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The collapse of a quasi-two-dimensional column of cohesive granular media is
investigated experimentally and numerically in the framework of a continuum model. The
configuration is an initial parallelepiped-shaped granular pile, which is suddenly released
by opening a retaining door. The experiments rely on a model material developed by
Gans et al. (Phys. Rev. E, vol. 101, 2020, 032904) made of silica particles coated with
polyborosiloxane, for which the adhesive interparticle force can be tuned by controlling
the thickness of the coating. Numerically, the collapse is simulated using a simple
cohesive rheological model implemented in a two-dimensional Navier–Stokes solver. We
investigate the role of cohesion on the stability of the column, the mode of failure, the
flow dynamics and the geometry of the final deposit. Our results show that the continuum
model captures the main features observed experimentally.

Key words: wet granular material, rheology

1. Introduction

Cohesive granular materials are encountered in many geophysical and industrial
applications. Whereas many advances have been made in the description of cohesionless
granular flows in various configurations, the behaviour of cohesive granular media has
been much less investigated. One difficulty is the complexity underlying the origin of
cohesion. For very small particles (typically below 10 μm in diameter), the cohesion
arises from attractive forces like van der Waals (Castellanos 2005) or electrostatic forces
(Konopka & Kosek 2017), whereas for larger particles it may arise from capillary bridges
(Bocquet et al. 1998; Mitarai & Nori 2006) or from solid bridges (Langlois, Quiquerez
& Allemand 2015). In some situations, adhesive force between grains may also evolve
due to variations in the environmental conditions (change of the confinement pressure, the
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temperature or the humidity rate) or due to the micromechanical evolution of the bonds
(ageing, sintering, chemical reaction) (Kamiya et al. 2002; Foster, Bronlund & Paterson
2006).

This complexity in controlling cohesion explains why most of the fundamental
experimental studies focus on wet granular materials, for which cohesion is controlled
by the amount of liquid mixed with the grains. Different canonical configurations, such
as flow in rotating drums or granular collapse, have been investigated using unsaturated
wet granular media. However, capillary bridges are known to migrate and merge during
flow, which adds some heterogeneities and complexity to the flow. Recently, a new
model granular material has been developed, where the cohesion originates from a
polyborosilicate (PBS) coating of glass particles (Gans, Pouliquen & Nicolas 2020). The
resulting cohesive material is very stable and reusable; the adhesive force is constant in
time and is simply controlled by the thickness of the coating. This material has been used,
for instance, to study the erosion of a cohesive granular bed by a turbulent jet by (Sharma
et al. 2022). In this study, we investigate the dynamics of this cohesion-controlled granular
material (CCGM) in the classical configuration of granular collapse.

Granular collapse, which consists of the sudden release of a granular pile under gravity
(Balmforth & Kerswell 2005; Lajeunesse, Monnier & Homsy 2005; Lube et al. 2005),
has been extensively studied for cohesionless granular materials and has served as a
benchmark for both discrete (Staron & Hinch 2005; Lacaze, Phillips & Kerswell 2008;
Kermani, Qiu & Li 2015) and continuum simulations (Lagrée, Staron & Popinet 2011).
When the grains are released, the granular mass spreads and stops at a finite distance
(Lajeunesse et al. 2005). It has been shown that the morphology of the deposit is mainly
controlled by the initial aspect ratio of the column, and scaling laws have been obtained for
the run-out distance and the final height, which are independent of the material properties.

The problem of the collapse of a column has also been investigated in the case of a
pure viscoplastic material. The different failure modes and the existence of non-deformed
regions during the flow have been reported, in order to better understand how the run-out
depends on the aspect ratio and yield stress (Chamberlain et al. 2001; Liu et al. 2016).

The case of cohesive materials lies between these two extreme cases, as they exhibit
both a yield stress like viscoplastic materials and friction like granular materials. Several
studies have investigated the influence of cohesion on the dynamics of granular collapse.
Experimentally, Mériaux & Triantafillou (2008) have studied the collapse of fine powders
and showed that cohesion does not modify the scaling laws of the run-out but modifies the
prefactors. Artoni et al. (2013), and more recently Li et al. (2021), have studied the collapse
of wet granular media and how the dynamics depends on both the particle diameters via the
Bond number and the water content. Using the discrete element method and an irreversible
adhesive force model between particles to mimic solid bridges, Langlois et al. (2015) have
shown how fragmentation occurs during the collapse and how it decreases the run-out
distance. Abramian et al. have analysed the stability criterion (Abramian, Staron & Lagrée
2020) and the roughness of the free surface (Abramian, Lagrée & Staron 2021) of the final
deposit, which increases when increasing the adhesive forces between the grains.

In this paper, we revisit the problem of the collapse of a cohesive granular medium by
performing experiments using the new CCGM, and by confronting the measurements to
predictions from continuum simulations using a simple rheological description obtained
by adding a constant cohesive stress to the μ(I) rheology. Although the rheology of
cohesive materials is known to be more complex (Badetti et al. 2018; Macaulay & Rognon
2021; Mandal, Nicolas & Pouliquen 2021), this approach is a first attempt to capture
cohesive effects in a continuum model. After the description of the experimental procedure
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Gate
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Li Lf

Figure 1. Sketch of the experimental set-up showing the initial granular column of length Li and height Hi
(light grey) and the final deposit of length Lf and height Hf (dark grey).

and the numerical methods in § 2, we focus on the stability condition in § 3, and on the
failure mode of the pile in § 4, where we confront the observation to the prediction of a
Mohr–Coulomb model. The role of cohesion on the dynamics of the flow, on the typical
velocities and on the shape of the final deposit are discussed in § 5, before concluding
in § 6.

2. Experimental and numerical methods

2.1. Experimental set-up and methods
In our experiments, the CCGM is made of glass beads of diameter d = 800 ± 60 μm
coated with a PBS polymer. To tune the cohesion, we vary the average thickness b of
the coating in the range 0 < b < 400 nm. From equation (7) in Gans et al. (2020), this
corresponds to a static cohesive stress τc in the range 0 Pa < τc < 65 Pa. In the following,
the cohesion is characterized through the cohesion length �c defined as

�c = τc

φρg
, (2.1)

which corresponds to the characteristic length for which the hydrostatic pressure
P = φρg�c is equal to the cohesive stress τc. In this paper, the particle density is
ρ = 2600 kg m−3, the volume fraction is φ ≈ 0.58 and g is the acceleration due to gravity.
As a result, the range of cohesive lengths investigated in this study is 0 � �c � 4.1 mm.

A sketch of the experimental set-up is shown in figure 1. It consists of a rectangular
channel of length 62 cm, width 15.4 cm and height 31 cm. A mass M of cohesive grains
is retained on the left side of the box by a removable gate, which can slide upwards.
The rectangular channel is built with poly(methyl methacrylate) (PMMA) plates, and
the bottom plate is made rough by gluing particles of the same size as the flowing
particles. Since the PBS-coated particles have a very low friction coefficient with PMMA,
there is no significant lift nor tangential stress observed either when opening the gate,
or on the sidewalls. Different initial columns are used with a length Li in the range
2.54 cm < Li < 12.7 cm and a height Hi in the range 1 cm < Hi < 23 cm. As a result,
the aspect ratio a = Hi/Li varies in the range 0.7 < a < 6.6. At time t = 0, the gate is
rapidly removed vertically, and the granular mass spreads until it reaches a new static
configuration at long time. The final deposit is characterized by its length Lf and its
height Hf . The granular collapse is recorded with a high-speed camera (Phantom VEO
710) at 300 frames per second. A vertical laser sheet illuminates the vertical central plane
of the channel, providing a measurement of the pile profile during the flow. Using image
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processing software, the spatio-temporal evolution of the profile is computed, and the front
velocity V and the final deposit geometry are measured.

2.2. Numerical methods
In parallel with the experiments, we performed numerical simulations based on the
two-dimensional Navier–Stokes solver Basilisk, an open-source library (www.basilisk.fr)
using an adaptive mesh and a volume-of-fluid method. The granular material is considered
as an incompressible fluid, with a non-Newtonian frictional rheology. Without cohesion,
it has been shown that the collapse is captured by the simple μ(I) constitutive law (Lagrée
et al. 2011). The stress tensor is given by σij = −Pδij + τij, where P is the pressure and τij
is the deviatoric stress given by

τij = μ(I)P
γ̇ij

|γ̇ | . (2.2)

Here γ̇ij is the shear-rate tensor, |γ̇ | = √
γ̇ijγ̇ij/2 is its second invariant and the friction

coefficient μ is a function of the dimensionless inertial number I,

μ(I) = μs + Δμ

I0/I + 1
, with I = |γ̇ |d√

P/ρ
, (2.3)

where μs = 0.4 is extracted from Gans et al. (2020) and observed to be independent of b,
Δμ = 0.12 and I0 = 0.3.

In this study, where cohesion plays an important role, we extend this rheological model
by adding a constant cohesive stress τc so that the deviatoric stress τij becomes (see
Abramian et al. (2020) for numerical details)

τij = [τc + μ(I)P]
γ̇ij

|γ̇ | . (2.4)

This expression assumes that adhesion does not modify the shear-rate-dependent frictional
part of the constitutive law, which is a strong simplification. However, during collapse, the
rate-dependent part of the rheology appears to play a negligible role (see the Appendix),
which motivates our choice of this simple constitutive law.

In the following, when comparing the simulations to the experiments, the value of τc
in the numerical code is equal to its experimental value. The parameters of the friction
law μ(I), when not specified, are chosen from a calibration based on the cohesionless
case: μs = 0.4, Δμ = 0.12 and I0 = 0.3. The influence of these numerical parameters
is discussed in the Appendix. It should be emphasized that, in the numerical method, the
plastic criterion and the existence of a yield stress are not strictly captured. A regularization
method is used where a cutoff of the viscosity to a finite but high value is introduced for
low values of shear rate (Abramian et al. 2020).

2.3. Control parameters
The dynamics of the cohesive granular collapse is a priori controlled by three
dimensionless numbers: the aspect ratio of the initial column a = Hi/Li, the relative
magnitude of the cohesion stress compared to the gravity stress given by the ratio of the
cohesive length to the height of the columns �c/Hi, and the number of particles in the
column Hi/d. Considering the continuum model (2.4), it is easy to show that the latter
parameter plays a role only in the inertial number where the particle diameter explicitly
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Collapse of a cohesive granular column

appears, i.e. in the dependence of the rheology on the shear rate. Thus, in the limit
of quasi-static regimes with negligible inertial number as studied in this paper, Hi/d is
expected to play a limited role. In this regime, the system is therefore mainly controlled by
only two parameters, a = Hi/Li and �c/Hi, which are chosen to be equal in the simulation
and in the experiments when confronting the experimental observation to the numerical
prediction.

2.4. Qualitative observations
When the gate of the experimental set-up is removed, three different behaviours are
observed, depending on the aspect ratio of the column and on the cohesion of the material.
When the column is not high enough, it remains static, showing that a minimum height
of cohesive material is required to trigger the flow (figure 2a). For a slightly higher
column, the material breaks along a well-defined failure plane having its origin at the
foot of the pile, leading to the collapse of the top right corner of the column (figure 2b),
the rest of the pile remaining undeformed. For a sufficiently high column and/or for a
sufficiently weak cohesive force between particles, the collapse starts at the right corner
but extends to the bulk, leading to the spreading of the granular mass until a new
static configuration is reached (figure 2c). The final deposit surface reveals a roughness
reminiscent of undeformed clusters during the flows (Langlois et al. 2015), which increases
when increasing the cohesion (Abramian et al. 2020). In particular, the upper right corner
of the initial column seems to be carried by the flow without being sheared or deformed
and is present in the final deposit (figure 2c). The same phenomenology is observed in
simulations, as shown in figure 2.

However, the origin of the free-surface roughness in the continuous simulations remains
unclear and would require a specific study. We observed that the irregularities depend
on the mesh size, suggesting that their development might be related to the ill-posed
behaviour of the μ(I) rheology (Barker et al. 2015). However, we verified that the
dynamics studied in the sequel are independent of mesh size, and calculations were
performed with a typical mesh size of 5.86 × 10−3 (52 μm) in the column.

3. Column stability

To interpret the initiation of the flow and the failures observed in both experiments and
simulations, we express the stability condition of a granular column in the framework of a
simple cohesive Mohr–Coulomb model.

3.1. Theoretical failure conditions
The failure of hills has been the subject of many studies in the soil mechanics literature
(Fredlund & Krahn 1977; Halsey & Levine 1998; Chen, Yin & Lee 2003; Duncan, Wright
& Brandon 2014). Here, we restrict our analysis to the simple assumption that failure
occurs along a straight plane, following the work of Restagno, Bocquet & Charlaix (2004).
The three different configurations depicted in figure 3 are analysed: an infinitely wide
rectangular pile, a truncated wide pile and a rectangular pile of finite width.

3.1.1. Rectangular pile with a small aspect ratio
We first consider a cohesive rectangular column of height Hi and width Li � Hi. A corner
delimited by the slip plane having its origin at the bottom right base and inclined at an
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Figure 2. Experimental observations (top grey pictures) and numerical simulation (bottom colour pictures)
of the collapse of a cohesive granular column. (a) A stable column with small aspect ratio (a = 0.08, �c =
4.1 mm, �c/Hi = 0.2). (b) Partial collapse for a moderate aspect ratio (a = 0.43, �c = 4.1 mm, �c/Hi = 0.08)
with a well-defined slip plane. (c) Collapse of the column (a = 1.9, �c = 2.8 mm, �c/Hi = 0.025), where we
observe a ‘surfing wedge’ coming from the top right corner being transported during the flow. The white scale
bar corresponds to 4 cm in panels (a) and (b), and to 10 cm in panel (c).
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Figure 3. Theoretical analysis of the stability of columns using a cohesive Mohr–Coulomb criterion. (a) Wide
column: the corner delimited by the plane inclined at an angle α is stable when the cohesion level �c/Hi is
above the black curve fθc (α) in (3.3). The blue line corresponds to a cohesion level leading to stable column,
the red line to a marginally stable column where a single angle αm = θc/2 + π/4 is unstable, and the green
line to an unstable column. The grey area corresponds to the unstable angles. (b) Truncated pile: the different
curves correspond to the stability function fθc,θm (α) in (3.5) for different values of the free-surface inclination
θm (i.e. θ1

m = 50◦, θ2
m = 71.4◦, θ3

m = 80◦). The dashed line is the function (�c/Hi)crit(θm) in (3.6) above which
the truncated pile is stable. (c) Tall column: the stability curves for various aspect ratios a given by fθc,a(α) in
(3.8) for α < arctan a and by fθc (α) in (3.3) for α > arctan a.

angle α from the horizontal (figure 3a) is stable according to a cohesive Mohr–Coulomb
criterion if the following condition is satisfied:

Mg sin α ≤ Sτc + μsMg cos α, (3.1)

where M is the mass of material above the slip plane, S is the area of the failure surface, μs
is the static friction angle and τc is the cohesive stress. In the configuration of figure 3(a),
we can write M = ρWHi

2/(2 tan α) and S = WHi/sin α, where W is the thickness of the
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pile. The pile is then stable when

ρgHi

2 tan α
sin α (sin α − μs cos α) ≤ τc, (3.2)

which can be expressed using the cohesive length �c and the friction angle θc =
arctan(μs),

fθc(α) = cos α sin(α − θc)

2 cos θc
≤ �c

Hi
. (3.3)

The function fθc(α) is shown in figure 3(a) for μs = 0.4 corresponding to θc = 21.8◦.
This function is a symmetric curve centred at αm = θc/2 + π/4, where it reaches its
maximum value fθc(αm) ≈ 0.17, and becomes zero for α = θc and α = π/2. In this plot,
a point (α, �c/Hi) below the curve corresponds to an unstable corner. A high cohesion
level �c/Hi > 0.17 corresponds to a stable pile (blue line) for which the stability criterion
(3.3) is fulfilled whatever the slip angle α. The value �c/Hi = 0.17 corresponds to the
marginally stable pile, which will break along the slip plane inclined at αm (red line). A
low cohesion level �c/Hi < 0.17 (green line) corresponds to an unstable column that may
fail at any angle for which fθc(α) > �c/Hi (grey zone in figure 3a).

3.1.2. Truncated pile
The previous analysis can be generalized to the case of a truncated pile, with a missing
corner inclined at an angle θm (figure 3b). Studying this geometry is interesting, as it
may provide information about the stable final deposit shape. By evaluating the mass of
material M located between the slip plane inclined at an angle α and the free surface
inclined at an angle θm, one can derive the following expression for the stability criterion:

1
2
ρgHi

(
1

tan α
− 1

tan θm

)
sin α (sin α − μ cos α) ≤ τc. (3.4)

Again using �c and θc, this equation may be rewritten as

fθc,θm(α) = sin(θm − α) sin(α − θc)

2 cos θc sin θm
≤ �c

Hi
. (3.5)

The different stability limits in the plane α versus �c/Hi for different truncated angles
θm are plotted in figure 3(b). The graphs of the function fθc,θm(α) are curves centred
at (θc + θm)/2 and vanishing at α = θc and α = θm. The rectangular pile is recovered
for θm = π/2. The maximum of the fθc,θm(α) gives the value of the critical cohesion
level (�c/Hi)crit(θm) below which the pile truncated at angle θm is unstable, given by the
following equation: (

�c

Hi

)
crit

(θm) = 1 − cos(θm − θc)

4 cos θc sin θm
. (3.6)

This function (�c/Hi)crit(θm) is plotted in figure 3(b) as the black dashed line. A pile
truncated at an angle θm and for a cohesion level �c/Hi such that the point (θm, �c/Hi) is
below this line, is unstable.
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Figure 4. Stability diagram in the aspect ratio a versus cohesion level �c/Hi plane for a cohesive granular
column. The black curve is the limit of stability. Circles corresponds to experiments, squares to simulation and
blue (red) symbols correspond to stable (unstable) columns.

3.1.3. Rectangular pile with a large aspect ratio
The last case of interest is the case when the aspect ratio of the pile is large and such that
the slip plane no longer intersects the top free surface but the left side of the pile, i.e. when
arctan a ≥ α (figure 3c). In this case, M = ρWLi(Hi − 1

2 Li tan α) and S = WLi/ cos α, and
the stability criterion of the column is given by

ρg
(

Hi − Li tan α

2

)
cos α (sin α − μs cos α) ≤ τc, (3.7)

which can be written as

fθc,a(α) =
(

1 − 1
a

tan α

2

)
cos2 α (tan α − tan θc) ≤ �c

Hi
. (3.8)

The stability criterion in this case depends on the aspect ratio a and is given by the
function fθc,a(α), which is plotted as curves starting at (α = θc, 0) and presenting a
maximum. This maximum increases when increasing the aspect ratio. When the slip angle
α reaches the arctan a value, i.e. the slip plane no longer reach the left vertical side of
the column, the stability criterion is no longer given by the fθc,a(α) function but by the
low-aspect-ratio function fθc(α) in (3.3). For a given aspect ratio a, the stability of the
column is thus given by a curve made of two parts, as shown in figure 3(c), its absolute
maximum giving the critical cohesion level below which the pile is unstable. At low aspect
ratio, the first part of the curve (colour curves in figure 3c) is lower than the second part
(black curve), and the stability is controlled by a constant cohesion level, independent of a.
When a becomes greater than 1.145 (black dashed line in figure 3c), the maximum is given
by the first maximum corresponding to a mode of failure crossing the pile from one side
to another. A stability limit can then be plotted in the (a, �c/Hi) plane, as shown by the
black curve in figure 4, separating the stable region (blue) from the region where collapse
occurs (pink). The discontinuity between the two geometrical possibilities of failure occurs
at a ≈ 1.145.
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In conclusion, three stability criteria have been derived, depending on the aspect ratio
of the rectangular column, or if the pile is truncated with an angle θm. In the next section,
we test the stability criteria using experimental observations and numerical simulations.

3.2. Experimental and numerical observations
We first investigated experimentally the condition for a collapse of the pile after the
opening of the gate. Numerous experiments were done, varying both the aspect ratio a and
the cohesive strength �c/Hi. The results are plotted in figure 4 as circles, with the following
colour code: red indicates that a collapse occurs, and blue indicates that the column
remains stable. Experimentally, we were not able to investigate the high-aspect-ratio and
large �c/Hi limit, as, for the range of �c accessible with our beads, it would correspond to
narrow piles with only few particles in the width.

We can further explore this diagram using numerical simulations. Stable and unstable
columns are discriminated by using two criteria: the column is stable either if its final
run-out does not exceed 1 % of the initial length, or if the maximum viscosity is reached
everywhere in the early stage of the collapse. Overall, these two criteria lead to the same
results. The numerical results are data taken from Abramian et al. (2020) and data from
new computations. The results are plotted figure 4 as squares, with the same colour code
as for the circles.

Finally, both experimental and numerical results show a good agreement with the
Mohr–Coulomb stability criterion, showing that the limit of stability of a cohesive granular
pile is well captured by a simple Mohr–Coulomb model.

4. Collapse angles

The above theoretical stability analysis predicts whether a column of aspect ratio a and
cohesion level �c/Hi between grains is stable or unstable (solid line in figure 4). It also
provides an estimate of the failure angles α or a range of possible failure angles, which is
the scope of the present section.

If the failure angle αm = θc/2 + π/4 is well predicted at the stability threshold (when
�c/Hi = (�c/Hi)crit(π/2)), the theoretical analysis does not predict the angle for lower
cohesion or larger column, i.e. when the collapse occurs far from the stability threshold.
Instead, the analysis predicts a whole range of unstable angles (grey area, figure 3a). To
investigate this range and understand how the column breaks, in this section we focus on
two characteristic angles: we identify the initial angle of failure αi at the onset of collapse,
and a final angle αf at the end of collapse, defined as the angle of the plane below which
no grain has moved during the entire collapse time (see the inset in figure 5).

These two different angles have been measured in both the experiments and numerical
simulations. Experimentally, to determine αi, we compare a reference image of the static
column with the subsequent images at the onset of the flow using an image subtraction
process enhanced with a threshold filter. Numerically, we threshold the velocity field at
the initiation of the flow. The angle αf is experimentally measured through an image
difference process between the initial reference image and the images recorded at the end
of the collapse, and numerically by thresholding the integral of the velocity field during the
whole dynamics. The experimental and numerical results are reported in figure 5, where
we restrict the analysis to the small-aspect-ratio configuration (figure 3a).

The initial failure angle αi measured in the simulations (open red circles) is constant
whatever the parameters, and is always close to the critical angle αm = θc/2 + π/4 ≈ 55◦
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Figure 5. Measurements of the initial failure angle αi (open circles) and final angle of stability αf (filled dots)
for different cohesion levels �c/Hi. Red symbols are from numerical simulations, and blue symbols are from
experiments. The continuous line is given by (3.3). The dashed line corresponds to (3.6), giving the limit of
stability of truncated piles.

predicted by the Mohr–Coulomb theory for the incipient failure mode. For low cohesion,
the final failure angle αf (red dots), delimiting the region where grains never move
during the collapse, is lower than αi, because the grains are entrained by the flow. This
corresponds to a friction-dominated regime. For higher cohesion, the final failure angle
approaches αi until the two are equal: this is a cohesion-dominated regime. Here, only
the first unstable corner flows while the rest of the pile remains static, as illustrated in
figure 2(b). The transition between the two regimes occurs for �c/Hi ∼ 0.08.

The observation is slightly different in experiments. Although we identify the two
regimes, the initial failure angle (blue open circles) is not constant whatever the cohesion
level. It is close to the critical angle αm at low cohesion, but the experimental αi
increases when increasing the cohesion and becomes larger than what is predicted in
the simulation. Interestingly, in experiments, αf is close to the critical curve computed
theoretically for the stability of truncated piles ((3.6), dashed line in figure 5), meaning
that the final shape of the column is close to the marginally stable shape. We assume
that αf compares with θm of (3.6) since it represents the lower bound of stability
despite the flow above it. The discrepancy between simulations and experiments for
high cohesion levels may have different origins. A first origin could be that, in the
experiment, the gate is not instantaneously removed. The time needed to open the door
might induce a stress relaxation at the early stage of the collapse, which is not present in
the numerical simulations, where the stresses are instantaneously released. Another source
of discrepancy could be that the constitutive law chosen in the simulation is too simple, and
other effects, such as normal stress differences, transient effects and/or dilatancy effects,
are missing.

5. Collapse dynamics, run-out length and final deposit

5.1. Velocity of the front
Once the gate is removed, the column collapses and a granular front propagates. The
profile of the pile during the collapse can be extracted in experiments from the high-speed
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Figure 6. Comparison between the numerical (black) and experimental (blue) profiles of the granular pile at
different times for Hi = 8.9 cm, a = 1 and �c = 2.8 mm.

movie and the laser sheet projection. A typical run is presented in figure 6 showing both the
experimental and numerical results for the same parameters for a weakly cohesive material
(aspect ratio a = 1, �c/Hi = 0.0314). Using the same parameters in simulation (cf. § 2.2),
we find a fairly good agreement between the experiments and the numerical predictions
for the dynamics of the pile profile during the collapse. The dynamics of the front and its
position L(t) can be determined by measuring the location L(t) of the foot of the pile in
both experiments and simulations. The experimental results L(t) − Li are plotted as solid
lines in figure 7(a), for �c = 0 (cohesionless material), �c = 2.8 mm and �c = 3.6 mm,
for an aspect ratio a = 1. As a comparison, numerical simulations with the same cohesion
levels and the same aspect ratio are plotted with dashed lines. We observe that, after a short
acceleration step, the front travels at a constant velocity before decelerating and eventually
reaching a static position. The comparison between the experimental and numerical results
shows a good agreement from the beginning to the end of the steady state. The agreement
is very good for the cohesionless granular experiment (light blue curves), showing that
the granular collapse is well described by the continuous numerical code with the μ(I)
rheology. However, in the case of cohesive materials, a difference is observed between
experiments and simulation when the flow slows down and stops. The final run-out length
is systematically shorter in the numerical simulations for cohesive materials compared to
the experiments, as can also be observed in figure 6.

Another discrepancy is observed at lower aspect ratio (a = 0.5), close to the stability
limit (inset of figure 7(a) for a smaller aspect ratio and �c = 3.6 mm), for which the
experiments reveal a delay between the opening of the gate and the initiation of the flow.
This delay is not observed in the simulation, and may be reminiscent of more complex
rheological features induced by the thick polymer coating, leading to some creeping
phenomena not taken into account in the simple rheological model used in the simulation.

Despite this discrepancy, the velocity Vmax of the front is quantitatively predicted by
the simulation, as shown in figure 7(b). The velocity Vmax is defined as the velocity at
the inflection point in the L(t) − Li curves of figure 7(a). The velocity increases with the
aspect ratio up to a plateau when a ≈ 3. The graph also shows that the velocity decreases
when the cohesion increases.

5.2. Run-out and final deposit
Once the kinetic energy of the collapse is fully dissipated, we measure the final deposit and
focus on the final run-out length, Lf = Li + ΔL. As shown by Lajeunesse et al. (2005), the
run-out length and the final height of a cohesionless granular material scale as power laws
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Figure 7. (a) Time evolution of the front position for different cohesion levels in experiments (continuous
curves) and simulations (dashed curves) for an aspect ratio a = 1. Inset: results for a = 0.5 showing the
existence of a significant delay in the experiments before the collapse occurs for the most cohesive material
(dark blue, �c = 3.6 mm). (b) Velocity of the front V as a function of the aspect ratio a for different cohesion
levels. The colour code is the same as in panel (a).

of the aspect ratio a:

ΔL
Li

∝
{

a for a ≤ 3,

a2/3 for a ≥ 3,
and

Hf

Li
∝

{
a for a ≤ 0.7,

a1/3 for a ≥ 0.7.
(5.1a,b)

The results for Lf and Hf obtained with cohesionless and cohesive materials are plotted
in figures 8(a) and 8(b), respectively, where filled symbols are experimental results and
open symbols are numerical results. The run-out length Lf decreases when increasing the
cohesion, but the final height Hf remains constant. However, the power laws (5.1a,b) seem
unchanged compared to the cohesionless case, as seen by the a1 and a2/3 slopes on the
graph, although the range of aspect ratio investigated is too narrow to conclude firmly
on the scalings. These results are in agreement with previous observations for powders
(Mériaux & Triantafillou 2008), showing that cohesion only changes the prefactor on the
run-out length (5.1a,b), without changing the exponent on the aspect ratio. Unfortunately,
understanding this prefactor analytically is not trivial, and is out of the scope of the present
paper.

As discussed previously, the simulations for the cohesive material systematically
underestimate the final run-out compared to the experiments. Looking more precisely at
the morphology of the free surface at the end of the flow reveals that the discrepancy is
localized at the tip of the deposit. The no-slip boundary condition applied in the simulation
at the contact line may be a source of additional dissipation explaining the difference
between simulation and experiments. We show in the Appendix that, by adjusting the
parameters of the rheological model, μs, Δμ and I0, the run-out can be adjusted, but we
found no set of parameters able to predict both cohesionless and cohesive systems.

6. Discussion and conclusion

In this paper, we studied the dynamics of the collapse of a column of cohesive granular
material both experimentally, using a CCGM made of polymer-coated particles, and
numerically, using a continuous approach based on a cohesive viscoplastic rheology.

The first effect of cohesion is the stabilization of the granular column with a stability
criterion that depends on the aspect ratio and the cohesion level. A stability criterion and
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Figure 8. (a) Normalized run-out length ΔL/Li as a function of the aspect ratio a for different cohesion levels
for both experiments and simulations. (b) Normalized height of final deposit Hf /Hi as a function of the aspect
ratio a.

an angle of failure have been measured and compared with a simple theoretical approach
based on a Mohr–Coulomb stability criterion assuming a planar slip line. It would be
interesting in future work to go beyond this approximation, and analyse more precisely
the mode of failure of the column, in the spirit of studies done to understand the collapse
of a column of Bingham material (Chamberlain et al. 2001; Liu et al. 2016). How the
presence of both a plastic yield stress and a frictional stress changes the slip lines is an
open question.

A second effect of cohesion is the increase of the dissipation during the flow, leading
to a slower spreading of the material and a shorter run-out length. A striking effect of the
cohesion on the collapse of the granular column is the presence of a ‘surfing wedge’ on the
top corner of the column. It acts as a dead volume transported passively by the granular
flow underneath.

The comparison of the results (stability of the column, run-out length, collapse velocity)
between the experiments and the continuous numerical simulation reveals a relatively
good agreement, despite some discrepancies. This shows that the main features of the
cohesive granular collapse are captured by simply adding a constant cohesive yield
stress to the cohesionless granular rheological model. Differences between experiments
and simulations were observed for large cohesion levels, for which the initial failure
angle is higher in experiments than in simulation, the run-out is underestimated in the
simulation, and a delay before collapse is observed in experiments and not captured
in simulations. These differences may come from an oversimplified description of the
rheological properties of the cohesive granular material. Additional studies with other
configurations more sensitive to rheological details than column collapse would be
interesting to further investigate the rheological properties of the material.
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agreement for the velocity and the run-out. (b) Final profiles for three values of Δμ.
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Appendix. Effect of the rheological parameters

The rheological model implemented in the numerical simulations is set by three arbitrary
parameters: the static friction coefficient μs, the friction coefficient difference Δμ, and
the inertial number constant I0 (see (2.3)). In this model, we assume that cohesion does
not change these parameters. However, since the run-out length and the final morphology
are not well captured by the model, a deeper investigation is needed. The effect of the
difference of the friction coefficients Δμ is presented in figure 9(a). The distance of the
front L(t) is plotted as a function of time for a column of cohesion �c = 2.8 mm and an
aspect ratio a = 1. The green area is obtained by changing the value of Δμ from 0 to 0.2.
Figure 9(b) shows the associated final profile for different values of Δμ. We observe that
an increase of Δμ leads to a decrease of the run-out length. Consequently, changing the
value of Δμ allows adjusting the final run-out of the cohesive collapse with only a small
change in the velocity of the collapse.

The effect of I0 is plotted in figure 10(a) and the associated run-out profile is plotted in
figure 10(b) for the configuration described above, and a chosen Δμ = 0.1. We see that
changing the value of I0 barely changes the dynamics and the final profile of the run-out.
Therefore, if the cohesion has an impact on this parameter, we do not expect a major effect.

The last parameter we investigate is the static friction coefficient μs. While this
parameter has been measured experimentally in a previous study, using inclined-plane
experiments (Gans et al. 2020), the measurement method was rather different from this
set-up. However, after the initiation of the flow, one may suggest that the PBS coating could
act like a lubricant, which could decrease the effective μs during the flow. An investigation
of the effect of the rheological parameter μs is presented in figure 11. The distance of the
front is plotted as a function of the time for an experiment of aspect ratio a = 1 and two
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Figure 11. Experimental and numerical front position L(t) of the collapse for �c = 2.8 mm, Δμ = 0.12,
I0 = 0.3 and a = 1.

different simulations with μs = 0.4 and μs = 0.25. We see that a decrease of μs leads to
an increase of the velocity and of the run-out length.

With this parametric study, we see that a change of Δμ and μs may have a significant
impact on the dynamics of the collapse, and it may be possible to define an optimal set
(μs, Δμ) to fit the experiments. Since, in the experiments, the PBS coating might change
the frictional properties during the flow, we do not know if the apparent effect on μs and
Δμ is due to cohesion or not. These results suggest that a deeper investigation of the
rheology of the CCGM is needed to fully understand its dynamical behaviour.

REFERENCES

ABRAMIAN, A., LAGRÉE, P.-Y. & STARON, L. 2021 How cohesion controls the roughness of a granular
deposit. Soft Matt. 17 (47), 10723–10729.

959 A41-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.180


Collapse of a cohesive granular column

ABRAMIAN, A., STARON, L. & LAGRÉE, P.-Y. 2020 The slumping of a cohesive granular column: continuum
and discrete modeling. J. Rheol. 64, 1227–1235.

ARTONI, R., SANTOMASO, A.C., GABRIELI, F., TONO, D. & COLA, S. 2013 Collapse of quasi-
two-dimensional wet granular columns. Phys. Rev. E 87 (3), 032205.

BADETTI, M., FALL, A., HAUTEMAYOU, D., CHEVOIR, F., AIMEDIEU, P., RODTS, S. & ROUX, J.-N. 2018
Rheology and microstructure of unsaturated wet granular materials: experiments and simulations. J. Rheol.
62 (5), 1175–1186.

BALMFORTH, N.J. & KERSWELL, R.R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538,
399–428.

BARKER, T., SCHAEFFER, D.G., BOHÓRQUEZ, P. & GRAY, J.M.N.T. 2015 Well-posed and ill-posed
behaviour of the-rheology for granular flow. J. Fluid Mech. 779, 794–818.

BOCQUET, L., CHARLAIX, E., CILIBERTO, S. & CRASSOUS, J. 1998 Moisture-induced ageing in granular
media and the kinetics of capillary condensation. Nature 87, 735–737.

CASTELLANOS, A. 2005 The relationship between attractive interparticle forces and bulk behaviour in dry and
uncharged fine powders. Adv. Phys. 4, 263–376.

CHAMBERLAIN, J.A., SADER, J.E., LANDMAN, K.A. & WHITE, L.R. 2001 Incipient plane-strain failure of
a rectangular block under gravity. Intl J. Mech. Sci. 43 (3), 793–815.

CHEN, J., YIN, J.-H. & LEE, C.F. 2003 Upper bound limit analysis of slope stability using rigid finite
elements and nonlinear programming. Can. Geotech. J. 40, 742–752.

DUNCAN, J.M., WRIGHT, S.G. & BRANDON, T.L. 2014 Soil Strength and Slope Stability, 2nd edn. Wiley.
FOSTER, K.D., BRONLUND, J.E. & PATERSON, T. 2006 Glass transition related cohesion of amorphous

sugar powders. J. Food Engng 77 (4), 997–1006.
FREDLUND, D.G. & KRAHN, J. 1977 Comparison of slope stability methods of analysis. Can. Geotech. J. 14,

429–439.
GANS, A., POULIQUEN, O. & NICOLAS, M. 2020 Cohesion-controlled granular material. Phys. Rev. E 101,

032904.
HALSEY, T.C. & LEVINE, A.J. 1998 How sandcastles fall. Phys. Rev. Lett. 80 (14), 3141.
KAMIYA, H., KIMURA, A., TSUKADA, M. & NAITO, M. 2002 Analysis of the high-temperature cohesion

behavior of ash particles using pure silica powders coated with alkali metals. Energy Fuels 16 (2), 457–461.
KERMANI, E., QIU, T. & LI, T. 2015 Simulation of collapse of granular columns using the discrete element

method. Intl J. Geomech. 15, 04015004.
KONOPKA, L. & KOSEK, J. 2017 Discrete element modeling of electrostatic charging of polyethylene powder

particles. J. Electrostat. 87, 150–157.
LACAZE, L., PHILLIPS, J.C. & KERSWELL, R.R. 2008 Planar collapse of a granular column: experiments

and discrete element simulations. Phys. Fluids 20, 063302.
LAGRÉE, P.Y., STARON, L. & POPINET, S. 2011 The granular column collapse as a continuum: validity of a

two-dimensional Navier–Stokes model with a μ(I)-rheology. J. Fluid Mech. 686, 378–408.
LAJEUNESSE, E., MONNIER, J.B. & HOMSY, G.M. 2005 Granular slumping on a horizontal surface. Phys.

Fluids 17, 103302.
LANGLOIS, V.J., QUIQUEREZ, A. & ALLEMAND, P. 2015 Collapse of a two-dimensional brittle granular

column: implications for understanding dynamic rock fragmentation in a landslide. J. Geophys. Res. 120,
1866–1880.

LI, P., WANG, D., WU, Y. & NIU, Z. 2021 Experimental study on the collapse of wet granular column in the
pendular state. Powder Tech. 393, 357–367.

LIU, Y., BALMFORTH, N.J., HORMOZI, S. & HEWITT, D.R. 2016 Two-dimensional viscoplastic dambreaks.
J. Non-Newtonian Fluid Mech. 238, 65–79.

LUBE, G., HUPPERT, H.E., SPARKS, R.S.J. & FREUNDT, A. 2005 Collapses of two-dimensional granular
columns. Phys. Rev. E 72, 041301.

MACAULAY, M. & ROGNON, P. 2021 Viscosity of cohesive granular flows. Soft Matt. 17 (1), 165–173.
MANDAL, S., NICOLAS, M. & POULIQUEN, O. 2021 Rheology of cohesive granular media: shear banding,

hysteresis, and nonlocal effects. Phys. Rev. X 11 (2), 021017.
MÉRIAUX, C. & TRIANTAFILLOU, T. 2008 Scaling the final deposits of dry cohesive granular columns after

collapse and quasi-static fall. Phys. Fluids 20, 033301.
MITARAI, N. & NORI, F. 2006 Wet granular materials. Adv. Phys. 55, 1–45.
RESTAGNO, F., BOCQUET, L. & CHARLAIX, E. 2004 Where does a cohesive granular heap break? Eur. Phys.

J. E 14, 177–183.
SHARMA, R.S., GONG, M., AZADI, S., GANS, A., GONDRET, P. & SAURET, A. 2022 Erosion of cohesive

grains by an impinging turbulent jet. Phys. Rev. Fluids 7, 074303.
STARON, L. & HINCH, E.J. 2005 Study of the collapse of granular columns using two-dimensional

discrete-grain simulation. J. Fluid Mech. 545, 1–27.

959 A41-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.180

	1 Introduction
	2 Experimental and numerical methods
	2.1 Experimental set-up and methods
	2.2 Numerical methods
	2.3 Control parameters
	2.4 Qualitative observations

	3 Column stability
	3.1 Theoretical failure conditions
	3.1.1 Rectangular pile with a small aspect ratio
	3.1.2 Truncated pile
	3.1.3 Rectangular pile with a large aspect ratio

	3.2 Experimental and numerical observations

	4 Collapse angles
	5 Collapse dynamics, run-out length and final deposit
	5.1 Velocity of the front
	5.2 Run-out and final deposit

	6 Discussion and conclusion
	A Appendix. Effect of the rheological parameters
	References

