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Abstract We present necessary and sufficient conditions for an operator of the type sum of squares to
be globally hypoelliptic on T ×G, where T is a compact Riemannian manifold and G is a compact
Lie group. These conditions involve the global hypoellipticity of a system of vector fields on G and are
weaker than Hörmander’s condition, while generalizing the well known Diophantine conditions on the
torus. Examples of operators satisfying these conditions in the general setting are provided.

Introduction

The problem of characterizing hypoellipticity, in its several flavors, of partial differential

operators is a central one in PDE theory. This includes sums of squares of vector fields,

which have a prominent role due to their wide applicability and prevalence across diverse
fields, ranging from geometry to probability theory. In this regard, as far as the local

theory is concerned, one of the best known results deals with Hörmander’s bracket

condition [14], which we briefly recall. Given X0,X1, . . . ,Xr real, smooth vector fields,
and c a smooth real-valued function, say on an open set Ω ⊂ RN , where we define

P =̇
∑r

j=1X
2
j +X0 + c, if the Lie algebra generated by the vector fields Xj spans the

tangent space TxΩ for every x ∈Ω, then P is hypoelliptic. The converse holds true when

the coefficients of P are real-analytic [9]. In particular, the bracket condition implies global
hypoellipticity, but it is far from necessary even for real-analytic operators. One of the
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reasons, which also makes the global problem difficult to deal with, is the appearance of
small divisors phenomena, encoded in what are generally called Diophantine conditions,

which in their simplest form are illustrated by the famous result of Greenfield and

Wallach [10]: the operator ∂t+α∂x is globally hypoelliptic on the torus T2 if and only if
α is an irrational non-Liouville number.

These Diophantine conditions are specially common when dealing with an operator of

tube type, that is, an operator defined on a product Tn
t ×Tm

x whose coefficients depend

only on the t variable. The natural approach is then to attack the problem using partial
Fourier series on the x variable, a powerful tool that justifies why most of the results in

the literature deal exclusively with this environment. This poses the question as to what

extent can one find analogous characterizations for global hypoellipticity of operators
defined on more general compact manifolds, and, in that case, how one should formulate

or otherwise replace Diophantine conditions entirely; they must, therefore, be understood

from a more abstract viewpoint.
Concerning sums of squares of tube type on tori, one of the most general class of

operators considered in the literature so far is the subject of [3]. There, the authors

introduce operators with real ultradifferentiable coefficients of the form

−Δt−
N∑
�=1

( m∑
j=1

a�j(t)∂xj
+

n∑
k=1

b�k(t)∂tk

)2

, (0.1)

where N ∈N is arbitrary, −Δt =−∂2
t1 −. . .−∂2

tn is the usual Laplace-Beltrami operator on

Tn, and the vector fields
∑n

k=1 bk(t)∂tk are skew-symmetric on Tn. Since the Diophantine
condition presented there is very technical, we will not reproduce it here, but we mention

that it involves only the coefficients a�j . This state-of-the-art result is our starting

point: In the present work, we introduce a class of operators that naturally encompasses
(0.1) but which are allowed to live on a much more general ambient, and whose global

hypoellipticity we address.

More precisely, let T be a compact, connected, and orientable smooth manifold and G

be a compact and connected Lie group. Our main result concerns the global hypoellipticity
of operators on T ×G of the following kind:

P =̇ ΔT −
N∑
�=1

( m∑
j=1

a�j(t)Xj +W�

)2

, (0.2)

where ΔT is the Laplace-Beltrami operator on T associated to a given Riemannian metric,

W1, . . . ,WN are skew-symmetric, real, smooth vector fields on T, while a�j ∈C∞(T ;R) for
every �∈{1, . . . ,N} and j ∈{1, . . . ,m}, and X1, . . . ,Xm is a basis of real left-invariant vector

fields on G. The inspiration to consider tube operators of the type sum of squares comes

from [4, 6, 7, 8], where global analytic-hypoellipticity of such operators is investigated
under Hörmander’s condition. As mentioned before, the characterization of (smooth)

global hypoellipticity on the N -dimensional torus has traditionally been done in terms

of some kind of Diophantine condition — which, unlike Hörmander’s, is not local (see
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e.g. [11, 12, 13] and references therein). It is worth mentioning that for each class of

regularity — for instance, smooth, Gevrey, real-analytic — there is a corresponding type

of Diophantine condition, and as the operator under study takes a more general form, the
corresponding condition becomes increasingly difficult to treat. Our framework is more

general, and so we propose a new and invariant condition about certain system of vector

fields on G that characterize the global hypoellipticity on T ×G of operators of the type
sum of squares like in (0.2) that avoid any reference to Diophantine conditions.

In order to not overload this section with notations, we will briefly describe our results

after introducing a convention: Throughout this work, g denotes the Lie algebra of G.
Note that when G = Tm, g is the space of R-linear combinations of ∂x1

, . . . ,∂xm
. Let us

consider the following set of left-invariant vector fields on G :

L =̇
{
L ∈ g : L =

m∑
j=1

a�j(t)Xj for some � ∈ {1, . . . ,N} and some t ∈ T
}
.

Recall that the system L is globally hypoelliptic in G if any distribution u in G satisfying

Lu ∈ C∞(G) for every L ∈ L is already smooth. Our main results tell that the global

hypoellipticity of the system L on G is necessary for global hypoellipticity of P (see
Theorem 3.3 and Proposition 7.2). Under an additional hypothesis, Theorem 3.5 says

that this condition is also sufficient.

This additional hypothesis comes from the fact that we are also allowing G to be a
noncommutative Lie group and, as we stress, when G = Tm, this hypothesis is always

fulfilled by our operator P. It was carefully chosen in order to allow us to provide

interesting examples and applications when G is not the m-dimensional torus (see

Example 8.1 and the discussion around it), and, moreover, we show in Section 8.3 that a
slightly stronger assumption would force G to be Abelian. Nevertheless, we do not know

at the moment how restrictive it is, and even suspect that such a condition is not necessary

for the validity of Theorem 3.5. A soft evidence for this suspicion is that, according to
that theorem’s statement, perturbations of P not satisfying the additional hypothesis do

not destroy its global hypoellipticity.

As an immediate consequence of our main results, we can give a new characterization
of the global hypoellipticity of the operator (0.2) when G = Tm and T is an arbitrary

compact Riemannian manifold. This result is already new in two aspects: there is no

mention of Diophantine conditions, and the first factor of T ×Tm can be much more

general than an n-dimensional torus. This corollary goes as follows:

Theorem 1. Let T be a compact manifold as above and consider the LPDO on T ×Tm

defined by

P =̇ ΔT −
N∑
�=1

( m∑
j=1

a�j(t)∂xj
+W�

)2

.
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Then P is globally hypoelliptic in T ×Tm if and only if the system of vector fields with
constant coefficients

L=
{
L ∈ g : L =

m∑
j=1

a�j(t)∂xj
for some � ∈ {1, . . . ,N} and some t ∈ T

}
is globally hypoelliptic in Tm.

It turns out that this condition about L is equivalent to the Diophantine condition
presented in [3] (see Section 8.1 for more details), thus our result above generalizes [3,

Theorem 1.5]. However, stated as such, our new condition is much easier to check than

the number-theoretic one in many practical situations: For instance, if one is able to find
certain finitely many L1, . . . ,Lr ∈L spanning the whole g, then automatically L is globally

hypoelliptic. This is interesting even when G is a torus; see Example 8.4, which gives the

general idea for constructing other examples using results already known in the literature.

Interesting applications are also yielded by Lemma 5.1, which allows us to replace, in
our results, the system L by LieL, the Lie algebra generated by L. In Hörmander’s

condition, the tangent space TxΩ must be generated by the vector fields X0, . . . ,Xr,

together with their higher order brackets, at each point x ; in the construction of LieL,
however, we are allowed to take brackets of our vector fields evaluated at different points

of the manifold. This shows a new and surprising sufficient condition for the global

hypoellipticity that is much weaker than the Hörmander’s. Incidentally, a big difference
between the commutative and the noncommutative cases is revealed, since in the first one,

there is no gain in considering LieL. In Example 8.1 (a generalization of [1, Theorem 3]),

we construct a class of operators that illustrates a phenomenon that can not occur in

G=Tm. Following these lines, Hörmander’s condition will be more explored in Section 8.2.
On the one hand, a finite type condition at a single point implies that the system L is

globally hypoelliptic (Corollary 8.6). On the other hand, Example 8.1, with convenient

choices of coefficients, yields operators that are globally hypoelliptic while the finite type
condition fails to be true everywhere — actually, operators that are clearly not locally

hypoelliptic.

Section 1 is intended to recollect a few basic results on this business — especially those
aspects peculiar to Lie groups — and also settle the notation. In Section 2, we develop

the basic machinery — a suitable substitute to partial Fourier series — that was used

throughout the other sections. It is based on the spectral theory of the (partial) Laplace-

Beltrami operator on G ; although most of the results here are known, we decided to keep
some of their proofs (or sketches) in the text, as we did not find some of them in the

literature in the exact form employed.

The notation established in the first two sections allows us to state in Section 3 our main
results in a concise way. Theorem 3.5 is our main result regarding sufficient conditions

for global hypoellipticity, and we present its proof at the end of Section 6. Theorem 3.3

is the keystone to obtain a necessary condition for global hypoellipticity, and Section 7
is devoted to prove it. Section 8 has a series of examples and remarks aiming to put our

work in perspective, especially when we consider known results in the torus, Hörmander’s

condition, and also a necessary condition based on Sussmann’s orbits. We end applying
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the techniques here developed to prove in Section 9 broader versions of [3, Theorem 1.9]

(Theorem 9.1) and of [1, Theorem 1] (Theorem 9.3).

1. Preliminaries

LetM be a compact, connected, smooth manifold, which, for simplicity, we further require

to be orientable and, in fact, oriented. We endow it with a Riemannian metric, and
we denote by dV its underlying volume form. The L2 norms below are always taken

with respect to this measure, which we assume without loss of generality (w.l.o.g.) to

be normalized. Let d : C∞(M ;R) → C∞(M ;T ∗M) be the exterior derivative and d∗ :
C∞(M ;T ∗M) → C∞(M ;R) its formal adjoint: The Laplace-Beltrami operator is then

defined as the second-order differential operator

Δ =̇ d∗d : C∞(M ;R)−→ C∞(M ;R).

Their action can be complexified by allowing all the objects involved to take values in C.

We recall the main properties of Δ which will be of fundamental importance to us. It is

an elliptic operator, and positive semidefinite, that is, 〈Δf,f〉L2(M) ≥ 0 for all f ∈C∞(M).

We denote by σ(Δ) ⊂ R+ its spectrum, that is, the set of all eigenvalues of Δ: This set
is countably infinite, and for each λ ∈ σ(Δ), we denote by Eλ the eigenspace associated

with λ, which is a finite dimensional vector space containing smooth functions only. These

eigenspaces are pairwise orthogonal in L2(M), and E0 is precisely the space of constant
functions since M is connected. The Spectral Theorem tells us that if we endow each Eλ

with the L2 inner product then, as Hilbert spaces,

L2(M)∼=
⊕̂

λ∈σ(Δ)

Eλ.

Moreover, the following consequence of Weyl’s asymptotic formula [5, p. 155] holds:∑
λ∈σ(Δ)\0

(dimEλ)λ
−2m <∞, where m =̇ dim M. (1.1)

If for each λ ∈ σ(Δ), we denote by Fλ : L2(M) → Eλ the corresponding orthogonal

projection, then every f ∈ L2(M) can be written as

f =
∑

λ∈σ(Δ)

Fλ(f),

where convergence takes place in L2(M). In the same spirit, we may extend the projection

maps Fλ to act on distributions and identify many spaces of (generalized) functions on

M by analyzing the growth of their corresponding sequences of projections, in a Paley-
Wiener-like fashion.

The space C∞(M) of all complex-valued smooth functions on M is naturally endowed

with a locally convex topology (uniform convergence of all derivatives on compact
coordinate sets). As our volume form dV allows us to identify the space of all smooth

densities on M with C∞(M), by the same token, we may identify the topological dual

of the latter with D ′(M), the space of Schwartz distributions on M. The measure
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dV further allows us to embed all the classical spaces of functions in D ′(M): We

interpret each f ∈ L1(M) as a distribution on M by letting it act on a test function

φ ∈ C∞(M) as

〈f,φ〉 =̇
∫
M

fφ dV.

If f ∈ D ′(M) for each λ ∈ σ(Δ), we have f |Eλ
∈E∗

λ, and we denote by Fλ(f) the unique
element in Eλ that satisfies

〈Fλ(f),φ〉L2(M) = 〈f,φ〉, ∀φ ∈ Eλ.

Concretely, if {φλ
i : 1≤ i≤ dimEλ} is an orthonormal basis for Eλ, then

Fλ(f) =

dλ∑
i=1

〈Fλ(f),φ
λ
i 〉L2(M) φ

λ
i =

dλ∑
i=1

〈f,φλ
i 〉 φλ

i , ∀f ∈ D ′(M),

where dλ =̇ dimEλ; it coincides with the original definition of Fλ(f) when f ∈ L2(M).

We denote by F(f) the sequence (Fλ(f))λ∈σ(Δ). The following result can be found, for
example, in [2].

Proposition 1.1. For a sequence a = (a(λ))λ∈σ(Δ), where a(λ) ∈ Eλ for all λ ∈ σ(Δ),

the following characterizations hold:

1. a = F(f) for some f ∈ C∞(M) if and only if for every s > 0, there exists C > 0,

such that

‖a(λ)‖L2(M) ≤ C(1+λ)−s, ∀λ ∈ σ(Δ).

2. a= F(f) for some f ∈ D ′(M) if and only if there exist C,s > 0, such that

‖a(λ)‖L2(M) ≤ C(1+λ)s, ∀λ ∈ σ(Δ).

1.1. Riemannian metrics on compact Lie groups

Let G be a compact and connected Lie group, whose dimension as a manifold we denote

by m. We denote by g the Lie algebra of all real vector fields on G that are left-invariant:

This is a finite dimensional vector space, canonically isomorphic to TeG — where e ∈G
stands for the identity element.

Any basis X1, . . . ,Xm ∈ g forms a global frame for TG, and if χ1, . . . ,χm ∈ g∗ is the

corresponding dual basis — which we regard as left-invariant 1-forms on G — they form

a global frame for T ∗G. In particular, χ =̇ χ1 ∧ ·· · ∧χm is a nonvanishing left-invariant
top-degree form on G, and it is easy to check that any other such form must be a multiple

of χ: One often calls

dVG =̇
(∫

G

χ
)−1

χ

the Haar volume form associated with the orientation given by the frame X1, . . . ,Xm.

Left-invariant Riemannian metrics on G are in one-to-one correspondence with inner
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products on g: Any such inner product, which we regard as an inner product on TeG,
can be pushed forward by the left-translation Lx :G→G (which is a diffeomorphism of

G onto itself) to an inner product on TxG for every x ∈ G, thus producing the desired

left-invariant Riemannian metric. Now, if we fix an inner product 〈·,·〉 on g and, as above,
select X1, . . . ,Xm an orthonormal basis for g, then χ is precisely the Riemannian volume

form with respect to (w.r.t.) the left-invariant Riemannian metric 〈·,·〉 and compatible

with the orientation of G given by X1, . . . ,Xm. In particular, the Riemannian volume form

w.r.t. a left-invariant Riemannian metric is always left-invariant, hence a constant multiple
of the Haar volume form. As such, with respect to such a metric, any left-invariant vector

field X ∈ g is (formally) skew-symmetric, that is

〈Xf,g〉L2(G) =−〈f,Xg〉L2(G), ∀f,g ∈ C∞(G).

Particularly relevant to what comes next are the so-called ad-invariant metrics : These
are left-invariant Riemannian metrics 〈·,·〉 on G with the additional property that

〈[X,Y],Z〉=−〈Y,[X,Z]〉, ∀X,Y,Z ∈ g. (1.2)

Such metrics always exist since we are assuming G to be compact [16, Proposition 4.24].

The key point is that, in that case, if X1, . . . ,Xm ∈ g is an orthonormal basis, then the
Laplace-Beltrami operator ΔG associated to 〈·,·〉 can be written as

ΔG =−
m∑
j=1

X2
j, (1.3)

and, moreover, every left-invariant vector field on G commutes with ΔG.

2. Partial Fourier projection maps on product manifolds

Let T,G be two compact, connected, smooth manifolds, orientable and oriented, and

also carrying Riemannian metrics, just like M did in Section 1, and whose dimensions

will be denoted by n =̇ dimT and m =̇ dimG. Then their product enjoys the very same

properties. Moreover, T ×G carries the product metric. If we denote by dV (respectively,
dVT ,dVG) the Riemannian volume form of T ×G (respectively, T,G) with respect to the

metric introduced above, then one can prove the following version of Fubini’s Theorem:

Proposition 2.1. For every f ∈ C∞(T ×G), we have∫
T×G

f(t,x) dV (t,x) =

∫
T

(∫
G

f(t,x) dVG(x)
)
dVT (t).

Let Δ (respectively, ΔT ,ΔG) be the Laplace-Beltrami operator on T ×G (respectively,
T,G) associated to the underlying metric(s) above: In the next statement, we summarize

their most significant relationships. Notice that given any differential operator P on T

(or on G), we will also denote its lift to T ×G by P.
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Proposition 2.2.

1. Δ =ΔT +ΔG as differential operators on T ×G.

2. If for each μ ∈ σ(ΔT ) (respectively, λ ∈ σ(ΔG)), we denote by ET
μ ⊂ C∞(T )

(respectively, EG
λ ⊂ C∞(G)) the eigenspace of ΔT (respectively, ΔG) associated to μ

(respectively, λ), and choose bases for them

{ψμ
i : 1≤ i≤ dTμ}, where dTμ =̇ dimET

μ ,

{φλ
j : 1≤ j ≤ dGλ }, where dGλ =̇ dimEG

λ ,

which are orthonormal w.r.t. the inner products inherited from L2(T ),L2(G),

respectively, then the set

S =̇ {ψμ
i ⊗φλ

j : 1≤ i≤ dTμ , 1≤ j ≤ dGλ , μ ∈ σ(ΔT ), λ ∈ σ(ΔG)}

is a Hilbert basis for L2(T ×G).

3. Every α ∈ σ(Δ) is of the form α= μ+λ for some μ ∈ σ(ΔT ) and λ ∈ σ(ΔG).

4. If for each α ∈ R+, we define

P(α) =̇ {(μ,λ) ∈ σ(ΔT )×σ(ΔG) : μ+λ= α},

then the eigenspace of Δ associated to α ∈ σ(Δ) is precisely

Eα =
⊕

(μ,λ)∈P(α)

ET
μ ⊗EG

λ

and an orthonormal basis for this space w.r.t. the L2(T ×G) inner product is

{ψμ
i ⊗φλ

j : 1≤ i≤ dTμ , 1≤ j ≤ dGλ , (μ,λ) ∈ P(α)}.

Remark 2.3. For α ∈ R+, the set P(α) may contain more than one pair, that is, there

may exist distinct (μ,λ),(μ′,λ′)∈ σ(ΔT )×σ(ΔG) for which μ+λ= μ′+λ′. However, such
a set is necessarily finite, since both σ(ΔT ) and σ(ΔG) are discrete and unbounded.

Now, let f ∈ C∞(T ×G) and, given t ∈ T , we once more regard f(t,·) as a smooth
function on G, for which we consider its orthogonal expansion

f(t,·) =
∑

λ∈σ(ΔG)

FG
λ (f(t,·)),

where FG
λ (f(t,·)) ∈ EG

λ can be written, in terms of our previously chosen basis, as

FG
λ (f(t,·)) =

dG
λ∑

j=1

〈f(t,·),φλ
j 〉L2(G)φ

λ
j =

dG
λ∑

j=1

(∫
G

f(t,x)φλ
j (x)dVG(x)

)
φλ
j . (2.1)

Allowing now t to vary in T, we see at once that for each given λ ∈ σ(ΔG), the map

t ∈ T �−→ FG
λ (f(t,·)) ∈ EG

λ
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is smooth, hence an element of C∞(T ;EG
λ )∼= C∞(T )⊗EG

λ , which we denote by FG
λ (f).

We can then consider the EG
λ -valued orthogonal expansion w.r.t. ΔT of FG

λ (f) ∈
C∞(T ;EG

λ ): given μ ∈ σ(ΔT ), we have

FT
μ FG

λ (f) =

dG
λ∑

j=1

FT
μ

(∫
G

f(·,x)φλ
j (x)dVG(x)

)
⊗φλ

j =

dT
μ∑

i=1

dG
λ∑

j=1

〈
f,ψμ

i ⊗φλ
j

〉
L2(T×G)

ψμ
i ⊗φλ

j

which is an element of ET
μ ⊗EG

λ . By Proposition 2.2(4), this is nothing but a portion of
Fα(f), and we actually conclude that

Fα(f) =
∑

(μ,λ)∈P(α)

FT
μ FG

λ (f), ∀α ∈ σ(Δ). (2.2)

On time, we notice that for every λ ∈ σ(ΔG), we have

C∞(T ;EG
λ ) = {f ∈ C∞(T ×G) : ΔGf = λf} (2.3)

— as one easily sees by analyzing the orthogonal expansion of any f ∈ C∞(T ×G) w.r.t.
our Hilbert basis S — and that FG

λ : C∞(T ×G)→ C∞(T ;EG
λ ) is a projection. Indeed,

given f ∈ C∞(T ×G), it follows from (2.1) that FG
λ (f) is characterized as the unique

element in C∞(T ;EG
λ ) with the property that

〈FG
λ (f),ψ〉L2(T×G) = 〈f,ψ〉L2(T×G), ∀ψ ∈ C∞(T ;EG

λ ) (2.4)

which can be easily checked by expanding any such ψ in terms of an orthonormal

basis. It follows at once that FG
λ : C∞(T ×G) → C∞(T ;EG

λ ) acts as the identity on

C∞(T ;EG
λ ). In order to extend the definitions above to distributions f ∈ D ′(T ×G),

given λ ∈ σ(ΔG), we expect to construct an object FG
λ (f) ∈ D ′(T ;EG

λ ). First of all,
notice that we may identify (EG

λ )∗ with EG
λ itself by means of the anti-Riesz isomorphism

φ∈EG
λ �→ 〈·,φ̄〉L2(G) ∈ (EG

λ )∗, for which {φλ
j : 1≤ j ≤ dGλ } is the corresponding dual basis.

Thus, an element g ∈ C∞(T ; (EG
λ )∗) can be written uniquely as

g =

dG
λ∑

j=1

gj ⊗φλ
j , gj ∈ C∞(T ).

Note that when f ∈ C∞(T ×G), we have seen (2.4) that we can apply FG
λ (f), as an

element of D ′(T ;EG
λ ), to g ∈ C∞(T ; (EG

λ )∗) and obtain

〈FG
λ (f),g〉=

dG
λ∑

j=1

(∫
T

∫
G

f(t,x)gj(t)φλ
j (x)dVG(x)dVT (t)

)
〈φλ

j ,φ
λ
j 〉L2(G) = 〈f,g〉.

Now, for f ∈ D ′(T ×G), its projection FG
λ (f) ∈ D ′(T ;EG

λ ) is also written uniquely as

FG
λ (f) =

dG
λ∑

j=1

Fj ⊗φλ
j , Fj ∈ D ′(T ),
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where, as one can now easily guess,

〈Fj,ψ〉 =̇ 〈f,ψ⊗φλ
j 〉, ∀ψ ∈ C∞(T ).

We have thus defined a linear map FG
λ : D ′(T ×G) → D ′(T ;EG

λ ) which is essentially

the transpose of the inclusion map C∞(T ;EG
λ ) ↪→ C∞(T ×G). We can now characterize

smoothness in terms of the double partial Fourier maps.

Proposition 2.4. A distribution f ∈ D ′(T ×G) is smooth if and only if for every s > 0,

there exists C > 0, such that

‖FT
μ FG

λ (f)‖L2(T×G) ≤ C(1+μ+λ)−s, ∀(μ,λ) ∈ σ(ΔT )×σ(ΔG).

The next two corollaries of Proposition 2.4 are fundamental to our approach later on.

Before we state (and prove) them, we will need the following remark.

Remark 2.5. For f,g ∈ C∞(T ;EG
λ ) given by

f =

dG
λ∑

i=1

fi⊗φλ
i , g =

dG
λ∑

i′=1

gi′ ⊗φλ
i′, fi,gi′ ∈ C∞(T ),

we have by Proposition 2.1

〈f,g〉L2(T×G) =

∫
T×G

dG
λ∑

i,i′=1

fi(t)φ
λ
i (x)gi′(t)φ

λ
i′(x)dV (t,x) =

dG
λ∑

i=1

〈fi,gi〉L2(T ).

Moreover, we have

FT
μ (f) =

dG
λ∑

i=1

FT
μ (fi)⊗φλ

i , ∀μ ∈ σ(ΔT ),

hence

‖f‖2L2(T×G) =

dG
λ∑

i=1

‖fi‖2L2(T ) =

dG
λ∑

i=1

∑
μ∈σ(ΔT )

‖FT
μ (fi)‖2L2(T ) =

∑
μ∈σ(ΔT )

‖FT
μ (f)‖2L2(T×G).

Corollary 2.6. If f ∈ C∞(T ×G), then for every s > 0, there exists C > 0, such that

‖FG
λ (f)‖L2(T×G) ≤ C(1+λ)−s, ∀λ ∈ σ(ΔG). (2.5)

Proof. By the computations done in Remark 2.5, we have

‖FG
λ (f)‖2L2(T×G) =

∑
μ∈σ(ΔT )

‖FT
μ FG

λ (f)‖2L2(T×G).

By Proposition 2.4, for each s > 0, there exists C > 0, such that

‖FG
λ (f)‖2L2(T×G) ≤

∑
μ∈σ(ΔT )

C2(1+μ+λ)−2s−2n ≤ C2(1+λ)−2s
∑

μ∈σ(ΔT )

(1+μ)−2n,

where n= dimT and the last series converges thanks to Weyl’s formula (1.1) for ΔT .
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Corollary 2.7. If f ∈ D ′(T ×G) is such that

1. for every s > 0, there exists C > 0, such that (2.5) holds and

2. for every s′ > 0, there exist C ′ > 0 and θ ∈ (0,1), such that

‖FT
μ FG

λ (f)‖L2(T×G) ≤ C ′(1+μ+λ)−s′, ∀(μ,λ) ∈ Λθ, (2.6)

where

Λθ =̇ {(μ,λ) ∈ σ(ΔT )×σ(ΔG) : (1+λ)≤ (1+μ)θ}. (2.7)

Then f ∈ C∞(T ×G).

Proof. Let Λc
θ ⊂ σ(ΔT )×σ(ΔG) denote the complement of Λθ. For (μ,λ) ∈ Λc

θ, we have

1+μ+λ < (1+λ)
1
θ +λ≤ (1+λ)1+

1
θ ≤ (1+λ)

2
θ

since 1/θ > 1. Therefore, given s′ > 0, we define s =̇ 2θ−1s′, hence for (μ,λ) ∈Λc
θ, we have

(1+λ)−s ≤ (1+μ+λ)−
θs
2 = (1+μ+λ)−s′ .

Let then C,C ′ > 0 be such that (2.5) and (2.6) hold, hence

‖FT
μ FG

λ (f)‖L2(T×G) ≤
{
C(1+μ+λ)−s′, in Λc

θ,

C ′(1+μ+λ)−s′, in Λθ.

Combining both estimates, it follows from Proposition 2.4 that f ∈ C∞(T ×G).

Before we end this section, we will prove a result about LPDOs which commute with

one of the partial Laplace-Beltrami operators on T ×G: such LPDOs will also commute

with the partial Fourier projection map associated to the corresponding factor. This is a
key property that all of our operators of interest in the forthcoming sections will enjoy.

Proposition 2.8. Let P be an LPDO in T × G which commutes with ΔG. If

u ∈ D ′(T ×G), then FG
λ (Pu) = PFG

λ (u) for every λ ∈ σ(ΔG).

Proof. We will be content to prove the assertion when u is smooth. First, notice that P
maps C∞(T ;EG

λ ) to itself: indeed, if f ∈ C∞(T ;EG
λ ), then by (2.3)

ΔGf = λf =⇒ΔG(Pf) = P (ΔGf) = λ(Pf)

from which we conclude that Pf ∈ C∞(T ;EG
λ ). We claim that P ∗ — the formal adjoint

of P — also commutes with ΔG: For f,g ∈ C∞(T ×G), we have 〈ΔGf,g〉L2(T×G) =

〈f,ΔGg〉L2(T×G), hence

〈P ∗ΔGf,g〉L2(T×G) = 〈f,ΔGPg〉L2(T×G) = 〈f,PΔGg〉L2(T×G) = 〈ΔGP
∗f,g〉L2(T×G),

https://doi.org/10.1017/S147474802300049X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802300049X
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and since this holds for all f,g ∈ C∞(T ×G), our claim follows. In particular, P ∗ also

preserves C∞(T ;EG
λ ) for each λ ∈ σ(ΔG). Now, for u ∈ C∞(T ×G), we have, for all

ψ ∈ C∞(T ;EG
λ ),

〈FG
λ (Pu),ψ〉L2(T×G) = 〈Pu,ψ〉L2(T×G) = 〈u,P ∗ψ〉L2(T×G) = 〈FG

λ (u),P ∗ψ〉L2(T×G)

thanks to (2.4): notice that in the last equality, we used that P ∗ψ ∈ C∞(T ;EG
λ ). After a

final transposition, we conclude that

〈FG
λ (Pu),ψ〉L2(T×G) = 〈PFG

λ (u),ψ〉L2(T×G), ∀ψ ∈ C∞(T ;EG
λ ),

which yields our conclusion, since both FG
λ (Pu) and PFG

λ (u) belong to C∞(T ;EG
λ ).

3. A class of sublaplacians on product manifolds

From now on, we will assume some extra structure in the environment postulated in the
previous sections: namely, G will be a Lie group (with dimG=m), while T will remain a

smooth manifold (with dimT = n), both of them compact, connected, and oriented. We

impose no conditions on the Riemannian metric on T but will require the one on G to
be ad-invariant (1.2). We denote by g the Lie algebra of G.

Let a : T → g be a smooth map. If X1, . . . ,Xm is a basis of g, then

a(t) =

m∑
j=1

aj(t)Xj, t ∈ T,

where a1, . . . ,am ∈ C∞(T ;R) are uniquely determined. We thus regard a as a first-order
LPDO on T ×G, which we may sometimes write a(t,X) when we want to stress this point

of view. Notice that

a(t,X)(ψ⊗φ) =
m∑
j=1

(ajψ)⊗ (Xjφ), ∀ψ ∈ D ′(T ), φ ∈ D ′(G),

hence, in particular, a(t,X)(ψ⊗1G) = 0 for every ψ ∈ D ′(T ).
We introduce the class of LPDOs on T ×G which is the main theme of this work. Define

P =̇Q−
N∑
�=1

(
a�(t,X)+W�

)2

, (3.1)

where a1, . . . ,aN : T → g are smooth maps, W1, . . . ,WN are real, smooth vector fields on

T, and Q is a real, positive semidefinite LPDO on T — meaning that 〈Qψ,ψ〉L2(T ) ≥ 0
for every ψ ∈ C∞(T ) — which is a wildcard in our model: We will slowly add hypotheses

to it, but for now, we will assume that

P̃ =̇Q−
N∑
�=1

W2
� (3.2)

is a second-order LPDO on T that kills constants (i.e., has no zero order term). The

main examples we will explore afterward are Q = ΔT and Q = 0. Our aim in this work

https://doi.org/10.1017/S147474802300049X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802300049X


Global hypoellipticity of sums of squares on compact manifolds 2417

is to study necessary and sufficient conditions for an operator P as above to be globally
hypoelliptic, or (GH) for short, in T ×G:

∀u ∈ D ′(T ×G), Pu ∈ C∞(T ×G) =⇒ u ∈ C∞(T ×G).

Since a1, . . . ,aN : T → g are smooth, for each � ∈ {1, . . . ,N}, we may write

a�(t) =

m∑
j=1

a�j(t)Xj, t ∈ T, (3.3)

with a�1, . . . ,a�m ∈ C∞(T ;R). Then, given ψ ∈ D ′(T ) and φ ∈ D ′(G), we have, unwinding
the square in the definition of P,

P (ψ⊗φ) = (P̃ψ)⊗φ−
N∑
�=1

( m∑
j,j′=1

(a�j′a�jψ)⊗ (Xj′Xjφ)+

m∑
j=1

(
(2a�jW�+W�a�j)ψ

)
⊗ (Xjφ)

)
.

(3.4)

Roughly speaking, P has “separated variables” with “constant coefficients” on G and

hence behaves nicely under partial the Fourier projection maps on that factor. Rigorously,
operators such as Q and W� commute with ΔG, as they act on independent variables,

but so does a�(t,X) since each Xj commutes with ΔG (as pointed out at the end of

Section 1.1). Thus, P also commutes with ΔG; to all of them, Proposition 2.8 applies.

On time, we point out the following energy identity, which will be fundamental later on.
Its proof is purely computational, and we leave it to the reader. Recall that a real vector

field W on T is skew-symmetric (also often called skew-adjoint, or divergence free) if

〈Wf,g〉L2(T ) =−〈f,Wg〉L2(T ), ∀f,g ∈ C∞(T ).

Lemma 3.1. Let P be as in (3.1). If we further assume that W1, . . . ,WN are skew-

symmetric on T, then for each λ ∈ σ(ΔG), we have

〈Pψ,ψ〉L2(T×G) = 〈Qψ,ψ〉L2(T×G)+
N∑
�=1

‖Y�ψ‖2L2(T×G), ∀ψ ∈ C∞(T ;EG
λ ),

where Y� =̇ a�(t,X)+W� for � ∈ {1, . . . ,N}.

3.1. Main results

We start by discussing necessary conditions for global hypoellipticity of P in (3.1).

Proposition 3.2. If P is (GH) in T ×G, then P̃ is (GH) in T.

Proof. Let u∈D ′(T ) be such that P̃ u∈C∞(T ). Then, by (3.4), we have that P (u⊗1G)=
(P̃ u)⊗1G is smooth on T ×G, hence, by hypothesis, u⊗1G ∈ C∞(T ×G) — which can

only happen if u ∈ C∞(T ).

Motivated by this remark, we shall be mostly concerned with the case when P̃ is an

elliptic operator in T, an assumption that will allow us to make use of microlocal methods.

Now, we come to our second necessary condition for global hypoellipticity of P.
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Theorem 3.3. If P is (GH) in T ×G, then the following regularity condition holds:

∀u ∈ D ′(G), a�(t,X)(1T ⊗u) ∈ C∞(T ×G) ∀� ∈ {1, . . . ,N}=⇒ u ∈ C∞(G). (3.5)

Its proof is not as simple: We postpone it to Section 7. Under additional conditions,

we will see that the necessary conditions in Proposition 3.2 and Theorem 3.3 are also

sufficient. But first, let us restate (3.5) in terms of a system of left-invariant vector fields
on G. To do so, we must recall the notion of global hypoellipticity for such systems:

Definition 3.4. Let M be a smooth, compact manifold as in Section 1. A family L of
smooth vector fields on M is said to be globally hypoelliptic in M if for every u ∈ D ′(M),

we have

Lu ∈ C∞(M), ∀L ∈ L=⇒ u ∈ C∞(M).

From now on, we denote by L the system of vector fields on G defined as follows:

L =̇
N⋃
�=1

rana� ⊂ g. (3.6)

Thus, a left-invariant vector field L belongs to L if and only if there exist � ∈ {1, . . . ,N}
and t ∈ T , such that L = a�(t). Moreover, for each � ∈ {1, . . . ,N}, we let

L� =̇ spanR rana� ⊂ g. (3.7)

We will prove in Proposition 7.2 that condition (3.5) is equivalent to ask that L is (GH) in

G. In Section 8.1, we explore in detail such condition when G is a torus and equate it with
the notion of nonsimultaneous approximability of a collection of vectors, a Diophantine

condition already known to be connected with global hypoellipticity of operators like

(3.1) when both T and G are tori [3].

When Q=ΔT , we can state our sufficiency result as follows:

Theorem 3.5. Let

P =ΔT −
N∑
�=1

(
a�(t,X)+W�

)2

, (3.8)

and suppose that W1, . . . ,WN are skew-symmetric real vector fields in T. Assume,

moreover, that:

1. For each given � ∈ {1, . . . ,N}, we have that a�(t1),a�(t2) commute as vector fields

in G, for any t1,t2 ∈ T . In other words, each L� ⊂ g as defined in (3.7) spans a
commutative Lie subalgebra.

2. The system L ⊂ g in (3.6) is (GH) in G.

Then P is (GH) in T ×G. Furthermore, if R is an LPDO in T ×G of the form

R =̇−
M∑
κ=1

(
bκ(t,X)+Vκ

)2

, (3.9)
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where V1, . . . ,VM are skew-symmetric real vector fields in T and b1, . . . ,bM ∈C∞(T ;g) do

not necessarily satisfy the commutativity condition above, then P0 =̇ P +R is also (GH)

in T ×G.

Note that, for any �∈ {1, . . . ,N}, we can assume that t∈ T �→ a�(t)∈ g is not identically

zero. For operators P as in (3.8), we have that

P̃ =ΔT −
N∑
�=1

W2
�

is elliptic in T. Additionally, note that if G = Tm, then L� is always commutative,

so Proposition 3.2 and Theorems 3.3 and 3.5 together yield Theorem 1, hence our
result generalizes [3, Theorem 1.5]. Let us also point out that we were able to prove

global hypoellipticity of P (3.1) in Theorem 9.1 and in Theorem 9.3 when Q is any

positive semidefinite operator in T, where, on the other hand, we impose more restrictive
assumptions on the vector fields a�(t,X), for � ∈ {1, . . . ,N}.

4. Consequences of the ellipticity of P̃ on the Fourier projections

Let us evaluate the principal symbol of P̃ (3.2) at (t0,τ0) ∈ T ∗T \ 0 by taking any

ψ ∈ C∞(T ;R), such that dTψ(t0) = τ0: We have

P̃2(t0,τ0) = lim
ρ→∞

ρ−2e−iρψ
(
Q(eiρψ)−

N∑
�=1

W2
� (e

iρψ)
)∣∣∣

t0
=Q2(t0,τ0)+

N∑
�=1

(W�ψ)(t0)
2.

In particular, if Q2 is a nonnegative function and the system of vector fields W1, . . . ,WN

is elliptic in T, then certainly P̃ is elliptic. If, on the other hand, Q=ΔT , then Q2 may

be evaluated by means of the local expression of the Laplace-Beltrami operator: In that

case, P̃ is automatically elliptic — no assumptions needed on W1, . . . ,WN .

Lemma 4.1. Suppose that P̃ is elliptic and that u ∈ D ′(T × G) is such that

Pu ∈ C∞(T ×G). Then for every φ ∈ C∞(G), we have that ũ(φ) =̇ 〈u, ·⊗φ〉 ∈ C∞(T ).

Proof. First, we will show that

{(t,τ) ∈ T ∗T \0 : (t,τ,x,0) ∈ Char(P ) for some x ∈G}= ∅ (4.1)

which is a direct consequence of the ellipticity of P̃ . Indeed, we compute the principal

symbol of P at (t,τ,x,0) ∈ T ∗
t T ×T ∗

xG
∼= T ∗

(t,x)(T ×G) by taking ψ ∈ C∞(T ;R), such that

dTψ(t) = τ , hence f =̇ ψ⊗1G satisfies df(t,x) = (τ,0) and

P2(t,τ,x,0) = lim
ρ→∞

ρ−2e−iρfP (eiρf )|(t,x) = lim
ρ→∞

ρ−2e−iρψP̃ (eiρψ)|t = P̃2(t,τ)

so (4.1) follows since P̃ is elliptic. Now, let φ ∈ C∞(G): at first, we only know that

ũ(φ) ∈ D ′(T ). Using partitions of unity, we may assume w.l.o.g. that suppφ is contained
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in a coordinate open set U ⊂ G, where we apply [15, Theorem 2.5.12] to conclude

that

(t,τ) ∈WF(ũ(φ)) =⇒ (t,τ,x,0) ∈WF(u) for some x ∈ U,

which is further contained in Char(P ) since Pu is everywhere smooth.

The following is an easy consequence of Lemma 4.1.

Corollary 4.2. Suppose that P̃ is elliptic and that u ∈ D ′(T ×G) is such that Pu ∈
C∞(T ×G). Then, FG

λ (u) ∈ C∞(T ;EG
λ ) for every λ ∈ σ(ΔG).

For the next lemma, recall that for M, a compact manifold as in Section 1, the topology

of C∞(M) can be given by the system of (semi)norms, defined, for f ∈ C∞(M), by

‖f‖H s(M) =̇ ‖(I+Δ)sf‖L2(M), s ∈ Z+.

We use this fact below with M = T,G and Δ =ΔT ,ΔG, respectively.

Lemma 4.3. Suppose that u∈D ′(T ×G) is such that ũ(φ) = 〈u, ·⊗φ〉 ∈C∞(T ) for every

φ ∈ C∞(G). Then for each s > 0 there exist C > 0 and θ ∈ (0,1) such that

‖FT
μ FG

λ (u)‖L2(T×G) ≤ C(1+μ+λ)−s, ∀(μ,λ) ∈ Λθ,

where Λθ is defined in (2.7).

Proof. The hypothesis means that the range of the continuous linear map ũ : C∞(G)→
D ′(T ) actually lies in C∞(T ). This yields a new linear map ũ : C∞(G)→ C∞(T ) which

is continuous by the Closed Graph Theorem: it follows that for each s ∈ Z+, there exist

C > 0 and s′ ∈ Z+, such that

‖ũ(φ)‖H s(T ) ≤ C‖φ‖H s′ (G), ∀φ ∈ C∞(G).

Taking φ= φλ
j — one of our orthonormal basis elements of EG

λ — we obtain

‖ũ(φλ
j )‖H s(T ) ≤ C‖φλ

j ‖H s′ (G) = C(1+λ)s
′
,

while on the other hand

‖ũ(φλ
j )‖2H s(T ) =

∑
μ∈σ(ΔT )

(1+μ)2s‖FT
μ [ũ(φλ

j )]‖2L2(T ) =
∑

μ∈σ(ΔT )

(1+μ)2s
dT
μ∑

i=1

|〈u,ψμ
i ⊗φλ

j 〉|2,

hence

dG
λ∑

j=1

‖ũ(φλ
j )‖2H s(T ) =

∑
μ∈σ(ΔT )

(1+μ)2s
dT
μ∑

i=1

dG
λ∑

j=1

|〈u,ψμ
i ⊗φλ

j 〉|2 =
∑

μ∈σ(ΔT )

(1+μ)2s‖FT
μ FG

λ (u)‖2L2(T×G)

from which we conclude that

(1+μ)2s‖FT
μ FG

λ (u)‖2L2(T×G) ≤
dGλ∑
j=1

‖ũ(φλ
j )‖

2
H s(T ) ≤ dGλC

2(1+λ)2s
′
, ∀(μ,λ) ∈ σ(ΔT )×σ(ΔG),
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and thus, since dGλ =O(λ2m) thanks to (1.1),

(1+μ)s‖FT
μ FG

λ (u)‖L2(T×G) ≤ C(1+λ)s
′+m, ∀(μ,λ) ∈ σ(ΔT )×σ(ΔG).

Let θ ∈ (0,1) be so small that θ(s′+m)≤ s/2: for (μ,λ) ∈ Λθ, we then have

‖FT
μ FG

λ (u)‖L2(T×G) ≤ C(1+λ)s
′+m(1+μ)−s ≤ C(1+μ)θ(s

′+m)−s ≤ C(1+μ)−s/2.

Moreover, on Λθ, we have 1+μ+λ≤ (1+μ)2 from which our conclusion follows.

Combining Lemmas 4.1 and 4.3, we conclude:

Corollary 4.4. Suppose that P̃ is elliptic. If u∈D ′(T ×G) is such that Pu∈C∞(T ×G),

then for every s > 0, there exist C > 0 and θ ∈ (0,1), such that

‖FT
μ FG

λ (u)‖L2(T×G) ≤ C(1+μ+λ)−s, ∀(μ,λ) ∈ Λθ.

5. Interlude: global hypoellipticity of certain systems of vector fields

In this section, we derive some general results regarding global hypoellipticity of systems

of vector fields (Definition 3.4) which are needed to pave the way for the proofs of
Theorem 3.5 and related results later on. We consider M a compact Riemannian manifold

enjoying all the properties described in Section 1, from where we also borrow the notation.

We denote its Laplace-Beltrami operator simply by Δ, and L will stand for any system
of smooth vector fields in M.

Lemma 5.1. The following are equivalent:

1. L is (GH) in M.

2. spanRL is (GH) in M.

3. LieL, the Lie algebra generated by L, is (GH) in M.

Proof. It is clear that if L ⊂ L′ are two families of vector fields and L is (GH) in M,

then so is L′. This observation takes care of the implications (1) ⇒ (2) ⇒ (3) since
L ⊂ spanRL ⊂ LieL. Since, moreover

LieL= spanR
⋃
ν∈N

{[X1,[· · · [Xν−1,Xν ] · · · ]] : Xj ∈ L, 1≤ j ≤ ν}

implication (3) ⇒ (1) follows immediately.

The main advantage of the previous lemma is that it enables us to transition between
different sets of generators of a given system. The next technical proposition characterizes

global hypoellipticity of certain finitely generated systems in terms of manageable

inequalities. Not only this will be required in the proof of our main result but also later on
in Section 8.1. There, we discuss the case when G is a torus and show a direct application

of Proposition 5.2 to an important system of vector fields with constant coefficients on

Tm. This allows us to connect our abstract conditions with the notion of simultaneous
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approximability — an inequality that can be read from the symbols of the vector fields à
la Greenfield-Wallach.

Proposition 5.2. Suppose that L1, . . . ,Lr are smooth vector fields on M which commute

with Δ. Then, the system {L1, . . . ,Lr} is (GH) in M if and only if there exist C,ρ > 0 and

λ0 ∈ σ(Δ), such that

( r∑
j=1

‖Ljφ‖2L2(M)

) 1
2 ≥ C(1+λ)−ρ‖φ‖L2(M), ∀φ ∈ Eλ, ∀λ≥ λ0. (5.1)

Proof. Suppose that C,ρ > 0 and λ0 ∈ σ(Δ) are such that (5.1) holds, and let u ∈D ′(M)
be such that L1u, . . . ,Lru ∈ C∞(M). Given s > 0, for each j ∈ {1, . . . ,r}, there exists

Cj > 0, such that

‖Fλ(Lju)‖L2(M) ≤ Cj(1+λ)−s−ρ, ∀λ ∈ σ(Δ),

by Proposition 1.1. Since Fλ(Lju) = LjFλ(u) (for Lj commutes with Δ: use Proposition
2.8 with T =̇ {pt}, or see [2, Proposition 2.2]), we have for λ≥ λ0 that

‖Fλ(u)‖L2(M) ≤ C−1(1+λ)ρ
( r∑

j=1

‖LjFλ(u)‖2L2(M)

) 1
2 ≤ C−1

( r∑
j=1

C2
j

) 1
2

(1+λ)−s.

As the set {λ∈ σ(Δ) : λ< λ0} is finite, we conclude by Proposition 1.1 that u∈C∞(M).
For the converse, suppose that for each ν ∈ N, there exist λν ∈ σ(Δ) with λν ≥ ν and

φν ∈ Eλν
, such that

( r∑
j=1

‖Ljφν‖2L2(M)

) 1
2

< 2−ν(1+λν)
−ν‖φν‖L2(M).

W.l.o.g., we assume ‖φν‖L2(M) = 1 and that {λν}ν∈N is strictly increasing. Then

u =̇
∑
ν∈N

φν ∈ D ′(M)\C∞(M)

by Proposition 1.1. On the other hand, for j ∈ {1, . . . ,r}, we have, given s > 0:

• if λ= λν for some ν ≥ s:

‖Fλ(Lju)‖L2(M) = ‖Ljφν‖L2(M) ≤ 2−ν(1+λν)
−ν ≤ (1+λ)−s;

• if λ �= λν for every ν ∈ N:

‖Fλ(Lju)‖L2(M) = 0≤ (1+λ)−s.

Thus, Lju ∈ C∞(M) since {ν ∈ N : ν < s} is finite; hence, {L1, . . . ,Lr} is not (GH).
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6. Sufficiency for operators subject to commutativity assumptions

Our aim in this section is to prove Theorem 3.5, which still requires some preparation.
For each � ∈ {1, . . . ,N}, we write

a�(t) =

m∑
j=1

a�j(t)Xj, t ∈ T,

which we assume to be not identically zero, hence, among a�1, . . . ,a�m, there are exactly

m� ≥ 1 functions that are R-linearly independent. We denote them by α�1, . . . ,α�m� :

writing the remaining coefficients as linear combinations of these allows us to write a� as

a�(t) =

m�∑
p=1

α�p(t)L
�
p,

where L�
1, . . . ,L

�
m� are linear combinations of X1, . . . ,Xm, hence also elements of g. One

can prove that L�
1, . . . ,L

�
m� are linearly independent, and actually a basis for L� as defined

in (3.7) (see Section 8.1, where we derive explicit expressions for these vector fields w.r.t.

the choice α�p =̇ a�j�p for p ∈ {1, . . . ,m�}).
Linear independence of α�1, . . . ,α�m� means that if we define D� : T ×Rm� → R by

D�(t,γ) =̇
( m�∑

p=1

α�p(t)γp

)2

, t ∈ T, γ ∈ Rm�

,

then for each γ �= 0, the function t ∈ T �→D�(t,γ) ∈R cannot be identically zero. We then

have, arguing as in the proof of [3, Lemma 3.1]:

Lemma 6.1. There are constants α,δ > 0, such that for every γ ∈ Rm�

, there exists a

nonempty open set Aγ ⊂ T with vol(Aγ)≥ δ, such that

D�(t,γ)≥ α|γ|2, ∀t ∈Aγ .

Next, we state without proof a fundamental estimate, which generalizes [12, Equation

(2.10)].

Proposition 6.2. Given δ > 0, there exists a constant C > 0, such that for every open
set A⊂ T with vol(A)≥ δ, one has

‖ψ‖2L2(T ) ≤ C
(
‖ψ‖2L2(A)+‖dTψ‖2L2(T )

)
, ∀ψ ∈ C∞(T ).

We also mention the following easy result that will be useful in some arguments below.

Lemma 6.3. Let W be any vector field on T. Then, there exists C > 0, such that

‖Wψ‖L2(T ) ≤ C‖dTψ‖L2(T ), ∀ψ ∈ C∞(T ).

All of this allows us to prove the following:
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Proposition 6.4. Under the hypotheses of Theorem 3.5, there exist C,ρ > 0 and
λ0 ∈ σ(ΔG), such that

〈Pψ,ψ〉L2(T×G) ≥ C(1+λ)−ρ‖ψ‖2L2(T×G), ∀ψ ∈ C∞(T ;EG
λ ), λ≥ λ0. (6.1)

Proof. By hypothesis (1), the set of left-invariant vector fields L� acts as a family of

commuting, skew-symmetric — hence normal — linear endomorphisms of EG
λ for each

λ ∈ σ(ΔG), which then admits an orthonormal basis

φλ,�
1 , . . . ,φλ,�

dG
λ

∈ EG
λ

which are common eigenvectors to all operators in L�; their associated eigenvalues are
purely imaginary

L�
pφ

λ,�
i =

√
−1γλ,�

i,p φ
λ,�
i , γλ,�

i,p ∈ R,

and we may bound their absolute values thanks to the following easy remark.

Lemma 6.5. For every X ∈ g, we have

‖Xφ‖L2(G) ≤ ‖X‖gλ1/2‖φ‖L2(G), ∀φ ∈ EG
λ , ∀λ ∈ σ(ΔG),

where ‖ · ‖g is the norm on g induced by the underlying ad-invariant inner product.

Proof of Lemma 6.5. Assume w.l.o.g. X �= 0. Let then X1, . . . ,Xm be an orthonormal

basis for g, such that X1 = X/‖X‖g. As the sum of their squares equals −ΔG (1.3), we

have, for φ ∈ EG
λ ,

‖X1φ‖2L2(G) ≤
m∑
j=1

‖Xjφ‖2L2(G) =−
m∑
j=1

〈X2
jφ,φ〉L2(G) = 〈ΔGφ,φ〉L2(G) = λ‖φ‖2L2(G).

It follows immediately that

|γλ,�
i,p |2 ≤ ‖L�

p‖2gλ.

For each i,i′ ∈ {1, . . . ,dGλ } and p,p′ ∈ {1, . . . ,m�}:

〈L�
pφ

λ,�
i ,L�

p′φ
λ,�
i′ 〉L2(G) = γλ,�

i,p γ
λ,�
i′,p′〈φλ,�

i ,φλ,�
i′ 〉L2(G) = δii′γ

λ,�
i,p γ

λ,�
i′,p′,

so, in particular, for each given t ∈ T , we have

〈a�(t)φλ,�
i ,a�(t)φ

λ,�
i′ 〉L2(G) =

m�∑
p,p′=1

α�p(t)α�p′(t)〈L�
pφ

λ,�
i ,L�

p′φ
λ,�
i′ 〉L2(G)

=

m�∑
p,p′=1

α�p(t)α�p′(t)δii′γ
λ,�
i,p γ

λ,�
i′,p′ = δii′D�(t,γ

λ,�
i ),

where γλ,�
i ∈ Rm�

is defined in the obvious manner.
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A general ψ ∈ C∞(T ;EG
λ ) is written, given � ∈ {1, . . . ,N}, as

ψ =

dG
λ∑

i=1

ψ�
i ⊗φλ,�

i ,

so, for each t ∈ T given, we have that

‖a�(t)ψ(t)‖2L2(G) =

∫
G

∣∣∣ dG
λ∑

i=1

ψ�
i (t)(a�(t)φ

λ,�
i )(x)

∣∣∣2dVG(x)

=

dG
λ∑

i,i′=1

ψ�
i (t)ψ

�
i′(t)〈a�(t)φ

λ,�
i ,a�(t)φ

λ,�
i′ 〉L2(G) =

dG
λ∑

i=1

|ψ�
i (t)|2D�(t,γ

λ,�
i )

(6.2)

but also

‖L�
pψ(t)‖2L2(G) =

∫
G

∣∣∣ dG
λ∑

i=1

ψ�
i (t)(L

�
pφ

λ,�
i )(x)

∣∣∣2dVG(x) =

dG
λ∑

i=1

|ψ�
i (t)|2|γλ,�

i,p
|2.

Recall that L�
1, . . . ,L

�
m� form a basis for L� (3.7) for each � ∈ {1, . . . ,N}, hence the set

{L�
p : p ∈ {1, . . . ,m�}, � ∈ {1, . . . ,N}} (6.3)

generates spanRL. By Lemma 5.1, our hypothesis (2) of global hypoellipticity of L in G

entails the same property for spanRL and hence for (6.3). As these commute with ΔG,
Proposition 5.2 then provides us constants C,ρ > 0 and λ0 ∈ σ(ΔG), such that

( N∑
�=1

m�∑
p=1

‖L�
pφ‖2L2(G)

) 1
2 ≥ C(1+λ)−ρ‖φ‖L2(G), ∀φ ∈ EG

λ , λ≥ λ0. (6.4)

Fix λ≥ λ0. We apply (6.4) to φ= ψ(t), for some t ∈ T given

‖ψ(t)‖2L2(G) ≤ C−2(1+λ)2ρ
N∑
�=1

m�∑
p=1

‖L�
pψ(t)‖2L2(G) = C−2(1+λ)2ρ

N∑
�=1

dG
λ∑

i=1

|ψ�
i (t)|2|γλ,�

i |2,

and then integrate both sides over T, yielding

‖ψ‖2L2(T×G) ≤ C−2(1+λ)2ρ
N∑
�=1

dG
λ∑

i=1

∫
T

|ψ�
i (t)|2|γλ,�

i |2dVT (t). (6.5)

Let us work out the last integral above. By Lemma 6.1, there are constants α,δ > 0, such

that for every � ∈ {1, . . . ,N} and every i ∈ {1, . . . ,dGλ } fixed, there exists a nonempty open

set Aλ,�
i ⊂ T with vol(Aλ,�

i )≥ δ, such that

D�(t,γ
λ,�
i )≥ α|γλ,�

i |2, ∀t ∈Aλ,�
i .
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Then, by Proposition 6.2, there exists C1 > 0 depending on δ but not on any other
parameters, such that∫

T

|ψ�
i (t)|2|γλ,�

i |2dVT (t)≤ C1

(∫
Aλ,�

i

|ψ�
i (t)|2|γλ,�

i |2dVT (t)+‖dT (|γλ,�
i |ψ�

i )‖2L2(T )

)
≤ C1

(
α−1

∫
T

|ψ�
i (t)|2D�(t,γ

λ,�
i )dVT (t)+B�λ‖dTψ�

i‖2L2(T )

)
,

where, by the conclusion after Lemma 6.5, B� > 0 depends only on ‖L�
p‖g, p∈ {1, . . . ,m�}.

By (6.2)

dGλ∑
i=1

∫
T

|ψ�
i (t)|2|γλ,�

i |2dVT (t)≤ C1

(
α−1

∫
T

dGλ∑
i=1

|ψ�
i (t)|2D�(t,γ

λ,�
i )dVT (t)+B�λ

dGλ∑
i=1

‖dTψ
�
i‖2L2(T )

)

= C1

(
α−1‖a�(t,X)ψ‖2L2(T×G)+B�λ〈ΔTψ,ψ〉L2(T×G)

)
,

and hence, for some C2 > 0,

N∑
�=1

dG
λ∑

i=1

∫
T

|ψ�
i (t)|2|γλ,�

i |2dVT (t)≤ C2(1+λ)
( N∑

�=1

‖a�(t,X)ψ‖2L2(T×G)+ 〈ΔTψ,ψ〉L2(T×G)

)
.

By Lemma 6.3, there exists C3 > 0, such that

‖a�(t,X)ψ‖2L2(T×G) ≤
(
‖(a�(t,X)+W�)ψ‖L2(T×G)+‖W�ψ‖L2(T×G)

)2

≤ 2
(
‖(a�(t,X)+W�)ψ‖2L2(T×G)+C2

3 〈ΔTψ,ψ〉L2(T×G)

)
from which we conclude that

N∑
�=1

dGλ∑
i=1

∫
T

|ψ�
i (t)|2|γλ,�

i |2dVT (t)≤ C4(1+λ)
( N∑

�=1

‖(a�(t,X)+W�)ψ‖2L2(T×G)+ 〈ΔTψ,ψ〉L2(T×G)

)

= C4(1+λ)〈Pψ,ψ〉L2(T×G),

the last equality following from Lemma 3.1. Plugging this back into (6.5) ends our proof.

Now we prove Theorem 3.5.

Proof of Theorem 3.5. Let u ∈ D ′(T ×G) be such that f =̇ Pu ∈ C∞(T ×G). Since P̃
is elliptic, by Corollary 4.2, we have that FG

λ (u) ∈ C∞(T ;EG
λ ) for every λ ∈ σ(ΔG), and

by Proposition 6.4 — applied to ψ =FG
λ (u) — there exist C,ρ > 0 and λ0 ∈ σ(ΔG), such

that

‖FG
λ (u)‖L2(T×G) ≤ C−1(1+λ)ρ‖FG

λ (f)‖L2(T×G), ∀λ≥ λ0

after a suitable application of the Cauchy-Schwarz inequality. But since f is smooth, by
Corollary 2.6, for every s > 0, there exists Cs > 0, such that

‖FG
λ (u)‖L2(T×G) ≤ Cs(1+λ)−s, ∀λ≥ λ0.
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It is simple to see that, increasing Cs if necessary, we obtain that the last inequality holds
for every λ ∈ σ(ΔG). We already saw in Corollary 4.4 that the ellipticity of P̃ entails,

for every s > 0, the existence of C > 0 and θ ∈ (0,1), such that (2.6) holds. Finally,

Corollary 2.7 ensures smoothness of u. Furthermore, if R is as in (3.9), then it is certainly
a positive semidefinite LPDO in T ×G, hence (6.1) implies that the same inequality holds

if we exchange P for P0 = P +R. The latter is also an LPDO on T ×G of the same kind

as P, and P̃0 is clearly elliptic too. Thus, the argument above applies just as well for P0

in place of P, proving its global hypoellipticity in T ×G.

7. A class of systems

Our goal in this section is to prove Theorem 3.3. Notice that its proof would be rather

simple — similar to that of Proposition 3.2 — if there were no vector fields W� in (3.1).
Here, however, we are once again studying a general P defined by (3.1) in T ×G and L
denotes the system of vector fields (3.6). Our next lemma is the key to relate the condition

(3.5) with the global hypoellipticity of L in G.

Lemma 7.1. A distribution u ∈ D ′(G) satisfies a�(t,X)(1T ⊗u) ∈ C∞(T ×G) for every

� ∈ {1, . . . ,N} if and only if Lu ∈ C∞(G) for every L ∈ L.

Proof. Let u ∈D ′(G) be such that a�(t,X)(1T ⊗u) ∈ C∞(T ×G) for every � ∈ {1, . . . ,N}.
We have

a�(t,X)(1T ⊗u) =
m∑
j=1

a�j(t)Xju, t ∈ T,

which is smooth in T ×G, hence for any given t0 ∈ T

a�(t0)u=

m∑
j=1

a�j(t0)Xju ∈ C∞(G), ∀� ∈ {1, . . . ,N}.

We conclude that Lu ∈ C∞(G) for every L ∈ L= {a�(t0) : t0 ∈ T, � ∈ {1, . . . ,N}} .
For the converse, suppose that u ∈ D ′(G) is such that Lu ∈ C∞(G) for every L ∈ L.

We select L1, . . . ,Lr ∈ L a basis for spanRL — this is a finite dimensional space since it

is contained in g — so we can write, for each � ∈ {1, . . . ,N},

a�(t) =

r∑
j=1

α�j(t)Lj, t ∈ T,

where α�1, . . . ,α�r ∈ C∞(T ;R) are uniquely determined. We thus have

a�(t,X)(1T ⊗u) = a�(t)u=

r∑
j=1

α�j(t)Lju ∈ C∞(T ×G), ∀� ∈ {1, . . . ,N},

since L1u, . . . ,Lru ∈ C∞(G) by hypothesis.
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Proposition 7.2. Condition (3.5) holds if and only if L is (GH) in G.

Proof. Assume first that L is (GH) in G, and let u ∈ D ′(G) be such that a�(t,X)(1T ⊗
u) ∈ C∞(T ×G) for every � ∈ {1, . . . ,N}. By Lemma 7.1, we have that Lu ∈ C∞(G) for

every L ∈ L, hence u ∈ C∞(G). On the other hand, if one assumes (3.5) and letting
u ∈ D ′(G) be such that Lu ∈ C∞(G) for every L ∈ L, then, by Lemma 7.1, we have that

a�(t,X)(1T ⊗u) ∈ C∞(T ×G) for every � ∈ {1, . . . ,N}. We conclude that u ∈ C∞(G).

We now prove Theorem 3.3.

Proof of Theorem 3.3. Suppose that P is (GH) in T ×G, and let u ∈ D ′(G) be such

that a�(t,X)(1T ⊗u) ∈ C∞(T ×G) for every � ∈ {1, . . . ,N}. By (3.4), we have (recall that
P̃ has no zeroth order terms, hence annihilates constants):

P (1T ⊗u) =−
N∑
�=1

a�(t,X)
2(1T ⊗u)−

N∑
�=1

m∑
j=1

(W�a�j)⊗ (Xju).

The first sum in C∞(T ×G) by assumption; we claim that so is the second. Indeed, define

ã�(t) =̇

m∑
j=1

(W�a�j)(t)Xj, t ∈ T, � ∈ {1, . . . ,N}.

Hence, ã1, . . . ,ãN : T → g are all smooth. We notice that ran ã� ⊂ spanR rana� for every

� ∈ {1, . . . ,N}: given t0 ∈ T and (U ;χ) = (U ; t1, . . . ,tn) a coordinate chart of T centered
at t0, we may write, in U,

W� =
n∑

k=1

b�k(t)
∂

∂tk
,

where b�1, . . . ,b�n ∈ C∞(U ;R), hence

ã�(t0) =

m∑
j=1

n∑
k=1

b�k(t0)
∂a�j
∂tk

(t0)Xj =

n∑
k=1

b�k(t0) lim
h→0

1

h

(
a�(χ

−1(hek))−a�(χ
−1(0))

)
certainly belongs to spanR rana� — since all the Newton quotients above obviously do.

We then define

L̃ =̇
N⋃
�=1

ran ã�

which we have just proved to be contained in spanRL. Now, since a�(t,X)(1T ⊗ u) ∈
C∞(T ×G) for every � ∈ {1, . . . ,N}, it follows from Lemma 7.1 that Lu ∈ C∞(G) for

every L ∈ L, hence also for every L ∈ spanRL and, in particular, for every L ∈ L̃; by a

second application of Lemma 7.1, we conclude that ã�(t,X)(1T ⊗u)∈C∞(T ×G) for every
� ∈ {1, . . . ,N}. It then follows that

P (1T ⊗u) =−
N∑
�=1

a�(t,X)
2(1T ⊗u)−

N∑
�=1

ã�(t,X)(1T ⊗u) ∈ C∞(T ×G),
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and, since P is (GH) in T ×G, we conclude that 1T ⊗u∈C∞(T ×G), that is, u∈C∞(G),

thus proving (3.5).

8. Remarks and examples

We devote this section to motivate our hypotheses, to compare our results with previous
ones in the literature, and, of course, to provide some examples of operators that satisfy

the hypotheses of Theorem 3.5.

Let us take a look at hypothesis (1) in Theorem 3.5. The fact that a�(t1) and a�(t2)

commute for every t1,t2 ∈ T does not preclude noncommutativity of the vector fields
belonging to distinct L�. In concrete examples, this prevents us from being “thrown

back” to tori: more stringent hypotheses could inadvertently imply that g were already

commutative to start with (see, e.g., Corollary 8.8). This leads us to our first example.

Example 8.1. Choose X1, . . . ,XN ∈ g, such that the Lie subalgebra generated by them is
g. Define a�(t) =̇ a�(t)X�, for every � ∈ {1, . . . ,N}, where each a� ∈ C∞(T ;R) is a nonzero

function, and consider

P =̇ ΔT −
N∑
�=1

(
a�(t)X�+W�

)2

,

where W1, . . . ,WN are skew-symmetric vector fields in T. Then condition (1) in

Theorem 3.5 is satisfied: for each � ∈ {1, . . . ,N}, we have

L� = spanR{a�(t)X� : t ∈ T},

and, for every t1,t2 ∈ T , we have [a�(t1)X�,a�(t2)X�] = a�(t1)a�(t2)[X�,X�] = 0. Notice how
we are not assuming [X�,X�′ ] = 0 for � �= �′.
Moreover, since a� is not identically zero, some nonvanishing multiple of X� belongs

to L. It follows that LieL= g (because this is the Lie algebra generated by X1, . . . ,XN ),
which is evidently (GH) in G ; hence, so is L itself, as a consequence of Lemma 5.1:

condition (2) in Theorem 3.5 is thus satisfied. We conclude that P is (GH) in T ×G.

Notice that this generalizes [1, Theorem 3].

Note that if G = Tm, then LieL = g is possible if and only if L already contains m

linearly independent vector fields. For a compact connected but non-Abelian Lie group
G, the noncommutativity of g helps us to reach condition (2) as N, the number of linearly

independent vector fields in L in Example 8.1, could be much smaller than m = dimg.

For instance, in G =̇ SU(2), it is possible to find X1,X2,X3 three real vector fields forming
a linear basis of g = su(2) and such that [X1,X2] = X3. Choosing nonvanishing a1,a2 ∈
C∞(T ;R) and skew-symmetric vector fields W1,W2 in T, we conclude that

P =̇ ΔT − (a1(t)X1+W1)
2− (a2(t)X2+W2)

2 (8.1)

is globally hypoelliptic in T ×G. It is easy, however, to construct many examples for which
(8.1) is not locally hypoelliptic: If there exists an open set U ⊂M , where a1 = a2 =0, then

P = ΔT −W2
1 −W2

2 on U ×G, where we can pick any distribution u ∈ D ′(U ×G) that

does not depend on the t variable. More generally, if there is an open set U ⊂M , where
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a2 vanishes (but not necessary a1), then one can find a coordinate chart (V ;x1, . . . ,xm)

in G, where X1 = ∂x1
, hence

P =ΔT − (a1(t)∂x1
+W1)

2−W2
2

in U ×V , which is also not locally hypoelliptic: take u ∈ D ′(U ×V ) depending only on
x2, . . . ,xm.

8.1. Relationship with the notion of simultaneous approximability for vectors

Before we provide more examples, we compare Theorem 1 with [3, Theorem 1.5], where

global hypoellipticity of the same model operator was studied. Even though both results

established necessary and sufficient conditions for global hypoellipticity when G is a torus,
it may seem, at a first glance, that our necessary condition of L being (GH) in G has

nothing to do with the notion of simultaneous approximability of a collection of vectors

[3, Definition 1.2]1. Note that one does not need to assume that T is a torus in order to

state the notion of simultaneous approximability.
Yet, now we study the relationship between these two concepts. Still within the general

setup, recall that g carries an inner product 〈·,·〉 and select X1, . . . ,Xm ∈ g a linear basis.

Let a1, . . . ,aN be as in (3.3), and, for each � ∈ {1, . . . ,N}, define

A� =̇ spanR{a�1, . . . ,a�m} ⊂ C(T ;R).

Notice that the linear map X ∈ g �→
∑m

j=1〈X,Xj〉a�j ∈ A� is certainly onto, with kernel

precisely L⊥
� : we thus have an isomorphism L�

∼=A�. Their dimension will be denoted by
m�, and therefore there are indices 1≤ j�1 < · · ·< j�m� ≤m, such that

a�j�1, . . . ,a�j�m�
form a basis of A�.

If we write the remaining indices as 1≤ i�1 < · · ·< i�d� ≤m (where d� =̇m−m�), then

a�i�q =

m�∑
p=1

λ�
qpa�j�p, q ∈ {1, . . . ,d�},

where λ�
qp ∈ R are uniquely determined. Thus, an X ∈ g belongs to L⊥

� if and only if

〈X,Xj�p
〉+

d�∑
q=1

λ�
qp〈X,Xi�q

〉= 0, ∀p ∈ {1, . . . ,m�},

meaning that X is orthogonal to

L�
p =̇ Xj�p

+

d�∑
q=1

λ�
qpXi�q

, p ∈ {1, . . . ,m�}.

1Properly adapted to the smooth setup (see condition (2) in Proposition 8.2): in that work, the
authors are interested in hypoellipticity w.r.t. some classes of ultradifferentiable functions.
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That is, L�
1, . . . ,L

�
m� form a basis for L� (they are clearly linearly independent), so by

Proposition 5.2 and Lemma 5.1, L is (GH) in G if and only if there exist C,ρ > 0 and

λ0 ∈ σ(ΔG), such that (6.4) holds.

Now, let us see how this works on a torus. When G = Tm, we have that Xj =̇ ∂xj
,

j ∈ {1, . . . ,m}, form a basis of its Lie algebra g∼=Rm – which is a commutative Lie algebra,
so the standard inner product (i.e., the one for which X1, . . . ,Xm is an orthonormal basis)

is automatically ad-invariant, and the associated Laplace-Beltrami operator thus reads

ΔG =−
m∑
j=1

X2
j =−

m∑
j=1

∂2
xj
.

Thanks to Fourier analysis, we have that σ(ΔG) = {|ξ|2 : ξ ∈ Zm} and

EG
λ = spanC{eixξ : ξ ∈ Zm, |ξ|2 = λ}, ∀λ ∈ σ(ΔG),

the exponentials actually forming an orthonormal basis of EG
λ , hence

‖L�
pe

ixξ‖L2(Tm) =
∥∥∥(∂x

j�p
+

d�∑
q=1

λ�
qp∂xi�q

)
eixξ

∥∥∥
L2(Tm)

=
∣∣∣ξj�p + d�∑

q=1

λ�
qpξi�q

∣∣∣.
By (6.4), if L is (GH) in G= Tm, then there exist C,ρ > 0 and n0 ∈ N, such that

( N∑
�=1

m�∑
p=1

∣∣∣ξj�p + d�∑
q=1

λ�
qpξi�q

∣∣∣2) 1
2 ≥ C(1+ |ξ|2)−ρ, ∀ξ ∈ Zm, |ξ| ≥ n0. (8.2)

Conversely, since every φ ∈ EG
λ can be written as

φ=
∑

|ξ|2=λ

φξe
ixξ, φξ ∈ C,

if (8.2) holds, then for |ξ| ≥ n0:

N∑
�=1

m�∑
p=1

‖L�
pφ‖2L2(Tm) =

N∑
�=1

m�∑
p=1

∑
|ξ|2=λ

|φξ|2
∣∣∣ξj�p + d�∑

q=1

λ�
qpξi�q

∣∣∣2 ≥ C2(1+λ)−2ρ‖φ‖2L2(Tm),

so (6.4) also holds, and L is (GH) in Tm.

Inequality (8.2) not only resembles the smooth version of the nonsimultaneous
approximability condition in [3, Definition 1.2] but is actually equivalent to it. This is the

content of the next proposition, for which statement we introduce further notation. For

each � ∈ {1, . . . ,N}, assume that d� > 0 and m� > 0, and denote, for ξ ∈ Rm,

ξ′(�) =̇ (ξj�1, . . . ,ξj�m�
) ∈ Rm�

, ξ′′(�) =̇ (ξi�1, . . . ,ξi�d�
) ∈ Rd�

,

and also

v�p =̇ (λ�
1p, . . . ,λ

�
d�p) ∈ Rd�

, p ∈ {1, . . . ,m�}.
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Proposition 8.2. The following are equivalent:

1. There exist C,ρ > 0 and n0 ∈ N, such that (8.2) holds, that is

( N∑
�=1

m�∑
p=1

∣∣∣ξj�p +v�p · ξ′′(�)
∣∣∣2) 1

2 ≥ C(1+ |ξ|2)−ρ, ∀ξ ∈ Zm, |ξ| ≥ n0.

2. There exist B,M > 0, such that for each ξ ∈ Zm \ 0, there exist � ∈ {1, . . . ,N} and

p ∈ {1, . . . ,m�}, such that

|ξj�p +v�p · ξ′′(�)| ≥B(1+ |ξ′′(�)|)−M .

The proof relies on standard calculations. One immediately recognizes condition (2)
above as the bona fide smooth version of the Diophantine condition in [3, Definition 1.2].

In T × Tm, consider P as in (3.8). We say that it satisfies the nonsimultaneous

approximability condition if one of the following holds for the family a1, . . . ,aN :

• there exists � ∈ {1, . . . ,N}, such that d� = 0;
• after relabeling indices, we find 0 < N ′ ≤ N , such that none of a1, . . . ,aN ′ is

identically zero and when we apply the procedure above, we obtain a collection
v11, . . . ,v

1
m1,v21, . . . ,v

N ′

mN′ satisfying one of the equivalent properties in Proposi-
tion 8.2.

Corollary 8.3. When G = Tm, our system L in (3.6) is (GH) in G if and only if P

satisfies the nonsimultaneous approximability condition.

Example 8.4. Define an LPDO P on T ×T2 by

P =̇ ΔT − (∂x1
+α∂x2

)2− (β∂x1
+∂x2

)2,

where α,β ∈Q and αβ �=1. Since both α and β are rational, it is clear, thanks to a classical

result from Greenfield and Wallach [10], that neither L1 =̇ ∂x1
+α∂x2

nor L2 =̇ β∂x1
+∂x2

is globally hypoelliptic in T2. It is plain, however, that L1,L2 together generate the tangent
space of T2 at every point, therefore, the system L =̇ {L1,L2} is (GH) in T2 and P is

(GH) in T ×T2.

8.2. Comparison with Hörmander’s condition

Back to a general compact Lie group G, with Lie algebra g, let h⊂ g be a Lie subalgebra.

We regard C∞(T ;h) as a subset of X(T ×G), the Lie algebra of all real, smooth vector
fields on T ×G: as such, it is a Lie subalgebra of the latter. Indeed, given a basis L1, . . . ,Lr

of h, any a ∈ C∞(T ;h) can be written as

a(t) =
r∑

j=1

aj(t)Lj, t ∈ T,
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where a1, . . . ,ar ∈ C∞(T ;R) are uniquely determined; from this observation, our claim

follows easily. Moreover, for any real vector field W in T, we have that

aW =̇

r∑
j=1

(Waj)Lj

also belongs to C∞(T ;h) by definition. One then easily sees that Θ =̇ C∞(T ;h)+X(T ),

the set of all vector fields Y in T ×G of the form Y = a(t,X)+W, where a ∈ C∞(T ;h)
and W ∈ X(T ), is a Lie subalgebra of X(T ×G).

Now let L be as in (3.6) and let h =̇ LieL ⊂ g. Given Y1, . . . ,YN ∈ Θ, assume that for

a given (t,x) ∈ T ×G, the following condition holds:

∃Z1, . . . ,Zν ∈ X(T ), such that the set {Z1, . . . ,Zν,Y1, . . . ,YN} is of finite type at (t,x).
(8.3)

It follows from the fact that Θ is a Lie algebra containing Z1, . . . ,Zν,Y1, . . . ,YN that

Θ(t,x) =̇ {Y|(t,x) : Y ∈Θ}= T(t,x)(T ×G),

hence, (πG)∗Θ(t,x) = TxG, where (πG)∗ : T(t,x)(T ×G)→ TxG is the projection map.

Proposition 8.5. If (πG)∗Θ(t,x) = TxG for some (t,x) ∈ T ×G, then LieL= g.

Proof. Given X ∈ g arbitrary, there exists Y ∈ Θ, such that (πG)∗Y|(t,x) = X|x. Hence,
for some a1, . . . ,ar ∈ C∞(T ;R) and W ∈ X(T ), we have

Y|(t,x) =
r∑

j=1

aj(t)Lj |x+W|t =⇒X|x =

r∑
j=1

aj(t)Lj |x.

As two left-invariant vector fields are the same if they match at a single point, we conclude

r∑
j=1

aj(t)Lj =X,

where the left-hand side belongs to LieL for each t ∈ T fixed.

Since g is (GH) in G, we conclude from Lemma 5.1 that:

Corollary 8.6. If Y1, . . . ,YN satisfy (8.3) at some (t,x) ∈ T ×G, then L is (GH) in G.

Yet, simple examples show that we may have LieL= g—which is stronger than L being

(GH) in G — while the finite type condition fails at every point: back to Example 8.1,

if m≥ 2 and a1, . . . ,aN have pairwise disjoint supports, then (8.3) for Y� =̇ a�(t)X�+W�,
� ∈ {1, . . . ,N}, fails everywhere since no X� can generate the whole g.

8.3. A necessary condition based on Sussmann’s orbits

Let M be a compact manifold, as in Section 1. We will now show a simple result which

illustrates the connection between the topology of Sussmann’s orbits of a system L of

vector fields on M — or, rather, how they are immersed into the ambient manifold
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— and the global hypoellipticity of L in M. This has some interesting consequences
(Corollary 8.8) which better contextualize the hypotheses of Theorem 3.5.

Recall that the orbit of L through x0 is the set of all x ∈ M enjoying the following

property: there exists a continuous curve γ : [0,δ]→M (for some δ > 0) with endpoints
γ(0) = x0 and γ(δ) = x and a partition 0 = t0 < t1 < · · ·< tκ = δ, such that on each open

subinterval (tj,tj+1) — for j ∈ {0, . . . ,κ−1} — the curve γ is C 1 and an integral curve of

some Lj ∈ L. We denote it by OrbL(x0). Sussmann’s Orbit Theorem [19] states that the

orbits of L are all immersed connected submanifolds of M. If we assume that M = G is
a compact Lie group and L ⊂ g is a system of left-invariant vector fields on G, then one

has a much more precise result (see, e.g. [18, Lemma 3.4]):

1. OrbL(e) is the connected Lie subgroup of G whose Lie algebra is LieL ⊂ g; and

2. OrbL(x0) = x0 ·OrbL(e) for every x0 ∈G.

In that case, the orbits are precisely the integral manifolds of the involutive distribution

LiexL =̇ {X|x : X ∈ LieL} ⊂ TxG, x ∈G,

so these results are actually a consequence of Frobenius’s Theorem.

Proposition 8.7. If L is (GH) then all of its orbits are dense in G.

Proof. It is enough to prove that OrbL(e) is dense in G, as the remaining orbits are left
translations of it. Let H ⊂G denote its closure. It is certainly a subgroup of G, and since

it is closed, it is a Lie subgroup of G. Moreover, the set G/H is a smooth manifold with

dimension dimG−dimH, which is positive if one assumes that H �=G, and the canonical
projection π : G → G/H is a smooth submersion [17, Theorem 9.22]. In that case, let

v ∈ C 1(G/H)\C ∞(G/H) and take u =̇ π∗v ∈ C 1(G)\C∞(G). Then u is annihilated by

every X ∈ g tangent to H, hence, in particular, by any X ∈ L since

L ⊂ LieL ⊂ h =̇ the Lie algebra of H.

Thus, L would not be (GH).

Having in mind condition (1) in Theorem 3.5, we would like to point out in our next

result that one must be really careful when assigning hypotheses to P in order to ensure

its global hypoellipticity: too strong ones may inadvertently also ensure that G must have
been a torus to start with!

Corollary 8.8. If G is a noncommutative Lie group and L ⊂ g is a family of pairwise
commuting vector fields, then L cannot be (GH).

Proof. Notice that LieL is a commutative Lie subalgebra of g, hence must be contained

in a maximal commutative Lie subalgebra h⊂ g. Let then H ⊂G be the unique connected
Lie subgroup of G whose Lie algebra is h. It is certainly commutative (since so is h), and

it must be closed thanks to the maximality of h. Because LieL ⊂ h, we have that every

vector field in L is tangent to H, hence OrbL(e)⊂H so

OrbL(e)⊂H �=G,
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as we are assuming G noncommutative. In particular, OrbL(e) is not dense in G and the

conclusion follows from Proposition 8.7.

9. Operators with mostly constant coefficients

In this final section, we explore other results ensuring global hypoellipticity of operators

P, as in (3.1). Here, we allow more general “leading terms” Q, unlike Theorem 3.5 in
which we have Q = ΔT , but paying the price of more restrictive assumptions on the

vector fields a�(t,X). The following one is an extension of [3, Theorem 1.9].

Theorem 9.1. Let P in (3.1) be of the form

P =Q−
N ′∑
�=1

(
L�+W�

)2

−
N∑

�=N ′+1

(
a�(t,X)+W�

)2

,

where Q is positive semidefinite in T — i.e. 〈Qψ,ψ〉L2(T ) ≥ 0 for every ψ ∈ C∞(T ) —

L1, . . . ,LN ′ ∈ g and W1, . . . ,WN are skew-symmetric and such that P̃ =Q−W2
1−·· ·−W2

N

is elliptic. Assume, moreover, that

1. W1, . . . ,WN ′ commute with ΔT and that

2. the system {Y� =̇ L�+W� : �= 1, . . . ,N ′} is (GH) in T ×G.

Then P is (GH) in T ×G.

Remark 9.2. Property (2) above is stronger than L in (3.6) being (GH) in G as it clearly

implies (3.5) — which is equivalent to the latter by Proposition 7.2 — independently of
the remaining assumptions.

Proof. Hypothesis (1) ensures that Y1, . . . ,YN ′ commute with the full Laplace-Beltrami

operator Δ = ΔT +ΔG on T ×G. Therefore, hypothesis (2) implies, by means of
Proposition 5.2 (see also Proposition 2.2(4) and the results in Section 2), the following:

there exist C,R,ρ > 0, such that for all (μ,λ) ∈ σ(ΔT )×σ(ΔG) with μ+λ≥R, we have

( N ′∑
�=1

‖Y�ϕ‖2L2(T×G)

) 1
2 ≥ C(1+μ+λ)−ρ‖ϕ‖L2(T×G), ∀ϕ ∈ ET

μ ⊗EG
λ . (9.1)

Let u ∈ D ′(T ×G) be such that f =̇ Pu ∈ C∞(G). Since we are assuming P̃ elliptic in
T, we have by Corollary 4.2 that FG

λ (u) is smooth for every λ ∈ σ(ΔG). As Y1, . . . ,YN ′

commute with Δ, they behave well under both the partial Fourier projection maps, that
is, including FT , and not only FG:

‖Y�FG
λ (u)‖2L2(T×G) =

∑
μ∈σ(ΔT )

‖FT
μ (Y�FG

λ (u))‖2L2(T×G) =
∑

μ∈σ(ΔT )

‖Y�(FT
μ FG

λ (u))‖2L2(T×G)

(9.2)

for � ∈ {1, . . . ,N ′}, whatever λ ∈ σ(ΔG).
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Now, let s > 0. By Corollary 4.4, there exist C1 > 0 and θ ∈ (0,1), such that

‖FT
μ FG

λ (u)‖L2(T×G) ≤ C1(1+μ+λ)−s−2n, ∀(μ,λ) ∈ Λθ,

where n= dim T and Λθ ⊂ σ(ΔT )×σ(ΔG) is as in (2.7). We look at its complement

Λc
θ = {(μ,λ) ∈ σ(ΔT )×σ(ΔG) : (1+λ)> (1+μ)θ},

where it holds that 1+μ+λ< (1+λ)
2
θ since 1/θ > 1. Therefore, thanks to (9.1), we have,

for (μ,λ) ∈ Λc
θ with μ+λ≥R, that

‖FT
μ FG

λ (u)‖2L2(T×G) ≤ C−2(1+λ)
4ρ
θ

N ′∑
�=1

‖Y�(FT
μ FG

λ (u))‖2L2(T×G).

Fixing λ ∈ σ(ΔG), we have by Remark 2.5 that

‖FG
λ (u)‖2L2(T×G) =

∑
μ∈σ(ΔT )
(μ,λ)∈Λθ

‖FT
μ FG

λ (u)‖2L2(T×G)+
∑

μ∈σ(ΔT )
(μ,λ)∈Λc

θ

‖FT
μ FG

λ (u)‖2L2(T×G) (9.3)

in which the first sum can be bounded by∑
μ∈σ(ΔT )
(μ,λ)∈Λθ

‖FT
μ FG

λ (u)‖2L2(T×G) ≤
∑

μ∈σ(ΔT )
(μ,λ)∈Λθ

‖FT
μ FG

λ (u)‖L2(T×G)
C1

(1+μ+λ)s+2n

≤ C1

(1+λ)s
‖FG

λ (u)‖L2(T×G)

∑
μ∈σ(ΔT )

1

(1+μ)2n
, (9.4)

where the latter series converges by Weyl’s asymptotic formula (1.1).
For the second sum in (9.3), we define Λc

θ,R =̇ {(μ,λ) ∈ Λc
θ : μ+λ≥R}: it follows that

∑
μ∈σ(ΔT )

(μ,λ)∈Λc
θ,R

‖FT
μ FG

λ (u)‖2L2(T×G) ≤ C2(1+λ)
4ρ
θ

N ′∑
�=1

∑
μ∈σ(ΔT )

(μ,λ)∈Λc
θ,R

‖Y�(FT
μ FG

λ (u))‖2L2(T×G)

which can be further bounded by

N ′∑
�=1

∑
μ∈σ(ΔT )

(μ,λ)∈Λc
θ,R

‖Y�(FT
μ FG

λ (u))‖2L2(T×G) ≤
N ′∑
�=1

‖Y�FG
λ (u)‖2L2(T×G)

≤ 〈QFG
λ (u),FG

λ (u)〉L2(T×G)+
N ′∑
�=1

‖Y�FG
λ (u)‖2L2(T×G)

≤ ‖FG
λ (f)‖L2(T×G)‖FG

λ (u)‖L2(T×G),
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where we used Proposition 2.8, Lemma 3.1, and the fact that Q is positive semidefinite.
But since f is smooth, Corollary 2.6 further implies the existence of a C3 > 0, such that∑

μ∈σ(ΔT )
(μ,λ)∈Λc

θ,R

‖FT
μ FG

λ (u)‖2L2(T×G) ≤ C3(1+λ)−s‖FG
λ (u)‖L2(T×G). (9.5)

Using the fact that Λc
θ \Λc

θ,R is finite, it follows from (9.3), (9.4), and (9.5) that

‖FG
λ (u)‖L2(T×G) ≤ C4(1+λ)−s, ∀λ ∈ σ(ΔG),

for some constant C4 > 0, and the smoothness of u follows from Corollary 2.7.

The next one is very similar and generalizes [1, Theorem 2].

Theorem 9.3. Let P in (3.1) be of the form

P =Q−
N ′∑
�=1

(
L�

)2

−
N∑

�=N ′+1

(
a�(t,X)+W�

)2

,

where Q is positive semidefinite, L1, . . . ,LN ′ ∈ g and WN ′+1, . . . ,WN are skew-symmetric

and such that P̃ =Q−W2
N ′+1−·· ·−W2

N is elliptic. Assume, moreover, that the system

{L1, . . . ,LN ′} is (GH) in G. Then P is (GH) in T ×G.

Proof. By Proposition 5.2, there exist C,ρ > 0 and λ0 ∈ σ(ΔG), such that the basic
inequality (5.1) holds for {L1, . . . ,LN ′} in G. In particular, for arbitrary ψ ∈ C∞(T ) and

φ ∈ EG
λ with λ≥ λ0, we have

N ′∑
�=1

‖L�(ψ⊗φ)‖2L2(T×G) =

N ′∑
�=1

‖ψ‖2L2(T )‖L�φ‖2L2(G) ≥ C2(1+λ)−2ρ‖ψ⊗φ‖2L2(T×G).

Selecting an orthonormal basis ψμ
1 , . . . ,ψ

μ
dT
μ
of ET

μ , we may write any ϕ ∈ ET
μ ⊗EG

λ as

ϕ=

dT
μ∑

j=1

ψμ
j ⊗ ϕ̃j, ϕ̃j ∈ EG

λ ,

and since the terms in the sum above are pairwise orthogonal in L2(T ×G), we have

‖ϕ‖2L2(T×G) =

dT
μ∑

j=1

‖ψμ
j ⊗ ϕ̃j‖2L2(T×G),

hence also, in particular

‖L�ϕ‖2L2(T×G) =

dT
μ∑

j=1

‖L�(ψ
μ
j ⊗ ϕ̃j)‖2L2(T×G).
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We conclude that for (μ,λ) ∈ σ(ΔT )×σ(ΔG) with λ≥ λ0 and ϕ ∈ ET
μ ⊗EG

λ , we have

N ′∑
�=1

‖L�ϕ‖2L2(T×G) ≥
dT
μ∑

j=1

C2(1+λ)−2ρ‖ψμ
j ⊗ ϕ̃j‖2L2(T×G) = C2(1+λ)−2ρ‖ϕ‖2L2(T×G).

(9.6)

Let u ∈ D ′(T ×G) be such that f =̇ Pu ∈ C∞(G), so again, FG
λ (u) ∈ C∞(T ;EG

λ ) for

every λ ∈ σ(ΔG). For each � ∈ {1, . . . ,N ′}, since L� is a left-invariant vector field on G,

and as such commutes with ΔG, we have that Y� =̇ L� commutes with Δ, so again (9.2)

holds. Therefore, for (μ,λ) ∈ σ(ΔT )×σ(ΔG) with λ≥ λ0, we have, by (9.6) and (9.2),

‖FT
μ FG

λ (u)‖2L2(T×G) ≤ C−2(1+λ)2ρ
N ′∑
�=1

‖FT
μ (L�FG

λ (u))‖2L2(T×G),

so summing both sides over μ ∈ σ(ΔT ) yields

‖FG
λ (u)‖2L2(T×G) ≤ C−2(1+λ)2ρ‖FG

λ (f)‖L2(T×G)‖FG
λ (u)‖L2(T×G)

for every λ ≥ λ0, where we proceed as in the previous theorem; as such, we conclude

smoothness of u, keeping in mind the finiteness of the set {λ ∈ σ(ΔG) : λ < λ0}.
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