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Previous study of contact of power-law graded materials concerned the contact of a rigid body
(punch) with an elastic inhomogeneous foundation whose inhomogeneity is characterised by the
Young modulus varying with depth as a power function. This paper models Hertzian and adhesive
contact of two elastic inhomogeneous power-law graded bodies with different exponents. The prob-
lem is governed by an integral equation with two different power kernels. A nonstandard method of
Gegenbauer orthogonal polynomials for its solution is proposed. It leads to an infinite system of lin-
ear algebraic equations of a special structure. The integral representations of the system coefficients
are evaluated, and the properties of the system are studied. It is shown that if the exponents coin-
cide, the infinite system admits a simple exact solution that corresponds to the case when the Young
moduli are different but the exponents are the same. Formulas for the length of the contact zone,
the pressure distribution and the surface normal displacements of the contacting bodies are obtained
in the form convenient for computations. Effects of the mismatch in the Young moduli exponents
are studied. A comparative analysis of the Hertzian and adhesive contact models clarifies the effects
of the surface energy density on the contact pressure, the contact zone size and the profile of the
contacting bodies outside the contact area.

Keywords: Integral equation with two power-law kernels, gegenbauer polynomials, hertzian and
adhezive plane contact, power-law graded materials
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1 Introduction

Interest in contact problems of interaction of bodies with elastic inhomogeneous foundations was
originated in the forties of the previous century when civil engineers started taking into account
the inhomogeneity properties of soil foundations. For the last thirty years, when novel function-
ally graded materials (FGMs) were designed and the necessity of the study of their properties
arose [28], this interest became even stronger.

One of the most interesting classes of FGMs comprises inhomogeneous materials whose
modulus of elasticity E varies with depth according to the power-law, E(z) = Eαzα . The first
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approximate solution of a contact problem of an axisymmetric foundation with the modulus of
elasticity E(z) = Eαzα and subjected to a point force P applied to the boundary was obtained [18]
in the form

σz = APzA

2πRA+2
, σr = APzA−2r2

2πRA+2
, σθ = 0, τrz = APzA−1r

2πRA+2
, (1.1)

where R = √
r2 + z2. This solution satisfies the equilibrium equations for any values of the con-

stant A. However, in general, the compatibility conditions for the strains are not met. It was
found [18] that in only two cases, (1) A = α + 3, ν = (2 + α)−1 and (2) A = α + 2, ν = (1 + α)−1,
where ν is the Poisson ratio, the compatibility conditions are fulfilled. Also, in these particular
cases it is possible to recover the normal displacement in the interior of the body by explicitly
integrating the strain ez = (σz − νσr)(Eαzα)−1. Upon passing to the limit z → 0 in the resulting
formula for the displacement, this gives the normal displacement on the surface of the half-space,
w(x, y, 0) = αP/πEαr−α−1, where r =√

x2 + y2. Based on the solution obtained in these cases,
Klein [18] suggested to extrapolate the formula for the displacement w(x,0), valid in only these
two particular cases, to the general case when the Poisson ratio ν and the exponent α are not
connected by any relation. Lekhnitskii [20] considered the plane problem of a wedge with a vari-
able modulus of elasticity. On applying the separation of variables method to the equilibrium
equations, he obtained an exact formula for the stress σr in a half-plane {|x| < ∞, y > 0} when
E = Eαyα for any constant Poisson ratio ν. By separating the variables in the equation for the
Airy function Rostovtsev [27] not only revisited the Lekhnitskii formula for the stress but also
obtained the exact representation for the normal displacement in the cases of concentrated and
distributed normal load applied to the boundary.

A majority of results on plane and axisymmetric contact problems of power-law graded mate-
rials concern the indentation of a rigid two-dimensional or axisymmetric stamp into a half-plane
or a half-space. In the case of a single contact zone, the plane problem reduces to the integral
equation

γ0

∫ b

−b

p(ξ )dξ

|x − ξ |α = δ − f (x), −b < x < b, 0 < α < 1, (1.2)

where δ is the indentation of the stamp, the function f (x) describes the stamp profile, and γ0 is
a function of α. The solution of this equation in the class of functions admitting integrable sin-
gularities at the endpoints ±b exists and unique. It can be constructed by a variety of methods
including the method of Abelian integrals (see for example, [8, 1]), the method of dual integral
equations, the Wiener-Hopf method and the method of orthogonal polynomials. The solution of
this integral equation by the last method is presented in Section 5 of this paper. Popov [24] con-
sidered a more advanced case of this plane problem when there are two separate contact zones.
He reduced the problem to two separately solvable equations with the Weber-Schafheitlin kernel
and solved them approximately by the method of the Jacobi polynomials. The first exact solutions
[19, 21] to the axisymmetric case were obtained by the method of dual integral equations under
the assumption of the frictionless contact of a stamp and a power-law graded foundation. The
same problem was later solved [22] by the Wiener-Hopf method. The method of Abelian oper-
ators was applied [25] to derive an exact solution to the axisymmetric problem of non-slipping
adhesive contact of a punch with a power-law graded elastic half-space.

During the last twenty-five years, plane and axisymmetric contact problems of a stamp and
a half-plane and a half-space with the Young modulus E = Eαzα have become the subject of
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interest due to modelling of micro- and nano-indentation processes arising in nanotechnology
and therefore the necessity of characterisation of mechanical properties of a variety of biological
materials with sizes approaching molecular or atomic dimension [12, 3]. In [9], the Rostovtsev
formulas [27] were revisited and normal, sliding and rolling contact models were addressed. 2d
and axisymmetric models of adhesive contact of a rigid stamp and a power-law graded semi-
infinite body characterised by the Young modulus E = E0(y/c0)k were considered in [6] and [7].
It was found that the pull-off force attains its maximum at a certain critical value of k ∈ (0, 1).
The method of orthogonal polynomials [25] was employed [12] to study a model of non-slipping
adhesive contact of a stamp and a power-law graded elastic half-space. Another axisymmetric
adhesive contact model [15] assumes that the contact circular area is split into a non-slipping
circular zone and an annulus where the tangential traction equals zero, while the normal traction
is tensile and equals a prescribed constant. The penetration depth and contact radius in the case
of axisymmetric contact of a stamp and a power-law graded half-space were calculated [14] by
exploiting a correspondence between these quantities and the ones associated with a Winkler
foundation. All papers discussed in this paragraph adopted the Johnson-Kendall-Roberts (JKR)
adhesive model ([16, 17]) to examine plane and axisymmetric contact of a rigid punch with
a half-plane and half-space, respectively, when the Young modulus of the foundation varies
with depth according to a power-law. The feature of the JKR model is that it admits integrable
singularities of the contact pressure at the endpoints and determines the contact zone radius from
the condition of minimum of the total energy. The total energy Utotal is defined to be a sum of
the elastic strain energy Ue and the loss of surface energy Us.

There have been relatively limited efforts in studying Hertzian and adhesive contact of
two elastic bodies whose Young moduli are power-law functions of depth. The axisymmetric
Hertzian model of contact of two bodies whose Young moduli are expressed through the same
power-law function, E1(z) = e1zα and E2(z) = e2(−z)α , was considered in [26]. In this work,
the surface effects are taken into account according to the Shtayerman model [29]. Power-
law kernels arise [13] in the problem of computing equilibrium measures for problems with
attractive-repulsive kernels of the form K(x − y) = α−1|x − y|α − β−1|x − y|β . For this problem,
they proposed a numerical method of recursively generated banded and approximately banded
operators acting on expansions in ultraspherical polynomial bases. To the authors’ knowledge,
neither the two-dimensional nor the axisymmetric problem of Hertzian or JKR adhesive contact
of two elastic bodies with different Young moduli, E1(z) = e1zα1 and E2(z) = e2(−z)α2 , has been
considered in the literature.

In this paper, we aim to analyse the plane contact problem of two different power-law graded
bodies. In Section 2, we formulate the problem and reduce it to the integral equation with two
kernels of the form∫ b

−b

(
γ1

|x − ξ |α1
+ γ2

|x − ξ |α2

)
p(ξ )dξ = g(x), −b < x < b. (1.3)

This equation may be interpreted as a full integral equation with a single power kernel |x − ξ |−α1

with the second kernel serving as a regular part [8]. However, the method of Abelian operators,
when applied, leads to a Fredholm integral equation whose kernel is a chain of singular integrals
and does not produce the solution in the form convenient for numerical purposes.

In Section 3, we describe the method of solution that expands the unknown function p(bt)
in terms of the Gegenbauer polynomials Cα1/2

n (t) with weight (1 − t2)(α1−1)/2(t) and reduces the
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task of finding the expansion coefficients to solution of an infinite system of linear algebraic
coefficients with coefficients represented by integrals possessing the polynomials Cα1/2

n (t) and
Cα2/2

m (t). We manage to evaluate these integrals. The coefficients have certain remarkable prop-
erties which substantially simplify the system. We also show that in the limit case α2 → α1, the
solution of the infinite system can be derived explicitly, and it coincides with the solution of the
contact problem of two bodies with different power-law Young moduli and the same exponent,
E1 = e1yα and E2 = e2(−y)α .

In Section 4, we derive formulas for the length of the contact zone, the parameter δ, the pres-
sure distribution and the normal displacement on the surface outside the contact zone in the form
convenient for computations. We emphasise that all the formulas except for the displacement are
free of integrals. We also discuss the results of numerical tests.

In Section 5, we derive a closed-form solution of the problem of Hertzian contact of two bodies
whose moduli of elasticity have the same exponents α1 = α2 = α but different factors e1 and e2.
We obtain exact formulas not only for the contact zone length and the pressure but also for the
normal displacement outside the contact area.

In Section 6, we analyse the JKR model for both cases, when α1 = α2 and α1 > α2. In both
cases, we compute the elastic strain energy and the total energy. In the former case, we obtain a
transcendental equation for the contact zone half-length b and show that it is possible to pass to
the limit as αj → 0. In the case, α1 > α2 we derive the equation for b approximately by computing
the derivative of the strain energy numerically. We show that in both cases, the solution to the
JKR model coincides with the solution to the Hertzian model when the surface energy half-
density γs → 0.

In Appendix A, we discuss the limiting case αj → 0, j = 1, 2. We compute an integral required
for the displacements of surface points outside the contact zone in Appendix B. In Appendix C,
we derive an exact solution of the integral equation (1.3) in a semi-infinite interval. In the case
α2 = −2n, n = 0, 1, . . ., and α1 ∈ (0, 1), the integral equation (1.3) admits an exact solution. This
is addressed in Appendix D.

2 Formulation

The problem of interest is the one of modelling of two-dimensional contact of two inhomo-
geneous elastic bodies, B1 and B2 (Figure 1(a)). The lower surface of the upper body B1 and
the upper surface of the lower body B2 are described by curves y = f1(x) and y = −f2(x). The
functions f1(x) and f2(x) are even, continuously differentiable and share the tangent line y = 0
at the point x = 0, y = 0, the origin of the Cartesian coordinates (x,y), that is f1(0) = f2(0) = 0
and f ′

1(0) = f ′
2(0) = 0. The Poisson ratios ν1 and ν2 of the bodies are constant, while the Young

moduli vary according to a power law and equal E1(y) = e1yα1 and E2(y) = e2(−y)α2 , where e1

and e2 are positive parameters whose dimensions in the SI system are N m−2−α1 and N m−2−α2 ,
respectively, and 0 < αj < 1, j = 1, 2. The bodies are subjected to compression by forces applied
to the bodies parallel to the y-axis with the resultant force P balanced by the contact pressure
p(x) arising in the contact area (−b, b), and the parameter b is unknown a priori. We also assume
that the curve y = f1(x) is convex upward, while the second curve y = −f2(x) is either convex
downward or flat or at least locally convex upward. To proceed with the contact modelling, we
make the following Hertzian assumptions:
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FIGURE 1. Contact of two different power-law graded elastic bodies with Young moduli E1(y) = e1yα1

(body B1) and E2(y) = e2(−y)α2 (body B2). (a): Hertzian model and (b): adhesive JKR model.

• the contact area is significantly less than the bodies’ sizes,

• the friction is absent, and the only nonzero traction component is σy = −p(x), where p(x) is
the normal pressure distribution,

• the normal and tangential elastic displacements in the contact area are significantly smaller
than the contact zone length.

Following Shtayerman (1949), we write the vertical displacements of any two points A1 ∈
B1 and A2 ∈ B2 which, as a result of compression, become the same point, a point A. These
displacements are f1(x − u1) + v1 − δ1 and −f2(x + u2) − v2 + δ2. Here, (u1, v1) and (−u2, −v2)
are the elastic displacements of the points A1 and A2, and the constants δ1 and δ2 are forward
displacements of distant points. Approximating f1(x − u1) ≈ f1(x) and f2(x + u2) ≈ f2(x), we can
write at the point of contact A

v1 + v2 = δ − f1(x) − f2(x), −b < x < b, δ = δ1 + δ2. (2.1)

The parameter δ is to be determined a posteriori from the condition∫ b

−b
p(x)dx = P. (2.2)

We next use the Rostovtsev relation (Rostovtsev, 1964, p. 747) between the normal displace-
ment and the contact pressure for a half-plane to write down the displacements v1 and v2 in the
contact area

vj(x) = θj

αj

∫ b

−b

p(ξ )dξ

|x − ξ |αj
, −b < x < b, j = 1, 2. (2.3)

Here,

θj =
Cj(1 − ν2

j )qj

(αj + 1)ej
sin

πqj

2
, qj =

√
(1 + αj)

(
1 − αjνj

1 − νj

)
,

Cj = 2αj+1

π�(αj + 2)
�

(
αj

2
− qj

2
+ 3

2

)
�

(
αj

2
+ qj

2
+ 3

2

)
. (2.4)

Substituting the integral representations of the displacements vj into the condition (2.1), we
derive the governing integral equation for the contact pressure distribution p(x)∫ b

−b

(
θ1

α1|x − ξ |α1
+ θ2

α2|x − ξ |α2

)
p(ξ )dξ = δ − f1(x) − f2(x), −b < x < b. (2.5)
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3 Solution of the integral equation

To solve the integral equation (2.5), it will be convenient to rewrite it in the interval (−1, 1)∫ 1

−1

(
A1

|t − τ |α1
+ A2

|t − τ |α2

)
p(bτ )dτ = δ − f (bt), −1 < t < 1, (3.1)

where

Aj = θjb1−αj

αj
. (3.2)

The right-hand side of equation (3.1) possesses the unknown parameter δ. To eliminate it from
the equation, we represent the function p(bt) as

p(bt) = φ(1)(t) + δφ(2)(t) (3.3)

and deduce ∫ 1

−1

(
A1

|t − τ |α1
+ A2

|t − τ |α2

)
φ(j)(τ )dτ = g(j)(t), −1 < t < 1, j = 1, 2, (3.4)

where g(1)(t) = −f (bt), g(2)(t) = 1. The equilibrium condition (2.2) expresses the unknown
parameter δ through the solutions φ1 and φ2 of the equations (3.4) which share the kernel and
have different right-hand sides. We have

δ =
(

P

b
−
∫ 1

−1
φ(1)(τ )dτ

)(∫ 1

−1
φ(2)(τ )dτ

)−1

. (3.5)

3.1 Infinite system of algebraic equations

Without loss of generality, we assume further that α1 > α2 and denote

βn(α) = π (α)n

n! cos πα
2

, n = 0, 1, . . . , (3.6)

where (α)n = α(α + 1) . . . (α + n − 1) is the factorial symbol. Owing to the spectral relation for
the Gegenbauer polynomials [23]∫ 1

−1

Cα/2
n (τ )dτ

|t − τ |α(1 − τ 2)(1−α)/2
= βn(α)Cα/2

n (t), −1 < t < 1, 0 < α < 1, (3.7)

and the orthogonality property of these polynomials∫ 1

−1
Cα/2

n (t)Cα/2
m (t)(1 − t2)(α−1)/2dt = hn(α)δmn, m, n = 0, 1, . . . , (3.8)

we seek the solution in the series form

φ(j)(t) = (1 − t2)(α1−1)/2
∞∑

n=0

�(j)
n Cα1/2

n (t), −1 < t < 1, j = 1, 2. (3.9)

Here, �(j)
n are unknown coefficients, δmn is the Kronecker symbol, and

hn(α) = π21−α�(n + α)

n!(n + α
2 )�2( α

2 )
. (3.10)
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In the integral equations of a rigid stamp indented into an inhomogeneous power-law graded
half-plane or Hertzian contact of two bodies with α1 = α2, there is only one power-law kernel. In
these particular cases, the series coefficients can be derived explicitly by substituting the expan-
sion (3.9) into the integral equation and taking into account the spectral relation (3.7) and the
orthogonality property (3.8). In contrast to this, when α1 	= α2, we have the second term in the
kernel, and, in general, the series coefficients cannot be found exactly. On substituting (3.9) into
(3.4), we have

A1

∞∑
n=0

βn(α1)�(j)
n Cα1/2

n (t) + A2

∞∑
n=0

�(j)
n

∫ 1

−1

Gn(τ )(1 − t2)(α2−1)/2dτ

|t − τ |α2
= g(j)(t), −1 < t < 1,

(3.11)
where Gn(τ ) = Cα1/2

n (τ )(1 − t2)(α1−α2)/2. Since α1 > α2, we may expand the functions Gn(τ ) in
terms of the Genebauer polynomials Cα2/2

m (τ )

Gn(τ ) =
∞∑

m=0

G(n)
m Cα2/2

m (τ ), −1 < τ < 1. (3.12)

According to the orthogonality relation (3.8), the coefficients of the expansion are found to be

G(n)
m = H (n)

m

hm(α2)
, H (n)

m =
∫ 1

−1
Cα1/2

n (τ )Cα2/2
m (τ )(1 − τ 2)(α1−1)/2dτ . (3.13)

Notice that H (n)
m = 0 if m < n. Indeed, the degree-m polynomial Cα2/2

m (τ ) is a linear combina-
tion of the monomials 1, τ , . . . , τm or, equivalently, a linear combination of the Gegenbauer
polynomials Cα1/2)

0 (τ ), Cα1/2
1 (τ ), . . . , Cα1/2)

m (τ ), and by the orthogonality relation (3.8) H (n)
m = 0

provided m < n. Now, if we substitute the series (3.12) back to equation (3.11), use the spec-
tral relation (3.8) for the Gegenbauer polynomials Cα2/2

m (τ ) and change the order of summation,
we find

A1

∞∑
n=0

βn(α1)�(j)
n Cα1/2

n (t) + A2

∞∑
n=0

�(j)
n βn(α2)Cα2/2

n (t) = g(j)(t), −1 < t < 1, (3.14)

where

�(j)
n =

n∑
m=0

G(m)
n �(j)

m . (3.15)

The equation (3.14) can be recast by using the orthogonality relation (3.8) and written as an
infinite system of algebraic equations. We have

A1βn(α1)hn(α1)�(j)
n + A2

∞∑
m=0

�(j)
m βm(α2)H (n)

m = g(j)
n , n = 0, 1, . . . , (3.16)

where

g(j)
n =

∫ 1

−1
gj(t)C

α1/2
n (t)(1 − t2)(α1−1)/2dt. (3.17)
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It is possible to simplify the system derived. On changing the order of summation in the series in
the system (3.16) and using the relations (3.13) and (3.15), we obtain

∞∑
m=0

�(j)
m βm(α2)H (n)

m =
∞∑

m=0

Lnm�(j)
m , (3.18)

where

Lnm =
∞∑

k=max(m,n)

H (n)
k H (m)

k βk(α2)

hk(α2)
, m, n = 0, 1, . . . , (3.19)

and therefore, the system has the form

A1βn(α1)hn(α1)�(j)
n + A2

∞∑
m=0

Lnm�(j)
m = g(j)

n , n = 0, 1, . . . . (3.20)

3.2 Evaluation of the integrals H (m)
k

We remind that H (m)
k = 0 if k < m. To compute the integrals (3.13) when k ≥ m, we use the

formula∫ 1

−1
(1 − x)α(1 + x)ν−1/2Cμ

m(x)Cν
n (x)dx = 2α+ν+ 1

2 �(α + 1)�(ν + 1
2 )�(ν − α + n − 1

2 )

m!n!�(ν − α − 1
2 )�(ν + α + n + 3

2 )

× �(m + 2μ)�(n + 2ν)

�(2μ)�(2ν)
4F3

( −m, m + 2μ, α + 1, α − ν + 3
2

μ + 1
2 , ν + α + n + 3

2 , α − ν − n + 3
2 ; 1

)
, (3.21)

where Re α > −1, Re ν > − 1
2 and 4F3 is the generalised hypergeometric function. This relation

can be derived from the general formula 16.4(20) [4] for the Jacobi polynomials. Notice that the
corresponding formulas for the Gegenbauer polynomials 16.3(16) [4] and 7.314(7) [11] have the
same error: instead of �(ν + α + n + 3

2 ) in the right-hand side in (3.21), they write �(ν − α +
n + 3

2 ).
On adjusting the relation (3.21) to our case when k ≥ m, we have

H (m)

k =
2
√

π (−1)m �

(
α1 + 1

2

)
(α2)k

m!�
(α1

2

)
(m + α1)

�, (3.22)

where

� =
k∑

l=m

(−1)l (α2 + k)l

(
α1 + 1

2

)
l

(k − l)! (l − m)! (α1 + m + 1)l

(
α2 + 1

2

)
l

. (3.23)

This sum can be evaluated and the formula for H (m)

k simplified. We make the substitution
l − m = i, use the property of the factorial symbols

(a)m+i = (a + m)i(a)m, (k − n)! = (−1)nk!
(−k)n

, k ≥ n, (3.24)
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and express the sum � through the function 3F2

� = (−1)m( α1+1
2 )m(α2 + k)m

(k − m)!(α1 + m + 1)m( α2+1
2 )m

3F2

(
−k + m, α2 + k + m, α1+1

2 + m
α2+1

2 + m, α1 + 2m + 1; 1

)
. (3.25)

For the generalised hypergeometric function 3F2 in the right-hand side, we can employ
Whipple’s formula [31]

3F2

⎛
⎝ a, b, c

a + b + 1

2
, 2c; 1

⎞
⎠=

√
π�

(
c + 1

2

)
�

(
a + b + 1

2

)
�

(
1 − a − b

2
+ c

)

�

(
a + 1

2

)
�

(
b + 1

2

)
�

(
1 − a

2
+ c

)
�

(
1 − b

2
+ c

) (3.26)

and obtain the following representation for �:

� =
(−1)m

(
α1 + 1

2

)
m

(α2 + k)m

(k − m)! (α1 + m + 1)m

(
α2 + 1

2

)
m

×
√

π�
(α1

2
+ m + 1

)
�

(
α2 + 1

2
+ m

)
�

(
α1 − α2

2
+ 1

)

�

(
m − k + 1

2

)
�

(
α1 + m + k

2
+ 1

)
�

(
α2 + m + k + 1

2

)
�

(
α1 − α2 + m − k

2
+ 1

) .

(3.27)

This formula implies that � = 0 and therefore H (m)
k = 0 if k = m + 1 + 2l, l = 0, 1, . . .. In the

case when k − m is even, k = m + 2l, l = 0, 1, . . ., we substitute (3.27) into (3.22) and find

H (m)

m+2l =
2 sin

π (α2 − α1)

2
�

(
α1 + 1

2

)(
α1 + 1

2

)
m

(α1

2

)
m+1

�

(
α1 − α2

2
+ 1

)
�

(
α2 + 1

2

)
πm!� (α2) (m + α1) (α1 + m + 1)m

×
� (2l + 2m + α2) �

(
l + 1

2

)
�

(
α2 − α1

2
+ l

)

(2l)!�
(α1

2
+ m + l + 1

)
�

(
α2 + 1

2
+ m + l

) . (3.28)

On exploiting further the properties of the �-function, it is possible to recast formula (3.28) as

H (m)

m+2l =
√

π�

(
α1 + 1

2

)

�
(α1

2
+ 1

) (α1)m (α2/2)m

m!
(α1

2
+ 1

)
m

(
α2 − α1

2

)
l

(α2

2
+ m

)
l

l!
(α1

2
+ m + 1

)
l

. (3.29)

This formula is simpler and convenient for analysis of the coefficients asymptotics as l → ∞.
Taking into account the asymptotic relation

�(z + a)

�(z + b)
∼ za−b, z → ∞, | arg z| < π

2
, (3.30)
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we derive

H (m)
m+2l ∼ Cmlα2−α1−2, l → ∞, (3.31)

where Cm are constants independent of l.
Having computed the coefficients H (m)

k we consider now two cases, n = 0, 1, . . . , m − 1 and
n = m, m + 1, . . . and evaluate the coefficients H (n)

k . In the former case according to formula
(3.19) and since H (m)

k = 0 if k = m + 2l + 1, l = 0, 1, . . ., we need to evaluate H (n)
k for k = m + 2l

only. On replacing m by n and k by m + 2l in (3.22) and (3.27), we should have H (n)
m+2l = 0, if

n − m is odd and l = 0, 1, . . . . Otherwise, if n − m is even,

H (n)

m+2l =
2α2−α1

√
π�

(
α2 + 1

2

)
�(α1 + n)

�
(α1

2

)
�(α2) �

(
α2 − α1

2

)
n!

�

(
α2 + m + n

2
+ l

)
�

(
m − n + α2 − α1

2
+ l

)

�

(
m − n

2
+ l + 1

)
�

(
α1 + m + n

2
+ l + 1

) , l = 0, 1, . . . , (3.32)

and their asymptotics for large l is the same as for H (m)
m+2l. We have

H (n)
m+2l ∼ C′

mnlα2−α1−2, l → ∞, (3.33)

where Cmn are constants. We also give another, more convenient for numerical purposes,
representation of the coefficients H (n)

m+2l when n − m is even

H (n)

m+2l =
√

π�

(
α1 + 1

2

)

�
(α1

2
+ 1

) (α1)n

n!

(α2

2

)
(m+n)/2(α1

2
+ 1

)
(m+n)/2

(
α2 − α1

2

)
(m−n)/2(

m − n

2

)
!

×

(
α2 + m + n

2

)
l

(
m − n + α2 − α1

2

)
l(

m − n

2
+ 1

)
l

(
α1 + m + n

2
+ 1

)
l

. (3.34)

3.3 Solution of the infinite system

By introducing new notations, we rewrite the system (3.20) in the canonical form

�(j)
n + γ

∞∑
m=0

Rnm�(j)
m = d(j)

n , n = 0, 1, . . . , j = 1, 2, (3.35)

where

γ = A2

A1
, Rnm = Lnm

βn(α1)hn(α1)
, d(j)

n = g(j)
n

A1βn(α1)hn(α1)
. (3.36)

Owing to the fact that H (n)
m+2l = 0, if n − m is odd and l = 0, 1, . . . ., from formula (3.19) we

deduce that Lnm = 0 and therefore Rnm = 0 if n − m is odd. We have also derived that H (m)
k = 0
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if k = m + 2l + 1 and l = 0, 1, . . .. This brings us to the following formulas for the coefficients
Lnm when m − n is even:

Lnm =
∞∑

l=0

H (m)
m+2lH

(n)
m+2l�m+2l, n = 0, 1, . . . , m − 1,

Lnm =
∞∑

l=0

H (n)
n+2lH

(m)
n+2l�n+2l, n = m, m + 1, . . . , (3.37)

where

�k =
�
(

α2
2

)
�
(

1−α2
2

) (
k + α2

2

)
√

π
, (3.38)

H (m)
n+2l is obtained by interchanging n and m in (3.32), while H (n)

n+2l will coincide with (3.29) if m
is replaced by n. To sum up, for all n, m = 0, 1, . . ., Lnm = Lmn 	= 0 if n − m is even and Lnm = 0
otherwise.

We remark that owing to the asymptotic relations (3.31) and (3.33) and formula (3.38), the
coefficients in the series (3.37) behave for large l as l2(α2−α1)−3 (α1 > α2), and therefore, the
series representations (3.37) for the coefficients Lnm rapidly converge.

On passing to the limit α2 → α1, we can show that the matrix of the infinite system is diagonal
and the system admits an exact solution that coincides with that associated with the contact
problem of two bodies with the same exponent α1 = α2. Indeed, when α1 = α2 from (3.29) and
(3.34) we deduce that in either case, l > 0 or n 	= m, the coefficients H (m)

n+2l and H (n)
m+2l are equal to

zero, and the only nonzero coefficients are H (n)
n . They are given by

H (n)
n =

√
π�( α1+1

2 )(α1)n

�( α1
2 )( α1

2 + n)n! . (3.39)

This gives a simple formula for the coefficients Lnm. It is Lnm = [H (n)
n ]2�nδnm, and from (3.36),

Rnm = δnm. The system (3.35) has a diagonal matrix, and the coefficients �(j)
n = (1 + γ )−1d(j)

n are
the same as those obtained by solving the integral equation (3.4) when α1 = α2 on using the
standard method of orthogonal polynomials.

In the general case, when 0 < α2 < α1 < 1, the infinite system (3.35) does not admit an exact
solution. Its approximate solution is found by the reduction method. The off-diagonal elements
of the matrix of the system δmn + γ Rmn rapidly decay, and the numerical method demonstrates a
rapid convergence.

The right-hand sides of the system (3.35) are represented by the integrals (3.17). The integral
g(2)

n is evaluated immediately, g(2)
n = �0δn0, where

�0 =
√

π�( α1+1
2 )

�( α1
2 + 1)

. (3.40)

The other integral g(1)
n can be computed explicitly if we know the coefficients ak of the expansion

of the function f (bt) in terms of the Gegenbauer polynomials

f (bt) =
∞∑

k=0

akCα1/2
k (t). (3.41)
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These coefficients are always computed exactly if the function f (bt) is a polynomial. Otherwise,
we can employ either its approximate polynomial representation or use the corresponding Gauss’
quadrature formula. In the polynomial case, when all the coefficients ak = 0, k > N , we apply the
orthogonality property (3.8) to find g(1)

n = −anhn(α1), n = 0, 1, . . . , N , and g(1)
n = 0, n > N .

4 Solution of the contact problem

4.1 Parameter δ, the contact zone (−b, b), the contact pressure p(x), and the normal
displacements vj

After the system (3.35) for the two right-hand sides, d(1)
n and d(2)

n have been solved, and the values
of the coefficients �(1)

n and �(1)
n have been found; we write down the series representations (3.9)

of the solutions φ(1)(t) and φ(2)(t) of the integral equations (3.4). On substituting these series into
(3.5), we can express the unknown parameter δ through the coefficients �

(1)
0 and �

(2)
0

δ = P/b − �
(1)
0 �0

�
(2)
0 �0

. (4.1)

On having this parameter, we can write down the contact pressure as

p(x) = φ(1)
( x

b

)
+ δφ(2)

( x

b

)
. (4.2)

Notice that the parameter γ = α1θ2(α2θ1)−1bα1−α2 and the right-hand sides of the system (3.35)
depend on the unknown parameter b. That is why the contact pressure also depends on this
parameter. Because of the smoothness of the bodies’ profiles, the contact pressure has to be
bounded at the points x = ±b, y = 0. Owing to the representations (3.9), this implies that the
contact pressure vanishes at these points,

lim
t→1

[φ(1)(t) + δφ(2)(t)] = 0. (4.3)

Equivalently, this reads

∞∑
n=0

(α1)n

n!

(
�(1)

n + P/b − �
(1)
0 �0

�
(2)
0 �0

�(2)
n

)
= 0. (4.4)

This is a transcendental equation with respect to the parameter b. On having solved this equa-
tion, we can determine the parameter δ and the contact pressure by formulas (4.1) and (4.2),
respectively.

The final quantities we wish to determine are the displacements vj(x) of the surface points
outside the contact zone. We assume that the curvatures of the surfaces of interest are sufficiently
small. Since formula (2.3) for the normal displacement is valid not only in the contact area but
also outside, we can write

vj(tx) = Aj

∫ 1

−1

p(bτ )dτ

|τ − t|αj
, |t| > 1, j = 1, 2. (4.5)

Using formula (3.3) and substituting the series representations (3.9) into (4.5), we write the
displacements as follows:

vj(x) = Aj

∞∑
n=0

[�(1)
n + δ�(2)

n ]In

( x

b
; αj

)
, |t| > 1, (4.6)
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where

In(t; αj) =
∫ 1

−1

(1 − τ 2)(α1−1)/2Cα1/2
n (τ )dτ

|τ − t|αj
. (4.7)

Series representations of this integral are derived in Appendix B. Since the function f (x) is even,
all the coefficients �

(j)
2m+1 = 0, m = 0, 1, . . . , j = 1, 2, and therefore

vj(x) = Aj

∞∑
n=0

[�(1)
2n + δ�

(2)
2n ]I2n

( x

b
; αj

)
, |t| > 1. (4.8)

On differentiating these functions, we find out that the derivatives v′
j(x) are bounded at the points

x = ±b if and only if the condition (4.4) is satisfied. In other words, if the contact zone parameter
b is fixed by solving the transcendental equation (4.4), then not only the pressure p(x) vanishes
at the endpoints but also the profiles of the contacting bodies are smooth at the endpoints.

4.2 Numerical results

The functions f1(x) and f2(x) have to be continuously differentiable and satisfy the conditions
fj(0) = f ′

j (0) = 0, j = 0, 1. In the symmetric case, when both of the functions are even, in a
neighbourhood of the point x = 0,

fj(x) = f ′′
j (0)

2
x2 + f (IV )(0)

24
x4 + . . . , j = 1, 2. (4.9)

For numerical tests, we confine ourselves to two polynomial cases of the function f (x) = f1(x) +
f2(x). They are

(1) f (x) = Q0x2, Q0 > 0, and

(2) f (x) = Q0x2 + Q1x4.

Case (1) occurs when one of the bodies has a parabolic profile, while the second one is either
flat or also has a parabolic profile. In case (2), the profiles of the bodies are described by the
polynomials fj(x) = c0jx2 + c1jx4 with some real coefficients c0j and c1j chosen such that Q0 =
c01 + c02 ≥ 0 and Q1 = c11 + c12 > 0.

In case (1), we express the function f (x) through the degree-0 and 2 Gegenbauer polynomials
to have

f (bt) = b2Q0

α1( α1
2 + 1)

[α1

2
Cα1/2

0 (t) + Cα1/2
2 (t)

]
. (4.10)

The orthogonality property (3.8) yields g(1)
n = 0 for all n unless n = 0 or n = 2. In these cases,

g(1)
0 = −b2Q0�0

α1 + 2
, g(1)

2 = − b2Q0
√

π�( α1+3
2 )

( α1
2 + 1)( α1

2 + 2)�( α1
2 )

, (4.11)

where �0 is given by (3.40).
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In case (2), the corresponding representation of the function f (bt) has the form

f (bt) = 24Q1b4Cα1/2
4 (t)

α1(α + 2)(α1 + 4)(α1 + 6)

+ 2b2Cα1/2
2 (t)

α1(α1 + 2)

(
Q0 + 6Q1b2

α1 + 6

)
+ b2Cα1/2

0 (t)

α1 + 2

(
Q0 + 3Q1b2

α1 + 4

)
, (4.12)

Except for g(1)
0 , g(1)

2 and g(1)
4 , all the terms g(1)

n equal 0. The nonzero terms are given by

g(1)
0 = − b2�0

α1 + 2

(
Q0 + 3Q1b2

α1 + 4

)
,

g(1)
2 = −

b2√πα1�
(

α1+3
2

)
2�
(

α1
2 + 3

) (
Q0 + 6Q1b2

α1 + 6

)
,

g(1)
4 = −

b4√πα1 (α1 + 2) �
(

α1+5
2

)
4�
(

α1
2 + 5

) Q1. (4.13)

For the numerical tests to be discussed, we choose the resultant force and the Poisson ratios to
be P = 1, ν1 = ν2 = 0.3, the resultant moment to be zero and the function f (x) = f1(x) + f2(x) to be
even. This choice gives rise to a solution symmetric with respect to the y-axis. Figure 2 presents
the half-length b of the contact zone for different values of the exponents α1 and α2 in the Young
moduli of the bodies, E1 = e1yα1 and E2 = e2(−y)α2 when e1 = e2 = 1 and (a) f (x) = x2 and (b)
f (x) = x4. It is seen that when α1 is fixed and α2 increases in the interval (0, α1), the contact
zone length is also increasing. The same is true in the case when α2 is fixed and α1 grows. On
comparing the results presented in Figure 2(a) and (b), we see that when the curvatures of the
contacting bodies profiles are decreasing, the contact zone length is increasing.

Curves in Figure 3 give a clear demonstration of the dependence of the length of the contact
zone upon one of the factors e1 and e2 while the second one is kept fixed. The parameters for this
diagram are chosen as e2 = 1, f (x) = x2, α2 = 0.3, and α1 is equal to either 0.5, 0.7, or 0.9.

Figure 4 shows how the parameter δ depends on the second body exponent α2 ∈ (0, α1) when
the exponent α1 is fixed and chosen to have the values 0.5, 0.9 or 0.95. The other parameters are
e1 = e2 = 1, and the function f (x) = x2. It is seen that the parameter δ increases as α2 → 0 and
also when α1 → 1 and α2 → α1.

The results of calculations of the pressure distribution p(x) are shown in Figures 5 and 6. In
both cases, e1 = e2 = 1, and f (x) = x2. In Figure 5, the smaller exponent α2 is fixed as α2 = 0.1,
while α1 is equal to either 0.3, 0.7 or 0.9. The corresponding values of the half-length b of
the contact zone are computed to be 1.17365, 1.43214 and 1.92390. The contact pressure p(x)
vanishes at the endpoints ±b of the contact zone and attains its maximum at the origin. As the
parameter α1 is increasing, the pressure maximum is decreasing. When the bigger exponent α1

is fixed (in Figure 6, α1 = 0.95), while the smaller exponent varies in the interval (0, α1), the
variation of the pressure distribution p(x) for a fixed x is not large (Figure 6).

The normal elastic displacements uy(x, 0) = v1(x) and uy(x, 0) = −v2(x) of the upper and lower
elastic bodies outside the contact zone are shown in Figure 7 (the displacements of the lower
body B2 are demonstrated by broken curves). As before, e1 = e2 = 1, f (x) = x2, and the functions
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FIGURE 2. The half-length b of the contact zone (−b, b) versus the parameter α2 ∈ (0, α1) for α1 = 0.5,
α1 = 0.7 and α1 = 0.9 when (a) f (x) = x2 (Q0 = 1, Q1 = 0) and (b) f (x) = x4 (Q0 = 0, Q1 = 1).

v1(x) and v2(x) are even. For computations, we choose α1 to be either 0.5, 0.7 or 0.9, while
α2 = α1/2. Both displacements attain their maximum at the points ±b. It has been numerically
verified that

lim
x→±b±[v1(x) + v2(x)] = δ − f1(b) − f2(b) (4.14)

that is consistent with the boundary condition (2.1). The corresponding values of the half-length
of the contact zone are b = 1.28951 for α1 = 0.5, b = 1.46450 when α1 = 0.7, and b = 1.94635
in the case α1 = 0.9.

5 Hertzian contact of two power-law graded bodies when E1 = e1yα and E2 = e2(−y)α

Assume that the contacting bodies B1 and B2 have the Young moduli E1 = e1yα and E1 =
e2(−y)α . The governing equation (2.5) with two kernels reduces to

A

∫ 1

−1

p(bτ )dτ

|τ − t|α = δ − f1(bt) − f2(bt), −1 < t < 1, (5.1)
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FIGURE 3. The half-length b of the contact zone (−b, b) versus the parameter e1 ∈ (0, 5) for α1 = 0.5,
α1 = 0.7 and α1 = 0.9 when e2 = 1, α2 = 0.3, f (x) = x2.

where A = α−1(θ1 + θ2)b1−α , and θj are defined by (2.4) with α1 = α2 = α. The pressure
distribution has to be an even function, and we represent the solution in the form

p(bt) = (1 − t2)(α−1)/2
∞∑

n=0

�2nCα/2
2n (t), −1 < t < 1. (5.2)

On substituting this function into (5.1), using the spectral relation (3.7) and orthogonality
property (3.8) we find the coefficients �2n

�2n = g(1)
2n + δ�0δn0

Aβ2n(α)h2n(α)
, (5.3)

where

g(1)
2n = −

∫ 1

1
Cα/2

2n (t)(1 − t2)(α−1)/2f (bt)dt (5.4)

and f (x) = f1(x) + f2(x). To determine the parameter δ, we satisfy the equilibrium condition (2.2)
and obtain

δ = 1

�0

(
−g(1)

0 + πAP

b cos πα
2

)
. (5.5)
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FIGURE 4. The parameter δ versus the exponent α2 ∈ (0, α1) for α1 = 0.5, α1 = 0.9 and α1 = 0.95 when
f (x) = x2.

The half-length b of the contact zone is the positive root of the following transcendental equation
(our numerical tests reveal that such a root is unique):

∞∑
n=0

(α)2n

(2n)!�2n = 0 (5.6)

that reduces to

δ�0α

2�(α)
+

∞∑
n=0

g(1)
2n (2n)!(2n + α

2 )

�(α + 2n)
= 0. (5.7)

The normal surface displacements of the bodies B1 and B2 are expressed through the integral
I2n(x/b; α)

vj(x) = Aj

∞∑
n=0

�2nI2n

( x

b
; α
)

, |x| > b, j = 1, 2, (5.8)

where

Aj = θjb1−α

α
, I2n(t; α) =

∫ 1

−1

(1 − τ 2)(α−1)/2Cα/2
2n (τ )dτ

|τ − t|α . (5.9)

This integral is a particular case αj = α of the integral In(t; αj) evaluated in Appendix B and
given by (B4) and (B5). As in the case α1 > α2, the displacements vj and their first derivative
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FIGURE 5. The contact pressure p(x), x ∈ [0, b] for α2 = 0.1 when α1 = 0.3, α1 = 0.7, and α1 = 0.9 in the
case f (x) = x2.

are bounded as x → ±b±, and the contacting surfaces are smooth at the endpoints. For numerical
purposes, the Gauss quadrature order-N formula can also be employed

vj(x) = πAj

N

N∑
i=1

p(bxi)

|x/b − xi|α sin
(2i − 1)π

2N
, xi = cos

(2i − 1)π

2N
, |x| > b. (5.10)

The numerical tests show that in the case of Hertzian contact, when the pressure vanishes at the
endpoints, this approximation is in good agreement with the exact formulas (B4) and (B5).

Consider the particular case f (x) = Q0x2. Owing to the fact that g(1)
n = 0 for all n except for

g(1)
0 and g(1)

2 and employing formulas (4.11) for these nonzero terms, we specify the formulas for
the parameter δ and find explicitly the half-length of the contact zone

δ = Q0b2

α + 2
+ πAP

�0b cos πα
2

, b =
(

�(2 + α
2 )�( 1−α

2 )(θ1 + θ2)P√
πQ0

) 1
α+2

. (5.11)

For this parabolic case, we also compute the pressure distribution and the normal displacement.
From (5.2) we have

p(x) =
(

1 − x2

b2

)(α−1)/2
[

P

�0b
+ 2b2Q0 cos πα

2

πAα(α + 1)

(
1

α + 2
− x2

b2

) ]
. (5.12)
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FIGURE 6. The contact pressure p(x), x ∈ [0, b] for α1 = 0.95 when α2 = 0.9, α2 = 0.8, and α2 = 0.1 in the
case f (x) = x2.

On substituting the expression (5.11) for b into formula (5.12), we arrive at

p(x) = P�( α
2 + 2)√

πb�( α+3
2 )

(
1 − x2

b2

)(α+1)/2

. (5.13)

In the particular case, when one of the bodies is a rigid punch, this formula coincides with the
corresponding expression of the pressure distribution derived in [9]. When α → 0, the contact
zone half-length b and the pressure distribution p(x) tend to b0 and p0(x) which represent the
contact zone half-length and the contact pressure, respectively, in the case when both bodies are
isotropic elastic bodies and whose contact is governed by equation (A3)

lim
α→0

b = b0, b0 =
√

(θ◦
1 + θ◦

2 )P

Q0
,

lim
α→0

p(x) = p0(x), p0(x) = 2P

πb2
0

√
b2

0 − x2, (5.14)

where θ◦
j are given by (A2). This expression coincides with the contact pressure associated with

the elastic isotropic case of the Hertzian model and obtained by solving equation (A3) ([29],
Chapter II, (23)).

We determine the normal displacements of surface points uy(x, 0) = −v2(x) of the lower body
B2 outside the contact zone when B2 is a half-plane that is when f2(x) = 0, while the upper body
B1 has the profile y = Q0x2. As before, the Young moduli of both bodies have the same exponent
and may have different factors e1 and e2. Since the only nonzero coefficients are �0 and �2, we

https://doi.org/10.1017/S0956792522000237 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000237


686 Y. A. Antipov and S. M. Mkhitaryan

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1

x

0

0.5

1

1.5

2

2.5

v 1(x
),

 v
2(x

)

1
=0.91

=0.7

1
=0.5

1
=0.9

1
=0.5

1
=0.7

FIGURE 7. The normal displacements v1(x) (solid curves) and v2(x) (broken curves), x ∈ [−10, −b] for
α2 = α1/2 when α1 = 0.5, α1 = 0.7, and α1 = 0.9 in the case f (x) = x2.

transform formula (5.8) to the form

v2(bt) = θ2b1−α[�0 Ĩ0(t; α) + �2 Ĩ2(t; α)], (5.15)

where

�0 = P

b�0
, �2 = − 4bα+1Q0 cos πα

2

πα(α + 1)(α + 2)(θ1 + θ2)
, Ĩn(t; α) = 1

α
In(t; α). (5.16)

From (B4),

Ĩ0(t; α) = π

cos πα
2

[
1

α
− �( α+1

2 )(− t+1
2 )(1−α)/2

�(α + 1)�( 3−α
2 )

F

(
1 − α

2
,

1 + α

2
,

3 − α

2
;

t + 1

2

)]
,

Ĩ2(t; α) = πα(α + 1)

2 cos πα
2

[
α + 1

2
F

(
−2, α + 2,

α + 1

2
;

t + 1

2

)

−�( α+1
2 )(− t+1

2 )(1−α)/2

�(α + 1)�( 3−α
2 )

F

(
−3 + α

2
,

5 + α

2
,

3 − α

2
;

t + 1

2

)]
, −3 < t < −1. (5.17)

For t < −3, the integrals Ĩn(t; α) = α−1In(t; α) (n = 0, 2) are obtained from formula (B5). It
is easy to see from formulas (5.15) to (5.17) that the displacements vj(t; α) become infinite
when α → 0, and the limit transition α → 0 for the displacements outside the contact zone is
impossible.
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FIGURE 8. The case α1 = α2 = α when P = 1, f (x) = x2, e1 = e2 = 1, ν1 = ν2 = 0.3. (a): the contact zone
half-length b versus α ∈ (0, 1), (b): the parameter δ versus α, (c): pressure p(x) for α = 0.3, (d): the
displacement uy(x, 0) = −v2(x) for x < −b and uy(x, 0) = (x2 − δ)/2 for x ∈ (−b, 0) when α = 0.3.

Figure 8 shows the results of computations in the case when the Young moduli of the con-
tacting bodies are the same, Ej(z) = ejzα and e1 = e2. We choose P = 1, f (x) = x2, e1 = e2 = 1,
and ν1 = ν2 = 0.3. Figure 8(a) and (b) demonstrate the variation of the half-length b and the
parameter δ with the exponent α ∈ (0, 1). As α grows, the contact zone becomes larger. As in
the case α1 	= α2, as α → 0, the parameter δ → ∞. It also grows as α → 1. In Figure 8(c) and
(d), we present sample curves for the contact pressure for x ∈ [0, b] and the normal displacement
uy(x, 0) = −v2(x) of the surface of the lower body (a half-plane) when f1(x) = x2, f2(x) = 0 for
x < −b and uy(x, 0) = (x2 − δ)/2 for x ∈ (−b, 0). In both Figure 8(c) and (d), α = 0.3 (in this
case b = 1.22072).

6 Surface energy model

In this section following the JKR model [16, 17], we aim to take into account the effect of adhe-
sive forces (Figure 1(b)) and study their impact on the contact zone size, the contact pressure
and the normal displacement. In the two-dimensional case, the loss of surface energy is given by
Us = −2γsb, where γs is the work of adhesion (a half-density of the surface energy). The elas-
tic strain energy is expressed through the normal displacement v(x) = δ − f (x), and the contact

https://doi.org/10.1017/S0956792522000237 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000237


688 Y. A. Antipov and S. M. Mkhitaryan

pressure p(x) as

Ue = 1

2

∫ b

−b
p(x)v(x)dx, (6.1)

and the total energy defined by Utotal = Ue − 2γsb is a function of the contact zone half-length b.
In contrary to the Hertzian model, the JKR model admits singularities of the contact pressure at
the endpoints. Also, the parameter b is defined not from the condition that quenches the pressure
singularities but from the condition of minimum of the total energy that is

dUe

db
− 2γs = 0. (6.2)

6.1 Case α1 = α2 = α

We consider parabolic profiles of the contacting bodies, f (x) = Q0x2. In this case, the pressure
p(x) is given by (5.12) and has order (α − 1)/2 power singularities at the endpoints, while the
parameter b is free. Since the resultant force P has to be balanced by the contact pressure p(x),
we satisfy the condition (2.2) and define δ by formula (5.11). To evaluate the integral (6.1), we
write the pressure and displacement in the following equivalent form:

p(bt) = (1 − t2)(α−1)/2[�0Cα/2
0 (t) + �2Cα/2

2 (t)],

v(bt) = δCα/2
0 (t) − Q0b2

α(α + 2)
[αCα/2

0 (t) + 2Cα/2
2 (t)], (6.3)

where �0 and �2 are determined in (5.16). Using the orthogonality property (3.8) of the
Gegenbauer polynomials, we obtain

Ue = P2(θ1 + θ2)�( α
2 + 1)�( 1−α

2 )b−α

2α
√

π
+

√
πQ2

0bα+4

2(θ1 + θ2)(α + 2)�( 1−α
2 )�( α

2 + 3)
. (6.4)

The derivative of the elastic strain energy in (6.2) can be evaluated exactly, and we arrive at the
following transcendental equation with respect to the parameter b:

√
πQ2

0b2α+4

(θ1 + θ2)(α + 2)�( 1−α
2 )�( α

2 + 2)
− 2γsb

α+1 − P2(θ1 + θ2)�( α
2 + 1)�( 1−α

2 )

2
√

π
= 0. (6.5)

Passing to the limit α → 0 and keeping γs ≥ 0, we reduce the transcendental equation to the
quartic equation

Q2
0b4

2(θ◦
1 + θ◦

2 )
− 2γsb − P2(θ◦

1 + θ◦
2 )

2
= 0, (6.6)

and when, in addition, γs → 0, we obtain the classical formula (5.15) for the value of b in the
case of Hertzian contact of two elastic isotropic bodies.

Passing to the limit γs → 0 in equation (6.5) and keeping α ∈ (0, 1), we arrive at the equation
with respect to b that admits an exact solution; it coincides with the value of b in the Hertzian
model given by (5.11).

If we assume that ν1 = ν2 = 0.5, by passing to the limit α → 1 we derive from (6.5) the
following cubic equation with respect to b2 for two Gibson solids [10]:
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8

27
Q2

0b6 − 2γs

(
1

e1
+ 1

e2

)
b2 − 3P2

8

(
1

e1
+ 1

e2

)2

= 0. (6.7)

Notice that the transcendental equation (6.5) is different from the corresponding equations
obtained in [9] and [6]. These authors split the solution into two parts, the first one gives the
solution for a parabolic punch and the second one corresponds to the model of a flat punch. The
discrepancies between the transcendental equations in [9] and [6] and equation (6.5) are caused
by their disregard for the fact that the displacement δ is a function of the contact zone half-length
(the contact radius) b. This explains why the limit transition α → 0 is impossible in the solutions
[9] and [6]. We emphasise that the contact radius and the stresses recovered from the 2d contact
model of two power-law graded bodies or a stamp and a power-law graded body in the limit
α → 0 must give the corresponding quantities of the 2d contact model of homogeneous bodies
governed by the integral equation with a logarithmic kernel (A3). Otherwise, the solution of the
model of power-law graded bodies is incorrect.

A number of tests have been conducted to ascertain the impact of the surface energy density
2γs and the exponent α on the contact zone size 2b, the pressure distribution and the normal
displacement. The curves in Figure 9(a) exhibit an increase of the contact zone size with the
parameter γs. It is seen from Figure 9(b) that the half-length b rapidly increases when the expo-
nent α approaches 1. The P − b curves in Figure 9(c) demonstrate the rate of growth of the
half-length b when the total force P grows. From Figure 9(d), it is seen that when the Young
moduli are Ej = ej|y|α , e2 = 1 and the factor e1 grows, the parameter b first rapidly decreases,
and then, its rate of decrease is insignificant.

Contact pressure curves computed according to the Hertz and JKR models are portrayed in
Figure 10(a). Since the pressure p(x) is an even function, the curves demonstrate that the pressure
vanishes at the endpoints x = ±b in the former model. In the JKR model, the contact stress is
compressive for −b∗ < x < b∗ and tensile at the edge zones (−b, −b∗) and (b∗, b). The numerical
tests show that a growth of the surface energy density 2γs shrinks the central zone, where the
stress is compressive, and enlarges the zone, where the stress is tensile.

As in the Hertzian contact model, we analyse the normal displacements uy(x, 0) = −v2(x) for
the JKR model outside of the contact zone when the upper body has a parabolic profile, f1(x) =
Q0x2, and the lower body is a half-plane, f2(x) = 0. The displacement v2(x) is given by the same
formula (5.15). However, since the pressure p(x) does not vanish at the endpoints, has power
singularities and is described by formula (5.12), the derivative of the displacement (5.15) tends
to infinity as x → ±b. A sample curve of the displacement uy(x, 0) = −v2(x) for x < −b and
uy(x, 0) = (x2 − δ)/2 for x ∈ (−b, 0) (Q0 = 1) is shown in Figure 10(b). It is seen that in the case
of Hertzian contact (γs = 0), the contact surface is smooth near the contact zone endpoints, while
in the case of the JKR model, due to the adhesion forces a part of the surface of the flat body B2

is attracted to the interface, and the tangent lines to the surfaces of the contacting bodies at the
endpoints have different slopes.

6.2 Case α1 > α2

The direct method for computing the elastic strain energy described in the previous section can be
generalised to the case when the contacting bodies have different exponents and as before, α1 >
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FIGURE 9. JKR model: the contact zone half-length b in the case α1 = α2 = α, f (x) = x2, e2 = 1, ν1 = ν2 =
0.3. (a): b versus the surface energy density γs, (b): b versus the exponent α, (c): b versus the normal force
P when γs = 1, (d): b versus the parameter e1 when γs = 1.

α2. On expanding the normal displacement v(x) = δ − f (x) (−b < x < b) through the Gegenbauer
polynomials of even order, we have

v(bt) = δ −
∞∑

k=0

a2kCα1/2
2k (t), −1 < t < 1, (6.8)

substituting it together with the contact pressure

p(bt) = (1 − t2)(α1−1)/2
∞∑

n=0

[�(1)
2n + δ�

(2)
2n ]Cα1/2

2n (t), −1 < t < 1, (6.9)

into formula (6.1) and using the orthogonality of the polynomials we derive the series
representation of the elastic strain energy

Ue = bδ

2
(�(1)

0 + δ�
(2)
0 )�0 − b

2

∞∑
n=0

(�(1)
2n + δ�

(2)
2n )a2nh2n(α1). (6.10)

https://doi.org/10.1017/S0956792522000237 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000237


Hertzian and adhesive plane models of contact of two inhomogeneous elastic bodies 691

0 0.5 1 1.5 2 2.5

x

–1

–0.5

0

0.5

p(
x)

(a)

(b)

–7 –6 –5 –4 –3 –2 –1 0

x

–2.5

–2

–1.5

–1

–0.5

0

0.5

u
y(x

,0
)

s
=0

s
=1

s
=0

s
=1

FIGURE 10. (a): the contact pressure p(x) and the normal displacement uy(x, 0) = −v2(x) for x < −b and
uy(x, 0) = (x2 − δ)/2 for x ∈ (−b, 0) for the Hertzian (γs = 0) and JKR (γs = 1) models when α = 0.5, P = 1,
f (x) = x2, e1 = e2 = 1, ν1 = ν2 = 0.3.

As before, we simplify the formula for the parabolic case, f (x) = Q0x2. In this case, an = 0 unless
n = 0 or n = 2,

a0 = b2Q0

α1 + 2
, a2 = 2b2Q0

α1(α1 + 2)
, (6.11)

and ultimately, we have

Ue = b�0

2
(�(1)

0 + δ�
(2)
0 )

(
δ − b2Q0

α1 + 2

)
− 2b3Q0

√
π�( α1+3

2 )

(α1 + 2)(α1 + 4)�( α1
2 )

(�(1)
2 + δ�

(2)
2 ). (6.12)

The minimum of the total energy is attained if the contact zone half-length b solves the
transcendental equation

dUe

db
− 2γs = 0. (6.13)

Explicit differentiation is impossible for the coefficients �
(j)
0 and �

(j)
2 being a part of the solution

to the infinite system (3.35), and there is no way to explicitly separate b from the unknowns of
the infinite system. Approximately, equation (6.13) can be written as

Ue(b + ε) − Ue(b)

ε
− 2γs ≈ 0, (6.14)

where ε is a small and positive.
The variation of the half-length of the contact zone b with the half-density γs of the surface

energy for three values of the exponent α is portrayed in Figure 11(a). It has been calculated
by the method of orthogonal polynomials presented in Section 3. The difference between the
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FIGURE 11. JKR model for the case of different exponents: E1 = e1yα1 and E2 = e2(−y)α2 , when e1 = e2 =
1, P = 1, Q0 = 1, ν1 = ν2 = 0.3. (a): the half-length b versus the half-density γs of the surface energy for
α1 = 0.5, 0.7, 0.9 and α2 = α1/2. (b): the contact pressure p(x) for x ∈ (0, b) for γs = 0, 1, 5 when α1 = 0.9
and α2 = 0.5.

scheme for the Hertzian and JKR models is only in the way how the parameter b is fixed. In
the Hertzian model, it solves the transcendental equation (4.4) that guarantees that the pressure
vanishes at the endpoints, while in the JKR model, it is defined from the approximate equation
(6.14), the condition of minimum of the total energy. For computations, ε is accepted to be
10−4, and the differences between the results for ε = 10−3, 10−4, 10−5 are not significant. For
example, for α1 = 0.5, α2 = 0.25, e1 = e2 = 1, P = 1, Q0 = 1, ν1 = ν2 = 0.3, and γs = 1, we have
b = 1.97621 if ε = 10−3, b = 1.97666 if ε = 10−4, and b = 1.97670 if ε = 10−5. It turns out that
as γs → 0, the pressure distribution vanishes at the endpoints, and the parameter b associated with
the JKR model tends to the one for the Hertzian model. This is consistent with the homogeneous
case α1 = α2 considered in Section 6.1 where we managed to prove this analytically and with
the result [2] obtained for an axisymmetric model of contact of a rigid stamp and a power-law
graded half-space.

The pressure distribution p(x) is shown in Figure 11(b) for three values of the parameter
γs when α1 = 0.9 and α2 = 0.5. As γs → 0, the contact pressure vanishes at the endpoints and
coincides with the pressure found from the Hertzian model. When γs > 0, similarly to the case
α1 = α2, the contact zone enlarges and the contact stress becomes tensile at two edge zones
(−b, −b∗) and (b∗, b) and tends to ∞ as x → ±b.

7 Conclusions

We analysed two plane problems, the Hertzian and JKR models, of frictionless contact
of two inhomogeneous elastic bodies with distinct moduli of elasticity E1(y) = e1yα1 and
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E2(y) = e2(−y)α2 with 0 < α2 ≤ α1 < 1. On employing the Rostovtsev representation of the
normal displacement in the contact zone through the pressure distribution, we showed that the
model is governed by an integral equation with two different power kernels. For its solution,
a novel method of Gegenbauer orthogonal polynomials was proposed. We reduced the integral
equation to an infinite system of linear algebraic equations whose coefficients, after some
transformations, become integral free. It was demonstrated that when α2 → α1, the infinite
system is decoupled, and its exact solution coincides with the one obtained by direct solution of
the integral equation with one power kernel. When α2 	= α1 and the contact zone is semi-infinite,
the integral equation was solved exactly by the Wiener-Hopf method. We also showed that the
integral equation in a finite interval admits an exact solution for any α1 ∈ (0, 1) when the second
parameter α2 is either 0 or any negative even number.

We found a rigid body displacement δ (the total displacement of distant points of the bodies)
from the equilibrium condition that balances the normal total force and the contact pressure. The
length of the contact zone is determined from a transcendental equation that guarantees that the
pressure vanishes at the endpoints in the Hertzian model and the total energy attains its mini-
mum in the JKR model. The pressure distribution is found in a series form, and the coefficients
of the expansion are determined from an infinite system of the second kind solved by the reduc-
tion method. The numerical tests implemented revealed rapid convergence of the method for all
admissible values of the model parameters. By employing the method of Mellin’s convolution
integrals and the theory of residues, we computed the normal displacements of surface points
outside the contact zone. In the Hertzian model, the profile of the contacting surfaces at the end-
points is smooth, while in the JKR model, the derivative of the normal displacement is infinite,
and a part of the contacting surfaces is attracted by adhesion forces to the interface. In contrary
to the Hertzian model, the pressure distribution does not vanish at the endpoints, it tends to −∞,
and there are two edge zones in the contact area where the contact stress is tensile.

Our numerical results showed that the parameter δ, the contact zone length, the contact pres-
sure and the elastic displacement significantly depend on variation of the bigger parameter α1

and only slightly vary with the second, smaller, parameter α2. When the exponent α1 is growing,
the contact zone is also growing. In the case when the two exponents α1 and α2 are the same,
α1 = α2 = α, we obtained the contact zone length, the parameter δ, the contact pressure and the
normal displacements of the surface points exactly. By passing to the limit α → 0, we showed
that the result coincides with the classical solution of the problem of Hertzian contact of two
isotropic elastic bodies.

For the JKR model, we found out that when the half-density of surface energy γs → 0, the
contact zone length, pressure and normal displacement tend to the corresponding quantities asso-
ciated with the Hertzian model. In both cases, α1 > α2 and α1 = α2, the transcendental equation
for the contact zone length admits passing to the limit αj → 0. This is possible not only for the
contact zone length but also for the contact pressure. However, the normal displacement derived
for both Hertzian and JKR models when α1 ≥ α2 > 0 become infinite when α1 → 0. This is due
to the presence of α−1

1 in the formula for the displacement δ of distant points of the contacting
bodies.

The method we presented admits generalisations and modifications in different directions
including the Hertzian and JKR axisymmetric contact models of two power-law graded bodies.
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Appendix A. Limiting case αj → 0, j = 1,2

To show that equation (2.5) can be transformed into the integral equation of Hertzian contact of
two homogeneous elastic bodies, we first rewrite the equation in the interval (−1, 1)∫ 1

−1

[
θ1

bα1

|x1 − ξ1|−α1 − 1

α1
+ θ2

bα2

|x1 − ξ1|−α2 − 1

α2

]
p(bξ1)dξ1

= δ∗ − f1(bx1) + f2(bx1)

b
, −1 < x1 < 1,

where

δ∗ = 1

b

[
δ −

(
θ1

α1bα1
+ θ2

α2bα2

)
P

]
. (A1)

We now assume that the constant δ∗ is not the one given by (A1) but an arbitrary constant. Letting
α1 → 0 and α2 → 0, taking into account that

lim
αj→0

|x1 − ξ1|−αj − 1

αj
= ln

1

|x1 − ξ1| ,

and also that

qj → 1, Cj → 2

π
, θj → θ◦

j = 2(1 − ν2
j )

πEj
as αj → 0, (A2)

we obtain the integral equation governing the homogeneous case Ej(y) = Ej = const

(θ◦
1 + θ◦

2 )
∫ 1

−1
ln

1

|x1 − ξ1|p(bξ1)dξ1 = δ∗ − f1(bx1) + f2(bx1)

b
, −1 < x1 < 1,

with respect to the dimensionless pressure distribution p0(x) = (θ◦
1 + θ◦

2 )p(bξ ). If we return to the
original variables x = bx1 and ξ = bξ1, then we arrive at the classical integral equation of the 2d
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model of Hertzian contact of two homogeneous elastic bodies [29]

(θ◦
1 + θ◦

2 )
∫ b

−b
ln

1

|x − ξ |p(ξ )dξ = δ0 − f1(x) − f2(x), −b < x < b, (A3)

where δ0 is the sum of two parameters having different dimensions

δ0 = bδ∗ − (θ◦
1 + θ◦

2 )P ln b.

We note that the same equation is obtained by applying this procedure to equation (2.5) directly
without mapping the equation to the segment (−1, 1). We also emphasise that in contrast to the
parameter δ in equation (2.5), the constant δ∗ does not relate to the forward displacements of
distant points of the contacting bodies.

There are different ways for finding the solution of equation (A3). One of them [29 differen-
tiates equation (A3) with respect to x and converts it into a singular integral equation with the
Cauchy kernel. Its solution in the class of functions vanishing at the endpoints has the form

p(x) =
√

b2 − x2

π2(θ◦
1 + θ◦

2 )

∫ b

−b

f ′
1(ξ ) + f ′

2(ξ )√
b2 − ξ 2

dξ

ξ − x
. (A4)

Since both of the functions f ′
1(x) and f ′

2(x) are odd, the solvability condition

∫ b

−b

f ′
1(ξ ) + f ′

2(ξ )√
b2 − ξ 2

dξ = 0

is automatically satisfied. The contact radius b is determined by the equilibrium condition (2.1)
that reduces to

∫ b

−b

f ′
1(ξ ) + f ′

2(ξ )√
b2 − ξ 2

ξdξ = π (θ◦
1 + θ◦

2 )P.

The constant δ∗ affects neither the contact radius b nor the pressure distribution p(x). It may be
fixed by substituting the function (A4) into equation (A3) and choosing x in the interval (−b, b)
in an arbitrary way.

On passing to the limit αj → 0, j = 1, 2, in the representation formulas for the stresses and
contact radius recovered from the solution of the model problem of power-law graded bodies,
we may obtain the corresponding quantities of the homogeneous case governed by the integral
equation (A3) with the logarithmic kernel. However, in contrast to the axisymmetric model, it
is impossible to recover the displacements including the displacement of distant points in the
homogeneous 2d case α1 = α2 = 0 by passing to the limit α1 → 0 and α2 → 0 in the solution of
the power-law graded 2d model.

There is another difference between the homogeneous and power-law graded cases. If αj ∈
(0, 1), j = 1, 2, then both of the displacements decay at infinity [27]. In the homogeneous case,
like in the Flamant problem, the displacements exhibit a logarithmic growth at infinity. This
explains why it is impossible to recover the displacements by passing to the limit αj → 0, j = 1, 2,
in the solution associated with the power-law graded case.
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Appendix B. Evaluation of the integral In(t; αj)

We wish to evaluate the integral

In(t; αj) =
∫ 1

−1

(1 − τ 2)(α1−1)/2Cα1/2
n (τ )dτ

|τ − t|αj
, 0 < αj < 1, t < −1. (B1)

First, we transform the integral to the form

In(t; αj) = 2α1−αj

∫ 1

0

[η(1 − η)](α1−1)/2Cα1/2
n (2η − 1)dη

(η + ζ )αj
,

where τ = 2η − 1, t = −2ζ − 1, and ζ > 0. Next, we represent the integral In(t; αj) as a Mellin
convolution integral

In(t; αj) = 2α1−αj

∫ ∞

0
h1(η)h2

(
ζ

η

)
dη

η
,

where

h1(η) =
{

η(1+α1)/2−αj (1 − η)(α1−1)/2Cα1/2
n (2η − 1), 0 < η < 1

0, η > 1
, h2(ζ ) = 1

(1 + ζ )αj
.

We aim further to apply the Mellin convolution theorem [30]

In(t; αj) = 2α1−αj

2π i

∫ σj+i∞

σj−i∞
H1(s)H2(s)ζ−sds, (B2)

where H1(s) and H2(s) are the Mellin transforms of the functions h1(η) and h2(η), respectively.
These transforms are obtained by exploiting the following integrals (formulas 7.311(3) and
3.194(3), [11):

H1(s) = �( α1+1
2 )(α1)n

(−1)nn!
�(s + α1+1

2 − αj)�(−s + αj + n)

�(s + α1 − αj + n + 1)�(−s + αj)
, Re s > αj − α1 + 1

2
,

H2(s) = �(s)�(αj − s)

�(αj)
, 0 < Re s < αj, (B3)

and since αj ∈ (0, 1) and α1 > α2, we have σj ∈ (0, αj). The final steps of the procedure are sub-
stituting formulas (B3) into (B2) and applying the theory of residues. In the case 0 < ζ < 1
(−3 < t < −1), this implies

In(t; αj) = (α1)n�( α1+1
2 )

(−1)n2αj−α1 n!

[
(αj)n�( α1+1

2 − αj)

�(α1 − αj + n + 1)
F(αj − α1 − n, αj + n, αj + 1 − α1

2
; −ζ )

+�(αj − α1+1
2 )

�(αj)
ζ (α1+1)/2−αj F

(
1 + α1

2
+ n,

1 − α1

2
− n,

3 + α1

2
− αj; −ζ

)]
, 0 < ζ < 1,

(B4)

where F is the hypergeometric function. If ζ > 1, that is if t < −3, then we have

In(t; αj) = (−1)n√π (α1)n(αj)n�( α1+1
2 )

2αj+2nn!�( α1
2 + n + 1)ζ αj+n

F

(
αj + n,

α1 + 1

2
+ n, α1 + 2n + 1; − 1

ζ

)
. (B5)
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In a neighbourhood of the point ζ = 1 (t = −3), for computational purposes, it is numerically
efficient to employ formula 9.131(1) [11] that is

F(α, β, γ ; z) = (1 − z)−βF

(
β, γ − α, γ ;

z

z − 1

)
.

We finally note that on applying the same method to the integral (B1) in the case t ∈ (−1, 1) and
taking α1 = α2, we derive the spectral relation (3.7) for the Gegenbauer polynomials.

Appendix C. Integral equation in a semi-infinite interval

Here, we apply the Wiener-Hopf method to derive an exact form of the solution to the equation

∫ ∞

0

(
γ1

|x − ξ |α1
+ γ2

|x − ξ |α2

)
p(ξ )dξ = g(x), 0 < x < ∞, 0 < α2 < α1 < 1, (C1)

in case its solution is required in other applications. Introduce the one-sided Fourier transforms

P+(ζ ) =
∫ ∞

0
p(x)eiζxdx, P−(ζ ) =

∫ 0

−∞
p−(x)eiζxdx, G+(ζ ) =

∫ ∞

0
g(x)eiζxdx,

where p−(x) is the left-hand side of equation (C1) for x < 0. Making use of formula 3.761(9), we
determine the Fourier transform ∫ ∞

−∞
eiζxdx

|x|α = π |ζ |α−1

cos πα
2 �(α)

.

On applying the convolution theorem, we convert the integral equation into the Riemann-Hilbert
problem

(ν1|ζ |α1−1 + ν2|ζ |α2−1)P+(α) = P−(α) + G+(α), −∞ < α < ∞,

where

νj = πγj

cos
παj

2 �(αj)
, j = 1, 2.

We next factorise the function |ζ |α1−1,

|ζ |α1−1 = χ+(ζ )χ−(ζ ), −∞ < α < ∞,

where χ+(ζ ) and χ−(ζ ) are holomorphic functions in the half-planes C
+ = {Im ζ > 0} and

C
− = {Im ζ < 0}, respectively, and

χ+(ζ ) = ζ (α1−1)/2, arg ζ ∈ [0, π ],

χ−(ζ ) = ζ (α1−1)/2, arg ζ ∈ [−π , 0].

We can represent the kernel of the Riemann-Hilbert problem as the product |ζ |α1−1H(ζ ), H(ζ ) =
1 + ν2ν

−1
1 |ζ |α2−α1 and factorise this new function

H(ζ ) = X +(ζ )

X −(ζ )
, −∞ < α < ∞,
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where X ±(ζ ) = X (ζ ± i0) and

X (ζ ) = exp

{
1

2π i

∫ ∞

−∞
log H(η)dη

η − ζ

}
, ζ ∈C.

On using the Abelian theorem for one-sided Fourier transforms of functions having an integrable
singularity at the point x = and employing the continuity principle and the Liouville theorem we
deduce the solution of the Riemann-Hilbert problem

P+(ζ ) = �+(ζ )

ν1χ+(ζ )X +(ζ )
, ζ ∈C

+, P−(ζ ) = χ−(ζ )�−(ζ )

X −(ζ )
, ζ ∈C

−. (C2)

By the Fourier inversion, the solution of the integral equation (C1) has the form

p(x) = 1

2π

∫ ∞

−∞
�+(ζ )e−iζxdζ

ν1χ+(ζ )X +(ζ )
, 0 < x < ∞.

Analysis of the Cauchy integrals in the representation (C2) of the function P+(ζ ) as ζ → ∞,
ζ ∈C

+, and the Tauberian theorem for one-sided Fourier transforms yields the asymptotics of
the solution p(x) as x → 0, p(x) = O(x(α1−1)/2).

Appendix D. Integral equation in a finite interval: case α2 = −2n, n = 0,1, . . .

In the case of a finite interval equation, (1.3) admits an exact solution if α1 ∈ (0, 1), while α2 =
−2n, n = 0, 1, . . .. Written in the interval (−1, 1), it has the form∫ 1

−1

(
γ1

|x − ξ |α1
+ γ2(x − ξ )2n

)
p(ξ )dξ = g(x), −1 < x < 1. (D1)

On expanding the function (x − ξ )2n and denoting

mj =
∫ 1

−1
p(ξ )ξ jdξ ,

we deduce

γ1

∫ 1

−1

p(ξ )dξ

|x − ξ |α1
+ γ2

2n∑
j=0

(
2n
j

)
mjx

2n−j = g(x), −1 < x < 1.

We next expand the function p(x) in terms of new unknown functions pj(x) as

p(x) = γ2

2n∑
j=0

(
2n
j

)
mjpj(x) + p2n+1(x),

introduce new functions

gj(x) = −x2n−j, j = 0, 1, . . . , 2n, g2n+1(x) = g(x),

and reduce the equation with two kernels to 2n + 2 equations with one kernel

γ1

∫ 1

−1

pj(ξ )dξ

|x − ξ |α1
= gj(x), j = 0, 1, . . . , 2n + 1.
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This equation admits a closed-form solution constructed in Section 5. The constants mj are
recovered by solving a finite linear algebraic system

mk − γ2

2n∑
j=0

(
2n
j

)
mjlkj = lk2m+1, k = 0, 1, . . . , 2n + 1,

where

lkj =
∫ 1

−1
ξ kpj(ξ )dξ .

If the interval (−1, 1) in the integral equation (D1) is replaced by an interval (a,b), then, under
certain restrictions on the parameters a and b, it is possible to derive a closed-form solution even
when α1 < 0. Such a solution was obtained in [5] for α2 = −2 (n = 1).
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