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Abstract
In this paper, we introduce a new class of T0 spaces called wb-sober spaces, which is strictly larger than
the class of open well-filtered spaces. Unlike open well-filtered spaces, wb-sober spaces are defined more
intuitively by requiring certain special subsets, termed wb-irreducible closed sets, to have singleton clo-
sures. We establish several key results about these spaces, including (1) every open well-filtered space is
wb-sober, but not vice versa; (2) every strongly core-coherent wb-sober space is open well-filtered; (3) a
space is core-compact iff its irreducible closed sets are wb-irreducible, providing a characterization of core-
compactness; (4) every core-compact wb-sober space is sober, thereby generalizing the Jia-Jung problem.
In addition, we investigate the core-coherence of the Xi-Zhao model. We prove that a T1 space contains
finite number of isolated points iff its Xi-Zhao model is core-coherent iff its Xi-Zhao model is strongly
core-coherent. Based on this result, we then propose a general approach to constructing a non-routine
open well-filtered but not well-filtered dcpo.

Keywords: Core-coherence; core-compact space; open well-filtered space; poset model; Scott topology; wb-sober space

1. Introduction
In domain theory, sober spaces and well-filtered spaces are two of the most important classes
of topological spaces. Well-filtered spaces were introduced by Heckmann, who posed the ques-
tion of whether every well-filtered Scott space of a directed complete poset is sober (Heckmann,
1990,1992). This question has sparked extensive research into the relationship between sobriety
and well-filteredness, as well as their respective properties (see Ho et al., 2018; Jia et al., 2016; Kou,
2001; Liu et al., 2020; Shen et al., 2020; Wu et al., 2020; Xi and Lawson, 2017; Xi and Zhao, 2017;
Xu, 2021; Xu et al., 2020b; Zhao et al., 2019). A recent problem (usually called Jia-Jung problem)
in this area is whether every core-compact well-filtered space is sober, as posed by Jia and Jung
(2018, Question 2.5.19, p. 44). This question was first positively solved by Lawson et al. (2020,
Theorem 3.1). Some other results on this topic are as follows:

(i) Every first-countable well-filtered space is sober (Xu et al., 2020a, Theorem 4.2);
(ii) Every first-countable ω-well-filtered d-space is sober (Xu et al., 2021, Theorem 6.7);
(iii) Every core-compact open well-filtered space is sober (Shen et al., 2020, Theorem 4.7).
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In Section 3, we explore further aspects of the Jia-Jung problem. Specifically, consider the
following implication for a topological propertyM :

core-compact+M ⇒ sober.
Currently, it is known that the weakest topological property satisfying this implication is the open
well-filteredness. This leads us to the following question:

• Is there any property M that is weaker than open well-filteredness? To what extent can it be
weakened?

To address this question, it is necessary to understand the contribution of core-compactness to
making a space sober. In Section 3, we introduce the notion of wb-irreducible sets, and use it to
obtain a characterization of core-compactness (in the perspective of sobriety) as follows:

• A topological space is core-compact iff its irreducible sets are wb-irreducible.

From this, we naturally define wb-sober spaces by requiring wb-irreducible closed sets to be
closures of singletons. We then prove the following results:

• Every open well-filtered space is wb-sober, but not vice versa. Moreover, every strongly core-
coherent wb-sober space is open well-filtered.

• Every core-compact wb-sober space is sober, generalizing the previous result (iii).
• The category of wb-sober spaces with continuous mappings is not reflective in the category of
T0 spaces.

The following section is dedicated to exploring the core-coherence of the Xi-Zhao model. A
poset P is called a poset model of a topological space X if X is homeomorphic to the set Max(P) of
maximal elements of P, equipped with the relative topology of the Scott topology of P. The Scott
topology is one of the most significant intrinsic topologies on posets in domain theory. Generally,
the Scott space of a poset is only T0. However, by considering the space of its maximal points,
a richer variety of spaces can be obtained. Poset model theory has been extensively studied by
various researchers and has played a crucial role in linking posets and T1 spaces. One related
result is due to Xi and Zhao (2009) and Zhao and Xi (2018), who proved that every T1 space X
has a dcpo model, denoted by D(X) and usually called the Xi-Zhao model. Given a topological
propertyM, one can pose the following problem:

• When a T1 space X satisfies M, is it true that D(X) equipped with the Scott topology also
satisfiesM

We say that a property M is preserved by the Xi-Zhao model if the above statement is true. It
has been shown by He et al. (2019); Xi and Zhao (2017); Zhao and Xi (2018) that sobriety, well-
filteredness, and Choquet completeness are all preserved by the Xi-Zhao model. Recently, Chen
and Li (2022) proved that the Rudin property and weak sobriety are also preserved by the Xi-Zhao
model, but core-compactness is not.

In this paper, we address the following question:

• Is the core-coherent or strongly core-coherent property preserved by the Xi-Zhao model?

We provide a negative answer to this question in Section 4. Furthermore, we establish a necessary
and sufficient condition for the Xi-Zhao model to be core-coherent. Specifically, we prove the
following:

• A T1 space X has a finite number of isolated points iffD(X) is strongly core-coherent iffD(X)
is core-coherent.
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Moreover, we show that for T1 spaces, the properties of having finite isolated points and being
strongly core-coherent are independent.

In the final section of the paper, we focus on developing a general approach to construct-
ing open well-filtered (and therefore wb-sober) but not well-filtered dcpos, utilizing the Xi-Zhao
model.

The concept of open well-filtered spaces, introduced by Shen et al. (2020) recently, forms a
larger class than that of well-filtered spaces. One notable result of open well-filtered spaces is
that every core-compact open well-filtered space is sober, which strengthens the result of Jia-Jung
problem Jia (2018) (a positive answer is originally given by Lawson et al. (2020)). A recent related
result is given by Chen and Li, who proved that the Xi-Zhao model of every T1 space is open
well-filtered (Chen and Li, 2023, Corollary 4.7).

We have observed the simplicity and validity of utilizing open well-filteredness to solve the Jia-
Jung problem Shen et al. (2020). However, it is important to note that the routine condition: for
Scott open sets U,V ,

U �V ⇔ U = ∅,
often occurs in dcpos which are not core-compact with respect to the Scott topology. Such kind of
dcpos cannot fully capture the characteristic of open well-filteredness, and limit our understand-
ing of the entire class of open well-filtered spaces. Thus, we are motivated to ask the following
question:

• Does there exist a non-routine open well-filtered, but not well-filtered dcpo?

In Section 4.3, we provide a positive answer by proving that:

• The Xi-Zhao model D(X) is non-routine open well-filtered whenever X has at least one
isolated point.

This result offers a method for constructing a non-routine open well-filtered, but not well-filtered
dcpo.

2. Preliminary
This section is devoted to a brief review of some basic concepts and notations that will be used in
the paper. For more details, see Engelking (1989); Gierz et al. (2003); Goubault-Larrecq (2013).

Let P be a poset. For a subset A of P, we shall adopt the following standard notations:
↑A= {y ∈ P : ∃x ∈A, x≤ y}; ↓A= {y ∈ P : ∃x ∈A, y≤ x}.

For each x ∈ X, we write ↑x= ↑{x} and ↓x= ↓{x}. A subset A of P is called a lower (resp., an
upper) set if A= ↓A (resp., A= ↑A). An element x is maximal (resp., minimal) in S⊆ P, if S∩
↑x= {x} (resp., S∩ ↓x= {x}). The set of all maximal (resp., minimal) elements of S is denoted by
Max(S) (resp., Min(S)). A nonempty subsetD of P is directed (resp., filtered) if every two elements
in D have an upper (resp., lower) bound in D. A subset F of P is called a filter if F is an upper and
filtered set. P is called a directed complete poset, or a dcpo for short, if every directed subset of P
has a supremum.

For x, y ∈ P, x isway-below y, denoted by x� y, if for any directed subsetD of P for which
∨

D
exists, y≤ ∨

D implies x≤ d for some d ∈D. Denote x= {y ∈ P : x� y} and x= {y ∈ P : y� x}.
A poset P is continuous, if for any x ∈ P, the set x is directed and x= ∨

x.
A subset U of P is Scott open if (i) U = ↑U and (ii) for any directed subset D of P for which∨
D exists,

∨
D ∈U implies D∩U �= ∅. All Scott open subsets of P form a topology on P, called

the Scott topology and denoted by σ (P). The space �P = (P, σ (P)) is called the Scott space of P.
Let X be a T0 space. We use O(X) (resp., C(X)) to denote the set of all open (resp., closed)

subsets of X,O∗(X)=O(X) \ {∅}, and C∗(X)= C(X) \ {∅}.
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A subset A of X is called saturated if A equals the intersection of all open sets containing it. The
specialization order ≤ on X, is defined by x≤ y iff x ∈ cl({y}), where cl is the closure operator.
Remark 2.1. Let X be a T0 space.

(1) A subset A of X is saturated iff A= ↑A with respect to the specialization order. In particular,
↑x= ⋂{U : x ∈U ∈O(X)} (Gierz et al. 2003, Exercise O-5.14).

(2) If X is a T1 space, then for any x, y ∈ X, x≤ y iff x= y (Goubault-Larrecq, 2013, Proposition
4.2.3). Therefore, {x} = ↑x= ⋂{U : x ∈U ∈O(X)}.

Definition 2.2. Let X be a T0 space. A subset A of X is irreducible if A �= ∅, and for any U1,U2 ∈
O(X), whenever A∩U1 �= ∅ and A∩U2 �= ∅, it follows that A∩U1 ∩U2 �= ∅. The space X is called
sober if for each irreducible closed set A, there exists a (unique) point x ∈ X such that A= cl({x}).
Definition 2.3. A T0 space X is called well-filtered if for any filtered family F of nonempty compact
saturated subsets of X and U ∈O(X),

⋂F ⊆U implies K ⊆U for some K ∈F .

Definition 2.4 (Shen et al., 2020, Definition 4.1). Let X be a T0 space.

(1) A subfamily F of O(X) is called �-filtered if for each U1,U2 ∈F , there is U3 ∈F such that
U3 �U1 and U3 �U2 in (O(X),⊆ ).

(2) The space X is called open well-filtered if for each �-filtered family F ⊆O(X) and U ∈O(X),⋂F ⊆U implies V ⊆U for some V ∈F .

Remark 2.5. Let U,V ∈O(X). Then, U ��V iff there exists a filtered subfamily F ⊆ C(X) such
that V ∩ ⋂F = ∅ and U ∩ C �= ∅ for any C ∈F .

Let X be a T0 space, A⊆ X and ∅ �=F ⊆O(X). Let
m(F)=Min{C ∈ C(X) : C ∩U �= ∅ for all U ∈F}.

In other words, A ∈m(F) iff it is a minimal (under the inclusion order) closed set that has a
nonempty intersection with every member of F .

Lemma 2.6 (Shen et al., 2020, Lemma 2.4). Let X be a T0 space and F be a �-filtered subfamily
of O(X). Then m(F) �= ∅ (using Zorn’s Lemma), and every set in m(F) is irreducible.

Lemma 2.7 (Shen et al., 2022a, Theorem 3.3). Let X be a T0 space. Then, the following statements
are equivalent:

(1) X is open well-filtered.
(2) For each �-filtered family F ⊆O(X),m(F)⊆ {cl({x}) : x ∈ X}.
Definition 2.8 (Goubault-Larrecq, 2013, Definition 5.2.3). A T0 space X is called core-compact if
(O(X),⊆ ) is a continuous poset.

Remark 2.9. The following implications hold:

(1) Every sober space is well-filtered (Gierz et al., 2003, Theorem II-1.21); every well-filtered space
is open well-filtered (Shen et al., 2020, Theorem 4.7).

(2) Every core-compact open well-filtered space is sober (Shen et al., 2020, Remark 4.2).
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Throughout this paper, we use N to denote the set of all positive integers, and let ω represent
the first infinite ordinal. Clearly, ω = {0} ∪N, and a set A is finite iff |A| < ω.

3. On Wb-Sober Spaces
In this section, we introduce a new class of topological spaces, called wb-sober spaces. In contrast
to the definition of open well-filtered spaces, the wb-sober spaces are defined in terms of some spe-
cial sets (called wb-irreducible sets), which is more consistent with the definition of sober spaces.
Another advantage is that although the wb-sobriety is weaker than open well-filteredness, but the
wb-sober spaces share many important properties with the open well-filtered spaces, especially in
their link to sober spaces.

Definition 3.1. Let X be a topological space.

(1) A subset A of X is called way-below irreducible (wb-irreducible for short) if A �= ∅, and for
any U1,U2 ∈O(X), whenever A∩U1 �= ∅ and A∩U2 �= ∅, there exists V ∈O(X) such that
V �U1, V �U2, and A∩V �= ∅.

(2) We call X wb-sober if it is T0, and for each wb-irreducible closed set A, there exists a (unique)
x ∈ X such that A= cl({x}).

Next, we provide some equivalent conditions for wb-irreducibility, which will be used in the
sequel.

Lemma 3.2. Let X be a T0 space and A⊆ X. Then, the following statements are equivalent:

(1) A is wb-irreducible.
(2) For any U1,U2 ∈O(X), if A∩U1 �= ∅ and A∩U2 �= ∅, then there exists V ∈O(X) such that

V �U1 ∩U2 and A∩V �= ∅.
(3) A is irreducible, and for each U ∈O(X), if A∩U �= ∅, then there exists V ∈O(X) such that

V �U and A∩V �= ∅.
Proof. (1) ⇒ (2): Suppose A is wb-irreducible and A∩U1 �= ∅ and A∩U2 �= ∅. Since A is wb-
irreducible, there exists an open set W such that W �U1, W �U2, and A∩W �= ∅. Again,
by the wb-irreducibility of A, there exists V ∈O(X) such that V �W and A∩V �= ∅. Since
V �W �U1 and V �W �U2, it follows that V �W ⊆U1 ∩U2. Therefore, V �U1 ∩U2, as
desired. Hence, conclusion (2) holds.

The implications (2) ⇒ (3) and (3) ⇒ (1) are straightforward. �

The notion of wb-irreducibility helps one elucidate the core-compactness:

Proposition 3.3. Let X be a T0 space. Then, the following statements are equivalent:

(1) X is core-compact.
(2) Every irreducible subset of X is wb-irreducible.
(3) For each x ∈ X, cl({x}) is wb-irreducible.
Proof. (1) ⇒ (2): Let A be an irreducible set in X, and suppose U ∈O(X) such that A∩U �= ∅.
Choose a point x ∈A∩U. Since X is core-compact, we have U = ⋃{V ∈O(X) :V �U}. Thus,
there exists some V0 ∈O(X) such that x ∈V0 �U. Consequently, x ∈A∩V0 �= ∅. Therefore, by
Lemma 3.2, A is wb-irreducible.
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The implications (2) ⇒ (3) and (3) ⇒ (1) are straightforward. �

The following result, together with Theorem 3.11, which will be presented later, generalizes
Theorem 4.7 in Shen et al. (2020). It is immediate from Proposition 3.3.

Theorem 3.4. A core-compact space is wb-sober iff it is sober.

To further investigate the relationship between sober spaces and wb-sober spaces, we introduce
the concept of strong core-coherence. First, we review the definition of core-coherence.

Definition 3.5 (Goubault-Larrecq, 2013, Definition 5.2.18, Proposition 5.2.19). A topological
space X is said to be core-coherent if for any U1,U2,U ∈O(X), whenever U �U1 and U �U2,
it holds that U �U1 ∩U2 (or equivalently, for any U1,U2,V1,V2 ∈O(X), whenever V1 �U1 and
V2 �U2, it holds that V1 ∩V2 �U1 ∩U2).

Definition 3.6. A topological space X is said to be strongly core-coherent if for any U,U1,U2 ∈
O(X), whenever U1 �U2, it holds that U ∩U1 �U ∩U2.

As the name suggests, every strongly core-coherent is core-coherent, which can be easily
verified. However, the converse is not true in general, as demonstrated by the following examples.

Example 3.7.

(1) The set R of real numbers under the usual topology is core-coherent but not strongly core-
coherent.
— It is known that locally compact T2 spaces are core-coherent (see (Goubault-Larrecq, 2013,
Fact 5.2.22 and Lemma 5.2.22)). Since R is a locally compact T2 space, it follows that R is
core-coherent. Additionally, note that (0, 1)�R, as we can insert a compact subset, such as
[0, 1], between them. However, (0, 1) �� (0, 1)= (0, 1)∩R, implying that R is not strongly core-
coherent.

(2) The unit interval [0, 1], as the subspace of R, is core-coherent but not strongly core-coherent.
— Using a similar argument as for R, we can conclude that [0, 1] is core-coherent. Additionally,
note that [0, 1] is a compact space, so [0, 1]� [0, 1]. However, (0, 1) �� (0, 1), it follows that
[0, 1] is not strongly core-coherent.

(3) Let P =N∪ {a, b}, where a, b /∈N and a �= b. The partial order ≤ on P is defined as follows:
(i) a≤ b≤ n for each n ∈N;
(ii) m≤ n iff n≤m in N under the usual order for each m, n ∈N.

The poset P can be represented by Figure 1. The space �P is a core-coherent space but not
strongly core-coherent.
— Indeed, P is a bounded complete continuous dcpo, and posets of this kind are always core-
coherent under the Scott topology (see (Goubault-Larrecq, 2013, p. 200, line 5)). Additionally,
consider the open sets U =N,U1 =N∪ {b} =↑ b, and U2 = P =↑ a.Clearly, U1 �U2 in σ (X),
but U ∩U1 =N ��N=U ∩U2. Therefore, �P is not strongly core-coherent.

Proposition 3.8. Let X be a T0 space, and define V = {U ∈O(X) :V �U} for any V ∈O(X).
Then, the following conditions are equivalent:

(1) X is strongly core-coherent.
(2) For each V ∈O(X), if V �= ∅, then W �W for any W ⊆V .
(3) For each V ∈O(X), if V � X, then W �W for any W ⊆V .
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Figure 1. The poset P=N∪ {a, b}.

Proof. (1) ⇒ (2): Suppose V �= ∅ and W ⊆V . Then, there exists V1 ∈O(X) such that V �V1
(thus, V ⊆V1). Since X is strongly core-coherent, we have that W =W ∩V �W ∩V1 =W, as
desired.

(2) ⇒ (3): It is clear.
(3) ⇒ (1): Suppose U,U1,U2 ∈O(X) and U1 �U2. From U1 �U2 ⊆ X, it follows that U1 �

X. By condition (3), it holds that U ∩U1 �U ∩U1 ⊆U ∩U2, which implies that U ∩U1 �U ∩
U2. Therefore, X is strongly core-coherent. �

As an immediate consequence of Proposition 3.8, we have:

Corollary 3.9. The strongly core-coherent compact spaces are exactly the Noetherian spaces (i.e.,
every open subset of which is compact).

From the preceding discussion on strong core-coherence, it is evident that this property is
generally difficult to satisfy for arbitrary topological spaces. However, an interesting result that we
will establish in the next section is that Xi-Zhao models are readily strongly core-coherent.

Next, we examine the relationship between open well-filtered spaces and wb-sober spaces.

Lemma 3.10. Let X be a T0 space and A⊆ X, and define
FA = {U ∈O(X) :U ∩A �= ∅}.

Consider the following conditions:

(1) The set A is wb-irreducible.
(2) The family FA is a �-filtered family such that cl(A) ∈m(FA).
(3) There exists a �-filtered subfamily F of O(X) such that cl(A) ∈m(F).

Then (1)⇔ (2)⇒ (3). Moreover, if X is strongly core-coherent, then all three conditions are
equivalent.

Proof. (1) ⇒ (2): We first prove FA is a �-filtered family. Suppose U1,U2 ∈FA. Then, U1 ∩A �=
∅ andU2 ∩A �= ∅. Using the wb-irreducibility ofA, there isU3 ∈O(X) such thatU3 �U1,U2 and
A∩U3 �= ∅, which implies that U3 ∈FA. Hence, FA is �-filtered.

Now we prove that cl(A) ∈m(FA). It is clear that cl(A) has a nonempty intersection with each
element of FA. Now suppose C is a closed subset of cl(A) such that C ∩U �= ∅ for each U ∈FA.
We need to prove C = cl(A). This is true since if cl(A)∩ (X \ C) �= ∅, then X \ C ∈FA, but C ∩
(X \ C)= ∅, which contradicts that C has a nonempty intersection with all elements of FA. Thus,
we have that cl(A) ∈m(FA).

(2) ⇒ (1): Suppose U1,U2 ∈O(X) such that A∩U1 �= ∅ and A∩U2 �= ∅. Then, U1,U2 ∈FA
and since FA is �-filtered, there exists U3 ∈FA such that U3 �U1 and U3 �U2. From the
definition of FA, it follows that A∩U3 �= ∅. This shows that A is wb-irreducible.

That (2) ⇒ (3) is trivial.
Now suppose X is a strongly core-coherent space. We prove:
(3) ⇒ (1): Let U ∈O(X) satisfying that A∩U �= ∅. Since F is �-filtered, there existW,V ∈F

such that W �V . Given that X is strongly core-coherent, it follows from Proposition 3.8 that
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W ∩U �W ∩U ⊆U, and thus W ∩U �U. Note that cl(A) ∈m(F), so A∩W �= ∅, and by
Lemma 2.6, A is irreducible, implying that A∩W ∩U �= ∅. Therefore, by Lemma 3.2, A is a
wb-irreducible set. �

Theorem 3.11.

(1) Every open well-filtered space is wb-sober, but not vice versa.
(2) Every strongly core-coherent wb-sober is open well-filtered.

Proof. (1) Suppose X is an open well-filtered space, and A is a wb-irreducible closed subset of X.
Then by Lemma 3.10, there exists a �-filtered subfamily F of O(X) such that A ∈m(F). Since X
is open well-filtered, by Lemma 2.7 there exists x ∈ X such that A= cl({x}). The uniqueness of x is
trivial since X is T0. Thus, X is wb-sober. The converse is not true, as demonstrated by Example
4.32 below.

(2) Now assume X is a strongly core-coherent wb-sober space. Suppose F ⊆O(X) is a �-
filtered family. Then by Lemma 3.10, each set in m(F) is wb-irreducible closed, and thus is
of the form cl({x}), x ∈ X, by the wb-sobriety of X. Using Lemma 2.7, we have that X is open
well-filtered. �

The following corollaries are trivial by Theorem 3.11 and Remark 2.9.

Corollary 3.12. Let X be a strongly core-coherent T0 space. Then, the following statements are
equivalent:

(1) X is open well-filtered.
(2) For each wb-irreducible closed set A in X, there exists a unique point x ∈ X such that A= cl({x}).
Corollary 3.13. Let

A = {locally compactness, core− compactness}
B = {sobriety, well− filteredness, open well− filteredness, wb-sobriety}

Then, for any properties A, A′ ∈A and B, B′ ∈ B, we have the following equivalence relation:
A + B ⇔ A′ + B′.

Corollary 3.14. Let X be a core-compact space. Then, the following statements are equivalent:

(1) X is wb-sober.
(2) X is open well-filtered.
(3) X is well-filtered.
(4) X is sober.

According to the above arguments, we make a summary as follows:

well-filtered spacesober space open well-filtered space wb-sober space

core-compactness

strongly core-coherence
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Figure 2. The Johnstone’s dcpo J.

Figure 3. Some properties on�J.

Example 3.15. Let J=N× (N∪ {∞}) be the Johnstone’s dcpo Johnstone (1981), which is ordered
by (m, n)≤ (m′, n′) iff either m=m′ and n≤ n′, or n′ = ∞ and n≤m′ (see Figure 2). The following
result is useful:

• ∀U,V ∈ σ (J), U �V iff U = ∅ (see (Goubault-Larrecq, 2013, Exercise 5.2.15)).

We have the following properties (as illustrated in Figure 3):

(i) �J is open well-filtered, and thus wb-sober by Theorem 3.11.However, it is not well-filtered (see
(Goubault-Larrecq, 2013, Exercise 8.3.9)).

(ii) Since U = {∅} for each U ∈ σ (J), one can easily deduce that �J is strongly core-coherent but
not core-compact.

Therefore, we deduce that

(1) The properties of strong core-coherence and core-compactness are parallel:
strong core-coherence �⇒ core-compactness �⇒ strong core-coherence.
— The first non-implication can be demonstrated by Johnstone’s dcpo, using result (ii) men-
tioned above. For the second non-implication, refer to Example 3.7 (3), by noting that the Scott
space of a continuous dcpo is always core-compact (see (Gierz et al., 2003, Theorem II-1.14.)).

(2) Strongly core-coherent open well-filtered spaces need not be well-filtered.
— This follows directed from the above results (i) and (ii) .

https://doi.org/10.1017/S0960129524000306 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000306


538 C. Shen and X. Zhao

In the next part, we explore the reflectivity of the category of wb-sober spaces. We denote by
Top0 the category of all T0 spaces and continuous mappings between them, and byWb-sober the
full subcategory of Top0 consisting of all wb-sober spaces.

LetNcof denote the spaceN endowed with the cofinite topology, where the nonempty open sets
are the complements of finite subsets of N. The following lemma is useful.

Lemma 3.16 (Shen et al., 2022b, Theorem 4.3). If K is a reflective subcategory of Top0 such that
�J ∈K, then Ncof ∈K.

It is known that every subset ofN is compact in this topology. Additionally, one can easily show
that N itself is wb-irreducible, and it is not the closure of any singleton in N. Therefore, we have:

Lemma 3.17. Ncof is not wb-sober.

From Example 3.15 we know that �J ∈Wb-sober. However, by Lemma 3.17, Ncof �∈ Wb-
sober. Thus by Lemma 3.16, we obtain the following result.

Theorem 3.18. The categoryWb-sober is not a reflective subcategory of Top0.

4. The Core-Coherence of the Xi-Zhao Model
We have seen from Theorem 3.11 that strong core-coherence plays a crucial role in linking wb-
sobriety and openwell-filteredness. The primary focus of this section is to investigate the following
question:

• Does the Xi-Zhao model preserve the (strong) core-coherence?

We will present a negative answer to this question by constructing a counterexample in the final
part. Moreover, we will provide a sufficient and necessary condition under which the Xi-Zhao
model satisfies the (strong) core-coherence. Particularly, an interesting conclusion is that the Xi-
Zhao dcpo is strongly core-coherent iff it is core-coherent.

4.1 On the Xi-Zhaomodel
In this part, we introduce some basic concepts and results of the Xi-Zhao model, which will be
used in the sequel.

Let X be a T1 space. We use OF(X) to denote the family of all filters on (O∗(X),⊆ ) having
nonempty intersections. For each A⊆ X, let

�A= {U ∈O∗(X) :A⊆U}.
In particular, we simply write �x for �{x}.
Remark 4.1 (Zhao, 2009, Theorem 1). Let X be a T1 space.

(1) Max(OF(X))= {�x : x ∈ X}.
(2) The compact elements in OF(X) are of the form �U, where U ∈O∗(X).

Lemma 4.2. Let X be a T0 space. Then, for any x, y ∈ X, �x= �y if and only if x= y.

Proof. It is straightforward since X is a T0 space. �
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Theorem 4.3 (Zhao and Xi, 2018, Lemma 1). For each T1 space X, there is a dcpo D(X) such that
X is homeomorphic toMax(D(X)).

The dcpo model D(X) in (Zhao and Xi, 2018, Lemma 1), usually called Xi-Zhao model, is
constructed as follows:

D(X)= {(F , �x) :F ∈OF(X), x ∈ X such that F ⊆ �x},
and (F , �x)≤ (G, �y) inD(X) iff either x= y (or equivalently, �x= �y) andF ⊆ G, or G = �y andF ⊆ �y.
Then, Max(D(X))= {(�x, �x) : x ∈ X} and the mapping h : X −→Max(D(X)), where h(x)= (�x, �x)
for each x ∈ X, is a homeomorphism.

To avoid confusion, we use the notations A,B, F,U,V, · · · to indicate subsets of D(X), while
A, B, F,U,V , · · · indicate subsets of X.
Remark 4.4. The dcpo modelD(X) satisfies the following properties:

(1) For any x ∈ X and U ∈O(X), it is clear that ( �U, �x) ∈D(X) iff x ∈U.
(2) For any x ∈U ∈O(X) and y ∈V ∈O(X) (hence ( �U, �x), ( �V , �y) ∈D(X) by (1)), if x �= y, then

↑( �U, �x)∩ ↑( �V , �y)= {(�z, �z) : z ∈V ∩U}.
— Suppose (F , �z) ∈ ↑( �U, �x)∩ ↑( �V , �y), that is ( �U, �x)≤ (F , �z) and ( �V , �y)≤ (F , �z). There are
three cases to consider:
Case 1: Suppose z = x. From x �= y it follows that z �= y. Since ( �V , �y)≤ (F , �z), we have that
F = �z and z ∈V (or equivalently, �V ⊆ �z). Note that z = x ∈U by our assumption. Therefore,
(F , �z)= (�z, �z) and z ∈U ∩V .
Case 2: Suppose z = y. It is similar to Case 1.
Case 3: Suppose z �= x and z �= y. Since z �= y and ( �V , �y)≤ (F , �z), it follows that F = �z and
z ∈V (or equivalently, �V ⊆ �z). Similarly, since z �= x and ( �U, �x)≤ (F , �z), it follows that F = �z
and z ∈U. Therefore, (F , �z)= (�z, �z) and z ∈U ∩V .
From the above argument, we can deduce that ↑( �U, �x)∩ ↑( �V , �y)⊆ {(�z, �z) : z ∈V ∩U}. The
reverse inclusion is clear. Therefore, we get conclusion (2).

(3) For each directed subset D of D(X), either there is a largest element in D, or there exists
a directed family {Fi : i ∈ I} ⊆OF(X) and x ∈ X such that D= {(Fi, �x) : i ∈ I} and

∨
D=

(
∨

i∈I Fi, �x) (see (Zhao and Xi, 2018, Remark 2)).
(4) IfC= ↓{(Fi, �xi) : i ∈ I} ⊆D(X) \Max(D(X)) such that for any j, k ∈ I, �xj �= �xk whenever j �= k,

then C is a Scott closed subset ofD(X) (see (Xi and Zhao, 2017, Remark 1)).

Corollary 4.5. Let X be a T1 space. Then, the following are equivalent:

(1) X is a finite topological space.
(2) D(X) is a finite dcpo.
(3) �D(X) is a compact space.

Proof. (1) ⇒ (2): Suppose X is a finite set, that is |X| < ω. We have that |D(X)| ≤ |OF(X)| × |X| ≤
2|O(X)| × |X| ≤ 22|X| × |X| < ω. Therefore,D(X) is a finite set.

(2) ⇒ (3): It is clear.
(3) ⇒ (1): Assume, on the contrary, there exists a countable subset {xk : k ∈N} ⊆ X, such that

for any k,m ∈N, xk �= xm whenever k �=m. For each n ∈N, define

Cn := ↓{(�X, �xk) : k≥ n}.
By Remark 4.4(4), {Cn : n ∈N} is a filtered family of nonempty Scott closed subset of D(X), but⋂

n∈N Cn = ∅. This shows that �D(X) is not compact, as desired. �
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Chen and Li (2023, Corollary 4.7) recently verified the open well-filteredness of the Xi-Zhao
model. Their result provides a way to construct open well-filtered dcpos, which we will explore
further in the sequel. Here is the statement of the theorem:

Theorem 4.6 ((Chen and Li, 2023, Corollary 4.7)). The Xi-Zhao model of each T1 space is open
well-filtered (hence wb-sober) with respect to the Scott topology. Hence, every T1 space has an open
well-filtered dcpo model.

4.2 The (strong) core-coherence ofD(X)
The cofinite topological space Ncof often serves as a classic example (or sometimes a coun-
terexample) in the context of the Xi-Zhao model. We observe that �D(Ncof) satisfies strong
core-coherence (and hence core-coherence), with the proof relying heavily on the fact that Ncof
has a finite number of isolated points (in this case, zero). Inspired by this observation, we aim
to extend this result to general T1 spaces with finitely many isolated points. Specifically, we
prove that the Xi-Zhao model �D(X) for such spaces is always core-coherent (and even strongly
core-coherent). Notably, this conclusion also holds in reverse.

To achieve this, we first introduce the following definition.

Definition 4.7. Let X be a T1 space. We define Xiso as the set of all isolated points in X, that is,
Xiso = {x ∈ X : {x} ∈O(X)}.

Lemma 4.8. Let X be a T1 space. Then, for any x ∈U ⊆ Xiso, U := ↑( �U, �x) is a Scott open subset of
D(X).

Proof. First, note that U ∈O(X) as U ⊆ Xiso. Clearly, U is an upper set. Assume D is a directed
subset ofD(X) such that

∨
D ∈U, that is ( �U, �x)≤ ∨

D. By Remark 4.4(3), we assume there exists
a directed family {Fi : i ∈ I} ⊆OF(X) and y ∈ X such that D= {(Fi, �y) : i ∈ I} and ( �U, �x)≤ ∨

D=
(
∨

i∈I Fi, �y). There are two cases:
(i) If y= x, then �U ⊆ ∨

i∈I Fi. By Remark 4.1(2) and U ∈O(X), there exists i0 ∈ I such that
�U ⊆Fi0 , which implies that ( �U, �x)≤ (Fi0 , �x)= (Fi0 , �y) ∈D.

(ii) If y �= x, then
∨

i∈I Fi = �y and y ∈U ⊆ Xiso, which implies that {y} ∈O(X). By
Remark 4.1(2), there exists i0 ∈ I such that �y=Fi0 , so ( �U, �x)≤ (

∨
i∈I Fi, �y)= (�y, �y)= (Fi0 , �y) ∈D.

All these show that D∩U �= ∅. Therefore, U ∈ σ (D(X)), as desired. �

Lemma 4.9. Let X be a T1 space. Then, the following statements hold.

(1) For each x ∈ X, {x} ∈O(X) iff {(�x, �x)} ∈ σ (D(X)). In other words,
�D(X)iso = {(�x, �x) : x ∈ Xiso}.

Therefore, |Xiso| = |�D(X)iso|. In particular, |Xiso| < ω iff |�D(X)iso| < ω.
(2) �D(X)iso � �D(X)iso in σ (D(X)) iff Xiso is finite.

Proof. (1) Necessity: Suppose {x} is an open subset of X. We need to prove {(�x, �x)} is a Scott
open subset of D(X). First, it is clear that {(�x, �x)} is an upper set, as the point (�x, �x) is maximal.
Assume D is a directed subset of D(X) such that

∨
D= (�x, �x). By Remark 4.4(3), we may assume

thatD= {(Fi, �y) : i ∈ I}, where {Fi : i ∈ I} ⊆OF(X) is directed and y ∈ X, so (
∨

i∈I Fi, �y)= ∨
D=

(�x, �x). It follows that �x= �y (so x= y by Lemma 4.2), and
∨

i∈I Fi = �x. Note that {x} ∈O(X), so by
Remark 4.1(2), we have that �x is compact in OF(X), so there exists i0 ∈ I such that Fi0 = �x. This
shows that (�x, �x)= (Fi0 , �x)= (Fi0 , �y) ∈D. Therefore, {(�x, �x)} is a Scott open set.
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Sufficiency: Assume {(�x, �x)} ∈ σ (D(X)). By using the T1 separation of X, one can verify that
{( �U, �x) : x ∈U ∈O(X)} is a directed subset ofD(X) whose supremum equals (�x, �x). Then by using
the Scott openness of {(�x, �x)}, there exists U0 ∈O(X) such that (�x, �x)= ( �U0, �x). It follows that
�x= �U0, which implies that {x} = ⋂ �x= ⋂ �U0 =U0 ∈O(X) by Remark 2.1. Thus, {x} ∈O(X), as
desired.

(2) Suppose �D(X)iso � �D(X)iso. By (1), the family {{(�x, �x)} : (�x, �x) ∈ �D(X)iso} forms an
open cover of �D(X)iso, so there exists a finite subset F⊆ �D(X)iso such that �D(X)iso ⊆ F. It
follows that �D(X)iso = F, so �D(X)iso is finite. Using result (1), we have that Xiso is finite. The
converse is trivial. �

Lemma 4.10. Let X be a T1 space and U ∈ σ (D(X)). Then, the following statements hold.

(1) Max(U)=U∩Max(D(X)).
(2) For each (F , �x) ∈U, there exists V ∈O(X) such that (F , �x)≥ ( �V , �x) ∈U. In other words,

U= ↑{( �V , �x) ∈U : x ∈V ∈O(X)}.
(3) For each V ∈O(X) and x ∈ X, if ( �V , �x) ∈U, then x ∈V ⊆ {y ∈ X : (�y, �y) ∈Max(U)}.
(4) If |Max(U)| < ω, then there is a finite subset F of D(X) such that U= ↑F.
Proof. (1) It is clear since U is an upper set.

(2) Suppose (F , �x) ∈U. Note that {( �V , �x) :V ∈F} is a directed subset of D(X) whose supre-
mum is (F , �x), and since (F , �x) ∈U ∈ σ (D(X)), there is V0 ∈F such that ( �V0, �x) ∈U. It follows
that (F , �x)≥ ( �V0, �x), completing the proof.

(3) Suppose ( �V , �x) ∈U. First, it is clear that x ∈V , as ( �V , �x) ∈D(X). Let y ∈V . Then we have
that (�y, �y)≥ ( �V , �x) ∈U= ↑U, which follows that (�y, �y) ∈U∩Max(D(X))=Max(U). This proves
(3).

(4) Suppose there exists m ∈N such that Max(U)= {(�xk, �xk) : 1≤ k≤m}. Let F := {( �V , �x) ∈
U : x ∈V ∈O(X)}. For each ( �V , �x) ∈ F, from (3) it follows that x ∈V ⊆ {x1, x2, · · · , xm}. Thus, we
have that |F| ≤ 2m ×m, and hence F is a finite set. By (2), U= ↑F, completing the proof. �

Lemma 4.11. Let X be a T1 space and x ∈U ∈O(X). Then, U �= {x} iff �U �= �x.
Proof. Suppose U �= {x}. Note that U is nonempty since x ∈U. Then, there exists y ∈U such that
y �= x. Since X is a T1 space, U \ {y} is an open set that contains x. Consequently, U \ {y} ∈ �x, and
clearly U \ {y} /∈ �U. Therefore, �U �= �x. The converse is trivial. �

Proposition 4.12. Let X be a T1 space and U ∈ σ (D(X)). If |Xiso| < ω, then the following
statements are equivalent:

(1) U�D(X).
(2) U�V for some V ∈ σ (D(X)).
(3) Max(U) is a finite set.
(4) There exists a finite subset F of D(X) such that U= ↑F.
Proof. (1) ⇔ (2): It is trivial.

(1) ⇒ (3): Assume, on the contrary, Max(U) is infinite. Then there exists a subset M :=
{(�xk, �xk) : k ∈N} of Max(U) such that for any m, n ∈N, xm �= xn whenever m �= n. Given that
|Xiso| < ω, wemay, without loss of generality, assume that no singleton {xk} is open (i.e., xk /∈ Xiso).
If this were not the case, we could redefine M′ :=M \ {(�x, �x) : �x ∈ Xiso}. Since Xiso is finite, M′
would still be infinite.
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For each k ∈N, note that {( �U, �xk) : xk ∈U ∈O(X)} is a directed subset of D(X) whose supre-
mum is (�xk, �xk). Since (�xk, �xk) belongs to the Scott open set U, there exists Uk ∈O(X) such that
( �Uk, �xk) ∈U. Since {xk} is not open (i.e., xk /∈ Xiso), it holds thatUk �= {xk}, and from Lemma 4.11 it
follows that �Uk �= �xk, that is, ( �Uk, �xk) ∈D(X) \Max(D(X)). Therefore, {( �Uk, �xk) : k ∈N} ⊆D(X) \
Max(D(X)). For each n ∈N, define

Cn := ↓{( �Uk, �xk) : k≥ n}.
By Remark 4.4(4), {Cn : n ∈N} is a filtered family of Scott closed subset of D(X). It holds
that

⋂
n∈N Cn = ∅, but ( �Un, �xn) ∈Cn ∩U �= ∅, which implies that U ��D(X). Therefore, the

conclusion holds.
(3) ⇒ (4): It follows immediately from Lemma 4.10(4).
(4) ⇒ (1): It is straightforward. �

Theorem 4.13. Let X be a T1 space. Then, the following conditions are equivalent:

(1) Xiso is a finite set.
(2) �D(X) is a strongly core-coherent space.
(3) �D(X) is a core-coherent space.

Proof. (1) ⇒ (2): Suppose U1,U2,V ∈ σ (D(X)) such that U1 �U2. Then, V∩U1 ⊆U1 �U2 ⊆
D(X), which implies that V∩U1 �D(X). By Proposition 4.12, there exists a finite subset F of
D(X) such that V∩U1 = ↑F. Since V∩U1 = ↑F⊆V∩U2, it holds that V∩U1 �V∩U2. This
shows that �D(X) is strongly core-coherent.

(2) ⇒ (3): It is clear.
(3) ⇒ (1): If |Xiso| ≤ 2, then the conclusion holds. Assume |Xiso| ≥ 2, and then we can choose

x, y ∈ Xiso with x �= y. Note that Xiso ∈O(X), and then by Lemma 4.8, U := ↑(�Xiso, �x) ∈ σ (D(X))
andV := ↑(�Xiso, �y) ∈ σ (D(X)). It is clear that bothU andV are compact saturated sets in σ (D(X)),
so U�U and V�V in σ (D(X)). Since �D(X) is core-coherent, by Remark 4.4(2) we have that

�D(X)iso = {(�x, �x) : x ∈ Xiso} =U∩V�U∩V= {(�x, �x) : x ∈ Xiso} = �D(X)iso.
By Lemma 4.9(2), Xiso is a finite set, completing the proof. �

The following corollary is clear by Lemma 4.9, Theorems 4.6, 3.11 and 4.13.

Corollary 4.14. Let X be a T1 space. Then, the following statements are equivalent:

(1) Xiso is a finite set.
(2) �D(X)iso is a finite set.
(3) �D(X) is a core-coherent space.
(4) �D(X) is a strongly core-coherent space.
(5) �D(X) is a core-coherent open well-filtered space.
(6) �D(X) is a strongly core-coherent open well-filtered space.
(7) �D(X) is a core-coherent wb-sober space.
(8) �D(X) is a strongly core-coherent wb-sober space.

By Theorem 4.6 and Corollary 4.14, the following result is clear.

Theorem4.15. Every T1 space having finite number of isolated points has a (strongly) core-coherent
open well-filtered dcpo model.
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Considering that |(Ncof )iso| = 0< ω, the following result holds as a direct application of
Theorem 4.13.

Corollary 4.16. The Scott space �D(Ncof ) is (strongly) core-coherent and open well-filtered.

4.3 A non-routine open well-filtered dcpo

Definition 4.17. A T0 space X is said to be routine (with respect to the way-below relation � on
O(X)) if for any U,V ∈O(X), whenever U �V , U = ∅.
Remark 4.18.

(1) It is trivial to verify that every routine space is strongly core-coherent (thus core-coherent)
and open well-filtered:

open well-filtered ⇐ routine ⇒ strongly core-compact.
(2) The Scott space of the Johnstone’s dcpo is routine, as shown in Example 3.15.

Theorem 4.19. Let X be a T1 space. Then, the following statements are equivalent:

(1) Xiso = ∅.
(2) �D(X) is a routine space.

Proof. (1) ⇒ (2): Assume, on the contrary, that �D(X) is non-routine. Then, there exist U,V ∈
σ (D(X)) such that ∅ �=U�V. Then, it is clear that U�D(X). By Proposition 4.12, Max(U)=
U∩MaxD(X) is a finite set, and we may assume Max(U) := {(�x, �x) : x ∈ F}, where F is a finite
subset of X. Then, by Remark 4.4(1), F = h−1(Max(U)) ∈O(X). Note that F �= ∅ because U �= ∅.
Choose a point x ∈ F �= ∅. Then, as X is T1 space, the finite set F \ {x} is closed, so the singleton
set {x} = F \ (F \ {x}) is open, contradicting Xiso = ∅. Therefore, �D(X) is a routine space.

(2) ⇒ (1): Assume, on the contrary, there exists a point x ∈ Xiso. Then, by Lemma 4.8,
∅ �= ↑(�Xiso, �x) ∈ σ (D(X)) and ↑(�Xiso, �x)� ↑(�Xiso, �x)⊆D(X). Thus, ∅ �= ↑(�Xiso, �x)�D(X), con-
tradicting assumption (2). Therefore, Xiso = ∅. �

The following result is clear from the above theorem, which strengthens Corollary 4.16.

Corollary 4.20. The Scott space �D(Ncof ) is a routine space.

By Corollary 4.14, Theorems 4.6 and 4.19, we have the following results.

Theorem 4.21. Every T1 space containing at least one isolated point has a non-routine open well-
filtered dcpo model.

Theorem 4.22. Every T1 space containing a finite nonempty set of isolated points has a non-routine
strongly core-coherent open well-filtered dcpo model.

By Theorem 3 in Xi and Zhao (2017) (saying that a T1 space is well-filtered iff its Xi-Zhao
model is well-filtered), we obtain the following corollary, which provides a general approach to
construct a non-routine open well-filtered but not well-filtered dcpo.

Corollary 4.23. Let X be a T1 space. If X is not well-filtered and Xiso �= ∅, then D(X) is a non-
routine open well-filtered, but not well-filtered dcpo.
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4.4 Some examples
Before presenting the example, we will introduce some concepts and properties related to the sum
(or co-product) of topological spaces, which will be used later.

Definition 4.24. Suppose X and Y are two disjoint topological spaces, that is, X ∩ Y = ∅. The set
Z = X ∪ Y with the topology

O(Z)= {U ⊆ Z :U ∩ X ∈O(X),U ∩ Y ∈O(Y)}
is called the sum (co-product) of the spaces X and Y , denoted by X ⊕ Y .

Lemma 4.25 ((Engelking, 1989, Theorem 2.2.7)). The sum X ⊕ Y is T0 (resp., T1) whenever X and
Y are T0 (resp., T1) spaces.

Lemma 4.26. Let X and Y be two disjoint topological spaces, and U,V ∈O(X ⊕ Y). Then, the
following conditions are equivalent:

(1) U �V inO(X ⊕ Y).
(2) U ∩ X �V ∩ X inO(X) and U ∩ Y �V ∩ Y inO(Y).

Proof. (1) ⇒ (2): We only verify U ∩ X �V ∩ X, as the proof for U ∩ Y �V ∩ Y is simi-
lar. Suppose {Vi : i ∈ I} ⊆O(X) is an open cover of V ∩ X. Then, V = (V ∩ X)∪ (V ∩ Y)⊆ (V ∩
X)∪ Y ⊆ ⋃

i∈I (Vi ∪ Y), which implies that {Vi ∪ Y : i ∈ I} ⊆O(X ⊕ Y). As U �V , there exists a
finite subset J ⊆ I such that U ⊆ ⋃

j∈J (Vj ∪ Y). Note that X ∩ Y = ∅ and Vi ⊆ X for all i ∈ I, so
U ∩ X ⊆ ⋃

j∈J ((Vj ∩ X)∪ (Y ∩ X))= ⋃
j∈J (Vj ∩ X)= ⋃

j∈J Vj. This shows that U ∩ X �V ∩ X.
(2)⇒ (1): Suppose {Vi : i ∈ I} ⊆O(X ⊕ Y) is an open cover of V . Then, it is clear that {Vi ∩ X :

i ∈ I} ⊆O(X) is an open cover of V ∩ X and {Vi ∩ Y : i ∈ I} ⊆O(Y) is an open cover of V ∩ Y .
Since U ∩ X �V ∩ X and U ∩ Y �V ∩ Y , there exist finite subsets J1, J2 ⊆ I such that U ∩ X ⊆⋃

j∈J1 Vj ∩ X andU ∩ Y ⊆ ⋃
j∈J2 Vj ∩ Y . Let J := J1 ∪ J2, which is a finite set. Then,U = (U ∩ X)∪

(U ∩ Y)⊆ (
⋃

j∈J1 Vj ∩ X)∪ (
⋃

j∈J2 Vj ∩ Y)⊆ ⋃
j∈J Vj. This shows that U �V . �

Lemma 4.27. Let X and Y be two disjoint topological spaces, and K ⊆ X ⊕ Y . Then, the following
conditions are equivalent:

(1) K is a compact set in X ⊕ Y .
(2) K ∩ X and K ∩ Y are compact sets in X and Y , respectively.

Proof. The proof is analogous to Lemma 4.26. �

In the following, we provide an example of non-routine open well-filtered but not well-filtered
dcpo.

Example 4.28. Recall that N is the set of all positive integers. Let Y := { 1k : k ∈N \ {1}} ∪ {0} be the
subspace of the real line with the usual topology. Note that Y ∩N= ∅. Let X := Y ⊕ (N)cof be the
sum of spaces Y and (N)cof .

(1) X is a strongly core-coherent (and hence core-coherent) T1 space.
— As Y and (N)cof are both T1 spaces, by Lemma 4.25, we know that X is a T1 space.
Before proving X is strongly core-coherent, we give a property on Y .
Claim: If U �V inO(Y) and 0 /∈V , then U is a finite set.
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This is trivial since each single set { 1k }, k≥ 2, is open in Y . Therefore, {{x} : x ∈V} is an open
cover of V , so there exists a finite set F ⊆V such that U ⊆ F. Hence, U is finite.
To show X is strongly core-coherent, assume U1,U2,V ∈O(X) such that U1 �U2.We need to
prove that U1 ∩V �U2 ∩V , and we will prove this by using Lemma 4.26. Since every set in
(N)cof is compact, we have that U1 ∩V ∩N�U2 ∩V ∩N. It remains to prove that U1 ∩V ∩
Y �U2 ∩V ∩ Y . For this purpose, suppose {Ui : i ∈ I} ⊆O(Y) is an open cover of U2 ∩V ∩ Y .
There are two cases:
(c1) 0 ∈U2 ∩V ∩ Y . Then, there exists i0 such that 0 ∈Ui0 . Observe that the complement set
Y \U of every open neighborhood U of 0 in Y is finite, so F := (U1 ∩V ∩ Y) \Ui0 ⊆ Y \Ui0 is
finite. Note that F ⊆ ⋃

i∈I\{i0} Ui, there exists a finite subset J ⊆ I \ {i0} such that F ⊆ ⋃
j∈J Uj.

Then, we have that U1 ∩V ∩ Y ⊆ F ∪Ui0 ⊆ ⋃
j∈J∪{i0} Uj.

(c2) 0 /∈U2 ∩V ∩ Y . Since U1 �U2, by Lemma 4.26, U1 ∩ Y �U2 ∩ Y in O(Y). From the
claim it follows that U1 ∩ Y is a finite set, so is U1 ∩V ∩ Y . Thus, there exists a finite subset
J ⊆ I \ {i0} such that U1 ∩V ∩ Y ⊆ ⋃

j∈J Uj.
From (c1) and (c2), we deduce that U1 ∩V ∩ Y �U2 ∩V ∩ Y inO(Y). Thus, by Lemma 4.26,
U1 ∩V �U2 ∩V inO(X). Therefore, X is strongly core-coherent.

(2) �D(X) is not core-coherent, and hence is not strongly core-coherent.
It is trivial by Theorem 4.13 and that Xiso := Y \ {0} is infinite.

(3) �D(X) is a non-routine open well-filtered space.
— Note that Xiso := Y \ {0} �= ∅. Thus, by Theorem 4.19, �D(X) is a non-routine open well-
filtered space.

(4) �D(X) is not well-filtered.
— Let Ak = {n ∈N : n≥ k} for each k ∈N. Then, the family {Ak : k ∈N} is a filtered family
of compact (automatically saturated) sets in (N)cof and, by Lemma 4.27, in X as well. Since⋂

k∈N Ak = ∅ and Ak �= ∅ for any k ∈N, it follows that X is not well-filtered. By Theorem 3 in
Xi and Zhao (2017) (saying that a T1 space is well-filtered iff its Xi-Zhao model is well-filtered),
we conclude that �D(X) is not well-filtered.

We can deduce the following two main corollaries from the example above.

Corollary 4.29. There exists a non-routine open well-filtered, but not well-filtered dcpo.

Corollary 4.30. Neither core-coherence nor strong core-coherence is preserved by the Xi-Zhao
model.

Next, we show that for a T1 space X, the properties of |Xiso| < ω and being (strongly) core-
coherent are independent, as illustrated by the following example.

Example 4.31.

(1) |Xiso| < ω � X is strongly core-coherent.

— Consider the set [0, 1] with the usual topology, that is, the base open sets are of the forms
[0, r) and (s, 1] for s, t ∈ [0, 1]. It is clear that [0, 1]iso = ∅, so |[0, 1]iso| < ω. However, it is not
strongly core-coherent, as shown in Example 3.7.

(2) X is strongly core-coherent � |Xiso| < ω.

— Consider the space X in Example 4.28. It has been proved that X is strongly core-coherent.
Additionally, we have |Xiso| = |Yiso| + |(Ncof )iso| = ω + 0= ω �< ω.
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Figure 4. The poset P in Example 4.32.

At the end of the paper, we present a counterexample demonstrating that wb-sober spaces need
not be open well-filtered, which also serves as part of the proof of Theorem 3.11.

Example 4.32. Let X = {xn : n ∈N} and Y = {yn : n ∈N} be two chains with the following orders:
x1 < x2 < x3 < · · · < xn < xn+1 < · · ·

and
y1 < y2 < y3 < · · · < yn < yn+1 < · · · .

Let J∗ =N× (N∪ {∞})× {∗} be the dcpo that is order-isomorphic to the Johnstone’s dcpo J (see
Example 3.15) via the mapping (m, n, ∗) �→ (m, n), ∀(m, n, ∗) ∈ J∗.

Let P = J∪ X ∪ Y ∪ J∗.We define a partial order ≤ on P as follows:

(i) all J, X, Y and J∗ are subposets of P;
(ii) ∀n ∈N, (k, n)≤ xn ≤ (2m− 1, n, ∗) for all k,m ∈N;
(iii) ∀n ∈N, yn ≤ (2m, n, ∗) for all m ∈N.

The following conditions are clear by (ii):

(iv) ∀n ∈N, (k, n)≤ (2m− 1, n, ∗) for all k,m ∈N;
(v) (k,∞)= ∨

n∈N (k, n)≤ ∨
n∈N (2m− 1, n, ∗)= (2m− 1,∞, ∗) for all k,m ∈N.

The poset P is illustrated in Figure 4. In particular, the order on the n-level of P is illustrated in
Figure 5.

(1) �P is not open well-filtered.
— For each n ∈N, it is easy to verify that ↑ {xn, yn} is a Scott open subset of P. Moreover, ↑
{xn+1, yn+1} �↑ {xn, yn} in (σ (P),⊆ ), as these are compact open sets. Thus, F := {↑ {xn, yn} :
n ∈N} is a � -filtered subfamily of σ (P). Define U := ⋃

n∈N ↑(n, n, ∗), which is a Scott open
set in �J∗. Note that J∗ is a Scott open subset of P, and then the Scott topology on J∗ agrees
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Figure 5. The order on the n-level of P in Example 4.32.

with the relative Scott topology from P (Gierz et al. 2003, Exercise II-1.26.). Thus, U is a Scott
open subset of P. We have that

⋂F = {(n,∞, ∗) : n ∈N} ⊆U, while ↑{xn, yn}�U as (n+
1, n, ∗) ∈ ↑{xn, yn} \U for each n ∈N. Therefore, �P is not open well-filtered.

(2) �P is wb-sober.
We prove this in some steps.

Step 1:We show some basic results on P.
(i) ∀U ∈ σ (P), U �= ∅ iff U ∩ J∗ �= ∅.

— Note that P = ↓J∗. Thus, U �= ∅ iff U ∩ ↓J∗ �= ∅, which is equivalent to U ∩ J∗ �= ∅
since U = ↑U.

(ii) Y ∪ J∗ is a Scott open subset of P.
— Note that the complement P \ (Y ∪ J∗)= X ∪ J is Scot closed, since it is clear a lower
set and closed for the suprema of directed sets.

(iii) Suppose C1 = J∪ X ∪ ↓{(2mi − 1, ni, ∗) : i ∈ I} and C2 = ↓{(2mi, ni, ∗) : i ∈ I}, where all
mi, ni are elements of N and mj �=mk whenever j �= k for j, k ∈ I. Then, both C1 and C2
are Scott closed subsets of P.
— It is clear.

Step 2: U � P \ Y in (σ (P),⊆ ) iff U = ∅.
—First, it is clear that Y is Scott closed, and thus P \ Y ∈ σ (P). In addition, ∅ � P \ Y is trivial.
Now assume U ∈ σ (P) and U �= ∅. We will prove that U �� P \ Y by using Remark 2.5. Since
U �= ∅, by Step 1 (i), U ∩ J∗ �= ∅. Note that J∗ is a Scott open subset of P, and thus the Scott
topology on J∗ agrees with the relative Scott topology from P (Gierz et al. 2003, Exercise II-
1.26.). Then, U ∩ J∗ ∈ σ (J∗),which is of form

⋃
k∈N\F ↑(k, φ(k), ∗),where F is a finite subset of

N and φ(k) ∈N for each k ∈N \ F. Let n0 be the greatest number in F. For each n> n0, define
Cn := ↓{(2k, φ(2k), ∗) : k≥ n}. Then, by Step 1 (iii), {Cn : n ∈N} is a filtered family of Scott
closed subset of P. It holds that (P \ Y)∩ ⋂

n>n0 Cn ⊆ (P \ Y)∩ Y = ∅ and (2n, φ(2n), ∗) ∈
U ∩ Cn �= ∅ for any n> n0. This shows that U �� P \ Y , completing the proof.

Step 3: U � Y ∪ J∗ in (σ (P),⊆ ) iff U = ∅.
— By Step 1 (ii), Y ∪ J∗ ∈ σ (P), and clearly ∅ � Y ∪ J∗. Now assume ∅ �=U ∈ σ (P). We
will prove that U �� Y ∪ J∗ by using Remark 2.5. First, using the same argument of Step 2,
U ∩ J∗ ∈ σ (J∗), which is of form

⋃
k∈N\F ↑(k, φ(k), ∗), where F is a finite subset of N and

φ(k) ∈N for any k ∈N \ F. Let n0 be the greatest number in F. For each n> n0, define Cn :=
J∪ X ∪ ↓{(2k− 1, φ(2k− 1), ∗) : k≥ n}. Then, by Step 1 (iii), {Cn : n ∈N} is a filtered fam-
ily of Scott closed subset of P. It holds that (Y ∪ J∗)∩ ⋂

n>n0 Cn = (Y ∪ J∗)∩ J∪ X = ∅, but
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(2n− 1, φ(2n− 1), ∗) ∈U ∩ Cn �= ∅ for each n> n0. This shows that U �� Y ∪ J∗, completing
the proof.

Step 4: �P is wb-sober.
— In fact, there are no wb-irreducible sets in �P; consequently, �P is wb-sober. Now assume
on the contrary that A is a wb-irreducible subset of P.

Claim: A∩ (P \ Y)= ∅.
— Assume on the contrary that A∩ (P \ Y) �= ∅. Since P \ Y ∈ σ (P) and A is wb-irreducible,
there exists U ∈ σ (P) such that U � (P \ Y) and A∩U �= ∅. However, by Step 2, U = ∅,
contradicting that A∩U �= ∅. Therefore, A∩ (P \ Y)= ∅.
Using the same argument and Step 3, we obtain that A∩ (Y ∪ J∗)= ∅, which implies that A∩
Y = ∅. From the claim, we can deduce that A= ∅, which leads to a contradiction since wb-
irreducible sets are nonempty.

5. Conclusion
(1) This paper delves further into the Jia-Jung problem and the Xi-Zhao model. The latest find-
ings related to the Jia-Jung problem show that every core-compact open well-filtered space is
sober, suggesting a connection between core-compactness (and open well-filteredness) and sobri-
ety. Proposition 3.3 in this paper uncovers the link between core-compactness and sobriety,
demonstrating that core-compact spaces are precisely those that transform irreducible sets into
wb-irreducible sets. Inspired by this result, we introduce the notion of wb-sober spaces and estab-
lish their relationship with sober spaces. Specifically, we prove that every openwell-filtered space is
wb-sober, but not vice versa. Moreover, we show that every core-compact wb-sober space is sober,
generalizing Theorem 4.7 of Shen et al. (2020). On the other hand, we provide sufficient and nec-
essary conditions for the Xi-Zhao model to be core-coherent and routine. Furthermore, using the
Xi-Zhao model, we propose a general approach to constructing a non-routine open well-filtered
but not well-filtered dcpo.

For a T1 space X, we show a summary of properties for the Xi-Zhao model D(X) as follows,
where a “�” indicates that the properties are preserved, and “×” indicates negative cases.

X D(X) by

sobriety � Zhao and Xi (2018)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

well-filteredness � Xi and Zhao (2017)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Choquet completeness � He et al. (2019)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rudin, weak sobriety � Chen and Li (2022)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

core-compactness × Chen and Li (2022)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|Xos| < ω0 (strong) core-coherent Theorem 4.14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

open well-filteredness Chen and Li (2023)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

weak domain Shen et al. (2019)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

locally quasi-algebraic Zhao and Xi (2018)
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(2) Given that Example 4.32 presented is a poset rather than a dcpo, and considering that every
first-countable well-filtered space (which is automatically a d-space) is sober, we pose the following
interesting questions for future research:

Question 5.1.

(1) Is every wb-sober dcpo equipped with the Scott topology open well-filtered?
(2) Under what conditions (other than strong core-coherence and core-compactness) is a wb-

sober space open well-filtered?
(3) Is every first-countable wb-sober (or open well-filtered) d-space sober?
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