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ON THE DERIVATIVES OF THE r-FUNCTION 

BY 

Z. A. MELZAK 

1. The coefficients of the two series 

r ( l + z ) = | c n 2 W , | Z | < 1 , 
, 71=0 

l / r ( l + z ) = i g „ z n , |z| < oo, 
w=0 

are recursively given by Nielsen [1]: c0=g0=l and 

( » + i ^ i = 2 ( - i f V i ^ 
3=0 

n 

(n + l)gn+l = 2 ( ~ l ) V l ^ n - ^ 
3=0 

where sx is the Euler constant y and for n>\ sn=i(ri). We have then from (1): 
cn=(nï)~1T{n)(l). Nielsen (loc. cit., p. 40) remarks that no simple direct represen­
tation of the coefficients cn is known. Using the Faa di Bruno formula for the 
H-th derivative of a compound function, he shows, following Schlômilch, that 

ft=l K ! i=l 

where the second summation is over all positive solutions of rxH Vrk=n and 
the s± are as above. In this note we use a completely self-contained elementary 
method to calculate the coefficients cn or, what amounts to the same thing, the 
derivatives of the T-function. We show that 

r(fc)(l) = 21im 

<2) r ( - 1 r ^ X ( 2 J ) 1 « 2 ; ) ( l - 2 - - % n . « ^ 2 ) | I 
L (n+l)!,=o \AJ/ dan U-oJ 

2. Starting with the Euler integral 

r(l+x) = PV'f*d< 

we have by differentiating k times and putting x=0 

Tw(l) = re-
f log* tdt. 
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To evaluate this we begin by setting 

[August 

(3) hi") =
 f°°logfc: 

Jo (a+x 
dx, k = 0 ,1 , . . . . 

(a+xf 
The reason for this indirection is following. Once 4(a) is known we have, dif­
ferentiating n times with respect to a and setting a=n, 

Since 

n-oo (n+x)n+2 

justifying the passage to the limit on n under the integral above we find 

r°° n
n+2 

o (n+x)"+2 log* x dx = (-

nM+2 

- 1 ) " 
nn+i 

(n+1)! 

„— # 

dan 

r e * log x dx = lim (-ir-
n"+ i <*"/*(«) 

(n+1)! da" 

3. To evaluate 4(a) we put x=ay in (3) getting 

(4) 4(a) = «-1i( ;
fe)fc,log fc-^ 

y 

where 

(5) b r i o g 3 , J 

The integral (5) is evaluated by being broken up into two parts corresponding to 
the integrals 0—1 and 1 — oo; letting y=l[u in the first one we get 

(6) bj = [lH~mr:^2dy. 
Ji (X+y) 

This is evaluated by the substitution x=exp(y) and observing that 

expanding in series and integrating term by term we have 

(7) fe, = 0 for; odd, b, = 2 ( j ! ) ( l - 2 w K a ) for; even. 
This holds for ally including y=0 as can be verified, either from (6) directly or 
recalling that £(0)=—J. Now, putting together (3)-(7) we get (2). 

4. It may be verified that for the first few values of k (2) gives us the correct 
c'hs in (1). For instance, with k=l 

NW nn+2 dn(logala)\ 

(n + 1) I dna 

The H-th derivative of or1 log a is computed by the Leibniz rule and we get 

r ' ( l ) = lim ( -1 )" 

F(l) = - K m - 7 - (logn-il/A = y. 
(n + 1) \ 3=1 / 
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Similarly, we verify that 

F'(l) = r2+7r2/6, F"(l) = -/-2C(3)+7rV/6, etc. 

Here it is to be observed that the quantity £(3) does not arise from the b$ of (7) 
but from the limit of the «-th derivative of ar1 log3 a. 

5. The foregoing allows us to evaluate some improper integrals. For instance 
integrating (3) with respect to a from p to q we evaluate 

r log** , A . n 
f- dx, p ^ q, p and q > 0. 

Jo (x+p)(x + q) 
In conclusion, we mention the well-known theorem of Hoelder which states that 
the T-function satisfies no polynomial differential equation of the type 

P(x, y9 y\ . . . , yin)) = 0. 

Thus any formulas, recursive or otherwise, for its «-th derivative are apt to be 
complicated. 
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