
Ma = 0, ηi/ηo = 1.71, εi/εo = 104, Pe � 1 (a,b), Pe ≈ 0.515 (c,d), Pe ≈ 51.5 (e, f ). Dashed lines in (a,c,e)
with |ζ ∗| � 1 are the theoretical formula of Ohshima et al. (1984) in the Debye–Hückel approximation. Dashed
lines in (a) with κa � 1 are the thin-double-layer formula of Ohshima et al. (1984). Dashed-dotted lines in (a)
are the thin-double-layer theory of Schnitzer et al. (2013) evaluated using α = 2Pe1Pe2/(Pe1 + Pe2), furnishing
exactly the same as the Levich–Frumkin formula.
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undertaken with εi/ε0 = 108, surface diffusivity D = 10−9 m2 s−1 (Pe = 0.515) and
kd = 108 s−1, thus furnishing kda2/D ∼ 104. These produced mobilities consistent with
the mercury-drop model of Ohshima et al. (1984), demonstrating that sufficiently rapid
interfacial-exchange kinetics may indeed suppress interfacial-charge density perturbations
that would otherwise be sustained by interfacial advection and diffusion in the absence of
interfacial electromigration.

4. Summary

This study demonstrates that interfacial kinetic exchange and interfacial-charge mobility
can play a significant and perhaps under-appreciated role in fluid-sphere electrophoresis.
For example, the electrophoretic mobility of dielectric fluid spheres, such as bubbles
with irreversibly bound charge, is not captured by the low ζ -potential theory of
Booth (1951) unless the ζ -potential is extremely small, depending on κa and the
kinetic-exchange rate. This reflects in electrostatic polarization by interfacial charge
and dielectric permittivity contrast. With higher interfacial charge, singular behaviour
reported in the literature for low-viscosity, uniformly charged ‘dielectric’ spheres was
regularized by the finite interfacial-charge mobility. This transformed fluid spheres
(exhibiting strong internal recirculation) to their rigid-behaving counterparts. The theory
of Ohshima et al. (1984) for mercury drops (ideally polarizable but non-ion-conducting
fluid spheres) could be reproduced by prescribing a sufficiently high dielectric permittivity,
irrespective of the interfacial mobility or kinetic-exchange rate. More generally, finite
ζ -potentials with finite interfacial-charge mobility produce interfaces that are rigid
behaving when increasing the interfacial charge, notably even in the absence of Marangoni
effects, thus eliciting mobilities of rigid spheres that are indifferent to the dielectric
permittivity contrast, as expected from the standard electrokinetic model (O’Brien &
White 1978). This paper has sought to identify pertinent features of a model that must
ultimately be applied to interpret specific fluid-sphere systems, albeit within the weak-field
approximation. An exploration of how this model might provide a unified interpretation
of ζ -potentials from experimental studies of micro- and nano-bubbles will be reported
elsewhere.

Funding. This research (initiated during a sabbatical leave in 2020) was supported by an NSERC Discovery
grant. The author is grateful to Proferssor E. Yariv (Technion, Israel University of Technology) for sharing his
insights on the electrophoresis of large spherical bubbles during the preparation of this manuscript.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Reghan J. Hill https://orcid.org/0000-0001-9735-0389.

Appendix. Mercury drops with KCl electrolyte, as computed by Ohshima et al. (1984)

The results in figure 14 were computed with the same electrolyte and other model
parameters as Ohshima et al. (1984) (for εi/εo = ∞), provided here as a partial validation
of the computational solution of the model developed in the main text, implemented
here with zero interfacial exchange (kd = 0), without Marangoni effects (Ma = 0). The
reciprocal drag coefficient 1/F∗ is equivalent to the reduced sedimentation velocity of
Ohshima et al.
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Fluid-sphere electrophoresis
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Figure 14. Scaled electrophoretic mobility −μ∗ (a,b), conductivity increment �σ (c) and sedimentation
velocity 1/F∗ (d) vs −ζ ∗ for the mercury drops of Ohshima et al. (1984) (aqueous KCl electrolyte):
κa = 0.1 (blue), 1 (red), 10 (yellow), 20 (violet), 30 (green), 50 (cyan), 100 (ruby), 200 (blue). Other
parameters: kd = 0 (irreversibly bound charge), Ma = 0, ηi/ηo = 1.71, εi/εo = 104, Pe � 1. Dashed lines
in (a,b) are the theoretical formulas of Ohshima et al. (1984) for ζ ∗ � 1 and κa � 1 (non-ion-conducting
fluid spheres). Dashed-dotted lines in (a,b) are the thin-double-layer theory of Schnitzer et al. (2013) with
α = 2Pe1Pe2/(Pe1 + Pe2), furnishing exactly the same as the Levich–Frumkin formula.
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