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Abstract
I find necessary and sufficient conditions for first-order stochastic dominance 
(FOSD) violations for choices from a budget line of Arrow securities. Applying this 
characterization to existing data, I compare FOSD violation rates across a broad set 
of risk preference elicitation tasks.

Keywords Stochastic dominance · Risk aversion · Experiment · Elicitation · 
Multiple price list

JEL Classifications C91 · D81 · D89

1 Introduction

Through lottery decisions, economic agents can reveal their level of risk tolerance. 
Agents can, however, make decisions that are inconsistent with most classical deci-
sion theory, namely, choices that are first-order stochastically dominated (FOSD). 
Such a choice is defined, roughly, as accepting a lesser prize or a lower probability 
of a higher prize.

Previous studies have investigated FOSD or inconsistent choice either as 
a necessity to explain subsets of their data (Holt & Laury, 2002) or to test the 
impacts of complexity in decisions under risk (Charness et  al., 2007, 2018). 
These studies span both the laboratory (Loomes, 1991; Polisson et  al., 2020; 
Dembo et  al., 2021)1 and the field (Jacobson & Petrie, 2009; Galarza, 2009). 

I am grateful to Daniel Friedman, Duncan James and Sameh Habib, my coauthors on this paper’s 
parent paper “Varieties of Risk Preference Eliciation”, for their discussions and advice. I also thank 
Kristian López Vargas and attendees of the UCSC experimental economics workshop for their 
helpful comments. Any errors are my own.
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1 The latter two examine FOSD and stochastic monotonicity in cases of higher dimension than the two-
state, two good scenario in this paper and much of the past literature.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 20:20:48, subject to the Cambridge Core terms of use.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40881-023-00142-6&domain=pdf
http://orcid.org/0000-0002-1836-0755
https://www.cambridge.org/core


240 B. Williams 

1 3

Depending on the complexity of the lottery choice, task type and elicitation set-
ting, FOSD violation rates (or inconsistent choices) have varied greatly across 
studies, ranging from under 10% to around 50%. The majority of these studies 
focus on a single decision or elicitation task type, often repeated with some slight 
variation in riskiness.

This paper contributes to these literature by documenting the prevalence of 
stochastically dominated choices across several commonly used elicitation tasks 
in a single experiment. Theoretically, I provide the conditions for which a risky 
decision over Arrow securities along a budget line yields the possibility of an 
FOSD violation, while empirically I check violation frequency in a set of impor-
tant tasks against a pair of interesting benchmarks.

2  Data

The theoretical environment, experimental setting and data used in this report are 
from the recent risk elicitation paper (Friedman et al., 2022) (henceforth referred 
to as VRE22). The experiment had 142 undergraduate students at UC Santa Cruz, 
each engaging with 56 risk elicitation trials using six different sorts of tasks. The 
design was entirely within subject, with variation occurring in price and probabil-
ity ordering, task block ordering, and within task block monotonicity/random-
ness. See VRE22 for a full characterization of the design.

2.1  Experiments

In a given elicitation task, a subject chose a bundle (x,  y) of Arrow securities; 
the bundle delivers x in state X (probability 𝜋X > 0 ) and y in state Y (probability 
𝜋Y = 1 − 𝜋X > 0 ). The x and y securities have prices of px and py , respectively. 
This means the agents solve the maximization problem

according to standard decision theory. The endowment m is set in each trial such 
that the corner bundle for the cheaper security holds 100 units of the said security. 
Here, u(⋅) is the agent’s smooth, strictly increasing Bernoulli function, representing 
her preferences over the securities’ payout.

After solving the first-order conditions, the Lagrangian multiplier � satisfies 
the following pair of equivalencies:

which when rearranged yield a new statement of marginal rate of substitution

(1)max
(x,y)

�Xu(x) + �Yu(y) st pxx + pyy = m,

(2)� =
�Y

py
u

�

(y) =
�X

px
u

�

(x),
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As such, VRE22 defined statistic L as the negative logarithm of the MRS:

A couple of special cases arise from such a definition. First, an L of 0 relates to the 
price ratio of �X∕�Y being the reciprocal of pX∕pY . Second, a risk-neutral agent’s 
preference of u�

(x) = u
�

(y) equaling some positive constant is only satisfied at L = 0 ; 
corner solutions are chosen when such a requirement is not met by the decision’s 
corresponding budget line. For CRRA preferences (as assumed in VRE22) with 
some coefficient of relative risk aversion � , the agent’s MRS is (x∕y)−� , yielding the 
equation

This allows the elicitation and recovery of an agent’s � at the decision level via the 
use of the decision space’s L. Intuitively, an increase in the magnitude of L can be 
thought of as increasing the obviousness of which security to have more of in an 
agent’s portfolio.

While L serves as the main regressor in VRE22’s extraction of subjects’ elicited 
risk aversion � , this paper uses L for establishing a measure for FOSD violation 
severeness. More specifically, a threshold is placed on the measure ln(x∕y) ⋅ L for 
each decision, where choices yielding an estimate below such a threshold indicates 
a major violation of FOSD. Each trial seen by each subject can be associated with a 
single value of L.

Of the six sorts of tasks considered, five of them offer opportunities for FOSD 
violations: Holt–Laury, Budget Line, two variations of a new task named Budget 
Jars, and a spatial version of Holt–Laury named Budget Dots–Holt–Laury. The 
Holt–Laury (HL) task, originating from Holt and Laury (2002), is a text-based mul-
tiple price list which has six (traditionally 10) consecutive choices between two lot-
teries. The Budget Line (BL) task, per (Choi et al., 2007), asks subjects to choose a 
bundle along a budget line. Budget Jars, an elicitation task developed in VRE, has 
subjects begin with a “jar” of cash and use sliders to spend the cash on two Arrow 
securities, with (BJ) and without (BJn) cash retention allowed. The final task type, 
Budget Dots–Holt–Laury (BDHL), portrays each of the six lines of HL as a separate 
budget line, with the two feasible choices appearing as dots on the line.

2.2  Simulations

Along with the experimental data described above, I use simulation data from 
VRE22. The simulations provide estimates for automated agents making choices 
across the same risk elicitation tasks as the human subjects while following behavior 

(3)MRS ≡
u
�

(x)

u
�
(y)

=
�Ypx

�Xpy
.

(4)L ≡ ln �X − ln �Y − px + py.

(5)ln
x

y
=

1

�
L.
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akin to that of random coefficient models (Wilcox 2008; Apesteguia and Ballester 
2018).

Each simulated run has a batch of automated agents making choices across the 
same 56 elicitation tasks as seen in the human subject sessions. Each agent has a 
task-specific “true” value of � , tied to the matching human subject’s percentile 
within the distribution in each task. An independent draw is made for each of the 
decisions from a normal distribution with the mean set as the agent’s task-specific 
“true” � and the standard deviation matching the task-specific variation in the human 
data. As such, each simulation creates a parallel data set to that produced by the 
human subjects. A set of 1000 such simulations were run, against which the human 
data is compared and ranked.2

3  FOSD characterization

Suppose that �X = �Y = 0.5 and px = 0.4, while py = 0.6 . No matter what her risk 
preferences, an agent facing these prices and probabilities should never choose a 
point on the budget line with x < y . For example, suppose she considered choosing 
(x, y) = (7.5, 15) , exhausting her budget m = 12. Since the states are equally likely, 
she would be just as happy with (15, 7.5), no matter what her Bernoulli function is. 
But the portfolio (15, 7.5) costs only 10.5, so she could afford to spend 1.5 more on 
either Arrow security and be strictly better off than at (x, y) = (7.5, 15).

The general result is expressed in terms of first-order stochastic dominance 
(FOSD). Recall that lottery A (strictly) FOSDs lottery B iff FA(x) ≤ FB(x) for all 
x, with strict inequality for some x. The definition refers to the cumulative distribu-
tion function FZ(x) , the probability that the realized payoff in lottery Z is no greater 
than x. Recall also (e.g., Mas-Colell, Whinston, and Green 1995, p. 195) that every 
expected utility maximizing agent prefers lottery A to B iff A FOSDs B.

Proposition 1 A choice (x, y) on the budget line is strictly first-order stochastically 
dominated by another choice on the same budget line iff 

a. one Arrow state (e.g., X) is more likely and its security is less expensive (e.g., 
�X ≥ �Y and px ≤ py) , with at least one of these comparisons strict; and

b. the choice includes strictly less of the less-expensive–more-likely security (e.g., 
x < y).

See Appendix A for a proof,3 which can be generalized in a straightforward man-
ner to cover Prospect Theory with symmetric probability weighting as well as Dis-
appointment Aversion and some other generalizations of expected utility theory.

2 See Appendix D for more.
3 The proof of which is akin to the “mirror" explanation of the generalised axiom of revealed preference 
(GARP) in a similar setting in Choi et al. (2014).
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The Proposition tells us that every choice on the budget line can be rationalized 
by some Bernoulli function if the more likely state has a higher price, or if L = 0 . 
But some choices will be dominated when prices are equal and probabilities differ, 
or the reverse, and when the more likely state has a lower price. In those cases, I can 
test for the rationality of subjects without committing to a functional form.

With the above proposition defined, the major violation cutoff [ ln(x∕y) ⋅ L < c ] 
mentioned before can be properly interpreted. Among decision spaces that satisfy 
the conditions in Proposition 1, those with x as the less-expensive–more-likely 
good will have a positive L, while those with y depicted as such will have a nega-
tive L. Thus, in decisions where FOSD violations are possible, if L is positive, then 
(weakly) more x should be purchased than y which happens to satisfy ln(x∕y) > 0 . 
Similarly, ln(x∕y) < 0 should be satisfied in L < 0 cases as more y should be pur-
chased than x. Combined, these conditions result in ln(x∕y) ⋅ L > 0 when no FOSD 
violation is made, and therefore FOSD violations are associated with negative val-
ues of ln(x∕y) ⋅ L.

4  Empirical results

Table  1 shows the overall frequency of dominated choices in the experiment of 
Friedman et al. (2022) as well as two benchmarks. The first row tallies in each panel 
report human subject choice frequencies, while the second and third rows report 
average simulated violation counts and the experimental data’s percentile among the 
simulated data. The final row in each panel reports the expected number of viola-
tions were random choices to be used.

Table 1  Violations of FOSD

“Opportunities” is the number of trials for each task that allowed violations of FOSD. “Violations" is the 
number of such violations. “(Sim. Avg.)” reports, to the nearest integer, the average number of violations 
in each task across 1000 Monte Carlo simulations. “(Sim. Perc.)” is the percentile the human data falls 
into within the 1000 trials. “(Random)” gives the expected number of violations given i.i.d. uniformly 
distributed random choices in each task. A violation (x,  y) at L is deemed “major” if L ⋅ ln(

x

y
) ≤ −1 . 

Counts for 140 subjects were used in VRE22 analysis (check VRE22 for subject drop explanation). Only 
half of the subject pool interacted with BDHL

BL BJ BJn HL BDHL (0.81) BDHL (0.58)

Opportunities 1960 1278 1247 280 70 70
Violations 263 131 135 23 8 13
 (Sim. Avg.) 141 197 146 13 6 6
 (Sim. Perc.) 100 0 15 100 86 100
 (Random) 761 497 484 253 63 63

Major Violations 17 6 16 – – –
 (Sim. Avg.) 50 59 57 – – –
 (Sim. Perc.) 0 0 0 – – –
 (Random) 233 188 182 – – –
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Multicrossings in six-row HL or BDHL trials imply dominated choices (see 
Appendix C), and these appear in the Table’s last three columns. The HL violation 
rate is 8.2%, which is slightly lower than those found in recent studies such as Char-
ness et al. (2018), though the HL task in VRE22 yields fewer chances to multicross.4 
BDHL follows relatively closely in both p = 0.81 trials (11.4% violation rate) and 
p = 0.58 trials (18.6%). The other columns report first-order stochastic dominance 
violations in the remaining tasks, where Proposition 1 applies. A violation is deemed 
“major” if its log ratio lies outside the rectangular hyperbola ln( x

y
) ⋅ L = −1. Table 1 

shows a fair number of minor violations of FOSD, but rather few major violations. 
Table 2 in Appendix B looks at tighter criteria for major violations and confirms that 
a large majority of actual violations are small, due to clicking just a few dozen pixels 
away from an undominated choice in the BL task, or to purchasing just a little of an 
asset that is more expensive but not more likely in the BJ tasks. To summarize,

Result 1. Dominated choices are uncommon in all tasks, and only about 1% of 
observations in relevant tasks are major violations of first-order stochastic domi-
nance (FOSD).

Additionally, I check these counts against two theoretical benchmarks. The first 
check makes use of a set of 1000 Monte Carlo trials simulated in the style of 
Apesteguia and Ballester (2018).5 I find that the human subjects violated more often 
than the simulated agents in the majority of investigated tasks; the human subject 
data set fell in the 86th percentile for BDHL (price = 0.81) violations and had more 
violations than all 1000 simulated data sets for BL, HL, and BDHL (price = 0.58) 
trials. For the two Budget Jar tasks, however, the human data set fell below all simu-
lation data sets when cash can be retained (BJ), and filed in at the 15th percentile 
among the simulated data sets when cash retention was not allowed (BJn). Human 
data reported fewer major violations than any simulated data set for each possi-
ble task type. Uniform random choice serves as the other main benchmark. In all 
tasks, the human subjects made violating choices far less often than agents choosing 
randomly.

At the subject level, violation counts varied widely, ranging from 0 violations 
to 16. The number of elicitation trials which allowed for FOSD violations seen by 
each subject varied based on treatment/session, either being 33, 37 or 38.6 Within 
task, each subject had two FOSD-possible trials in the HL task, 0 or 1 in BDHL 
( p = 0.81 ), 0 or 1 in BDHL ( p = 0.58 ), 13–15 in BL, 8–12 in BJ, and 8–10 in BJn.7 

5 See Appendix D for simulation instructions.
6 A main treatment in VRE22 was whether trials seen in the session were fixed in price ratio or probabil-
ity ratio. Subjects in “fixed price” sessions encountered 33 FOSD-possible trials, while those in “fixed 
probability” sessions encountered 37. One session of five “fixed probability” subjects encountered 38 
FOSD-possible trials, with this extra trial being a 12th BJ FOSD-possible encounter.
7 Only “fixed price” subjects encountered BD trials. “Fixed probability” subjects encountered two more 
BL trials than the “fixed price” subjects.

4 Yu et al. (2021) recently proposed and experimentally tested a new nudging mechanism as a tool to 
reduce multicrossing via improved task comprehension, with the treated group reporting similar levels of 
multicrossing ( 10% ) to this study.
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Fig.  1 shows cumulative density functions for subject-level violation percentages, 
as well as major violation percentages and task-specific percentages. While aver-
age violation rate at the aggregate level is roughly 10% , the subject level data shows 
individual rates can be as high as just over 40% (16 violations in 38 opportunities), 
though this is rare. Zero violations were made by 14% of subjects, one violation by 
another 14% , and fewer than 25% by 90% of subjects. When focusing on major vio-
lations, no subject made more than six such choices and 77% did not commit any 
major FOSD violations.

At the task–subject level, variation across tasks appears at low violation rates. 
Within the HL/BDHL cluster of trials, one-time violation rates of HL sits between 
violation rates for both BDHL tasks, though all three reveal at least 86% of the sub-
jects make no violations.8 In the cluster of more continuous trials, BL/BJ/BJn, sepa-
ration appears early on. Nearly twice as many subjects make at least one violation in 
BL as they do in BJ/BJn, with a sizeable gap persisting until around a 20% violation 
rate.

Result 2. Subject-level violation percentages vary widely, while major violations are 
made by less than a quarter of the subjects.

5  Conclusion

I characterize FOSD violation in an important set of tasks. Using data from Fried-
man et al. (2022), I investigate FOSD violation rates across several elicitation meth-
ods. Violations are relatively uncommon, falling into the range generally seen in the 
literature, while major violations are very rare across all task types studied. Human 
subjects make violations more often than Apesteguia and Ballester (2018) inspired 

Fig. 1  Cumulative density functions for subject-level violation percentages

8 Only four subjects multicross in both of their HL trials.
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simulated agents in most tasks, yet human-made violations are generally much less 
severe.

Appendix A: Proof of Proposition 1

A budget line is the set of lotteries (x, y) ∈ ℝ
2 satisfying xpx + ypy = m, where m is 

an (implicit or explicit) endowment of cash, and px > 0 and py > 0 are the prices 
of the two Arrow securities, with state probabilities 𝜋X ,𝜋Y > 0 and �X + �Y = 1.

Recall that a lottery L FOSDs another lottery M if their cumulative distribu-
tion functions (cdf’s) satisfy FM(z) − FL(z) ≥ 0 for all z ∈ ℝ , and that the lottery 
ordering is strict if the inequality is strict for some z ∈ ℝ.

Proof First, consider the case �X ≥ �Y and px < py , and suppose that x < y . The cdf 
for lottery (x, y) is

We will construct another lottery (a,  b) on the same budget line as (x,  y) in two 
steps, and show that it strictly FOSDs (x,  y). First, set a = y and b� = x , and 
let G be its corresponding cdf. Then, F(z) − G(z) = 0 for z < x and z > y , but 
F(z) − G(z) = �X − �Y ≥ 0 for x ≤ z < y , so the lottery (a, b�) weakly FOSDs (x, y). 
Now set b = b� + c∕py , where c = (y − x)(py − px) > 0 by hypothesis, and let H be 
the cdf for the lottery (a, b). Clearly G(z) = H(z) except for y < z ≤ y + c∕py, where 
G(z) − H(z) = 1 − 𝜋X > 0 . Thus, (a, b) strictly FOSDs (a, b�) and thus, by transitiv-
ity, strictly FOSDs (x, y). To complete the proof for the present case, we need only 
verify that the expenditure on (a, b) is the same as on (x, y):

The other cases have very similar proofs. For example, if 𝜋X > 𝜋Y and px ≤ py , then 
the conclusion follows from the fact that (a, b�) strictly FOSDs (x, y). Of course, we 
can only guarantee weak FOSD of (x, y) with y > x when both �X ≥ �Y and px ≤ py . 
To show that (x, y) with y < x is FOSD’d when �X ≤ �Y and px ≥ py , we use pre-
cisely the same approach interchanging the roles of X and Y.

To complete the proof, we need only show that no lottery on the budget line 
strictly FOSDd when (i) 𝜋X > 𝜋Y and px > py or (ii) 𝜋X < 𝜋Y and px < py , and 
to check subcases where the inequalities are weak. Of course, the arguments are 
the same for (ii) as for (i) due to the symmetric roles of X and Y, so it suffices to 
consider only case (i). For this case, let F, G be the cdfs for lotteries (x, y) ≠ (a, b) 
on the same budget line. Since the line is negatively sloped, one of the points, say 
(x, y), is northwest of the other, so x < a and b < y . There are now three subcases. 

F(z) = 0 if z < x

=𝜋X if x ≤ z < y

= 1 if z ≥ y.

apx + bpy = ypx + (x + c∕py)py = ypx + xpy + c

= ypx + xpy + (y − x)(py − px) = xpx + ypy = m.
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1. Both points are above the diagonal x� = y� . Since px > py , we have x < a < b < y . 
It follows that F(z) − G(z) = 𝜋X > 0 for x ≤ z < a but F(z) − G(z) = 𝜋X − 1 < 0 
for b ≤ z < y. Hence, neither point FOSD’s the other.

2. Both points are below the diagonal x� = y� . Since px > py , we have 
b < y < x < a . It follows that F(z) − G(z) = 0 − 𝜋Y < 0 for b ≤ z < y but 
F(z) − G(z) = 1 − 𝜋Y > 0 for x ≤ z < a; again, there is no FOSD ranking.

3. x < y, but a > b . We cannot have x < b < y < a , as this would imply that the 
budget line has -slope y−b

a−x
< 1, but the hypothesis px > py implies -slope > 1 . 

The other three orderings b < x < a < y, b < x < y < a and x < b < y < a, 
are possible, but each implies a change in the sign of F(z) − G(z) . For exam-
ple, with b < x < y < a , we have F(z) − G(z) = 0 − 𝜋Y < 0 for b ≤ z < x but 
F(z) − G(z) = 1 − 𝜋Y > 0 for y ≤ z < a.

The subcases where the inequalities are weak follow from taking limits as px
py

→ 1 
and �X

�Y
→ 1 .   ◻

Appendix B: Additional tables/figures

B.1: Major violation cutoff robustness

Table 2 shows the progression of violations over a subset of cutoffs c ∈ [−1,−0.05] . 
As the criteria for major violations, L ⋅ ln(

x

y
) ≤ c , weakens from -1 toward 0, the 

number of violations naturally increases. Even at c = −0.05 , over half of the BL vio-
lations are still not considered major violations, indicating the majority of violations 
are from being only a handful of pixels away from what was likely intended to be a 
choice along y = x.

Appendix C: HL FOSD characterization

Take a trial of HL, where each row is a choice between two lotteries, A and B. Let 
lottery A be the safe lottery (closer to y = x ) and B be the risky lottery (closer to a 
corner of the budget line) in each row. Each row of the trial can be characterized 
as follows: (x, y) with probabilities (�x

i
,�

y

i
) versus (x�, y�) with probabilities (�x

i
,�

y

i
) , 

where �j

i
 is the state probability for state j in row i. In the variants of HL used in this 

paper, the following hold: x′ > x , y′ < y , x > y , �x
i
+ �

y

i
= 1 , 𝜋x

i
< 𝜋x

k
 for i < k , and 

𝜋
y

i
> 𝜋

y

k
 for i < k.

Suppose a subject multicrosses, meaning B is chosen in some row m, while in 
some row n > m , A is chosen. *Note that each subject is assumed to have started 
with a choice of A. Even if in practice a subject selects B in row 1, he is assumed to 
have selected A in a preceding row had it been shown.* I conjecture that choosing A 
in row m and B in row n (call this choice AB) FOSDs choosing B in row m and A in 
row n (call this BA).
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Assuming the set of row choices, not including rows m and n, in the two sce-
narios are the same, we can simplify the relevant payoffs for AB and BA such that 
row m and n will be chosen as the paying lottery with equal probability. Thus, we 
can define the cumulative density functions for AB and BA and call them FAB(z) and 
FBA(z) , as follows:

and

Thus, we can see FAB(z) = FBA(z) for all values of z except z ∈ [y�, y) ∪ [x, x�) . Over 
this union, FAB(z) < FBA(z) is clearly true, thus we have FAB(z) ≤ FBA ∀ z ∈ ℝ . By 
definition, AB FOSDs BA.

This sketch can be expanded to show more severe multicrossings (more than two 
crosses) are also dominated by a reordering which forms a single crossing.

FAB(z) = 0 if z < y�

=
𝜋
y
n

2
if y� ≤ z < y

=
𝜋
y
n + 𝜋

y
m

2
if y ≤ z < x

=
𝜋
y
n + 𝜋

y
m + 𝜋x

m

2
if x ≤ z < x�

= 1 if z ≥ x�

FBA(z) = 0 if z < y�

=
𝜋
y
m

2
if y� ≤ z < y

=
𝜋
y
m + 𝜋

y
n

2
if y ≤ z < x

=
𝜋
y
m + 𝜋

y
n + 𝜋x

n

2
if x ≤ z < x�

= 1 if z ≥ x�.

Table 2  Major violation counts under a set of major cutoffs

Each column header is a different cutoff value c for the inequality L ⋅ ln(
x

y
) ≤ c

FOSD major violations over range of cutoffs

Major Cutoff c − 0.05 − 0.1 − 0.2 − 0.3 − 0.4 − 0.5 − 0.6 − 0.7 − 0.8 − 0.9 − 1
BL major violations 92 73 49 36 28 27 24 23 21 17 17
BL major random 715 646 5440 466 410 366 330 300 275 252 233
BJ major violations 57 38 21 17 15 12 8 7 7 6 6
BJ major random 477 445 392 350 317 288 263 241 222 204 188
BJn major violations 58 46 32 25 22 21 20 19 17 17 16
BJn major random 466 433 380 339 306 278 254 233 214 197 182
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Appendix D: Simulation process

Gamma distributions: � . 

1. For each human subject i, divide their data into three subsets: BL/BJ/BJn tasks 
(continuous tasks Ci ), HL tasks, and BDHL/BDEG tasks. Each screen in these 
subsets has an implied gamma associated with it. Thus, each subject has a set ΓC,i 
of continuous task implied gammas, a set ΓH,i of discrete task implied gammas, 
and a set ΓBD,i of BD task implied gammas (if in the appropriate session type). 
Each of these sets has its own estimation process. As BDEG is not discussed in 
this paper, its process will remain in VRE22. These are briefly summarized as 
follows:

• Continuous (BL, BJ/n): We use 

 and 

 for single and multiple trial extraction. i represents subject, t represents trial 
number and � represents task type. A weighted average of the elicited gam-
mas across tasks provides each subject’s �C,i.

• HL: We use the traditional method of eliciting the crossover point in the HL 
list, unless the subject is inconsistent, in which case a logit estimation process 
occurs (see Section 5.3 of VRE22).

• Budget Dots: For BDHL, we use the same extraction process as HL.

2. For each of these implied gamma sets, take the average of the implied gammas 
to get a subject’s individual-specific gamma means ( ̄𝛾C,i , �̄�H,i , and �̄�BD,i).

Gamma distributions: �.
For each subject, a task level of variability is established as:

• Continuous: For each of the tasks, we use the subject’s standard error from esti-
mating Eq. (7).

• HL: If the subject is inconsistent, then we use the standard error from the esti-
mating the logit model using that subject’s HL data. If not, then we use 0.

• Budget Dots: For BDHL, we use the same process as HL.

Simulation (� draw) process.

• For each trial (row in the simulated data set), using the matching subject ID and 
task type, we draw a gamma to be associated with the said row (six draws per 
row in HL trials).

(6)�̌�it =
Lt

ln(xit∕yit)
,

(7)ln(xit∕yit) = �i�Lt + �it.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 20:20:48, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


250 B. Williams 

1 3

• For each row, draw � from a normal distribution where the central tendency is 
the appropriate ��,i and the standard deviation is the subject’s task-specific � as 
described above.

– Continuous: The ��,i used is the �C,i for that specific subject.
– For HL: The ��,i used is the �HL from the distribution of HL � ′s that is the 

same percentile as that subject’s percentile in the Continuous � distribu-
tion.

– For BD: The same process as HL is used, but with BDHL-appropriate dis-
tributions.

• For each drawn gamma, we back out the (x, y) pair that the subject would have 
chosen given that this is drawn gamma.

• Given these (x, y) pairs, we perform the same � extraction process as was done 
with the human data.

The above process creates one simulated data set parallel to the human data set, 
with the same number of simulated agents as there are human subjects in the 
experimental data set. We run 1000 such simulation runs.
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