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Abstract5

Mediation analysis is one of the most popularly used methods in social sci-

ences and related areas. To estimate the indirect effect, the least-squares re-

gression is routinely applied, which is also the most efficient when the errors

are normally distributed. In practice, however, real data sets are often non-

normally distributed, either heavy-tailed or skewed, so that the least-squares

estimators may behave very badly. To overcome this problem, we propose a

robust M-estimation for the indirect effect via a general loss function, with

a main focus on the Huber loss which is more slowly varying at large val-

ues than the squared loss. We further propose a data-driven procedure to

select the optimal tuning constant by minimizing the asymptotic variance

of the Huber estimator, which is more robust than the least-squares estima-

tor facing outliers and non-normal data, and more efficient than the least-

absolute-deviation estimator. Simulation studies compare the finite sample

performance of the Huber loss with the existing competitors in terms of the

mean square error, the type I error rate, and the statistical power. Finally,

the usefulness of the proposed method is also illustrated using two real data
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1. Introduction1

In social sciences and related areas, the effect of an exposure on the2

outcome variable is often mediated by an intermediate variable. Mediation3

analysis aims to identify the direct effect of the predictor on the outcome4

and the indirect effect between the same predictor and the outcome via the5

change in a mediator (MacKinnon, 2008). Since the seminal paper of Baron6

and Kenny (1986), mediation analysis has become one of the most popular7

statistical methods in social sciences. Empirical applications of mediation8

analysis have dramatically expanded in sociology, psychology, epidemiology,9

and medicine (Ogden et al., 2010; Lockhart et al., 2011; Rucker et al., 2011;10

Newland et al., 2013; Richiardi et al., 2013). In practice, however, researchers11

have found that the assumptions of traditional mediation analysis methods,12

e.g. normality and no outliers, do not match the data they collected, which13

may lead to misleading results (Yuan and MacKinnon, 2014; Preacher, 2015).14

To overcome the problem, it is often required to adopt some sophisticated15

models for mediation analysis (VanderWeele and Tchetgen, 2017; Frölich and16

Huber, 2017; Lachowicz et al., 2018). For more details on mediation analysis,17

one may refer to the recent books including, for example, MacKinnon (2008),18

VanderWeele (2015), and Hayes (2023).19

One important issue in mediation analysis is to conduct the inference on20

the indirect effect, with a main focus on testing its statistical significance.21

In this direction, the first approach is the causal steps approach (Baron and22

Kenny, 1986), which specifies a series of tests of links in a causal chain.23

3
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Moreover, some variants of this method that test three different hypotheses1

have also been proposed (Allison, 1995; Kenny et al., 1998). The second2

approach is the difference in coefficients approach (Freedman and Schatzkin,3

1992), which takes the difference between a regression coefficient before and4

after being adjusted by the intervening variable. The third approach is the5

product of coefficients approach which involves paths in a path model (Sobel,6

1982; MacKinnon et al., 1998, 2004). MacKinnon et al. (2002) compared 147

methods of testing the statistical significance of the indirect effect and found8

that the difference in coefficients approach and the product of coefficients ap-9

proach have a better control on the type I error rate as well as a higher power10

in most cases. And between them, the product of coefficients method is more11

widely used mainly thanks to its clear causal path explanation (MacKinnon12

et al., 2004; Preacher and Hayes, 2008; Preacher and Selig, 2012; Yuan and13

MacKinnon, 2014).14

To estimate the indirect effect, the least-squares (LS) regression is rou-15

tinely applied, which is also the most efficient when the errors are normally16

distributed. In practice, however, real data sets are often non-normally dis-17

tributed, either heavy-tailed or skewed (Field and Wilcox, 2017). As an18

example, Micceri (1989) examined 440 data sets from the psychological and19

educational literature and found that none of them were normally distributed20

at the α = 0.01 significance level. When applied to non-normal data sets,21

the LS estimators may behave very badly (Huber and Ronchetti, 2009). To22

circumvent such drawbacks, some robust approaches have recently emerged23

4
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in the mediation literature. Zu and Yuan (2010) adopted the local influence1

function to identify the strongly-affected outliers. Yuan and MacKinnon2

(2014) proposed the least-absolute-deviation (LAD) regression when the er-3

rors are heavy-tailed, and moreover, Wang and Yu (2023) established the4

statistical theory for the LAD estimation of the indirect effect. Lastly, as5

claimed by Preacher (2015), mediation analysis for non-normal variables has6

become an active research field.7

To move forward, it is noteworthy that the LS and LAD estimators are8

special cases of the M-estimators, which minimize a specified loss function9

(Serfling, 2001; Hansen, 2022). Another popular loss function in the M-10

regression is known as the Huber loss function, which utilizes a tuning pa-11

rameter to adjust the tail of the standard normal distribution (Huber, 1964).12

This tuning parameter controls the trade-off between the efficiency and ro-13

bustness. Wang et al. (2007) found that the Huber loss function with the14

optimal tuning parameter can greatly improve the efficiency when maintain-15

ing the robustness. To the best of our knowledge, little work has been done16

on estimating the indirect effect from the perspective of the optimal loss.17

This paper proposes to further advance the literature by developing ro-18

bust estimation of the indirect effect. To be specific, our approach mainly19

alleviates effects in the response variable and implicitly assumes that there20

is no large leverage points in the independent variables. In Section 2, we in-21

troduce the M-regression in the simple mediation model with a general loss22

function. An iteratively reweighted least-squares algorithm is also proposed23
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to numerically solve the M-regression, as well as to construct two robust con-1

fidence intervals. In Section 3, we propose a data-driven approach to select2

the optimal tuning constant, and moreover study the statistical properties3

specifically for the Huber loss. In Section 4, we conduct simulation studies to4

assess the finite sample performance of the Huber loss and compared it with5

the existing competitors used in mediation analysis. We further illustrate6

the advantages of our method by an empirical example in Section 5, and7

conclude the paper in Section 6 with some discussion.8

2. Simple Mediation Model9

The simplest mediation model is given in Figure 1, where X is the inde-

pendent variable, Y is the dependent variable, and M is the mediating vari-

able that mediates the effects of X on Y. Given the observations (Xi,Mi, Yi)

for i = 1, . . . , n, this simple mediation model consists of three linear regres-

sion equations as

Yi = β1 + cXi + ε1,i, (1)

Mi = β2 + aXi + ε2,i, (2)

Yi = β3 + c′Xi + bMi + ε3,i, (3)

where c represents the total effect of X on Y , a represents the relation be-10

tween X and M , c′ represents the direct effect of X on Y after adjusting11

the effect of M , b represents the relation between M and Y after adjusting12

6
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the effect of X, and the random errors εj,i, j = 1, 2, 3, are independent of the1

corresponding regressors.

X Y

M

X Y

c

a b

c′

ε1

ε3

ε2

Figure 1: Causal diagram of the simple mediation model.

2

2.1. M-regression3

To alleviate the effects of influential observations in the least-squares fit-

ting, we adopt the M-regression to estimate the regression parameters, which

can be regarded as a generalization of the maximum likelihood estimation as

follows:

(β̂1, ĉ)
T = arg min

β1,c

n∑
i=1

ρ(Yi − β1 − cXi), (4)

(β̂2, â)T = arg min
β2,a

n∑
i=1

ρ(Mi − β2 − aXi), (5)

(β̂3, ĉ′, b̂)
T = arg min

β3,c′,b

n∑
i=1

ρ(Yi − β3 − c′Xi − bMi), (6)

7
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where ρ(·) is the loss function with three properties: (i) nonnegativity such1

that ρ(ε) ≥ 0 with ρ(0) = 0, (ii) symmetricity such that ρ(ε) = ρ(−ε), and2

(iii) monotonicity such that ρ(ε) > ρ(ε′) for any |ε| > |ε′|.3

Let ψ(ε) = (d/dε)ρ(ε) be the first derivative of the loss function, referred4

to as the influence curve. Let also X = (X1, . . . , Xn)T , M = (M1, . . . ,Mn)T ,5

Y = (Y1, . . . , Yn)T , I = (1, . . . , 1)T , X̃ = (I,X), and X̌ = (I,X,M). For6

large samples, we further assume thatU is the limiting matrix of (n−1X̃TX̃)−1,7

and V is the limiting matrix of (n−1X̌TX̌)−1. Then by Huber and Ronchetti8

(2009), we have the following asymptotic normality for the M-estimators of9

the regression parameters.10

Lemma 1. For the mediation model linked with (1)-(3), under the regularity
conditions given on pages 163-164 of Huber and Ronchetti (2009), the M-
estimators in (4)-(6) are all normally distributed:

√
n(ĉ− c) ∼ N

(
0,

Eε1 [ψ
2]

(Eε1 [ψ
′])2
U[2,2]

)
,
√
n(â− a) ∼ N

(
0,

Eε2 [ψ
2]

(Eε2 [ψ
′])2
U[2,2]

)
,

√
n(ĉ′ − c′) ∼ N

(
0,

Eε3 [ψ
2]

(Eε3 [ψ
′])2
V[2,2]

)
,
√
n(b̂− b) ∼ N

(
0,

Eε3 [ψ
2]

(Eε3 [ψ
′])2
V[3,3]

)
.

Finally, based on the M-estimators in (4)-(6), we can define two new11

estimators of the indirect effect: one is the difference estimator ĉ− ĉ′ and the12

other is the product estimator âb̂.13

2.2. Solution to M-regression14

For a general loss ρ(·), noting that the M-estimator may not have an

explicit expression, a numerical solution is often required. To present our

8
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algorithm, we will focus only on (4) since the same algorithm can be extended

to solve (5) and (6) as well. Differentiating the objective function
∑n

i=1 ρ(Yi−

β1 − cXi) with respect to β1, c and setting the partial derivatives to be zero,

it yields a system of two estimating equations as

n∑
i=1

ψ(Yi − β1 − cXi) = 0,

n∑
i=1

ψ(Yi − β1 − cXi)Xi = 0.

Further by introducing the weight function w(e) = ψ(e)/e, the estimating

equations can be rewritten as

n∑
i=1

wi × (Yi − β1 − cXi) = 0,

n∑
i=1

wi × (Yi − β1 − cXi)Xi = 0,

where wi = w(Yi − β1 − cXi). Solving these two equations is equivalent to

minimizing
n∑
i=1

wi × (Yi − β1 − cXi)
2,

which is a weighted LS problem. Moreover, an iteratively reweighted least-1

squares (IRLS) algorithm can be appropriate to obtain the numerical solution2

of the regression coefficients, because the weights depend on the regression3

coefficients, and the regression coefficients in turn depend on the weights4

(Holland and Welsch, 1977). To also handle the multiple-minima problem,5

9
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in case it has, we choose several different points in the parameter space as1

the initial estimates, in such a way to get a higher confidence to obtain the2

true global minimum (Green, 1984). More specifically, the IRLS algorithm3

for our problem is as follows.4

Algorithm 1: Iteratively Reweighted Least-Squares

1. Choose some initial estimates θ(0) = (β
(0)
1 , c(0))T , including those from

the LS or LAD methods.

2. For each iteration t ≥ 1, calculate the residuals e
(t−1)
i = Yi − β(t−1)

1

−c(t−1)Xi and the associated weights w
(t−1)
i = w(e

(t−1)
i ).

3. Obtain the weighted LS estimates

θ(t) = (X̃TW (t−1)X̃)−1X̃TW (t−1)Y,

where W (t−1) = diag{w(t−1)
i }.

4. Repeat steps 2 and 3 until θ(t) satisfies ‖θ(t) − θ(t−1)‖2 < 10−5.

5

2.3. Error Conditions for Model Consistency6

When is the product of parameters ab equal to the difference in parame-7

ters c−c′ in population? This is an important question in mediation analysis8

since it uncovers the relationship between the indirect, direct and total effects9

(Yuan and MacKinnon, 2014; Wang et al., 2023; Wang and Yu, 2023).10

Note that the three regression equations, (1)-(3), are interrelated in the

10
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simple mediation model. By substituting (2) into (3), we have

Yi = β3 + c′Xi + b(β2 + aXi + ε2,i) + ε3,i

= (β3 + bβ2) + (c′ + ab)Xi + εi, (7)

where εi = bε2,i+ ε3,i. Assume that ε2,i and ε3,i are independent and symmet-

rically distributed with median 0, then εi is also symmetric with Med[εi] = 0

(see Proposition 1 in Wang and Yu (2023)). In addition, let ε1,i also be

symmetrically distributed with Med[ε1,i] = 0. Then by (1) and (7),

Med[Yi|Xi] = β1 + cXi + Med[ε1,i|Xi],

Med[Yi|Xi] = (β3 + bβ2) + (c′ + ab)Xi + Med[εi|Xi].

Noting also that the random errors are independent of the corresponding

regressors as assumed in Section 2.1, we have Med[ε1,i|Xi] = Med[ε1,i] = 0

and Med[εi|Xi] = Med[εi] = 0, and moreover,

β1 + cXi ≡ (β3 + bβ2) + (c′ + ab)Xi, i = 1, . . . , n,

which further yields that β1 = β3+bβ2 and c = c′+ab. Finally, by comparing1

(1) and (7), we also have εi = ε1,i. For convenience, we summarize the above2

result in Theorem 1.3

Theorem 1. In the simple mediation model, given the independence of the4

errors and the corresponding regressors, we further assume that the errors5

11
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are independent and symmetrically distributed with a unique median 0 for1

j = 1, 2, 3. Then we have ab = c − c′, which builds an equality between the2

indirect effect, direct effect and total effect.3

Remark 1. Many error distributions satisfy the error assumption in The-4

orem 1. For instance, when ε2,i and ε3,i are independent and normally5

distributed, Yuan and MacKinnon (2014) discussed the model consistency.6

Wang and Yu (2023) further discussed the consistency conditions for the7

LAD loss and obtained the similar equality as in Theorem 1.8

2.4. Inference Based on Confidence Interval9

There are two estimators for the indirect effect: ĉ− ĉ′ and âb̂. Unlike the10

equivalence of the two LS estimators (MacKinnon et al., 1995; Wang et al.,11

2023), the two M-estimators of the indirect effect for a general loss are not12

the same in general, that is, âb̂ 6= ĉ − ĉ′. Simulation studies show that the13

product estimator is often more efficient than the difference estimator (see14

Appendix A). Interestingly, the same conclusion can also be seen when the15

LAD loss is applied (Wang and Yu, 2023). In view of this, we thus consider16

the null hypothesis H0 : ab = 0. To test whether ab = 0, there are two17

common methods in the literature including the parameter method (Sobel,18

1982) and the nonparametric resampling method (MacKinnon et al., 2004;19

Preacher and Selig, 2012).20

To move forward, our first method is to perform a robust Sobel test.

12
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Given the robust estimates â and b̂, we define the robust test statistic as

Z =
âb̂

ŜESobel

,

where ŜESobel =

√
â2 × ŜE

2

b + b̂2 × ŜE
2

a, and ŜEa and ŜEb are the standard

errors (SEs) of â and b̂, respectively. Following Theorem 1, the two SEs can

be estimated by

ŜEa =

(
n−1

∑n
i=1 ψ

2(Mi − β̂2 − âXi)[(X̃
TX̃)−1][2,2]

[n−1
∑n

i=1 ψ
′(Mi − β̂2 − âXi)]2

)1/2

,

ŜEb =

(
n−1

∑n
i=1 ψ

2(Yi − β̂3 − ĉ′Xi − b̂Mi)[(X̌
TX̌)−1][3,3]

[n−1
∑n

i=1 ψ
′(Yi − β̂3 − ĉ′Xi − b̂Mi)]2

)1/2

.

Moreover, the normal-based (1− α)% CI of ab can be constructed as

[âb̂− z1−α/2ŜESobel, âb̂+ z1−α/2ŜESobel],

where α is the significance level, and z1−α/2 represents the (1−α/2) quantile1

of the standard normal distribution. Note however that, when a and b are2

small, the sampling distribution of âb̂ may not be normal (MacKinnon et al.,3

2004; Wang et al., 2023). Thus to obtain an accurate CI, critical values of the4

distribution of âb̂ can be obtained by Mote Carlo simulation study (Meeker5

et al., 1981; Meeker and Escobar, 1994). In fact, one can easily obtain these6

critical values via inputting â, b̂, ŜEa and ŜEb into an R procedure medci()7

which was introduced by Tofighi and MacKinnon (2011).8

13
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Our second method to construct CI is the bootstrap method based on1

resampling. The bootstrap method is nonparametric and robust in the sense2

that it does not need to estimate the SEs. First, we repeatedly resample the3

original dataset with replacement (Efron and Tibshirani, 1993); second, we4

estimate the indirect effect for each bootstrap sample using our proposed Hu-5

ber method; third, we construct the CI by the percentile bootstrap (PRCT)6

as [qα/2, q1−α/2], where qα/2 is the α/2 quantile of the empirical distribution7

of the indirect effect. To adjust and remove the potential estimation bias,8

the bias-corrected and accelerated bootstrap (BCa) is an important variation9

(Efron, 1987; Efron and Tibshirani, 1993). In general, the BCa method can10

yield a more accurate CI than the PRCT method when the true parame-11

ter value is not the median of the distribution of the bootstrap estimates12

(MacKinnon et al., 2004).13

3. Robust and Efficient Estimation via Huber Loss14

From a likelihood perspective, the best loss function would be the negative15

log-likelihood function (Schrader and Hettmansperger, 1980). Nevertheless,16

since the likelihood function is often unknown, one needs to specify an ap-17

propriate loss function in real applications. In this section, we study the18

robust and efficient estimation using the Huber loss with the optimal choice19

of tuning parameter. Note that our methodology is general and can also be20

extended to other loss functions.21

14
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3.1. Huber Loss1

The Huber loss, as defined in Huber (1964), is given as

ρH(e) =


1
2
e2, if |e| ≤ k,

k|e| − 1
2
k2, if |e| > k,

ψH(e) =

 e, if |e| ≤ k,

k × sgn(e), if |e| > k,

where k > 0 is the tuning parameter. A smaller value of k produces more

resistance to outliers, but at the expense of lower efficiency when the error

is normal. For instance, by letting k = 1.345σ with σ being the standard

deviation of the error, it will yield a 95% efficiency for the normal errors,

which is also resistant to outliers with a breakdown point of 5.8%. Moreover,

the standard deviation σ can be estimated robustly by the median absolute

deviation (MAD) as

σ̂MAD = Med{|ei|}/0.6745.

For any error ε, we denote τ = σ2
ψ/B

2
ψ as the asymptotic variance of the

Huber estimator (Huber, 1964), where σ2
ψ = E[ψ2(ε)] and Bψ = E[ψ′(ε)]. We

then minimize the τ value to determine the optimal ρ(·). For the Huber loss

15
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with a given k, we have

Bψ(k) =

∫ k

−k
dF (ε),

σ2
ψ(k) =

∫ k

−k
ε2dF (ε) + k2(1−Bψ(k)),

where F (·) is the cumulative distribution function of ε.1

Remark 2. As k →∞, the Huber loss becomes the LS loss so that τLS = σ2,2

where σ2 is the variance of the error distribution. As k → 0, the Huber loss3

becomes the LAD loss so that τLAD = 1/(4f(0)2), where f(0) is the density4

value of the error distribution at 0. Based on the observational data, the5

optimal tuning constant can be selected to obtain the smallest estimation6

variance. From this viewpoint, the Huber estimator is more efficient than its7

competitors when dealing with the unknown and complex error distributions.8

3.2. Optimal Tuning Constant9

As is known, the tuning parameter k of the Huber loss can have a great10

impact on the estimation efficiency. When the error is normally distributed11

without contamination, the best choice of k is ∞. On the other hand, when12

the error follows a heavy-tailed distribution such as the t distribution, then13

k tends to be a small value close to 0.14

We adopt a numerical method proposed by Wang et al. (2007) to select

the optimal tuning constant, which minimizes the asymptotic variance of the

estimator. For the Huber loss, the optimal k minimizes the efficiency factor

16
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1.3

1.4

1.5

1.6

1.7

1.8

0 1 2 3
k

τ

Huber loss for the mixed normal distribution

3

4

0 1 2 3
k

τ

Huber loss for the t_1 distribution

Figure 2: τ(k) is plotted for 0.9N(0, 1)+0.1N(0, 32) (left) and t1 (right). The correspond-
ing red lines are τ(1.489) = 1.296 and τ(0.395) = 2.278, respectively.

τ with a three-step procedure as follows. First, we compute τ(k) for a range

of k values, i.e., 0 ≤ k ≤ K by 0.001, where K is a positive number, e.g.

K = 4. Second, we select the optimal k as

kopt = arg min
0<k≤K

τ(k).

Lastly, we compute the minimum value τ(kopt). In Appendix B, we provide1

an R procedure to obtain the optimal tuning constant with a known error2

distribution.3

For ease of reference, we also list the optimal kopt and τ(kopt) in Table4

1 for some error distributions, including the standard normal distribution5

N(0, 1), the Laplace distribution Laplace(0, 1), the mixed normal distribution6

17
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Table 1: Optimal k and τ(k) for various error distributions and loss functions.

Distribution kH τH(k) τLS τLAD
N(0, 1) ∞ 1 1 1.571

Laplace(0, 1) 0 1 2 1
0.9N(0, 1) + 0.1N(0, 32) 1.489 1.296 1.800 1.803

0.9N(0, 1) + 0.1N(0, 102) 1.222 1.432 10.900 1.897
t1 0.395 2.278 ∞ 2.467
t2 0.692 1.722 ∞ 2

0.9N(0, 1) + 0.1N(0, σ2) with σ = 3 or 10, and the t distribution with 1 or1

2 degrees of freedom. In general, the Huber loss with the optimal tuning2

parameter k is more efficient than the LS and LAD losses, since the less τ3

is, the more efficient the loss is. Moreover, to intuitively reflect the variation4

trend of τ(k) as k varies, we also plot the τ(k) function for a normal mixed5

and t1 distributions in Figure 2. It is evident that the value of τ(k) varies6

dramatically along with the k value.7

3.3. Nonparametric Selection of Tuning Constant8

Following (4) and letting ei = Yi − β̂1 − ĉXi be the residuals, we propose9

to estimate τ nonparametrically by10

τ̂(k) =
σ̂2
ψ(k)

B̂2
ψ(k)

, (8)
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where σ̂2
ψ(k) = n−1

∑n
i=1 ψ

2(ei) and B̂ψ(k) = n−1
∑n

i=1 ψ
′(ei). More specifi-

cally for the Huber loss, we have

B̂ψ(k) =
1

n

n∑
i=1

I(|ei| ≤ k),

σ̂2
ψ(k) =

1

n

n∑
i=1

{
e2i I(|ei| ≤ k) + k2I(|ei| > k)

}
,

where I is the 0− 1 indicator function.1

We propose a data-driven procedure that determines the optimal k̂ by2

minimizing τ̂(k), which is, in fact, similar to Wang et al. (2007) for a linear3

regression model with a scale parameter σ. Our new procedure is summarized4

in Algorithm 2.5

Algorithm 2: Nonparametric Selection of Tuning Constant

1. Select the initial estimates (β̂1, ĉ)
T , e.g. the LAD estimates.

2. Compute τ̂(k) for a range of k values satisfying 0.2 ≤ k ≤ 3σ̂MAD by

0.01, and then choose the optimal k as

k̂opt = arg min
0.2≤k≤3σ̂MAD

τ̂(k).

3. Obtain the robust estimates of the regression parameters using the

IRLS in Algorithm 1 with k = k̂opt.

6

Note that in the algorithm, we have specified the maximum allowable7

k as 3σ̂MAD, which is often treated as sufficient since the probability that8
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the errors fall within the interval [−3σ̂MAD, 3σ̂MAD] is as large as 99.73% for1

the normal errors. To further investigate the performance of the proposed2

method on the selection of tuning constant k, we conduct a simulation s-3

tudy and report the results in Table B of the Appendix. When the sample4

size is large, the selected tuning constant k is very close to the theoretical5

one. Moreover, we note that the standard deviation of the tuning constant6

decreases dramatically as the sample size increases. These findings coincide7

with the conclusion in Wang et al. (2007).8

4. Simulation Studies9

Two simulation studies are carried out to evaluate the performance of10

the proposed method. Simulation A compares the efficiency of the three11

estimators based on the LS, LAD and Huber losses under various designs, and12

Simulation B evaluates their type I error rate and power. For the simulation13

settings, we follow Yuan and MacKinnon (2014) and Wang and Yu (2023)14

and set β2 = β3 = 0, c′ = 1, and a = b = 0.14, 0.39, 0.59. Moreover, the15

sample size is set at n = 50, 200, 1000, corresponding to the small, medium16

and large samples, and four error distributions will be considered including17

N(0, 1), Laplace(0, 1), 0.9N(0, 1) + 0.1N(0, 102), and t2.18

For each simulated dataset, we estimate the regression parameters based

on the LS, LAD and Huber losses, and apply the product âb̂ to estimate the

indirect effect. Then with 1000 simulations for each setting, we compute the
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mean square error (MSE) to assess the estimation accuracy as follows:

MSE[âb̂] =
1

1000

1000∑
i=1

(âb̂− ab)2.

Moreover, we apply the type I error rate and the statistical power to1

assess the performance of the LS, LAD and Huber estimators for testing2

H0 : ab = 0. We use the robust Sobel test (Sobel Z), the percentile bootstrap3

(PRCT), and the BCa methods to construct the CIs. The type I error rate4

denotes the probability of incorrectly rejecting the null hypothesis when it is5

actually true, whereas the statistical power refers to the probability correctly6

rejecting the null hypothesis when the alternative hypothesis is true. A good7

testing procedure should control the type I error rate and, meanwhile, it also8

maximizes the power as much as possible. In practice, the empirical type9

I error rate (or power) is calculated as the proportion of CIs that do not10

contain zero when the indirect effect does not exist (or exists).11

4.1. Efficiency of the LS, LAD and Huber Estimators12

The MSE(×103) and standard deviation (SD×103) of the LS, LAD and13

Huber estimators are presented in Table 2 for various designs. Comparing14

the MSE of the three estimators, we have two main findings. First, the15

MSE and SD of the three estimators decrease as the sample size increases.16

Second, the MSE and SD of the Huber estimator are always the smallest17

or close to the smallest. When the error follows N(0, 1) (or Laplace(0, 1)),18

the LS (or LAD) estimator provides the optimal estimation. In these two19
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cases, the Huber estimator performs very close to the performance of the1

optimal estimator. While for 0.9N(0, 1) + 0.1N(0, 102) and t2, the MSE of2

the Huber estimator is the smallest among the three estimators. To conclude,3

the Huber estimator is more efficient than the LAD estimator when the error4

distribution is normal, and is more robust than the LS estimator when the5

error distribution is non-normal.6

4.2. Type I Error Rate and Power7

We now apply the Sobel Z, PRCT and BCa methods to construct the8

95% CI. Note that the medium effect sizes (a = b = 0.39) will yield a high9

power even when the sample size is moderate (n = 200). Thus to save space,10

we omit the simulation for the large effect size.11

Table 3 report the type I error rates of the three estimators under various12

designs. When the sample size is large, i.e. n = 1000, we note that the type13

I error rates of the LS, LAD and Huber estimators are all controlled in most14

cases. One exception is the LS estimator with the CIs constructed by the BCa15

method, which was also observed by Fritz et al. (2012) with an explanation16

that the increased type I error rate is a function of an interaction between17

the nonzero effect size and the sample size. Another notable situation is that18

the type I error rate of the Huber loss Sobel test is slightly too high for the19

mixed normal and t2 under the small and moderate sample sizes. Possible20

reasons can be, e.g., the standard error used for the Sobel test ŜESobel is21

affected by the Optimizer’s curse (Smith and Winkler, 2006), and/or there is22
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Table 2: MSE (×103) and SD (×103 labeled below MSE) for the LS, LAD and Huber
estimators.

a = b = 0.14 a = b = 0.39 a = b = 0.59
n LS LAD Huber LS LAD Huber LS LAD Huber

N(0, 1)
50 1.19 2.22 1.69 13.9 22.25 18.2 6.29 10.26 8.34

(2.91) (4.57) (3.73) (10.44) (15.65) (13.34) (21.22) (31.61) (27.07)

200 0.24 0.39 0.28 3.83 5.82 4.42 1.69 2.58 1.95
(0.46) (0.71) (0.53) (2.54) (3.76) (2.90) (5.56) (8.20) (6.36)

1000 0.04 0.07 0.04 0.74 1.14 0.75 0.32 0.50 0.33
(0.06) (0.11) (0.06) (0.45) (0.76) (0.47) (1.04) (1.73) (1.08)

Laplace(0, 1)
50 1.34 0.84 0.82 6.76 4.92 4.71 14.65 11.03 10.47

(3.29) (1.75) (1.80) (11.93) (7.55) (7.43) (23.80) (16.33) (15.72)

200 0.24 0.15 0.14 1.70 1.08 1.07 3.89 2.46 2.43
(0.38) (0.24) (0.24) (2.36) (1.56) (1.52) (5.35) (3.56) (3.43)

1000 0.04 0.02 0.02 0.34 0.17 0.18 0.78 0.39 0.42
(0.07) (0.03) (0.03) (0.49) (0.24) (0.26) (1.14) (0.55) (0.59)

0.9N(0, 1) + 0.1N(0, 102)
50 1929.95 21.02 18.14 3130.94 73.84 69.83 4928.99 152.67 147.54

(4461.83) (61.24) (57.06) (6524.01) (169.61) (165.16) (9212.73) (315.85) (308.93)

200 568.45 2.76 2.53 1586.29 13.78 13.42 3100.87 29.97 29.39
(1386.04) (9.65) (8.06) (3237.90) (29.33) (27.12) (5592.51) (55.75) (52.94)

1000 28.44 0.32 0.31 154.49 2.34 2.29 340.70 5.33 5.23
(71.51) (0.53) (0.49) (264.92) (3.34) (3.23) (531.80) (7.54) (7.36)

t2
50 23.61 1.75 1.52 75.38 9.82 8.84 144.62 21.76 19.70

(379.83) (3.94) (3.38) (931.66) (15.07) (13.73) (1574.78) (31.82) (29.63)

200 1.33 0.30 0.26 8.73 2.15 1.90 19.82 4.89 4.32
(3.64) (0.53) (0.41) (22.65) (3.07) (2.61) (51.53) (6.80) (5.89)

1000 0.65 0.05 0.04 3.04 0.36 0.31 6.59 0.82 0.71
(9.24) (0.06) (0.06) (14.08) (0.48) (0.43) (26.75) (1.09) (0.97)

Note that the bold font indicates the samllest MSE among the three estimators under one set of
experimental conditions.

a potential gap between the optimal tuning constant and the one determined1

by Algorithm 2 in the small sample size. In Appendix E, we have also2

conducted another simulation study to assess their effect on the standard3

error used for the Sobel test. The results indicate that the ŜESobel is indeed4
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influenced by the optimizer’s curse, whereas its effect will diminish as the1

sample size increases. At the same time, the Huber estimator with the fixed2

k = 1.345 performs better than the Huber estimator with the selected tuning3

constant (Huber-SEL) in the case of small sample size. Observing this, when4

the Huber-SEL estimator fails to yield satisfactory results, we suggest to take5

a moderate tuning constant, i.e. k = 1.345, as an alternative.6

Following the same designs, we report the power of the three estimators7

in Table 4. For the normal errors, it is evident that the LS estimator not8

only controls the type I error rate but also achieves the highest power among9

the three estimators. Nevertheless, for the non-normal errors, the LS esti-10

mator is notably lacking in statistical power especially for the mixed normal11

distribution (e.g. a = b = 0.14, 0.9N(0, 1) + 0.1N(0, 102), and n = 1000).12

In addition, despite that the LAD estimator is the most robust method with13

respect to the outliers, it however suffers from the efficiency loss and conse-14

quently yields a lower power (e.g. a = b = 0.14, N(0, 1), and n = 1000). In15

contrast, the Huber estimator makes a trade-off between the efficiency and16

robustness, in which its power is close to the largest and, meanwhile, it also17

controls the type I error rate below 5% regardless of the error distribution.18

5. Real Data Analysis19

In this section, we conduct two real data analyses to illustrate the useful-20

ness of the proposed method. Both the studies show that our newly method21

can provide a more efficient estimation than the existing competitors for me-22
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Table 3: Type I error rates (%) of the LS, LAD and Huber estimators for various designs.

Sobel Z PRCT BCa
n LS LAD Huber LS LAD Huber LS LAD Huber

a
=

0,
b

=
0.

14

N(0, 1)
50 0.0 0.0 0.3 0.3 0.0 0.2 1.5 2.1 1.4

200 0.3 0.3 0.5 1.9 0.5 1.0 3.7 3.0 3.4
1000 1.4 1.2 1.5 3.1 2.0 2.9 5.7 5.2 5.4

Laplace(0, 1)
50 0.2 0.2 1.5 0.7 0.1 0.3 1.7 2.3 1.8

200 0.2 0.9 1.6 1.8 1.8 1.7 5.0 4.7 4.4
1000 1.9 1.8 2.7 4.1 2.9 3.0 5.9 4.6 4.6

0.9N(0, 1) + 0.1N(0, 102)
50 0.0 1.5 8.2 0.9 0.3 0.3 4.7 2.4 2.1

200 1.4 2.2 5.9 0.2 0.1 0.0 2.5 1.9 1.6
1000 2.2 2.5 3.5 1.3 0.7 0.4 3.3 2.5 1.5

t2
50 0.0 0.5 2.9 1.0 0.3 0.6 4.4 3.7 2.2

200 0.8 0.8 3.8 2.0 1.6 2.1 7.8 5.0 4.8
1000 2.6 3.6 4.1 4.3 3.4 3.9 6.7 4.6 5.0

a
=

0,
b

=
0.

39

N(0, 1)
50 1.7 0.8 4.2 3.9 1.3 3.0 7.0 6.7 6.3

200 3.2 2.7 4.4 5.2 3.2 4.3 7.0 7.1 6.2
1000 5.3 4.9 5.4 5.5 4.6 5.0 5.4 6.0 5.0

Laplace(0, 1)
50 1.2 1.2 6.9 4.4 1.5 3.5 8.6 6.7 6.0

200 3.3 2.6 4.7 5.1 2.6 3.5 7.4 5.4 5.0
1000 4.5 3.1 5.0 4.7 3.7 4.4 5.3 4.1 4.6

0.9N(0, 1) + 0.1N(0, 102)
50 0.0 0.9 9.0 1.4 0.3 0.4 7.8 3.3 2.6

200 5.6 3.7 7.9 2.3 0.6 0.9 8.5 3.9 4.1
1000 3.3 3.4 3.9 4.7 2.5 2.3 8.0 5.6 4.8

t2
50 0.7 1.0 8.0 4.2 2.2 3.4 9.2 6.8 5.7

200 2.1 4.8 8.8 5.1 4.0 5.6 10.4 7.3 7.4
1000 3.9 3.1 5.3 5.6 3.8 4.1 7.2 5.4 3.7

Note that the bold font indicates the excessive type I error rate which exceeds 6.8%
since with 1000 independent simulation runs, the type I error rate of a test with level
0.05 is expected lie in the interval [2.3%, 6.8%] with probability 0.99, using the normal
approximation.
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Table 4: Power (%) of the LS, LAD and Huber estimators for various designs.

Sobel Z PRCT BCa
n LS LAD Huber LS LAD Huber LS LAD Huber

a
=
b

=
0.

14

N(0, 1)
50 0.2 0.2 1.4 2.5 0.6 1.1 4.9 4.8 4.3

200 9.9 4.4 12.7 22.8 8.3 18.6 33.5 17.7 27.8
1000 95.0 67.4 94.8 97.4 80.8 96.9 98.1 84.8 98.1

Laplace(0, 1)
50 0.2 0.6 4.4 3.4 1.7 3.3 8.1 8.7 6.4

200 8.5 22.7 37.8 23.7 33.9 41.1 34.9 44.6 51.4
1000 94.0 99.9 100.0 96.8 100.0 100.0 97.5 99.9 99.9

0.9N(0, 1) + 0.1N(0, 102)
50 12.3 5.9 28.4 2.4 0.8 1.3 6.1 3.7 3.4

200 1.3 15.3 37.7 0.8 1.8 2.5 3.3 5.9 5.9
1000 3.9 66.5 89.2 1.4 16.5 18.3 2.7 23.8 25.1

t2
50 0.5 0.5 5.2 1.9 0.7 1.4 5.3 4.3 3.8

200 2.9 12.4 25.4 9.1 17.8 21.7 15.9 25.4 29.7
1000 20.3 80.1 88.5 36.3 81.2 87.3 40.6 83.1 88.0

a
=
b

=
0.

39

N(0, 1)
50 20.0 7.6 32.0 35.2 10.9 25.2 47.8 23.2 38.7

200 100.0 95.7 100.0 100.0 98.3 100.0 100.0 97.5 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Laplace(0, 1)
50 45.2 47.4 84.9 60.2 54.8 67.1 68.9 59.7 75.3

200 99.8 100.0 100.0 99.8 99.9 100.0 99.7 99.7 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.9N(0, 1) + 0.1N(0, 102)
50 0.0 24.1 74.7 1.8 7.7 9.6 6.3 16.3 18.7

200 0.7 73.5 98.9 2.5 30.5 31.3 8.6 37.6 36.2
1000 11.8 99.4 100.0 9.1 90.8 90.2 12.9 90.9 90.3

t2
50 6.5 17.3 50.7 20.0 23.5 30.1 27.9 33.1 36.7

200 51.5 95.0 99.3 64.1 96.7 98.6 66.4 95.4 98.0
1000 93.3 99.9 100.0 93.8 100.0 100.0 92.9 100.0 100.0

Note that the bold font indicates the maximal empirical power among the three estimators under
one set of experimental conditions.
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diation analysis. To promote the practical application, we have also made1

the R code publicly available on GitHub at https://github.com/pxj66/2

REMA.git.3

5.1. Pathways to Desistance Study4

Our first study is to uncover the causal mechanisms between mental5

health and violent offending among serious adolescent offenders (Kim et al.,6

2024). In criminology, one possible mechanism is that individuals with men-7

tal health issues may be more likely to experience victimization, and this, in8

turn, may lead to their committing a serious crime. Our data comes from the9

Pathways to Desistance (PTD) study, which consists of 1354 serious juvenile10

offenders in two sites, including the Maricopa County in Arizona (N=654)11

and Philadephia County in Pennsylvania (N=700), over the years from 200012

to 2010 (Mulvey et al., 2013). Focusing on the data of baseline interviews,13

our study contains a total of 1195 respondents after the data cleansing.14

Consider the linear mediation model,

Expvici = β2 + aHealthi + δT1 Zi + ε2,i

Offendi = β3 + c′Healthi + bExpvici + δT2 Zi + ε3,i

where Health (mental health) is the independent variable, Expvic (experi-15

enced victimization) is the mediating variable, Offend (violent effending)16

is the response variable. In addition, Z denotes the matrix of other con-17

trolled variables including age, gender, enthnicity, family structure, parental18
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warmth, alchhol, marijuana, gang membership, parental hostility, and unsu-1

pervised routine activities. We summarize the type and the measure of these2

variables in Appendix F.3

Table 5: Skewness and kurtosis of two regression residuals and the Kolmogorov-Smirnov
test for the pathways to desistance study.

Skewness Kurtosis KS test (p-value)
m− x 0.3965 2.6953 5.787×10−4

y −m,x 0.9056 4.9128 3.111×10−6

Normal 0 3

To assess the normality assumption for the errors, we compute the skew-4

ness and kurtosis of the residuals of y after regressing on x and m and the5

residuals of m after regressing on x, and then report them in Table 5. These6

values, together with the Kolmogorov-Smirnov (KS) test, clearly suggest a7

violation of the normality assumption. In view of this, we thus apply our8

new method to this dataset and also compare it with the existing methods9

for mediation analysis. Table 6 reports the indirect effects and the 95% CIs10

constructed by the Sobel Z, PRCT and BCa methods. From the results, we11

note that the three estimators produce similar and statistically significant12

indirect effects, whereas the Huber estimator yields the shortest CI.13

5.2. Action Planning Study14

Our second study is to investigate the relationship between action plan-15

ning and physical activity. In psychology, it is known that the action planning16

can promote the physical activity, yet the underlying mechanism between17

them is often unclear. To explore it, an illustrative study has recently been18
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Table 6: The indirect effect estimates and their 95% CIs based on the LS, LAD and Huber
estimators for the pathways to desistance study.

95% CI

Method âb̂ Sobel Z PRCT BCa
LS 0.0133 [0.0087, 0.0179] [0.0087, 0.0188] [0.0091, 0.0193]

0.0091 0.0101 0.0102

LAD 0.0113 [0.0067, 0.0160] [0.0051, 0.0180] [0.0058, 0.0188]
0.0092 0.0129 0.0130

Huber 0.0118 [0.0077, 0.0159] [0.0076, 0.0170] [0.0076, 0.0171]
0.0082 0.0094 0.0095

conducted to investigate the action planning promoting the physical activi-1

ty mediated by the automaticity (Maltagliati et al., 2023), in which a total2

of 135 participants over 18 years from the tertiary industry were recruited.3

Participants were asked to wear an accelerometer Actigraph GT3X+, which4

records their physical activity behaviors and the time of these activities on5

a notebook for a total of seven days. More specifically in their study, the6

action planning is the independent variable, measured by four-item Likert7

scales ranging from 1 (completely disagree) to 6 (full agree). And the auto-8

maticity is the mediating variable, measured by four-item of Self-Reported9

Habit Index ranging from 1 (strongly disagree) to 7 (strongly agree).10

Consider the linear mediation model,

Autoi = β2 + aPlani + δ1Sexi + δ2BMIi + δ3Illi + ε2,i, (9)

PAi = β3 + c′Plani + δ4Sexi + δ5BMIi + δ6Illi + bAutoi + ε3,i, (10)

where Auto, Plan, Sex, BMI, Ill, and PA represent the automaticity, action11
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plan of exercise, gender, body mass index, illness, and physical activity of1

the respondent, respectively.2

Table 7: Skewness and kurtosis of two regression residuals and the Kolmogorov-Smirnov
test in action planning study.

Skewness Kurtosis KS test (p-value)
m− x 2.6095 -0.1855 0.3582
y −m,x 9.7279 2.0349 0.0047
Normal 0 3

To assess the normality assumption for the errors, we also compute the3

skewness and kurtosis of the two residuals, and then report them in Table4

7. These values, together with the KS test, suggest a serious violation of5

the normality assumption for the y − m,x regression residuals. Based on6

this, we also apply the proposed method to the dataset and then report the7

result in Table 8. First of all, the three methods produce positive indirect8

effects from 0.6600 to 0.7594. While for the CIs, only the LAD method shows9

insignificant outcome in the PRCT CI. At the same time, the Huber loss also10

yields the shortest CI among the three methods.11

Table 8: The indirect effect estimates and their 95% CIs based on the LS, LAD and Huber
losses for the action planning study.

95% CI

Method âb̂ Sobel Z PRCT BCa
LS 0.7594 [0.2351, 1.3927] [0.2714, 1.3755] [0.3258, 1.4967]

1.1576 1.1041 1.1709
LAD 0.6619 [0.1796, 1.2521] [-0.1183, 1.3755] [0.1487, 1.9636]

1.0725 1.4938 1.8149
Huber 0.6600 [0.4199, 0.9347] [0.0676, 1.0417] [0.1470, 1.1820]

0.5148 0.9741 1.035
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6. Discussion1

This article proposed a novel M-regression for mediation analysis that2

minimizes the Huber loss function with the optimal tuning constant. The3

Huber loss can produce a more robust estimator compared to the LS loss4

when facing outliers and non-normal data, and on the other hand, it can5

produce a more efficient estimator compared to the LAD loss. Moreover,6

since the M-estimator may not have an explicit expression for a general loss7

function, we further proposed an IRLS algorithm for obtaining the numer-8

ical solutions. Under some mild conditions on the error distribution, the9

consistency of the mediation model was also established. Lastly, simulation10

studies and real data analysis showed that the Huber estimator has a better11

performance than the LS and LAD estimators.12

In the literature, there are two methods commonly used to improve the13

estimation efficiency. The first method is the M-regression by selecting an14

optimal loss function from the loss function family. Besides the Huber loss15

that is among the most commonly used, other popular loss functions include,16

but not limited to, the Hampel loss (Hampel et al., 1986), the generalized17

Gauss-weight and linear quadratic losses (Koller and Stahel, 2011), and oth-18

er general losses (Tukey, 1977; Barron, 2019). When the error distribution19
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Appendix A. Comparing the Product and Difference Estimators1

To compare the efficiency of the product and difference estimators, we2

follow the same simulation design as that for Simulation A in Section 4.3

Table A shows the MSE (×103) and SD (×103) of the product and difference4

estimators based on the Huber loss. It is evident that the MSE and SD5

of the product estimator are smaller than those of the difference estimator.6

We hence recommend to adopt the product estimator for the subsequent7

hypothesis testing.8

Appendix B. An R Procedure for Selecting of the Tuning Constant9

From the likelihood perspective, the optimal loss function is given as LS10

(or LAD) when the error distribution is Normal (or Laplace). Incorporating11

the relationship of the Huber loss with the LS and LAD losses, the optimal12

tuning constant is ∞ (or 0) for the Normal (or Laplace) distribution. For13

other error distributions, the optimal tuning constant minimizes the asymp-14

totic variance of the Huber estimator. More specifically, we can compute15

τ̂(k) = σ̂2
ψ/B̂

2
ψ with a sequence of k, and then the optimal k, which corre-16

spondings to the minimum value of τ̂ , can be located. In what follows, we17

provide the R code for two examples, one for the mixed normal distribution18

0.9N(0, 1) + 0.1N(0, 32) and the other for the t1 distribution.19
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1 # 0.9N(0,1) + 0.1N(0,9)
2 df1 <− function(x){
3 0.9 / sqrt(2∗pi) ∗ exp(−xˆ2/2) + 0.1 / sqrt(2∗pi∗9) ∗ exp(−xˆ2/(2∗9))
4 }
5

6 df2 <− function(x){
7 xˆ2 ∗ (0.9 / sqrt(2∗pi) ∗ exp(−xˆ2/2) + 0.1 / sqrt(2∗pi∗9) ∗ exp(−xˆ2/(2∗9)))
8 }
9

10 i <− 0
11 tau <− numeric(0)
12 for (k in seq(0, 4, 0.001)) {
13 i <− i+1
14 B <− integrate(df1, −Inf, k)$value − integrate(df1, −Inf, −k)$value
15 Sig2 <− integrate(df2, −k, k)$value + kˆ2 ∗ (1 − B)
16 tau[ i ] <− Sig2 / Bˆ2
17 }
18

19 k <− seq(0, 4, 0.001)
20 plot(k, tau, type = "l")
21 k[which.min(tau)]
22

23 # t1
24 df1 <− function(x){ 1 / (pi ∗ (1 + xˆ2)) }
25 df2 <− function(x){ xˆ2 / (pi ∗ (1 + xˆ2)) }
26 # Run lines 10−21 again.
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Table A: MSE (×103) and SD (×103) for the product and difference estimators based on
the Huber loss.

a = b = 0.14 a = b = 0.39 a = b = 0.59
n MSEP MSED MSEP MSED MSEP MSED

N(0, 1)

50
1.52 2.79 7.52 10.21 16.41 20.27
(3.58) (6.59) (12.61) (17.26) (25.41) (30.80)

200
0.27 0.49 1.85 2.45 4.17 4.88
(0.54) (1.04) (2.87) (3.66) (6.22) (6.86)

1000
0.04 0.05 0.32 0.33 0.74 0.75
(0.06) (0.08) (0.46) (0.46) (1.05) (1.05)

Laplace(0, 1)

50
0.81 2.14 4.65 8.44 10.31 16.38
(1.73) (4.50) (7.21) (13.03) (15.18) (25.10)

200
0.14 0.40 1.06 2.06 2.41 4.06
(0.24) (0.64) (1.51) (2.97) (3.40) (5.78)

1000
0.02 0.07 0.18 0.39 0.41 0.78
(0.03) (0.11) (0.25) (0.52) (0.58) (1.04)

0.9N(0, 1) + 0.1N(0, 102)

50
18.20 22.04 71.08 72.33 150.04 150.36
(58.27) (57.54) (169.64) (149.64) (317.91) (287.81)

200
2.49 3.52 13.45 14.77 29.50 30.84
(7.72) (9.05) (26.57) (28.12) (52.20) (52.54)

1000
0.31 0.40 2.29 2.56 5.24 5.57
(0.48) (0.67) (3.21) (3.63) (7.31) (7.85)

t2

50
1.52 6.53 8.74 20.79 19.41 39.02
(3.29) (12.91) (13.76) (31.75) (29.78) (58.49)

200
0.25 1.31 1.86 5.16 4.25 9.19
(0.39) (2.17) (2.52) (7.20) (5.70) (12.76)

1000
0.04 0.23 0.31 0.91 0.70 1.59
(0.06) (0.34) (0.43) (1.31) (0.97) (2.33)

Appendix C. Selection of the Tuning Constant1

To evaluate the performance of Algorithm 2, we follow the same simu-2

lation design as that for Simulation A in Section 4. Table B presents the3

Mean, SD and Median of the selected tuning constant. As the sample size4

increases, the k values are very close to those from the theoretical results.5
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This shows that Algorithm 2 provides a good performance for selecting the1

tuning constant for practical use. These findings also coincide with the con-2

clusion in Wang et al. (2007). Note that k1 and k2 correspond to the chosen3

tuning constant from Equations (2) and (3), respectively. In practice, when4

the value of k is small, the value of the efficiency factor τ is very unstable.5

So we set the k value ranging from 0.2 to 3σ̂MAD by 0.01.

Table B: The values of Mean, SD and Median for the selected tuning constant.

k1 k2
n Mean SD Median Mean SD Median Optimal

N(0, 1)
50 1.001 0.715 0.840 0.980 0.703 0.810

200 1.539 0.841 1.660 1.529 0.836 1.630 ∞
1000 2.380 0.509 2.470 2.367 0.515 2.460

Laplace(0, 1)
50 0.426 0.296 0.310 0.441 0.303 0.330

200 0.321 0.163 0.260 0.327 0.165 0.260 0
1000 0.253 0.075 0.220 0.256 0.075 0.230

0.9N(0, 1) + 0.1N(0, 102)
50 0.671 0.466 0.510 0.770 0.590 0.570

200 0.749 0.447 0.700 0.783 0.477 0.730 1.222
1000 0.931 0.365 1.005 0.951 0.365 1.030

t2
50 0.612 0.470 0.430 0.611 0.466 0.430

200 0.558 0.359 0.440 0.562 0.358 0.450 0.692
1000 0.558 0.279 0.530 0.551 0.274 0.520

6
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Appendix D. Asymptotic Relative Efficiency of the Huber Estima-1

tor2

We first prove that the Huber loss with k = 1.345 produces a 95% efficien-

cy for the normal errors. We focus on Equation (1): Y = β1 +cX+ ε1, where

ε1 ∼ N(0, σ2). When k = k0, the efficiency factor of the Huber estimator is

computed by τH = σ2
ψ/B

2
ψ, where

Bψ(k0) =

∫ k0

−k0

1√
2πσ

exp

{
− x2

2σ2

}
dx = Φ

(
k0
σ

)
− Φ

(
−k0
σ

)
,

σ2
ψ(k0) =

∫ k0

−k0

x2√
2πσ

exp

{
− x2

2σ2

}
dx+ k20

[
1−Bψ(k0)

]
=

∫ k0/σ

−k0/σ

σ2x2√
2π

exp

{
−x

2

2

}
dx+ k20

[
1−Bψ(k0)

]
= σ2

{
G

(
k0
σ

)
−G

(
−k0
σ

)
+ Φ

(
k0
σ

)
− Φ

(
−k0
σ

)}
+ k20

[
1−Bψ(k0)

]
,

with G(x) = −x(
√

2π)−1 exp{−x2/2} and Φ(x) being the cumulative distri-

bution function of the standard normal distribution. Then

τH =
σ2
ψ(1.345σ)

B2
ψ(1.345σ)

=
0.7101645σ2

0.6746565
= 1.052361σ2

and so

τLS
τH

=
σ2

1.05236σ2
= 0.9500003.

This shows that the asymptotic relative efficiency of the Huber estimator3

relatived to the LS estimator is 95% (Serfling, 2001).4

At the same time, using Equation (4.52) on page 84 in Huber and Ronchet-
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ti (2009), we have

2φ(k)

k
− 2Φ(−k) =

ε

1− ε
,

where φ = Φ′ is the probability density function of the standard normal1

distribution. This implies that, when k = 1.345, the Huber estimator is2

resistant to outliers with a breakdown point of ε = 5.8%.3

Appendix E. Simulation Study for Huber Loss Sobel Test4

We conduct a new simulation to investigate the effect of the optimizer’s5

curse on the standard error used for the Sobel test, which is denoted by6

ŜESobel. To achieve this, we consider various tuning constants as alternatives,7

specifying the number of alternatives as 6, 30, and 291. These numbers8

correspond to step lengths of 0.5, 0.1, and 0.01, respectively, within the9

tuning constants’ value range of [0.1, 3]. Concentrating on the type I error10

rates, we set the sample size to be 50, 200, 1000, or 2000. We also employ11

the same true values for the regression parameters and the error distributions12

as those specified in Section 4. Under 1000 simulated experiments, we then13

compute the mean standard error used for the Sobel test (ŜESobel) for the14

Huber loss with the selected tuning constant (Huber-SEL) under the different15

alternatives, the Huber loss with the fixed tuning constant (Huber-FIX), and16

the Huber loss with the optimal tuning constant (Huber-OPT).17

Table E shows the mean standard error used for the Sobel test (ŜESobel)18

of the Huber-SEL, Huber-FIX and Huber-OPT estimators under various de-19

signs. First of all, the simulation results reveal that the Huber-SEL estimator20
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is indeed affected by the optimizer’s curse, yet this effect diminishes as the1

sample size increases. For example, let us look at the change in ŜESobel be-2

tween different number of alternatives. With a = 0, b = 0.14, N(0, 1), and3

n = 50, the ŜESobel of the Huber-SEL estimator exhibits a gradual decline4

away from the ŜESobel of the Huber-OPT estimator, i.e. 31.50, with the5

values shifting from 27.90 to 27.66, and then to 26.95, as the number of al-6

ternatives increases. But when the sample size is 1000 or 2000, these values7

are all close to the optimal value. Secondly, we found that the Huber estima-8

tor with the fixed k = 1.345 performs better than the Huber-SEL estimator9

in the case of small sample sizes. However, as the sample size increases, the10

Huber-SEL estimator is more close to the Huber-OPT estimator than the11

Huber-FIX estimator. Combined with the conclusions drawn from Table B,12

two plausible explanations for the poor performance of the Huber loss Sobel13

tests in n = 50 or n = 200 are that there is a potential gap between the opti-14

mal tuning constant and the one determined by Algorithm 2 and the ŜESobel15

is influenced by the optimizer’s curse. For practical applications, when the16

Huber-SEL estimator fails to yield satisfactory results, we suggest to take a17

moderate tuning constant, i.e. k = 1.345, as an alternative.18
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Table E: Mean standard error (×103) used for the Sobel test for the Huber-SEL, Huber-
FIX and Huber-OPT estimators under various designs.

Huber-SEL Huber-FIX Huber-OPT
n A = 6 A = 30 A = 291 k = 0.8 k = 1.345 k = 2.2 k = k∗

a
=

0,
b

=
0.

14

N(0, 1)
50 27.90 27.66 26.95 35.09 32.92 31.55 31.50

200 11.12 10.97 11.10 12.52 11.84 11.27 11.22
1000 4.47 4.54 4.56 4.90 4.66 4.58 4.58
2000 3.18 3.17 3.16 3.43 3.25 3.19 3.14

Laplace(0, 1)
50 17.59 16.86 16.62 24.56 26.30 29.24 18.80

200 7.47 7.30 7.09 9.07 9.58 10.58 7.71
1000 3.23 3.18 3.15 3.76 4.01 4.34 3.26
2000 2.29 2.27 2.22 2.61 2.79 2.99 2.27

0.9N(0, 1) + 0.1N(0, 102)
50 19.44 18.70 17.26 26.54 26.52 28.01 25.65

200 11.13 10.90 10.57 12.18 12.17 13.13 12.12
1000 5.32 5.27 5.23 5.45 5.42 5.83 5.40
2000 3.80 3.77 3.76 3.85 3.83 4.13 3.82

t2
50 24.22 23.27 23.11 33.95 34.51 40.41 34.45

200 12.13 11.87 11.33 13.65 14.23 15.57 13.51
1000 5.69 5.63 5.55 5.86 6.09 6.60 5.86
2000 4.07 4.02 3.98 4.13 4.27 4.62 4.11

a
=

0,
b

=
0.

39

N(0, 1)
50 49.63 49.15 47.46 63.74 61.20 59.88 59.24

200 27.04 26.62 26.77 30.44 28.93 28.10 27.94
1000 12.31 12.34 12.35 13.29 12.70 12.45 12.43
2000 8.75 8.73 8.72 9.40 8.95 8.77 8.70

Laplace(0, 1)
50 36.00 34.75 33.65 49.91 52.23 55.87 39.55

200 19.45 18.92 18.41 23.25 24.69 26.49 20.03
1000 8.87 8.76 8.66 10.23 10.94 11.76 8.96
2000 6.33 6.26 6.17 7.20 7.73 8.25 6.30

0.9N(0, 1) + 0.1N(0, 102)
50 51.66 49.63 46.52 69.66 70.56 74.90 68.72

200 30.96 30.37 29.44 33.91 33.90 36.57 33.73
1000 14.82 14.69 14.58 15.18 15.08 16.25 15.03
2000 10.58 10.51 10.48 10.74 10.66 11.50 10.64

t2
50 54.39 52.37 50.59 75.99 78.89 86.58 76.38

200 32.62 31.70 30.80 36.56 38.11 41.37 36.39
1000 15.73 15.56 15.35 16.24 16.83 18.24 16.22
2000 11.29 11.16 11.07 11.46 11.88 12.86 11.45
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Appendix F. Measures of Interesting Variables in the PTD Study1

Table F: Measures of interesting variables in the pathways to desistance study.
Interesting Variable Data type Measures
Key variable
Violent Offending Continuous The proportion of 11 violent offenses commit-

ted during the last 6 months. The example
items included beating up somebody badly
needing a doctor, being in a fight, and killing
someone. The higher the value, the greater
variety of offenses the youth engaged in.

Mental Health Continuous Brief Symptom Inventory consists of 9 sub-
scales. The larger the value, the worse the
mental health of the respondents.

Experienced Victimization Continuous A total 6 items and example questions in-
cluded “In the past 6 months, have you been
chased where you thought you might be seri-
ously hurt?”. The larger value, the more vic-
timizations are experienced.

Control variables
Age Continous 14-19.
Ethnicity Discrete White, Black, Hispanic, Other.
Gender 0-1 Male = 1, Female =0
Family Structure Discrete Single Biological Parent live with the youth,

Two Biological Parent with the youth, Other
Gang Membership 0-1 The status of the participant’s gang member-

ship for last 6 months.
Parental Monitoring Continuous Parental Monitoring inventory (9 items) range

from “never” to “always”.
Parental Warmth Continuous Responses ranged from 1 (never) to 4 (always),

with higher scores representing more parental
warmth.

Parental Hostility Continuous There are a total of 42 items, 21 items for ma-
ternal and paternal respectively, and respons-
es ranged from 1 (never) to 4 (always), with
higher scores indicating greater hostility.

Unsupervised routine activities Continous The higher score indicates more unsupervised
routine activities.

Alcohol Continous The frequency of alcohol drink consumption
in the recall period.

Marijuana Continuous The frequency of using marijuana in the recall
period.
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