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Summary
Numerous technologies have contributed to the recent development of agriculture, especially the advance-
ment in hyperspectral remote sensing (HRS) constituted a revolution in crop monitoring. The widespread
use of HRS to obtain crop parameters suggests the need for a review of research advances in this area. HRS
offers new theories and methods for studying crop parameters, but much work needs to be done both
experimentally and theoretically before we can truly understand the physical and chemical processes that
predict these crop parameters. The study focuses on the following elements: 1) The article provides a rela-
tively comprehensive introduction to HRS and how it can be applied to crop monitoring; 2) Current state-
of-the-art techniques are summarized and analyzed to inform further advances in crop monitoring;
3) Opportunities and challenges for crop monitoring applications using HRS are discussed, and future
research is summarized. Finally, through a comprehensive discussion and analysis, the article proposes
new directions for using HRS to study crop characteristics, such as new data mining techniques including
deep learning provide opportunities for efficient processing of large amounts of HRS data; combining the
temporal and dynamic characteristics of crop parameters and vegetation growth processes will greatly
improve the accuracy of crop parameter detection and monitoring; multidata fusion and multiscale data
assimilation will become HRS monitoring. Multidata fusion and multiscale data assimilation will become
another research hotspot for HRS monitoring of crop parameters.
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Introduction
Precision farming or precision agriculture is based on using the inherent spatial and temporal
variability in a field as a basis to manage farm operations (Goel et al., 2003). It is a management
practice made possible by the advent of suitable information technologies (Ryu et al., 2009; Roslim
et al., 2021). Regarding time-effective methods, the practice of precision farming requires the
development of accurate and reliable crop monitoring techniques to provide information on
the spatial and temporal variations in key agronomic parameters (Steven, 2004). A comprehensive
review on status of various components for precision farming and application of information
technology was presented by Plant (2001). He clearly highlighted the importance of high-altitude
remote sensing to obtain information on crop growth condition. Remote sensing is a useful tool
for monitoring spatial and temporal variation in crop morphology and physiological conditions
and for supporting precision agriculture practices (Lu et al., 2020).
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Traditional methods for detecting and monitoring essential parameters of crops need detailed
sampling, time, and expensive laboratory chemical analyses, which is neither economically viable
nor environmentally acceptable on a large scale (Mahajan et al., 2017). Remote sensing can be
used to collect information at vastly larger spatial extents more quickly and more cheaply per unit
area than field sampling (Flynn et al., 2020). It can also be combined with field data to more effi-
ciently assess spatial and temporal distributions of crop parameters (Aneece et al., 2017;
Afrasiabian et al., 2021). Over the past three decades, remote sensing techniques have been used
as very useful tools to precisely monitor crops throughout their growing season to support deci-
sions for good agricultural practices (Astor et al., 2020).

Although the remote sensing technique is widely used for timely detection of variations in the
spectral response of crops over large areas, the multispectral remote sensors exhibit serious lim-
itations to accurately detect changes in crop because of coarse spectral resolutions that hide
detailed information of signals from crop parameters (Hong and Abd El-Hamid, 2020). Early
multispectral images are limited by spectral resolution, which affects the accuracy of retrieval var-
iables and leads to the inability to detect early signals of crop stress in a timely and effective man-
ner (Ang and Seng, 2021). Hyperspectral remote sensing (HRS), also known as imaging
spectroscopy or hyperspectral imaging (HSI), involves hundreds of spectral narrow bands that
are sensitive to distinct biophysical and biochemical characteristics masked by the broad bands
of multispectral remote sensing (Goetz 2009; Slonecker et al., 2018; Gao et al., 2019; Meivel and
Maheswari, 2021). Thus, advances in HRS provide opportunities for detailed mapping, modeling,
and biophysical characterization of crops (Nidamanuri and Zbell, 2011). It is more capable of
detecting subtle changes in ground cover and its variation over time.

HRS can be used to address the above challenges and facilitate more accurate and timely detec-
tion of crop physiological states. The main research is on field and laboratory hyperspectral meas-
urements for monitoring agriculture and vegetation, retrieval of plant traits in leaf and canopy
layers from hyperspectral measurements (Berger et al., 2020; Dobrota et al., 2021); hyperspectral
sensor calibration and product validation for agriculture and vegetation monitoring, product
quality validation (Fahey et al., 2020; Jia et al., 2022); statistical and computational methods
for agricultural and vegetation monitoring (Murphy et al., 2020; Ma et al., 2021; Nansen et al.,
2021); studies for agricultural and vegetation living environments, microbial load, surrounding
species, etc. (Santos-Rufo et al., 2020).

HRS advances constitute a revolution in agriculture and in particular, crop monitoring. The
widespread use of HRS for crop parameter acquisition suggests the necessity to review the prog-
ress of research in this field. The objectives of this paper are a) to discuss the different platforms
and sensors of HRS, summarize the methods available for processing and analyzing hyperspectral
information, and recent advances in HSI for agricultural applications; b) to discuss and summa-
rize current developments in crop monitoring supported by HRS and to assess the performance of
HRS under different applications; c) to further help agricultural researchers and practitioners bet-
ter understand the advantages and limitations of HSI in agricultural applications and to promote
the opportunities and challenges of using HRS for crop monitoring applications.

HRS monitoring platforms and sensors
Remote sensing platform is used to place various remote sensors to detect ground targets from a
certain height or distance and to provide technical support and working conditions for the sensors
(Zhong et al., 2020). According to the height of the platform from the ground, it can be divided
into three categories: ground platform, airborne platform, and spaceborne platform (Table 1).
These remote sensing platforms with different technical performances and working modes form
a multilayer and three-dimensional modern remote sensing information acquisition system,
which provides a technical guarantee for the completion of thematic or integrated, regional or
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global, and static or dynamic remote sensing activities. The working height of ground remote sens-
ing platform is generally less than 100 m, which mainly includes vehicle, ship, handle, fixed or
movable elevated platform, etc. Airborne remote sensing platform mainly includes balloon, plane,
and other aircraft. Plane specially designed or modified as needed is the main platform of airborne
remote sensing because of its flexibility, wide observation range, and high measurement accuracy.
Spaceborne remote sensing platform mainly includes satellite, space shuttle, and spacecraft, etc.
The prominent characteristics of spaceborne remote sensing are high altitude, large observation
range, and fast monitoring speed (Wei et al., 2021). Satellite is the widely used platform of space-
borne remote sensing, which is suitable for large-scale surface accurate monitoring. With the con-
tinuous improvement of sensor resolution, the status of satellite monitoring platform will become
more important. Existing or planned satellite HRS platforms are summarized in Table 2. It can be
seen that not many satellites are currently in running and are about to be launched, but the prog-
ress of research and development has been significantly accelerated in recent years. Furthermore,
sensors with higher spatial resolution and wider spectral range have become a trend.

Application of HRS in monitoring diverse crop objects
A literature search was performed to examine if more research in using HSI for agricultural pur-
poses had been published in recent years. It was found that there was an increasing number of
publications in recent years that used HSI for agricultural applications (Table 3). During 2013–
2019, we searched papers on the ‘Web of Science’ website using keywords containing ‘HRS’ and
‘crop’ to find that HRS has been widely used in monitoring of various crops which includes corn
(Essayed and Darwish, 2017), wheat (Zhang et al., 2018), rice (Krishna et al., 2019), cotton
(Marshall et al., 2016), grapevine (Zovko et al., 2019), Crambe abyssinica Hochst (Viana et al.,
2018), white bean, canola, peas (Pacheco et al., 2008), sugarcane (Mokhele and Ahmed, 2010),
soybean (Yuan et al., 2017), sugar beet (Inoue et al., 2016), mustard (Kumar et al., 2013), barley
(Lausch et al., 2015), blackgram (Prabhakar et al., 2013), and potato leave (Latorre-Carmona et al.,
2014). A chart showing the application domain of HRS in crop monitoring is provided for clear
description. These monitoring work takes place in many different places such as North America,
Asia, Europe, South America, and Africa, which means that specific crops are widely distributed in
certain regions, or different regions have their own concerned crops. Corn, wheat, and rice are the
three most widely distributed crops in the world. It also can be seen from these literatures that they
are the three most common monitoring objects in the application of HRS technology. However,
there are relatively few studies on many other crops, and even many crops which are important for
regional economic development have not been studied, e.g., tobacco, tomato, pepper, cucumber,

Table. 1. The synoptic scheme chart showing different hyperspectral remote sensing platforms with diverse features

Categories Platform Working height Feature Limit

Ground Technology system based on
vehicle, ship, handle, fixed
or movable elevated
platform, etc.

Working height
is generally
below 100 m.

Ground object
spectrum
accurate
measurement.

Time-consuming, laborious,
and unsuitable for large
region.

Airborne Balloon, plane, and other
aircraft carriers in the air.

Working height
is generally
below 80 km.

Suitable for
regional
surface instant
monitoring

Flight altitude and duration are
limited and are greatly
affected by weather and
flight attitude.

Spacebome Satellite, space shuttle,
spacecraft, etc.

No national
boundary
and
geography
limitations

Suitable fbr
large-scale
surface
periodical
monitoring

Relatively low spatial
resolution
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Table 2. Existing or planned satellite hyperspectral remote sensing platforms

Satellites Sensors Spatial Resolution Spectral Resolution Band Quantity Spectral Range Swath Breadth Country Launch Year

EO-1 Hyperion 30 m 10 nm 242 400–2500 nm 7.5 km America 2000
PROBA CHRIS 17/34 m 5/12 nm 153 400–1050 nm 14 km Belgium 2001
AQUA AIRS 13.5 km 1200 (lamdba/delta lambda) 2378 370–1540 nm 1650 km America 2002
IMS HySI 506 m 10 nm 64 400–950 nm 129 km India 2008
HJ-1A HSI 100 m 5 nm 128 450–950 nm 50 km China 2008
ISS HICO 100 m 5.7 nm 128 350–1080 nm 42 km America 2009
FLORA HSI 30 m 10 nm 200 380–960 nm 150 km America and Brazil 2016
GF-5 AHSI 30 m 5/10 nm 330 400–2500 nm 60 km China 2018
OVS-1A/B OHS 10 m 2.5 nm 256 400–1000 nm 150 km/500 km China 2018
PRISMA PRISMA 30 m 10 nm 249 400–2500 nm 30 km Italy 2019
ALOS-3 HISUI 30 m 10/12.5 nm 185 400–2500 nm 30 km Japan 2019
EnMAP EnMAP HSI 30 m 6.5/10 nm 244 420–2450 nm 30 km Germany 2019
ISS DESIS 30 m – 235 400–1000 nm – Germany 2018
– SHALOM 10 m 10 nm 275 400–2500 nm 30 km Italy 2021
– SBG 30 m 10 nm 214 380–2500 nm 150 km America 2023
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Table 3. Applications of hyperspectral remote sensing in crop monitoring during 2003–2019

Crops Parameters

Sensors

Methods/Models LiteratureNames Platforms

Corn Water content ASD Ground Photochemical reflectance index (PRI); nonphotochemical
quenching (NPQ)

Chou et al., 2017

Tec5 Ground Simple linear regressions (SLR); Linear models (LM) Elsayed and Darwish,
2017

Evapotranspiration ASD Spaceborne LM Marshall et al., 2016
Weed

management
CASI Airborne General linear model (GLM) Goel et al., 2003
ASD Ground Linear discriminant analysis (LDA); Maximum likelihood

classification (MLC)
Huang et al., 2016

Yield estimation Tec5 Ground SLR; LM Elsayed and Darwish,
2017Biomass

assessment
Pigment content CASI Airborne Leaf reflectance model (PROSPECT); Vegetation canopy model

(SAIL); Marquet-Levenberg optimization method (MLO)
Li et al., 2008

Ocean Optics USB2000 Ground Bayesian model averaging (BMA); Partial least-squares
regression (PLSR); Stepwise multiple regression (SMR)

Zhao et al., 2013

CHRIS Spaceborne Bi-Lambertian model (BLM); PROSPECT Latorre-Carmona et al.,
2014

Ocean Optics USB2000 Ground PLSR; Interval partial least-squares regression (iPLSR); Radiative
transfer mode (PROSAIL)

Inoue et al., 2016

Nutrient
concentration

CASI Airborne GLM Goel et al., 2003
RDACS/H-3 Airborne PLSR Bajwa and Tian, 2005
Ocean Optics USB2000 Ground BMA; PLSR; SMR Zhao et al., 2013

Bioenergy
potential

HyMap Airborne PLSR Udelhoven et al., 2013

Crop residue Hyperion Spaceborne Spectral unmixing (SU); Manifold learning-based unmixing
method (MLBUM); Linear unmixing (LU); Linear mixing model
(LMM)

Chi and Crawford, 2014

Stand density Hyperspectral focal
plane scanner;
GER 1500

Airborne;
Ground

Principal component regression analysis (PCRA) Thorp et al., 2008

ESSI Probe-1 Airborne Endmember selection (ES); SU; Linear regression model (LRM) Pacheco et al., 2008
Gross

photosynthesis
CASI;

GER 1500
Airborne;

Ground
Vegetation index- gross photosynthesis model (VI-GP) Strachan et al., 2008

Wheat Nutrient
concentration

Hyperion Spaceborne LRM; Correlation matrices (CMM) Koppe et al., 2010
ASD Ground LRM Mahajan et al., 2014
ASD Ground Angular insensitivity vegetation index model (AIVI) He et al., 2016a
ASD Ground Multi-angular vegetation index (MAVISR); Regression

models(REM)
He et al., 2016b

ASD Ground Savitaky-Golay smoothing method (SGSM); Line equations (LE) Zhang et al., 2018
(Continued)
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Table 3. (Continued )

Crops Parameters

Sensors

Methods/Models LiteratureNames Platforms

Pigment content ASD Ground Duncan’s multiple comparison (DMC); Integrated regression
analysis (IRA); Correlation analyses (CA); LM; Inverted
Gaussian model (ICM); Linear extrapolation method (LEM)

Feng et al., 2008

CASI Airborne PROSPECT; SAIL; MLO Li et al., 2008
CASI Airborne PLSR; iPLSR; PROSAIL Inoue et al., 2016
ASD Ground Univariate linear method (ULM); Multivariate linear model (MLM); He et al., 2018

Evapotranspiration ASD Ground Analysis of variance (ANOVA); Computation of correlation
coefficients (CCC); Curve fitting (CF); Regression relations (RR)

Chattaraj et al., 2013

Biomass
assessment

Hyperion Spaceborne LRM; CMM Koppe et al., 2010
Hyperion Spaceborne LRM Koppe et al., 2012

Weed
management

GER 2600 Ground Stepwise discriminant analysis (SDA) Martin et al., 2011

Stand density ESSI Probe-1 Airborne ES; SU; LRM Pacheco et al., 2008
Disease diagnosis HyMap Airborne Support vector machines (SVM); Spectral angle mapper (SAM);

Bhattacharyya distance (BD)
Mewes et al., 2011

Species
identification

HyMap Airborne Object-oriented (OO); SVM; SAM Nidamanuri and Zbell,
2011

Gross
photosynthesis

CASI;
GER 1500

Airborne;
Ground

VI-GP Strachan et al., 2008

Rice Water content Gaiasky-mini Airborne Global sensitivity analysis (GSA) method; Particle swarm
optimization algorithm (PSO); PROSAIL

Yu et al., 2017

ASD Ground PLSR; Multiple linear regression (MLR); Artificial neural networks
(ANN); Support vector machine regression (SVR); Random
Forest models (RF)

Krishna et al., 2019

Yield estimation ASD Ground MLR Liu and Sun, 2016
Gaiasky-mini Airborne GSA; PSO; PROSAIL Yu et al., 2017

Evapotranspiration HNBs Spaceborne LM Marshall et al., 2016
Nutrient

concentration
ASD Ground SMR Tang et al., 2007
AISA Airborne PLSR; MLR; General-purpose prediction model (GPPM) Ryu et al., 2009
AISA Airborne MLR; PLSR Ryu et al., 2011
ASD Ground Linear correlation analysis (LCA); Regressive calibration models

(RCM)
Mahajan et al., 2017

Heavy metal UniSpec Ground PLSR; Correlation coefficient (CC) Zhou et al., 2019
Disease diagnosis ASD Ground LM; Curve models (CM); LRM Tan et al., 2019

ASD Ground MLR Prasannakumar et al.,
2013

Prasannakumar et al.,
2014

(Continued)
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Table 3. (Continued )

Crops Parameters

Sensors

Methods/Models LiteratureNames Platforms

Pigment content ASD Ground PLSR; iPLSR; PROSAIL Inoue et al., 2016
Gaiasky-mini Airborne GSA; PSO; PROSAIL Yu et al., 2017

Crop residue DAIS 7915;
ROSIS

Airborne Semi-empirical regression model (SERM) Boschetti et al., 2006

Cotton Evapotranspiration HNBs Spaceborne LM Marshall et al., 2016
Weed

management
ASD Ground LDA; MLC Huang et al., 2016

Yield estimation AVNIR Airborne K-means clustering method (KMCM); Minimum distance method
(MDM)

Zarco-Tejada et al., 2005

Disease diagnosis ASD Ground Pearson correlation coefficient (PCC); LRM Prabhakar et al., 2011
Grapevine Water content VNIR-1600;

SWIR-384
Ground Partial least squares-discriminant analysis (PLS-DA); PLS-Single

vector machines (PLS-SVM)
Zovko et al., 2019

Pigment content Ocean Optics USB2000 Ground Markov-chain canopy reflectance model (MCRM); PROSPECT;
Crop reflectance operational models (CROM)

Martin et al., 2007

Nutrient
concentration

CASI Airborne CMM; Factorial analysis (FA); Cluster analysis (CLA) Gil-Perez et al., 2010

Crambe
abyssinica
Hochst

Yield estimation FieldSpec 4 Hi-Res
sensor (FS4);
Greenseeker 505
Handheld sensor (GS)

Ground LRM; Spearman rank correlation coefficient (SRCC); ANOVA Viana et al., 2018

White bean Stand density ESSI Probe-1 Airborne ES; SU; LRM Pacheco et al., 2008
Canola
Peas
Sugarcane Species

identification
Hyperion Spaceborne Maximum likelihood (ML); Minimum distance (MID); Mahalanobis

distance (MD); Parallelepiped methods (PM)
Govender et al., 2008

Disease diagnosis Ocean Optics SD-2000 Ground Reverse transcriptase-polymerase chain reaction analysis
(RT-PCR); Resubstitution method (RM); Cross-validation
technique (CVT); SAS Proc Mixed

Grisham et al., 2010
Pigment content

Nutrient
concentration

ASD Ground Pearson moment product (PMP); LRM; CMM Mokhele and Ahmed,
2010

Soybean Weed
management

ASD Ground Discriminant model (DM); LMM; LDA Koger et al., 2004a
ASD Ground LDA; MLC Huang et al., 2016

Yield estimation Cubert GmbH Airborne RF; ANN; SVM Yuan et al., 2017
Gross

photosynthesis
Pigment content CASI Airborne PROSPECT; SAIL; MLO Li et al., 2008

Ocean Optics USB2000 Ground PLSR; iPLSR; PROSAIL Inoue et al., 2016
Nutrient

concentration
RDACS/H-3 Airborne PLSR Bajwa and Tian, 2005
ASD Ground LRM Guo et al., 2017
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Table 3. (Continued )

Crops Parameters

Sensors

Methods/Models LiteratureNames Platforms

Species
identification

Hyperion Spaceborne Extreme learning machines (ELM); Optimally pruned ELM (OP-
ELM)

Moreno et al., 2014

Crop residue ASD Ground Linear discriminant models (LDM); DM Koger et al., 2004b
Hyperion Spaceborne SU; MLBUM; LU; LMM Chi and Crawford, 2014

Sugar beet Pigment content CHRIS Spaceborne BLM; PROSPECT Latorre-Carmona et al.,
2014

Ocean Optics USB2000 Ground PLSR; iPLSR; PROSAIL Inoue et al., 2016
Water content ASD Ground Non-linear classification and regression trees technique (CART);

PCA; Correlation dimension estimator (CorrDim); Nearest
neighbor dimension estimator (NNDim); Maximum likelihood
estimator (MaxLike); Packing number estimator (PackNum);
Geodesic minimum spanning tree estimator (GMST);
Univariate linear regression (ULR); MLR

Borzuchowski and
Schulz, 2010

Mustard Disease diagnosis ASD Ground Standard statistical methods (SSM) Kumar et al., 2013
Barley Phenology

derivation
AISA Airborne LibSVM; Recursive conditional correlation weighting selection

algorithm (RCCW)
Lausch et al., 2015

Weed
management

GER 2600 Ground SDA Martin et al., 2011

Water content ASD Ground CART; PCA; CorrDim; NNDim; MaxLike; PackNum; GMST; ULR;
MLR

Borzuchowski and
Schulz, 2010

Species
identification

HyMap Airborne OO; SVM; SAM Nidamanuri and Zbell,
2011

Blackgram Disease diagnosis ASD Ground Multinomial logistic regression models (MLRM) Prabhakar et al., 2013
Potato leave Pigment content CHRIS Spaceborne BLM; PROSPECT Latorre-Carmona et al.,

2014
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and carrot. There are many types of hyperspectral sensors at present, and similar studies still need
to be further conducted in other areas for different crop species.

Application of HRS in retrieving key crop parameters
HRS provides an effective means for the extraction of plant parameters (Millan and Azofeifa,
2018; Yu et al., 2018). It also has been widely used in retrieving crop parameters including water
content (Chou et al., 2017), weed management (Huang et al., 2016), evapotranspiration (Marshall
et al., 2016), yield estimation (Elsayed and Darwish, 2017), heavy metal (Zhou et al., 2019), bio-
energy potential (Udelhoven et al., 2013), stand density (Pacheco et al., 2008), crop residue (Chi
and Crawford, 2014), gross photosynthesis (Yuan et al., 2017), disease diagnosis (Prasannakumar
et al., 2014), phenology derivation (Lausch et al., 2015), species identification (Moreno et al.,
2014), nutrient concentration (Mahajan et al., 2017), biomass assessment, and pigment content
(Inoue et al., 2016). In order to show the application of HRS in retrieving these parameters more
clearly, a chronological diagram was drawn (Figure 1). In summary, pigment content and nutrient
concentration were the most common theme in HRS for crop monitoring over decades (Table 3).
Over time, the applications of HRS in crop monitoring have been growing and the contents have
become more diversified and quantitative. Especially in recent years, the applications of HRS focus
on emerging agricultural research domains, such as the heavy metal detecting and water content
retrieving. However, most of the study cases were based on ground remote sensing platforms, and
there were almost no airborne or spaceborne remote sensing platforms.

Diversified extraction models and methods
It can be seen from the study cases in the past 20 years that various methods or models were used
to extract crop parameters (Table 3). In order to clearly show the applications of methods or mod-
els, the network diagrams reveal the relationships between applied methods or models with mon-
itoring objects, crop parameters, and monitoring platforms that were explored, respectively. As
the three most widely distributed crops, corn, wheat, and rice had received extensive attention;
therefore, many methods or models were involved (Xu et al., 2021) (Figure 2). A large number
of methods or models had been applied to extract nutrient concentration, pigment content, and
water content, which also showed that these parameters were concerned by researchers (Figure 3).
Because most of the study cases were based on the ground monitoring platform, there were few

Figure 1. Applications of HRS in retrieving crop parameters (HRS: hyperspectral remote sensing).
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methods applied to the airborne platform, especially to the spaceborne platform (Figure 4). These
methods or models can be summarized into four main categories: linear analysis, non-linear anal-
ysis, image classification, and physical model. Linear analysis was the most commonly used
method, but physical models were rarely used. A large number of methods reveal that the use
of HRS technology for crop monitoring has received widespread attention (Figure 5).
However, so many options confuse people in choosing models or methods, which indicates that
there is still a need to explore universal quantitative models or methods and extensively apply
them to practical work to test the actual effect.

Opportunities and challenges
Although HRS provides new insights of its theory and methodology for studying the crop param-
eters, there is much work that has to be done both experimentally and theoretically before we can
really understand the physical and chemical processes predicting these crop parameters. For
example, in terms of data acquisition, the limitations are sensor calibration required; changes
in ambient light conditions influence signal and need frequent white reference calibration; and
canopy structure and camera geometries or sun angle influence signal. How to effectively achieve
HRS data mining, information extraction, high-efficiency data compression and high-speed data
transmission is one of the important issues to be solved in the future.

Figure 2. The relationships between objects and applied methods or models.
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As the resolution of HSI remote sensing sensors increases, more and more dimensions of infor-
mation are obtained and the volume of data shows significant growth. The limit of employing HRS
is the large volume of data that can be generated from spectral images. The large amount of data
can make data management particularly important. While acquiring large amounts of hyperspec-
tral image data, one is faced with the problem of how to maximize the use of these massive data.
Although some progress has been made in the technology of hyperspectral data classification and
information extraction, it still lags behind the development of sensors in general. Therefore, there
is still a long way for research on hyperspectral data classification and information extraction.

The current HRS processing methods are particularly rich. On the one hand, new data mining
technologies such as deep learning provide opportunities for efficient processing of large amounts
of HRS data. Deep learning proposes a method for computer to automatically learn pattern fea-
tures and incorporates feature learning into the process of model building, thus reducing the
incompleteness caused by artificial design features. The findings show that machine learning
applications using deep learning as the core method have achieved excellent recognition or clas-
sification performance beyond existing algorithms. On the other hand, in view of the huge amount

Figure 3. The relationships between parameters and applied methods or models.
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of HRS data, we must extract more effective feature parameters for crop monitoring from the
original measurement data. There are two ways to realize this process: band selection and feature
extraction. We all know that we should choose those bands with more information, less data cor-
relation, large spectral difference of crop parameters and good separability as the best working
bands, and develop feature extraction indexes or methods that are easy to implement with higher
extraction accuracy. However, due to the different research objects and regions, the best spectral
parameters or characteristic indices of the same crop attribute are also different. Most of the exist-
ing spectral indices are based on limited data sets, which makes the monitoring model still lack
universality in the selection and application of characteristic parameters.

Specific methods are widely used in building models, including principal component regression
analysis, multiple linear regression, partial least-squares regression, stepwise multiple regression,
univariate linear method, multivariate linear model, linear correlation analysis, etc. Some studies
have explored the methods of nonlinear mathematical analysis, such as support vector machines,
nonlinear classification and regression trees technique and artificial neural networks technology.
These nonlinear methods can compensate for the shortcomings of linear methods to some extent
and improve the prediction accuracy of the model. On the basis of these studies, we should try new
artificial intelligence modeling methods such as linear and nonlinear coupling, machine learning
and explore their application in crop monitoring. Furthermore, the development from empirical
model to physical model will improve the universality and robustness of the model. In addition, in
the application of HRS for acquiring crop parameters, more attention should be paid to the appli-
cation of multivariate models involving multiple parameters, rather than to the single-factor
model.

Figure 4. The relationships between platforms and applied methods or models.
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Crop spectra have not only high similarity and spatial variability, but also strong temporal
dynamics. The spectral variation of crop parameters with time will be more distinct due to
the influence of seasonal characteristics of vegetation. Specifically reflected in the vegetative
growth and reproductive growth stages, as well as the staggered stage of vegetative and reproduc-
tive growth will cause changes in physical and chemical components and their contribution to
spectral reflectance differences. Therefore, by making full use of the advantages of HRS in distin-
guishing subtle differences of the surface and combining with the temporal and dynamic char-
acteristics of crop parameters, the accuracy of detecting and monitoring of crop parameters
will be greatly improved. Further data accumulation and methodological exploration are, how-
ever, required to achieve monitoring of crop parameters considering the dynamic process of veg-
etation growth due to the redundancy of the spectral resolution and the limitation of the temporal
resolution of the HRS data, as well as the complexity of the associated models.

With the successful development and launch of ground-based, airborne and spaceborne hyper-
spectral sensors worldwide, it is easier to obtain reliable and time-sensitive hyperspectral data of
the land surface. Moreover, the new features of high spatial resolution, high spectral resolution,
and high temporal resolution of HRS technology have become more and more obvious. However,
optical HRS means may be affected by many factors such as dust, rust, plowing, particle size

Figure 5. Classification of methods or models by features.
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distribution, and vegetation coverage, which makes single type of optical HRS data is rather lim-
ited and problematic when striving for quantitatively accurate information. Sensors with different
working modes and wavelength ranges can provide a variety of detecting means and methods,
which can form complementary information to improve monitoring accuracy. For this reason,
multidata fusion and multiscale data assimilation will become another research hotspot in
HRS monitoring of crop parameters. Fusing hyperspectral data with other types of sensor data,
such as Li DAR, SAR, and high spatial resolution images, will have wide application prospects if it
can expand the monitoring range or improve the detection accuracy. In addition, with the con-
tinuous improvement of temporal and spatial resolution of HRS data and the diversity of data
acquisition ways (e.g., ground-based, air borne, and spaceborne), HRS data assimilation has great
potential for application. Multiscale data assimilation will improve the monitoring accuracy of
land surface process and promote the comprehensive application of multiresolution (temporal,
spatial, and spectral) HRS data in agricultural science.

Spaceborne hyperspectral sensors are clearly less used than airborne hyperspectral sensors.
Since remote sensing satellite hyperspectral data provide simultaneous views and repeat coverage,
two important advantages over ground-based observations and airborne hyperspectral data,
research into the potential of satellite hyperspectral data for crop monitoring has become an
important issue. Furthermore, the estimation of crop parameters using airborne and satellite
hyperspectral sensors is currently limited mainly to small agricultural areas and is still in the test-
ing phase, mainly because the relatively high cost of HSI cameras does not allow for widespread
use, which is one of the important issues to be addressed by HRS applications. In addition, the
modeling technique used for crop monitoring in most of the previous studies was the simple sta-
tistical method, which has several drawbacks related to the physical interpretation of the results
and the complexity of transferring the models from one sensor to another (Gomez et al., 2008;
Peón et al., 2017). Laboratory and airborne imaging spectroscopy of crop have shown to have
considerable potential for the estimation of crop parameters with promising results. However,
only a few studies exist that determine crop parameters directly from satellite hyperspectral imag-
ery. Although this approach holds great potential for digital crop mapping with satellite hyper-
spectral imagery, crop parameter assessment from image data acquired by spaceborne systems is a
more difficult issue, mainly due to atmospheric distortions and lower spatial and spectral resolu-
tion of the sensors (Mulder et al., 2011). In order to be able to fully exploit data from forthcoming
hyperspectral satellites, information on several issues related to sensor spatial and spectral reso-
lution and range, as well as on calibration and validation issues, is still required. The development
of more physically based models in this context would offer a real step forward towards the gen-
eralization of the estimation approaches, but at present still seems an elusive objective (Casa
et al., 2013).
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