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Abstract
Accurately predicting the growth rates of stationary cross-flow instabilities is crucial for understanding transition
mechanisms in swept-wing configurations, which can significantly impact aerodynamic performance. This paper
introduces a model for the prediction of cross-flow instability growth rates, focusing on both accuracy and ease of
implementation. The proposed model consists of straightforward expressions involving key boundary layer quan-
tities. Validation against established methods demonstrates that the new model achieves comparable or superior
accuracy in predicting growth rates. Additionally, tests conducted on a three-dimensional (3-D) prolate spheroid
show strong alignment with transition lines computed by means of exact linear stability. Overall, this model pro-
vides a practical and efficient alternative for accurately predicting cross-flow transitions in complex 3-D geometries,
contributing to improved aerodynamic design and analysis.

Impact Statement
The transition from laminar to turbulent flow has a significant impact on the skin friction of an airplane wing.
Accurate modelling of this phenomenon improves aircraft performance predictions and is essential for the
design of laminar wings, leading to energy and cost savings. On a standard commercial aircraft, the wings
are swept to enhance performance and efficiency in the transonic regime. As a result, the boundary layer flow
becomes three-dimensional, and the cross-flow velocity component develops an inflection point, which is a
destabilising factor that leads to the growth of cross-flow waves. The growth rate of stationary cross-flow
waves is calculated by solving an eigenvalue problem derived from the linearised Navier–Stokes equations.
However, for a three-dimensional wing, this computation is computationally demanding. This paper presents
a simplified model for the growth rate of stationary cross-flow waves, significantly reducing computation time
when predicting the transition location on three-dimensional geometries using linear stability analysis.

1. Introduction
In the field of aerodynamics, accurately predicting the onset of transition from laminar to turbulent
flow on aerodynamic surfaces remains a critical challenge, particularly in the context of swept-wing
configurations where stationary cross-flow instabilities play a dominant role under free-flight conditions
(Arnal et al. (2008)). Transition prediction is of paramount importance because the onset of turbulence
significantly influences drag and heat transfer, directly impacting aircraft performance, fuel efficiency
and overall aerodynamic design. Among the various types of boundary layer instabilities, cross-flow
instability, driven by favourable pressure gradients, is particularly influential on swept wings, affecting
both the stability characteristics and the eventual transition location.
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Traditionally, predicting cross-flow-induced transition has relied on linear stability theory (LST) cal-
culations, which can accurately determine the linear amplification ratio eN in the boundary layer (Arnal
et al. (2008)). While highly reliable, these methods are computationally intensive and require intricate
knowledge of boundary layer profiles at each point on the surface. This is particularly challenging for
practical applications, where computational efficiency and ease of implementation are crucial. As a
result, empirical and semi-empirical models have been developed to approximate cross-flow instability
growth rates without the full complexity of LST, aiming to balance accuracy with computational practi-
cality. In the case of Tollmien–Schlichting (TS) waves, Arnal et al. (1984), Drela and Giles (1987) and
Zafar et al. (2021) proposed directly modelling the N-factor curve. Other models provide the growth
rate of TS instabilities; see Arnal (1989), Crouch et al. (2001) and Perraud et al. (2009). Due to the
simplicity and reduced computational cost of some of these methods, they can be directly implemented
in a RANS (Reynolds-Averaged Navier-Stokes) solver; see Coder and Maughmer (2014), Bégou et al.
(2017) and Pascal et al. (2020). Dagenhart (1981) developed a model to estimate the growth rate of
stationary cross-flow instabilities based on stability charts for ten velocity profiles over Pfenninger’s
970 airfoil, using three key boundary layer quantities. Another model, derived by Perraud et al. (2009),
links the growth rates of stationary cross-flow instabilities with the generalised inflection point char-
acteristics of cross-flow velocity profiles. Although effective on the NLF(2)-415 airfoil (Dagenhart
and Saric (1999)), Dagenhart’s model relies on interpolations from stored tables, which complicates
implementation. Finally, Arnal et al. (1984) and Langtry et al. (2015) derived two criteria predicting
the transition location directly, based respectively on the transverse displacement thickness and on the
so-called cross-flow strength derived from helicity.

While earlier studies derived growth-rate models manually, more recent approaches rely on machine
learning applied to automatically generated datasets. For example, Zafar et al. (2021) applied a recurrent
neural network to a database comprising 33,000 boundary layer flows from 53 airfoils to estimate the
N-factor of TS instabilities. Additionally, Rouviere et al. (2023) presented a neural network model based
on a dataset with 750 elements to determine the extra amplification of TS instabilities due to surface
defects. Despite their effectiveness, neural networks are often difficult to interpret, share and implement
across different codes. Conversely, symbolic regression offers interpretable, shareable models (Cranmer
(2023)). This paper leverages symbolic regression to create models for calculating the growth rate of
stationary cross-flow instabilities, aiming to provide simplicity and accuracy for practical applications.
A large database of stability charts, generated from three different swept airfoils over a range of flow
conditions, underpins this model. Validation is performed by comparison with existing methods on both
swept-wing and fully three-dimensional geometries.

In section 2, LST is briefly introduced, and existing models are presented. The database generated
for the development of the new model is described in section 3, and the actual derivation of the model
is outlined in section 4. Section 5 presents validations of the model on both two-dimensional and three-
dimensional geometries. Finally, concluding remarks are provided in section 6.

2. Linear stability theory and transition prediction for steady cross-flow waves
Linear stability theory (see Reed et al. (1996) for an extensive review) is a powerful tool for under-
standing the transition process. The local linear stability equations are derived from the linearised
Navier–Stokes equations under the parallel flow assumption, where the perturbation is expressed as
a wave ansatz �q′(�x, t) = �̂q(n) exp (i (αs + βz −ωt)). Here, s is the curvilinear abscissa following the
velocity at the boundary layer edge, n is the wall distance and z is the coordinate in the direction
perpendicular to the boundary layer edge streamline (see Figure 1).

To study stationary cross-flow instabilities, the wave radial frequency ω is set to zero and the trans-
verse wavenumber β is treated as a fixed real parameter. The complex streamwise wavenumber α is
computed as the eigenvalue of the resulting dispersion equation. Of particular interest for transition
prediction is the growth rate σ = −�(α), which is used in the eN method. In this method, the total
amplification is evaluated by integrating the growth rate along the direction of the group velocity. In
practice, the group velocity direction is very close to the direction of the streamline at the boundary
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Figure 1. Definition of the boundary layer coordinate system (s, n, z) and the associated velocities. The
thick solid line represents the streamline at the boundary layer edge.

layer edge (Arnal (1994)), and as a result, the integration is performed along the s-direction. For cross-
flow instabilities, the most unstable mode occurs at a wave angle ψ = arctan(β/�(α)) between 85◦ and
89◦ (Arnal (1994)), which roughly corresponds to the z direction.

In this paper, the N factors Nβ and Nmax are used for transition prediction. They are defined as⎧⎪⎨⎪⎩Nβ (s) =maxβ
∫ s

0 σ(ξ, β) dξ,
Nmax(s) =

∫ s

0 σmax(ξ) dξ where σmax(ξ) =maxβ σ(ξ, β).
(1)

Hence, σ must be computed for a wide range of wavenumber β and at different locations along the
boundary layer edge streamline. For TS waves, rapid transition is observed once the nonlinear saturation
stage is reached. Although this does not hold true for cross-flow instabilities, linear stability analysis
remains valuable in practice for computing the transition location (Arnal et al. (2008)). In practice, the
transition location is identified as the point where a given threshold NT is reached. While the use of Nβ

is more common, Srokowski and Orszag (1977) observed that both methods yield a comparable spread
of NT among the experimental cases published by Boltz et al. (1960) (this topic is further discussed in
Appendix A.1).

2.1 Existing models
In this section, five existing models for stationary cross-flow are explained. Each of these models is
based on distinct boundary layer characteristics.

2.1.1 Dagenhart (1981)
In the coordinate system (s, n, z), the cross-flow velocity w (along z) is zero at the wall, reaches a
maximal value wmax at nwmax , and decreases to zero at the edge of the boundary layer (see Figures 1
and 2). Pfenninger (1977) defines δ10 as the location between nwmax and the boundary layer edge where
the cross-flow velocity is 0.1wmax (see Figure 2). The following Reynolds number is then defined:
Reδ10 = δ10wmax/νe , where νe is the kinematic viscosity at the boundary layer edge.

These parameters are central to the model developed by Dagenhart (1981). Dagenhart computed
stability diagrams σ(Reδ10 , β × δ10) × δ10 for ten velocity profiles characterised by their values1

1The ratio of nwmax over δ10 is called the cross-flow boundary layer shape factor.
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Figure 2. Cross-flow velocity profile and definitions of nwmax , ngip , δ10, wmax and ugip .

(
nwmax /δ10

)
i and (wmax/Ue )i (i ∈ 1,10 ), where Ue is the velocity at the boundary layer edge. For

the ith stability chart, the associated critical Reynolds number
(
Reδ10,cr

)
i is computed as a function of(

nwmax /δ10
)
i . The expression for the critical Reynolds number Reδ10,cr is given by

Reδ10,cr = 0.4329
(

nwmax

δ10

)−3.436
+ 38.96. (2)

Equation (2) (Xu et al. (2019)) approximates the data presented in Dagenhart (1981, Figure 12).
To compute the growth rate σ of a cross-flow instability with wavenumber β for a boundary layer

profile characterised by δ10, nwmax and Reδ10 , the following procedure is applied by Dagenhart:
(i) Identify the stability chart of index i corresponding to the velocity profile whose

(
Reδ10,cr

)
i is

closest to Reδ10,cr .
(ii) Define the adjusted Reynolds number

R̂eδ10 = Reδ10 +
(
Reδ10,cr

)
i − Reδ10,cr .

(iii) Read σ̂∗(R̂eδ10 , βδ10) from the selected stability chart.
(iv) Finally, calculate the growth rate σ using the relation

σδ10 = σ̂
∗

(
wmax

Ue

)
(
wmax

Ue

)
i

.

2.1.2 Perraud et al. (2009)
Given the inflectional origin of cross-flow instability (see Figures 1 and 2), Casalis and Arnal (1996)
derived a model for unsteady cross-flow instability based on the characteristics of the generalised
inflection point of the velocity profile uψ in a plane rotated by an angle ψ relative to the streamline
direction. In this model, ngip is the wall distance at which d

dn

(
ρ
duψ
dn

)
= 0, Ugip = uψ (n = ngip )/Ue

and Pgip =

[
n/Ue

duψ
dn

]
n=ngip

(see Figure 2 for ψ = 90◦).

A similar approach was later extended by Perraud et al. (2009) for stationary cross-flow instabilities.
The model is expressed as

σ(ψ) = σ∞
(
1 − Rc

Reδ1, i,ψ

)
. (3)
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In this model, Rc depends on Pgip while σ∞ is a function of Ugip . The Reynolds number Reδ1, i,ψ

is defined using the incompressible displacement thickness of the velocity profile uψ .
The corresponding N-factors can then be computed as⎧⎪⎨⎪⎩Nψ (s) =maxψ

∫ s

0 σ(ξ,ψ) dξ,
Nmax(s) =

∫ s

0 σmax(ξ) dξ where here σmax(ξ) =maxψ σ(ξ,ψ).
(4)

Here, Nψ is closely related to Nβ because ‘a fixed value of β is associated with a practically constant
value of ψ’ (Arnal et al. (2008)).

2.1.3 Xu et al. (2019)
From stability computations on Falkner–Skan–Cooke boundary layer profiles, Xu et al. (2019) derived
the following model for the cross-flow instability growth rate:

σβδ10 = 2.128
(
wmax

Ue

)1.07 nwmax

δ10
	
1 +

�����nwmax

δ10
− 0.35

�����
1.5� . (5)

Here, σβ is defined such that

Nβ (s) =
∫ s

0
σβ (ξ) dξ. (6)

2.1.4 Arnal et al. (1984) and Langtry et al. (2015)
Unlike the previous models, the models by Arnal et al. (1984) and Langtry et al. (2015) do not predict
the growth rate of cross-flow instabilities but instead directly determine the transition location:

• Langtry et al. (2015) developed a RANS transition model that accounts for cross-flow transition.
This model relies on the so-called non-dimensional cross-flow strength defined as Hc f = nHe/U ,
where He is the helicity given by He = ‖ �U · �Ω‖/U . Here, �U is the local velocity (and U its
magnitude) and �Ω is the vorticity.

• The C1 (Arnal et al. (1984)) criterion defines the transition location based on a threshold value
of Reδ2 where δ2 is transverse displacement thickness.

3. Building a database of stationary cross-flow characteristics
In this section, the workflow used to compute a database of boundary layer profiles on swept wings and
their associated stability characteristics with respect to stationary crossflow (CF) waves is presented.
The diagram in Figure 3 illustrates how the process operates.

This workflow is quite similar to the optimisation process described by Sudhi et al. (2023) for tran-
sonic airfoil design. The inputs of the workflow are the airfoil geometry and aerodynamic parameters:
Reynolds number (Re∞), Mach number (M∞), (negative) angle of attack α and sweep angle ϕ. As out-
puts, the workflow generates the boundary layer profiles on the upper surface and the corresponding
stability diagrams.

3.1 Chosen parameters
The ONERA-D, NLF(2)-415 and NACA 642 A015 airfoils were selected to build the database. These
three airfoils are known for their relevance in studying cross-flow transition (see respectively the refer-
ences Schmitt and Manie (1979), Dagenhart and Saric (1999) and Boltz et al. (1960)). For each airfoil,
six sets of aerodynamic conditions were chosen, as detailed in tables 1, 2 and 3. Different angles of attack
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Table 1. Aerodynamic conditions for the ONERA-D airfoil

ONERA-D
#0 #1 #2 #3 #4 # 5

Re∞ × 10−6 1.0 1.0 1.0 1.0 1.0 1.0
α[◦] −2.0 −2.0 −2.0 −6.0 −6.0 −6.0
ϕ[◦] 40.0 60.0 80.0 40.0 60.0 80.0

Table 2. Aerodynamic conditions for the NLF(2)-415 airfoil

NLF(2)-415
#0 #1 #2 #3 #4 # 5

Re∞ × 10−6 5.0 5.0 5.0 5.0 5.0 5.0
α[◦] −2.0 −2.0 −2.0 −4.0 −4.0 −4.0
ϕ[◦] 40.0 60.0 80.0 40.0 60.0 80.0

Table 3. Aerodynamic conditions for the NACA 642 A015 airfoil

NACA 642 A015
#0 #1 #2 #3 #4 # 5

Re∞ × 10−6 5.0 5.0 5.0 5.0 5.0 5.0
α[◦] −1.5 −1.5 −1.5 −1.5 −1.5 −1.5
ϕ[◦] 30.0 40.0 50.0 60.0 70.0 80.0

Figure 3. Database generation chain.

(α) and sweep (φ) were selected to broaden the range of the cross-flow profiles. These angles were cho-
sen such that stationary cross-flow instabilities develop on the upper surface of the airfoil. No more than
six sets of aerodynamic conditions per airfoil were selected to limit the size of the database. The chord
Reynolds number value is not crucial for deriving the model as the boundary layer profiles are rescaled
when computing the stability diagram (see section 3.4). Therefore, Re∞ = 5 × 106 was chosen for all
cases. The Mach numbers are selected within the incompressible regime, specifically M∞ ∈[0.05,0.22].
This choice is not critical, as stationary cross-flow instabilities exhibit nearly identical behaviour in both
incompressible and transonic flows (Arnal (1994)).

3.2 Inviscid pressure distribution computation
The pressure distribution is computed using the ISES software (Drela and Giles (1987)) and the simple
sweep theory (Meier (2010)). Unlike the approach used by Sudhi et al. (2023), ISES is run with the
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Figure 4. The NLF(2)-415 airfoil, the grey region indicates the locations where stability diagrams are
computed.

Figure 5. The NACA 642 A015 airfoil, the grey region indicates the locations where stability diagrams
are computed.

Figure 6. The ONERAD airfoil, the grey region indicates the locations where stability diagrams are
computed.

inviscid model, where only the two-dimensional (2-D) Euler equations are solved using the finite volume
method without coupling to the integral boundary layer equations. The simple sweep theory is then
applied to extend the 2-D computation to the 2.5-D flow, allowing the pressure distribution around an
infinite swept wing to be calculated.

3.3 Solving of the boundary layer equations
Following the infinite swept-wing assumptions (i.e. invariance is assumed along the span), the velocity
at the boundary layer edge is derived from the pressure distribution. The dimensionless results computed
by ISES are dimensionalised using the following upstream temperature and pressure: T∞ = 300K and
P∞ = 101325Pa. This velocity distribution is then used as input for the boundary layer equation solver
3C3D (Houdeville (1992)) (in contrast, Sudhi et al. (2023) used the COCO solver). The 3C3D solver
employs the method of characteristics and finite difference discretisation to solve the 3-D boundary layer
equations. Although the solver can handle laminar, transitional and turbulent flows, only laminar flow
computations are considered in this study. The equations are solved using a marching method, starting
from the leading edge. However, the solver cannot account for upstream characteristics, meaning it halts
when separation occurs.

3.4 Local linear stability computations
Finally, the 1,260 boundary layer profiles computed by 3C3D are passed to ONERA’s in-house linear
stability solver MAMOUT (Brazier (2015)) (the linear stability LILO solver is used in the work of Sudhi
et al. (2023)). The local linear stability equations are discretised by means of a compact finite differences
method.

For each case presented in tables 1, 2 and 3, the stability diagrams σ∗(Reδ10 , β
∗) (with σ∗ = σ × δ10

and β∗ = β × δ10) are computed at every available station along the wing. For 23 boundary layer profiles,
no unstable stationary CF mode is found and the automated stability chart computation fails and these
profiles are discarded. Figures 4, 5 and 6 show the locations on each airfoil where the stability diagrams
are computed.
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Figure 7. Stability diagram σ∗(Reδ10 , β
∗), case no. 1 of the NLF(2)-0415 airfoil at x/c ≈ 1.6%.

The different values of Reδ10 used to build the stability diagram are obtained by rescaling the bound-
ary layer profiles. This is achieved by multiplying the two velocity components, u and w, of the boundary
layer profiles by Reδ10/R̃eδ10 , where R̃eδ10 is the value of Reδ10 without rescaling of the boundary layer
profiles.

As an example, the stability diagram obtained for case no. 1 of the NLF(2)-0415 airfoil at x/c ≈ 1.6%
is plotted in Figure 7.

4. Derivation of model by means of symbolic regression
In this section, the pysr library (Cranmer (2023)) is used to derive models for σmax and σ from the
database built in section 3. The aim is to provide accurate models for computing Nβ and Nmax that are
easier to implement and use than those developed by Dagenhart (1981) and Perraud et al. (2009).

Only two open-source, easy-to-install Python libraries were found for symbolic regression: gplearn
and pysr.2 Initial tests showed that pysr significantly outperforms gplearn for the cases considered
here, both in terms of accuracy and computational efficiency. pysr is based on a multi-population, multi-
evolution evolutionary algorithm and is highly customisable. The standard binary operators addition,
subtraction, multiplication and division – are selected, along with the unary operators: logarithm (log),
hyperbolic tangent (tanh) and inverse (x→ 1/x). Additional regressor settings prevent variables from
appearing in exponents and limit the nesting of the operators tanh and log. During symbolic learning,
70 % of the data are randomly selected for training, and the remaining 30 % are used for validation.
Consequently, the validation set corresponds to interpolation. There is no a priori reason to expect the
resulting symbolic expressions to yield accurate results in extrapolation.

The regressor inputs are based on cross-flow boundary layer variables used in the models presented
in section 2.1: δ10, nwmax , wmax , Reδ10 (models of Dagenhart (1981) and Xu et al. (2019), see sec-
tions 2.1.1 and 2.1.3), Hc f ,max (maximum value of Hc f in the boundary layer, defined by Langtry et al.
(2015), see section 2.1.4), ngip , Ugip , Pgip (model of Perraud et al. (2009), see section 2.1.2; only
ψ = 90◦ is considered here) and δ2 (model of Arnal et al. (1984), see section 2.1.4). Additional bound-
ary layer quantities are also included: δ1 (displacement thickness), θ11 (momentum thickness) and Ue

(velocity at the boundary layer edge). The composite variable Cf Reθ11 is also used, where Cf is the skin
friction coefficient defined as Cf = τw/(1/2ρeU2

e ), with ρe the density at the boundary layer edge, τw
the wall shear stress and Reθ11 = θ11Ue/νe .

2Table 1 of (Cranmer (2023)) compares 11 libraries for symbolic regression.
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These quantities are combined to form 21 dimensionless variables: Hc f ,max , Pgip , Cf Reθ11 , δ2/δ1,
θ11/δ1, θ11/δ2, nwmax /δ1, nwmax /δ2, nwmax /θ11, δ10/δ1, δ10/δ2, δ10/θ11, δ10/nwmax , ngip/δ1,
ngip/δ2, ngip/θ11, ngip/nwmax , ngip/δ10, wmax/Ue , ugip/Ue and ugip/wmax . Redundancy is
expected among these cross-flow variables, but the parsimony constraint imposed by the symbolic
regression algorithm ensures that only the most relevant parameters are retained. Moreover, while vari-
ables such as θ11/δ2 could be computed by combining θ11/δ1 and δ2/δ1, doing so would incur a higher
cost under the parsimony constraint in pysr than directly including θ11/δ2.

As the pysr algorithm involves randomness, each regression is run 20 times and the best-performing
model is retained.

4.1 Expression for σmax

The variable Reδ10 is added to the input dataset, and σ∗max = σmax × δ10 is set as the output. The latter is
obtained by extracting the maximum value of σ∗ from the stability diagram at each Reδ10 (see Figure 7).

The resulting input database consists of 22 variables and 25,604 entries.
The following expression is returned by pysr:

σmax =
Hc f ,max

ngip

nwmax

+ 1.2110786 +
488.197

1.935369Reδ10 − 96.19734196179

. (7)

As expected from Figure 7, pysr returns an increasing function with respect to Reδ10 which
asymptotically approaches a limit. This expression yields a critical Reynolds number Reδ10,cr = 49.7.
This constant value aligns well with Figure 12 of Dagenhart (1981) given the values of δ10/nwmax ∈
[0.30,0.53] found in the database computed in section 3. The parameter σmax is found to depend solely
on boundary layer quantities related to the cross-flow velocity profile.

The aim of this paper is to develop and validate a model for the growth rate of stationary cross-flow
instabilities, rather than to conduct a sensitivity analysis. Therefore, all digits provided by pysr are
retained.

Since the derived model consists of a relatively simple expression for the growth rate of stationary
cross-flow instabilities, it could be combined with the amplification factor transport method of Coder and
Maughmer (2014) for predicting transition in RANS CFD (Computational Fluid Dynamics) software.
This integration could be implemented in a CFD solver capable of computing quantities along wall-
normal lines (Cliquet et al. (2008), Pascal (2023)).

On the one hand, the proposed model for Nmax requires:

(i) Computing the boundary layer parameters Hcf,max, ngip, nwmax and Reδ10 at each location; and
(ii) Evaluating Equation (7) at each location and computing the integral (1).

On the other hand, exact linear stability analysis requires:

(i) Solving an eigenvalue problem to compute σ(ξ, β) at each location for multiple β values
(typically ≥ 12); and

(ii) Evaluating Equation (1).

Therefore, the proposed model would significantly reduce the computation time, as demonstrated in
section 5.2.

4.2 Expression for σ
Compared with σmax, modelling σ is more complex. An initial attempt was made to build a database
using each point from every stability diagram computed in section 3. However, the formulas generated
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by pysr were unsatisfactory in terms of accuracy. Consequently, it was necessary to provide the model
with a priori knowledge. The stability diagram in Figure 7 is characteristic of inflectional instabilities.
For such cases, Casalis and Arnal (1996) modelled the growth rate using two half-parabolas. In this
study, however, the wavelength is chosen as the parameter for the parabolas rather than the Reynolds
number, and the proposed model is

σ(Reδ10 , β) = σmax

(
1 −

[
β − βM
βk − βM

])2

, βk = β0 if β < βM else β1. (8)

While σmax is already known (see Eq. (7)), additional regressions are required to model β0, β1 and
βM . Following the approach of Casalis and Arnal (1996), these three wavenumbers were initially sought
in the form

βX × δ10 = aX + bX/Reδ10 , (9)

where the subscript X denotes either 0, 1 or M . However, it was found that better agreement with the
exact LST is achieved by setting a0 = bM = 0.

For each of the 1,237 available stability diagrams, an initial set of curve fits is performed to determine
βM , β0 and β1 at each Reδ10 . A second set of curve fits is then conducted to compute the parameters b0,
a1, b1 and aM for each stability diagram. In 86 cases, the regression coefficient R2 was below 0.95, and
these diagrams were discarded. Finally, the parameters b0, a1, b1 and aM were regressed using pysr
on a database containing 1,151 entries. The following formulas were obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aM = 1.0431601 +
(
3.2593474 − 0.007606023 nwmax

δ2

)
tanh

( [
ngip

δ2

ugip

Ue

]4.5976334)
,

b0 =
(
3.83610767033565 δ10

θ11
+ 270.70172 tanh(aM )735.47253

) log
(

δ10
nwmax

)
tanh

(
ngip

δ10

) ,
a1 =

0.0049740043b0

tanh
(
Cf Reθ11

) − 2.93882 ngip

nwmax
+ 8.263331,

b1 = 8.446098
[(

δ10
nwmax

)1.7631726
+

(
nwmax

δ10

δ1
θ11

)4.8353176
]

− 79.171326
(
a1 +Cf Reθ11

)
− 53.115273 + 656.5801 nwmax

δ10
.

While the expressions for b0, a1, b1 and aM primarily depend on boundary layer cross-flow quanti-
ties, the streamwise-related variables δ1, θ11 and Cf Reθ11 also appear in the formulas. The cross-flow
shape factor nwmax /δ10, as defined by Dagenhart (1981), appears four times. In contrast to Eq. (7), no
dependency on Hc f ,max is observed.

5 Validation
5.1 The 2.5-D infinite swept wing: database airfoils
In this section, equations (7) and (8), derived earlier, are validated for infinite swept-wing configurations.
The validation cases are constructed using the same tool chain as in section 3 (illustrated in Figure 3).
While the same three airfoils are employed, the aerodynamic parameters are selected from existing
experimental results published in Schmitt and Manie (1979), Dagenhart and Saric (1999) and Boltz
et al. (1960), and are listed in table 4 (with Mach numbers in the range [0.05,0.07]).

In tables 5, 6 and 7, the values of Nmax and Nβ computed by integrating the growth rate using equa-
tions (7) and (8) are compared with exact linear stability results from MAMOUT. These comparisons are
made at locations where either Nmax or Nβ exceeds 3.0. For each airfoil, the maximum and mean absolute
and relative errors are reported. Additional comparisons are made with the methods of Dagenhart (1981)
and Perraud et al. (2009).3 For Nβ , comparisons were also made with the model of Xu et al. (2019);

3For this method, only the computation of Nmax was implemented; therefore, Nβ is not reported.
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Table 4. Aerodynamic parameters for validation computations

ONERA-D NLF(2)-415 NACA 642 A015
Re∞ α[◦] ϕ[◦] Re∞ α[◦] ϕ[◦] Re∞ α[◦] ϕ[◦]
1.0 × 106 −6.0 40 1.92 × 106 −4.0 45 9.0 × 106 −1.0 30
1.0 × 106 −6.0 50 2.19 × 106 −4.0 45 11.0 × 106 −1.0 30
1.0 × 106 −6.0 60 2.37 × 106 −4.0 45 6.0 × 106 −2.0 30
1.5 × 106 −6.0 30 2.73 × 106 −4.0 45
1.5 × 106 −6.0 40 3.27 × 106 −4.0 45
1.5 × 106 −6.0 50 3.73 × 106 −4.0 45

Table 5. Mean and maximum errors of N-factors, ONERA-D airfoil

Nmax Nβ

Mean error Max error Mean error Max error
Eqs. (7) and (8) 0.05/1.39 % 0.33/10.5 % 0.17/4.7 % 0.22/ 5.84 %
Dagenhart (1981) 0.43/11.1 % 0.72/15.0 % 0.33/8.5 % 0.65/15.1 %
Perraud et al. (2009) 0.73/18.7 % 1.16/23.7 % N/A N/A

Table 6. Mean and maximum errors of N-factors, NLF(2)-415 airfoil

Nmax Nβ

Mean error Max error Mean error Max error
Eq. (7) and (8) 0.04/0.74 % 0.13/3.11 % 0.24/4.5 % 0.42/5.6 %
Dagenhart (1981) 0.21/4.3 % 0.43/9.9 % 0.09/2.0 % 0.22/5.2 %
Perraud et al. (2009) 0.77/12.4 % 1.68/15.1 % N/A N/A

Table 7. Mean and maximum errors of N-factors, NACA 642 A015 airfoil

Nmax Nβ

Mean error Max error Mean error Max error
Eq. (7) and (8) 0.28/3.9 % 0.58/16.1 % 0.23/3.7 % 0.50 11.6 %
Dagenhart (1981) 0.23/2.8 % 0.56/12.7 % 0.24/4.7 % 0.77 19.7 %
Perraud et al. (2009) 2.03/20.2 % 8.91/87.1 % N/A N/A

however, this model consistently produced values at least twice those given by exact LST, rendering its
inclusion in tables 5, 6 and 7 irrelevant.

The proposed models, based on equations (7) and (8), yield satisfactory results for all three airfoils,
for both Nmax and Nβ . The model by Dagenhart (1981) delivers comparable accuracy. The method
of Perraud et al. (2009) achieves only moderate accuracy for Nmax. Among all models, the best and
worst agreements are observed for the NLF(2)-415 airfoil and NACA 642 A015 airfoil, respectively.
The excellent performance of the Dagenhart (1981) model on the NLF(2)-415 airfoil was previously
demonstrated in (Dagenhart and Saric (1999)).

5.2 The 2.5-D infinite swept wing: NACA0012, DTP-A and DTP-B airfoils
While the derived models yield satisfactory results in section 5.1, their generalisability and robustness
for infinite swept-wing computations are further assessed by considering airfoils that do not belong to
the training database. Three cases relevant to the study of cross-flow instabilities (Arnal et al. (2007),
Tokugawa et al. (2005)) are considered in this section:
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Table 8. Mean and maximum errors on N-factors, NACA 0012, DTP-A and DTP-B
airfoils

Nmax Nβ

Mean error Max error Mean error Max error
Eqs. (7) and (8) 0.08/1.22 % 0.23/7.02 % 0.20/3.1 % 0.50/7.4 %

Dagenhart (1981) 0.87/8.8 % 1.91/11.2 % 0.94/8.6 % 2.79/16.0 %
Perraud et al. (2009) 0.96/11.3 % 2.55/23.3 % N/A N/A

(i) NACA 0012 airfoil: α = −12◦, ϕ = 40◦ and Q∞ = 20m/s (upstream velocity). The upstream
temperature and pressure are set to T∞ = 300K and P∞ = 101325Pa, respectively.

(ii) DTP-A airfoil: α = 0◦, ϕ = 40◦, Q∞ = 36m/s, Re∞ = 2.8 × 106 and P∞ = 101325Pa.
(iii) DTP-B airfoil: α = 6◦ (the lower surface is considered), ϕ = 40◦, Q∞ = 70m/s, Re∞ = 3.26×106

and P∞ = 101325Pa.

The validation process follows the same methodology as in section 5.1: the maximum and mean abso-
lute and relative errors on Nmax and Nβ are presented in table 8. Errors are computed by comparing the
results of exact linear stability computations performed with MAMOUT against those obtained using equa-
tions (7) and (8), as well as the models of Dagenhart (1981) and Perraud et al. (2009). Only regions
supporting cross-flow instabilities are retained by considering locations where either Nmax or Nβ

exceed 3.0.
The models defined by equations. (7) and (8) yield satisfactory results. The magnitudes of the mean

and maximum errors are comparable to those obtained in section 5.1 (see in particular table 5). The
derived models outperform those of Dagenhart (1981) and Perraud et al. (2009) across all three cases.
In particular, the model of Perraud et al. (2009) is once again found to provide only moderate accuracy.

All computations were performed on a single core of a workstation for the three cases considered in
this section. Exact linear stability analysis with the MAMOUT solver required 58 minutes to compute σ
at each location and for 20 values of β. Less than a second was then needed to evaluate both integrals
Nmax and Nβ using Eq. (1). The simplified model derived in this paper reduced the computation time to
26 s for Nβ and 16 s for Nmax.

5.3 The 3-D prolate spheroid
Transition on the 3-D prolate spheroid with aspect ratio a/b= 1.2 was measured by Kreplin et al. (1985).
Flow conditions Re = 6.54 × 106, α = 15◦ were selected to ensure a transition scenario dominated by
cross-flow instability (Stock (2006)). Despite the geometric and flow complexity in this configuration,
the potential solution can be computed analytically following the approach of Cebeci et al. (1978). The
analytically derived velocity distribution is provided as input to 3C3D to compute the boundary layer
velocity profiles over the geometry. The surface mesh is generated using step sizes of 1◦ and 0.5◦ along
the angular coordinate χ (with x = −a cos( χ)) and the polar angle φ in the (y, z) plane, respectively. To
avoid the velocity singularity at the leading edge, the mesh starts at χ = χmin = 0.049, corresponding
to x/a = −0.9988.

The growth rate from linear stability analysis is computed at each location using ONERA’s in-house
stability solver MAMOUT, as well as the models developed in this paper and that of Dagenhart (1981).
Growth-rate values are interpolated along 360 streamlines (relative to the potential flow), enabling the
computation of N-factors along each. The streamline starting locations are uniformly distributed along
the azimuth (i.e. with a step size Δφ = 0.5◦) at χ = χmin .

The threshold value NT
β = 5.5 given by Stock (2006) is applied. According to Stock (2006, Figure

15 b), stationary cross-flow instability is dominant within the region φ ∈ [−135◦,−80◦]. This region is
therefore the focus of the following discussion.
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Figure 8. Computed transition locations with eq. (7) (�), with the model of Dagenhart (1981) (�) and
with MAMOUT (solid line). Streamlines are plotted as dotted lines.

5.3.1 Computation of Nmax
In this section, equation (7) is tested by comparing transition locations obtained using NT

max = 8.2.
This value is selected based on the ratio NT

max/N
T
β reported by Srokowski and Orszag (1977) (see

Appendix A.1). The resulting transition lines are shown in Figure 8 and compared with predictions
from the model of Dagenhart (1981) and with exact linear stability results from MAMOUT. Both the model
developed in this study and that of Dagenhart (1981) show strong agreement with exact stability results.
However, equation (7) predicts a transition line that lies slightly upstream of the exact linear stability
prediction, whereas the model of Dagenhart (1981) places the transition line slightly downstream.

5.3.2 Computation of Nβ

In this section, transition lines based on Nβ are computed and compared. Figure 9 shows that the transi-
tion lines obtained using equation (8) and the method of Dagenhart (1981) align closely with the results
of exact linear stability computation. As previously observed, the transition line predicted by equation
(8) lies slightly upstream of the MAMOUT prediction, while the transition locations given by the method
of Dagenhart (1981) are found both upstream and downstream. Very good agreement is observed in
the region of interest with the computations of Krimmelbein (2021), whereas the transition line com-
puted by Stock (2006) appears slightly further downstream. No explanation can be offered for these
discrepancies.

6. Conclusions
In this study, a new model was derived to estimate the growth rate of stationary cross-flow instabilities,
combining ease of use with good accuracy. The model was developed using a comprehensive database
of 1,237 boundary layer profiles computed for three representative airfoils (ONERA-D, NLF(2)-415 and
NACA 642 A015) under a range of aerodynamic conditions. Linear stability characteristics of these pro-
files were analysed using the ONERA MAMOUT solver, and symbolic regression techniques were applied
to derive expressions for the growth rate of cross-flow instabilities. As expected the resulting formulas
were found to depend primarily on cross-flow boundary layer quantities.

Validation of the model on infinite swept-wing configurations showed satisfactory results. It per-
formed consistently well across the ONERA-D and NLF(2)-415 airfoils. although slightly higher errors
were observed for the NACA 642 A015 airfoil. The new model outperforms the method of Perraud et al.
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Figure 9. Computed transition locations with eq. (8) (�), with the model of Dagenhart (1981) (�) and
with MAMOUT (solid line). Streamlines are plotted as dotted lines. The transition lines computed by
Krimmelbein (2021) and Stock (2006) are plotted as dash-dotted and dashed lines, respectively.

(2009). The method of Dagenhart (1981) yields slightly better accuracy on the NACA 642 A015 airfoil
for Nβ and on the NLF(2)-415 airfoil for Nmax. The new model also produces satisfactory results for
configurations involving airfoils that are not part of the training database (NACA 0012, DTP-A, DTP-B).

To assess the predictive capability of the derived models on 3-D geometries, the prolate spheroid
configuration was considered. Under flow conditions dominated by cross-flow instabilities, comparisons
of transition lines based on Nmax and Nβ show that the models developed in this paper closely align with
the results from exact linear stability computations. Specifically, the transition lines predicted using the
growth-rate equations generally show excellent agreement with the MAMOUT results, with the model-
based transition lines lying slightly upstream.

The proposed model offers a simpler and more accurate alternative to the model developed by Perraud
et al. (2009), delivering improved precision without added complexity. Compared with the method by
Dagenhart (1981), the accuracy is comparable. However, the implementation of the present model is
significantly more straightforward, as it eliminates the need for storage and interpolation of precomputed
tables, making it highly practical for broader application in transition prediction.

The overall performance indicates that this model offers a robust and efficient tool for predicting
cross-flow transition in boundary layers. Future work could focus on implementing the model in RANS
solvers, with potential applications in aerodynamic design and optimisation.
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Figure 10. Computed transition lines defined by Nβ = NT
β (solid line) and by Nmax = r × NT

β (dash–
dotted line). Streamlines are plotted as dotted lines.

Appendix
A.1 Relationship between Nβ and Nmax

Srokowski and Orszag (1977) determined both NT
β and NT

max corresponding to the transition locations
published by Boltz et al. (1960) (for the NACA 642 A015 airfoil). They found that NT

β ∈ [6.7,7.2],
corresponding to a spread of 7.2 % around the arithmetic mean while NT

max ∈ [9.7,11] which corresponds
to a spread of 6.1%.

A similar investigation using experimental results from Dagenhart and Saric (1999) yielded NT
β ∈

[5.6,6.8] and NT
max ∈ [6.9,8.3], resulting in relative spreads of 20.0% and 18.5%, respectively.

While both integration strategies are considered valid for transition prediction, NT
β is typically

reported. Here, we attempt to deduce NT
max from NT

β . For each airfoil and set of flow conditions com-
puted in section 5.1, a subset was created with Nβ > 3, resulting in a dataset of 850 entries with 23
features (the 22 features from section 4.1 plus Nβ). Using pysr as in section 4, we derived the following
expression for Nmax/Nβ :

r =
Nmax
Nβ
= (pgip + 1.1400409)

(
δ2
θ11

(
ngip

δ10
− 0.23753823

)
− 0.09712514

)
+ 1.1903278. (10)

Equation (10) is validated on the 3-D prolate spheroid case from section 5.3. In Figure 10, transition
lines computed using MAMOUT growth rates are plotted by comparing Nβ with NT

β and Nmax with r ×
NT
β (only where Nmax > NT

β ). The two transition lines display excellent agreement, demonstrating that
using NT

β along with r allows accurate prediction of the transition location based on Nmax computation.
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