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Data Assimilation: General Background

1.1 Introduction

Data assimilation includes two main components: simulation model and data. The simula-
tion model is defined as a mathematical/numerical system that can simulate an event or a
process. In most typical settings the simulation model is a prediction model based on partial
differential equations (PDEs) that often includes empirical parameters. Data are generally
associated with observations made by a measuring instrument, although data could also
imply a product obtained by processing observations. Using an example from meteorology,
data include observations such as atmospheric temperature and satellite radiances. The goal
of data assimilation is to combine the information from a simulation model and data in order
to improve the knowledge of the system, described by the simulation model. Apparently,
the formulation of data assimilation will depend on interpretation of the knowledge of
the system. Before we attempt to clarify a possible interpretation, it is useful to further
understand the simulation model and data.

In agreement with common applications in geosciences and engineering, we narrow
our discussion to a dynamic-stochastic PDE-based prediction model. Prediction models
are developed with the general idea of improving the prediction of various phenomena
of interest. From the theory of PDEs it is known that various parameters can impact the
result of PDE integration, such as initial conditions (ICs), model errors (MEs), and empirical
model parameters (EMPs). It is widely recognized that our knowledge of these parameters
is never perfect, implying uncertainty of these parameters and uncertainty of the prediction
calculated using such uncertain parameters.

Since the ultimate goal of using prediction models is to produce an improved prediction,
it is natural to prefer a prediction that is in some way optimal. Such a prediction should
be reliable, implying a desire to have a very small uncertainty associated with prediction.
Then, the question is: How can the prediction be improved? First, it is anticipated that by
improving the mentioned parameters (ICs, MEs, EMPs) and reducing their uncertainty
would result in a desirable prediction. One could also try to improve model equations
by including missing physical processes, coupling relevant components, and/or improving
spatiotemporal resolution (if the prediction model is discretized). However, the only way
to improve prediction is to introduce new information about the model parameters or
model equations. The new information could come from another model with superior
performance, but the most common source of new information about the real world comes
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4 General Background

from observations. An additional source of information could be introduced from past model
performances if it is believed that the prediction model has some skill. If the prediction
model has no skill, then observations are the only source of information, and one has to rely
on using purely statistical methods. If the prediction model has some skill, however, then it
is possible to combine the information from observations and from past model performances
and then rely on using data assimilation.

Note that all sources of information, from observations and from prediction models, are
uncertain. We already suggested that imperfect knowledge of model parameters (ICs, MEs,
and/or EMPs), as well as model equations, implies an imperfect prediction. Information
from observation is also not perfect. There are instrument errors, transmission errors, local
errors, as well as the so-called representativeness errors. The instrument error is associated
with every measuring instrument and can vary depending on the accuracy of the instrument.
The errors created during a transmission from observation site to central location may not
be detected in some instances and will contribute to observation error. Local errors refer to
unforeseen errors of the local observation site, such as artificial heat sources and the impact
of local vegetation. The representativeness error is the error caused by model prediction that
is not representative of the actual observation. This can refer to inadequate model resolution,
volume-averaged model variable versus point observation, etc. Therefore, observations also
have errors, i.e., uncertainties.

Given that the two main components of data assimilation, prediction model and data,
are inherently uncertain, then the output of data assimilation, the knowledge of the system,
is expected to be uncertain as well. Uncertainty can be measured in many different ways.
One can think of uncertainty as a measure of the difference between an estimate and the
truth, if the truth is known. Unfortunately, the true value of the field is rarely known, except
in a controlled experiments such as an observation system simulation experiment (OSSE).
The theory of probability offers a mathematically consistent, formal way of dealing with
uncertainties, and is used in our approach to data assimilation. A comprehensive object that
describes the probabilistic system is the probability density function (PDF). Therefore, one
can think of the PDF as the actual knowledge of the system, implying that the ultimate goal
of data assimilation is to estimate the PDF. As will be shown in Chapters 3, 7, 8, 9, and 12,
estimating the PDF is quite a challenging problem in realistic high-dimensional applications
of data assimilation, mostly limiting practical data assimilation to estimating the first PDF
moment (e.g., mean) and eventually the second PDF moment (e.g., covariance), with only
an occasional capability of estimating the higher-order PDF moments.

Another critical aspect of data assimilation is the processing of information. Both prior
model realizations and data contain information that can potentially contribute to improving
the state of knowledge. Shannon’s information theory (Shannon and Weaver, 1949), also
based on using the probabilistic approach, offers the mathematical formalism for quantify-
ing and processing information. Although still not used to its maximum, this information
theory is a very handy tool for data assimilation. Implied from the above discussion of
the impact of model parameters, such as ICs, MEs, and EMPs, on the prediction made
by the model, and the aspiration of data assimilation to improve prediction by modifying
model parameters ICs, MEs, and/or EMPs, the control theory is also an important tool of
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data assimilation. The implied dynamic-stochastic characterization of a prediction model
also implies the important role of statistics and possibly chaotic nonlinear dynamics in data
assimilation. Given that data assimilation is typically multivariate and applied to vectors
and matrices, it relies heavily on using linear algebra and functional analysis.

There are several other considerations that are important for data assimilation. Realistic
physical phenomena and processes, and their relation to observed variables, are all
inherently nonlinear. As such, the treatment of nonlinearity in data assimilation plays
an important role in choosing the adequate control theory methods and limiting the utility
of linear algebra. The dynamical aspect of prediction models, generally characterized by
time-dependent phenomena, implies that prediction uncertainties have to be dynamical
and time-dependent as well. Given the sensitivity of PDEs to the initial (and boundary)
conditions, data assimilation has to provide dynamically balanced ICs that would not cause
spurious perturbations in prediction. In the case of chaotic nonlinear dynamics, as most
realistic dynamical systems are, data assimilation needs to capture and eventually remove
the errors of growing and neutral modes from the ICs.

With all these components, probability theory, statistics, information theory, control
theory, linear algebra, and functional analysis, make data assimilation very complex and
challenging.

1.2 Historical Background

First attempts to address what we now call data assimilation could be traced to data
fitting and regression analysis applied in astronomy, most notably by Legendre (1805)
and Gauss (1809). In solving the problem Gauss assumed normally distributed errors and
introduced the normal probability distribution. Around that time Laplace (1814) introduced
the Bayesian approach by developing a mathematical system on inductive reasoning based
on probability. Starting with these discoveries, and after a considerable development of
mathematical tools and theories, the modern-age data assimilation was made possible.

Early methods for data assimilation were deterministic and essentially represented a
function fitting to measurements. This included the interpolation methods with distance-
based interpolation weights in order to determine the relative importance of observations,
such as the objective analysis schemes of Bergthórsson and Döös (1955), Gilchrist and
Cressman (1954), Cressman (1959), and Barnes (1964). While useful for operational
numerical weather prediction (NWP) of that time, these methods did not explicitly include
probabilistic considerations. Other deterministic methods include nudging data assimilation
(Hoke and Anthes, 1976; Davies and Turner, 1977), sometimes also referred to as four-
dimensional data assimilation (4DDA) or a dynamic relaxation method. Later developments
of the method include a generalization to accept uncertainties (e.g., Zou et al., 1992).
Nudging implies a change of the original dynamical equations of a prediction model to
include a forcing term. The coefficients associated with the forcing are generally determined
by fitting the model state closer to the observations. Although nudging has been improved
to implicitly accept uncertainties, it does not rely on using the Bayesian approach and does
not attempt to estimate PDF moments as probabilistic data assimilation does.
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6 General Background

Probably the first data assimilation method that is critically relevant for understanding
modern-age data assimilation is the Kalman filter (KF) (Kalman and Bucy, 1961), initially
developed for signal processing. It provides a mathematically consistent methodology based
on probability and Bayesian principles that produces a minimum variance solution. The KF
is also helpful in describing the role of dynamics in forecast error covariance, as well in
model error covariance. Since the KF is defined for linear systems, it fully resolves the
Gaussian PDF and in that sense represents a satisfactory solution to general probabilistic
data assimilation problems. There are, however, major obstacles in making the KF a prac-
tical data assimilation method. For one, it is a linear filtering method and as such it cannot
satisfactorily address nonlinearities in the prediction model and observations. Another
major obstacle is the required matrix inversion, which becomes practically impossible to
calculate in realistic high-dimensional applications. Strictly relying on the Gaussian PDF
assumption is also a disadvantage of the KF, given that prediction model variables and
observations could have non-Gaussian errors.

The first practical method that incorporates the basic data assimilation setup with
Bayesian and probabilistic assumptions is the optimal interpolation (OI) method of Gandin
(1963), sometimes referred to as statistical interpolation. This is a minimum variance
estimator and as such it can be related to the KF and other probabilistic data assim-
ilation methods. A more detailed overview of OI can be found in Daley (1991) (see
chapters 3, 4, and 5 therein). The OI method is very much a simplified version of the
KF. The OI employs a linear observation operator, in early versions only the identity
matrix. For nonlinear observations, such as satellite radiances, an inversion algorithm
(i.e., retrieval) that produces a model variable from observations is required. The forecast
error covariance is modeled and includes separate vertical and horizontal correlations.
By construction the forecast error, covariance is homogeneous (i.e., all grid points are
treated equally) and isotropic (all directions are treated equally). In addition, the covariance
is stationary, being approximated by a correlation function with statistically estimated
correlation parameters. Since it is related to the KF, OI can also produce an estimate
of the posterior error covariance. However, such an estimate is not reliable since the
input covariances and parameters are not accurate. The OI is also local, in the sense that
only observations within a certain distance from the model point impact the analysis at
that point. Although theoretically and practically an important step in probabilistic data
assimilation development, when measured against our motivation to produce a reliable
estimate of PDFs, OI leaves much to be desired. At best it can produce a meaningful
estimate of the first PDF moment only, however with serious limitations related to preferred
capabilities such as the nonlinearity of observation operators and dynamical structure
of forecast error covariance.

Another fundamental development that led to current variational data assimilation (VAR)
methods was the introduction of variational principles in data assimilation by Sasaki (1958).
While at the time it was understood as a method for objective analysis based on least squares,
the new method for the first time introduced variational formalism and minimization under
the geostrophic constraint and also under the more general balance constraint between
winds and geopotential. Then, in a trilogy of papers (Sasaki, 1970a, 1970b, 1970c) expanded
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the previous approach to include the time dependency of observations and established a
basis for future development of four-dimensional variational data assimilation (4DVAR)
methodology.

While the use of variational principles in data assimilation have been known since the
early work of Sasaki (1958), it took almost 25 years before variational methodology had
another push into the field of data assimilation, mostly because of the advancements of
computers in NWP. Addressing the deficiencies of OI, most importantly the local character
of the analysis, nonlinearity of observations, and to some extent the specification of forecast
error covariance, variational methods for data assimilation were revived in the mid 1980s
(e.g., Lewis and Derber, 1985; Le Dimet and Talagrand, 1986). The subtypes of variational
methods include three-dimensional variational (3DVAR) (e.g., Parrish and Derber, 1992)
and 4DVAR data assimilation (e.g., Navon et al., 1992; Županski, 1993; Courtier et al.,
1994). They include a global minimization (i.e., over all model points) of the cost function
that can incorporate nonlinear observations and solves the inversion problem using adjoint
equations. The forecast error covariance is improved over OI as it includes complex cross-
correlations with additional dynamical balance constraints, but the correlations are still
modeled. On the positive side, the modeling of error covariance allows the covariance to
be of full rank, meaning that all degrees of freedom (DOF) required for solving the analysis
problem are included. The covariance is stationary, although in 4DVAR there is limited
capability to introduce time dependence during the assimilation window. Also, variational
methods primarily estimate the first moment of PDFs. Although it is possible to estimate the
second PDF moment, especially in 4DVAR, there is no feedback of uncertainties from one
data assimilation cycle to the next implying a limited use of Bayesian inference. The main
advantage of variational methods is their capability to assimilate nonlinear observations,
in particular the satellite radiances that now represent the major source of information in
meteorology (e.g., Derber and Wu, 1998). By introducing 4DVAR the prediction model
itself could be used as a constraint in optimization. The cost of applying VAR has increased
compared to previous methods, but it can still be considered efficient since potentially costly
matrix inversions are avoided. The variational methods are still used in practice.

Immediately following this development of variational methods, ensemble Kalman filter-
ing (EnKF) methods have been introduced to data assimilation (Evensen, 1994; Houtekamer
and Mitchell, 1998). The EnKF successfully addressed the problem of the nonlinear predic-
tion model in the KF by introducing the Monte Carlo approach to the KF forecast step. At the
same time the forecast error covariance is dynamic, and is therefore an improvement on the
stationary and modeled error covariance used in variational methods. The most important
impact of the EnKF was that a realistic data assimilation could be used to produce the first
two moments of the PDF, the mean and the covariance, although still under a Gaussian PDF
assumption. One of the issues of the EnKF is not being able to account for nonlinearity
of observations, since the same linear KF analysis equation is used. More recently (e.g.,
Sakov et al., 2012), an iterative EnKF was introduced in a manner similar to the iterated
KF to address the nonlinearity of observation operators. Implementing the EnKF requires
the assimilation of perturbed observations, which results in the calculation of numerous
analyses for each ensemble member, and therefore an increase in the cost. Square-root
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EnKF methods were introduced to reduce the computational cost, by directly calculating the
mean of the analysis. Including a large number of ensembles required to resolve a realistic
data assimilation problem proved to be practically impossible due to the computational
cost and storage requirements. This prompted a need for covariance localization to increase
the number of DOF of the low-rank ensemble covariance that could be feasible. This
localization greatly helped the EnKF and related ensemble methods to remain of practical
significance, although a modification of the dynamically based ensemble forecast error
covariance via convolution with a prespecified localizing covariance matrix is required.
Covariance localization implies that practical EnKF methods can be interpreted, in terms of
forecast error covariance, as an intermediate approach between the full-rank EnKF (with all
DOF) and the local OI method. The analysis solution in the EnKF with localization is essen-
tially local since only observations within a certain distance can impact the analysis point.

Both EnKF and variational methods have practical and theoretical limitations. Variational
methods have the capability of addressing nonlinearity through applying global numerical
optimization. The EnKF is inherently designed to use the linear analysis equation of the
KF. An alternative way of bridging this issue was introduced by the maximum likelihood
ensemble filter (MLEF) (Županski, 2005), in which it was shown how the calculation of
adjoint operators could be avoided by using nonlinear ensemble perturbations and applied in
variational-like minimization of the cost function. As with other ensemble methods, MLEF
includes the flow-dependent ensemble covariance and estimates the posterior uncertainty.

The implied limitation of error covariance representation in the practical EnKF due to
an insufficient number of DOF and to some extent the nondynamical impact of covariance
localization, even though the covariance is flow dependent, can result in an analysis that
is not of the desired quality. The same could be said for variational methods, where the
use of stationary and modeled error covariance is not sufficiently realistic and can produce
unsatisfactory analysis. As a result, hybrid ensemble-variational methods that allow a
combination of the flow-dependent ensemble, but low-rank covariance, and the stationary
variational, but full-rank, error covariance were introduced (Lorenc, 2003; Buehner, 2005;
Wang et al., 2007; Bonavita et al., 2012; Clayton et al., 2013).

Data assimilation can also be viewed as an application of Pontryagin’s minimum
principle (PMP) (e.g., Pontryagin et al., 1961; Lakshmivarahan et al., 2013) where a least
squares fit of an idealized path to dynamics law follows from Hamiltonian mechanics. In
this application of optimal control theory, the problem is posed as finding the best possible
forcing for taking a dynamical system from one state to another, in the presence of dynami-
cal constraints. This forcing is also related to accounting for ME in data assimilation. While
the use of forcing reminds us of nudging, the PMP method is more general since it includes
an optimization subject to dynamical constraints as well as uncertainties (Lakshmivarahan
and Lewis, 2013). Similar to previous methods, it searches for optimal analysis that could
be interpreted as the first PDF moment, but estimation of the posterior uncertainties is not
an essential part of the method. It is possible to view 4DVAR as a special case of PMP.

The above historical overview also indicates the current status of practical data assimi-
lation development. Other methods with stronger theoretical foundations have been intro-
duced to data assimilation, such as particle filters (PFs) (e.g., van Leeuwen, 2009; Chorin
et al., 2010), but they still have limitations for realistic high-dimensional applications.
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However, by directly calculating arbitrary PDFs through the Bayesian framework they have
a theoretical advantage in accounting for nonlinearity and non-Gaussianity and therefore
offer numerous possibilities for the future development of data assimilation.

1.3 Terminologies and Notation

Data assimilation consists of two major elements – a model of the dynamical system and
a set of data (i.e., observations), and aims to procure optimal estimates of model states
by combining model forecasts and observations. We represent the model states and the
observations in terms of vectors, x and yo, respectively. The true state, xt , can never be
obtained but can be estimated through an adequate estimation procedure. Such an estimate,
made at a given time, is called the analysis, xa . The estimate is also denoted by x̂ and
is interchangeably used with xa . The background, xb, is an a priori estimate of xt before
the analysis is conducted. For the notations in data assimilation, we generally follow
Ide et al. (1997).

Data assimilation represents a process to obtain xa , as close to xt as possible, by
correcting xb using a correction, �x. Mathematically, it is formulated, in its simplest
form, as:

xa = xb +�x. (1.1)

Note that �x is a function of both yo and xb, and it is called an analysis increment.

1.3.1 Observation Equation

A variety of observations, assembled in yo, are used for data assimilation (see Figure
1.1). As observations are much fewer than model states and are irregularly distributed,
direct comparison between observations and model states is unfeasible. Thus, we define a
nonlinear function, H , called an observation operator, that transforms the state vector from
the state space, Rm, to the observation vector in the observation space, Rn. The observation
is described in terms of the true state as:

yo = Hxt + εo, (1.2)

where εo is the observation (measurement) error. Equation (1.2) is called the observation
equation or the observation model.

1.3.2 Observation Error Statistics

We assume that the measurement error εo in (1.2) is random and independent, and hence
have zero mean, i.e.,

mean(εo
i ) = E(εo

i ) = 0 for i = 1, . . . ,n. (1.3)

This implies that yo in (1.2) depends only on xt and all other variation in yo is random. For
the random errors, the variance and the covariance of the errors are

var(εo
i ) = E(εo

i ε
o
i ) = σ 2

i for i = 1, . . . ,n (1.4)
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Figure 1.1 Various observation data at the global scale, available on 0000 UTC 18 August
2020, with the observation platforms (top-right corners) and the number of data used for
data assimilation (top-left corners). The details of legends in the subfigures refer to the data
coverage from the European Centre for Medium-Range Weather Forecasts (ECMWF, 2020).
CC BY-NC-ND 4.0 License.

and

cov(εo
i ,ε

o
j ) = E(εo

i ε
o
j ) = 0 for i,j = 1, . . . ,n and i � j, (1.5)

respectively. Here, σ 2
i is the squared standard deviation of εo

i and (1.4) assumes that
the variance of εo is constant; thus, not dependent on xt . With zero covariances in (1.5),
the variables in εo are uncorrelated with each other. By combining the three assumptions in
(1.3)–(1.5), we have

mean(εo) = E(εo) = 0,

cov(εo) = E(εo(εo)T ) = σ 2I = R. (1.6)
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That is, the observation error covariance R is a diagonal matrix composed of σ 2
i though R

is in general a nondiagonal matrix.

1.3.3 Observation Operator

Note that it is not only that the observation sites are not usually located at the grid points
where model states are calculated, but also that the observation quantities often do not
match the model variables. For instance, some remotely sensed observations do not have
corresponding model states; thus, it is essential to convert the model state variables into
observation variables. In practice, the operator H is performed in two steps:

1. Interpolation, say HI , from the model grid points to the observation sites where
the conversion will be performed for indirect observations or directly when the state
variables are the same as the observation quantities.

2. Conversion, say HC , of the model variables to the observables when the measurements
are indirect, e.g., radiances measured by sensors onboard satellites. A radiative transfer
model can serve as an H to calculate the radiance, using the whole state vector
components, at a specific waveband (see, e.g., Figure 1.2).

The operation by H : Rm → Rn is composed of two mappings, that is, HI : Rm → Rn

and HC : Rn → Rn, giving

ŷ = H
(
x̂
) = HC

(
xo
) = HC

(
HI
(
x̂
)) = HCHI

(
x̂
)
. (1.7)

This decomposition is illustrated in Figure 1.3. Here, HI (x̂) interpolates an m × 1 state
estimate vector x̂ from the model space (i.e., grid points) to an n × 1 vector xo in the
observation space. HC(xo) converts n state variables xo into a set of n observations (ŷ) –
that is, observation estimate (or model equivalents of observations) – the radiance computed

Cloud

property

Tair

Tsfc

Tcld

qv

qc

AOD

Satellite

radiance

X̂ H (x) = HC (x)ˆ ˆ ŷ

Land surface

property

Gas/aerosol

extinction

Observation operator Observation estimatesState variables

p

o3,co2,...

Radiative

transfer

model

(e.g., CRTM,

RTTOV)

Figure 1.2 Composition of observation operator, H .

https://doi.org/10.1017/9781108924238.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108924238.003
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Figure 1.3 Composition of observation operator, H .

through a radiance transfer model using temperature, water vapor mixing ratio, cloud mixing
ratio, etc. (see Figure 1.2). If the model states and the observation quantities were the same,
H (x̂) = HI (x̂): If the observation sites were exactly located at the grid points and the model
states and observation quantities were different, H (x̂) = HC(x̂).

The observation operator H is generally nonlinear; however, it is more convenient to
use its linearized version, denoted by H, in explaining the concept of data assimilation.
For practical applications, in (1.7), we adopt linear operators, i.e., H = H, for direct
observations that match the model variables (wind, temperature, humidity, etc.): We employ
the nonlinear operator H for indirect observations (satellite radiance, radar reflectivity, etc.).

Example 1.1 H for vertical sounding of moisture

Assume that measurements of humidity (q) are made by a radiosonde at
three levels and represented as

yo = (qo
1,q

o
2,q

o
3 )T

while the model states are calculated at six levels and depicted as

x = (q1, . . . ,q6)T.

As in the figure, the levels of measurements, zo
l (l = 1,2,3), are not

necessarily the same as those of model states, zk (k = 1, . . . ,6). Because
the observed quantity and the model state are the same, we can simply
put xo = x. We apply the observation operator H = HI to interpolate xo

to the observation space (i.e., levels l):
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H
(
xo
) =
⎛
⎜⎜⎝

q1 + q2−q1
z2−z1

(
zo

1 − z1
)

q3 + q4−q3
z4−z3

(
zo

2 − z3
)

q5 + q6−q5
z6−z5

(
zo

3 − z5
)
⎞
⎟⎟⎠ =

⎛
⎝ β1q1 + β2q2

β3q3 + β4q4

β5q5 + β6q6

⎞
⎠ = ŷ.

This is a set of linear equations; thus, we can define a linear observation operator
H ≡ ∂H

∂x , given by

H =
⎛
⎝ β1 β2 0 0 0 0

0 0 β3 β4 0 0
0 0 0 0 β5 β6

⎞
⎠.

Example 1.2 H for the radar reflectivity factor

The following relation, derived from the Marshall–Palmer distribution of raindrop
size without considering ice phases, was used as an observation operator for the radar
reflectivity factor (e.g., Sun and Crook, 1997; Xiao et al., 2007; Sugimoto et al., 2009):

Z = 43.1+ 17.5 log (ρqr), (1.8)

where Z is the reflectivity factor (in dBZ), ρ is the air density (in kg m−3), and qr is
the rainwater mixing ratio (in g kg−1).

By considering two ice phases – the snow and hail mixing ratios (qs and qh,
respectively) – Gao (2017) devised the reflectivity observation operator as:

Z = 10 log Ze. (1.9)

Here, the equivalent radar reflectivity factor Ze is given by

Ze =
⎧⎨
⎩

Z(qr ) for Tb ≥ 5◦C
αZ(qr )+ (1− α) [Z(qs)+ Z(qh)] for −5◦C < Tb < 5◦C

Z(qs)+ Z(qh) for Tb ≤ −5◦C,

(1.10)

where Tb is the background temperature, and α varies linearly between 0 at Tb =
−5◦C and 1 at Tb = 5◦C, for different components of the reflectivity factors as the
following:

Phase Reflectivity factor References/Conditions

Rain Z(qr ) = 3.63× 109(ρqr )1.75 Smith Jr. et al. (1975)

Snow (dry) Z(qs) = 9.80× 108(ρqs)1.75 Tb < 0◦C
Snow (wet) Z(qs) = 4.26× 1011(ρqs)1.75 Tb > 0◦C
Hail Z(qh) = 4.33× 1010(ρqh)1.75 Lin et al. (1983);

Gilmore et al. (2004)
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14 General Background

Practice 1.1 H for irradiance

Assume that a satellite measures irradiance, E, emitted from an atmospheric layer.
In a numerical model, Ei , from the ith grid box, can be simply calculated by the
Stefan–Boltzmann law as:

Ei = σT 4
i ,

where σ is the Stefan–Boltzmann constant and Ti is the layer temperature in that grid
box. Develop the observation operator H and its linearized operator H (≡ ∂H/∂x),
for the following figure, which has measurements of E from grid boxes 1 and 3 only.

1.3.4 Background Field

Observations are generally much fewer than model states that are assigned to 3D grid
points per time step: the total number of conventional observations is of the order of 104

while that of grid-point variables to be calculated in an NWP model is of the order of 107

(Kalnay, 2003). This makes data assimilation an underdetermined problem. Furthermore,
observations are distributed irregularly over the globe, e.g., there exists much poorer data
over the southern hemisphere than the northern hemisphere.

Therefore, additional information on each grid point – called a background or first guess
and denoted by xb – is necessary to create ICs for numerical prediction. In these days,
operational centers generate xb using a short-range forecast (e.g., a 6-h forecast for a global
model) out of an analysis cycle (e.g., a 6-h cycle in the global data assimilation system), as
shown in Kalnay (2003).

1.3.5 Analysis Equation

The goal of data assimilation is to find the analysis (xa) by correcting the background (xb)
using the observation (yo), which is formulated as

xa = xb +W
[
yo −H

(
xb
)]

. (1.11)
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Observation space

Model space

Observations

Observation operator

Innovations
(observation increment)

Corrections
(analysis increments)

Objective
analysis

Background
(short-range forecast)

Next background

Forecast model

Extended forecast

M

xb

xf = M(xa)

yo

H (xb)

Analysis

Cycling

xa = xb + W[yo – H(xb)]

yo – H (xb)

W[yo – H (xb)]

Figure 1.4 Basic concept of data assimilation.

Here, yo − H
(
xb
)

is called the observation increment or innovation, representing the
difference between the observations and the model states. The term W

[
yo −H

(
xb
)]

is
called the analysis increment, where W is a weight – or gain – represented by the error
characteristics (e.g., the background and observation error covariances).

Figure 1.4 describes the basic concept of data assimilation in the framework of NWP.
Note that we are dealing with two separate spaces – the observation space and the model
space – which are linked to each other via the observation operator H . The model prediction
starts from xb, obtained from a short-range forecast (e.g., 6-h forecast in a global prediction
system and 1-h forecast in a regional prediction system); when observations are available,
xb is transformed to the observation space through H

(
xb
)

to calculate an innovation
yo − H

(
xb
)
. Using the innovation, a correction term W

[
yo −H

(
xb
)]

is obtained in the
model space through the objective analysis and added to xb to get xa ; then, a forward
propagator M (i.e., a forecast model), operating on xa , produces an extended forecast and
a new background for the next cycle of data assimilation. An algorithmic view of data
assimilation and numerical prediction is depicted in Algorithm 1.1.
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Algorithm 1.1 General data assimilation with cycling

/* index k denotes cycle number */

/* Rm denotes model space; Rn, observation space */

1 Initiation: xb ! Provide a background xb at k = 1

2 repeat ! Loop for cycle k = 1 to kmax

3 Analysis at cycle k ! Procedure to obtain analysis xa

4 Transformation: xb −→ H (xb) ! Operate H : Rm → Rn

5 Innovation: yo −H
(

xb
)

! Calculate innovation at Rn

6 Correction: W
[
yo −H

(
xb
)]

! Calculate correction at Rm

7 Analysis: xa = xb −W
[
yo −H

(
xb
)]

! Obtain analysis at Rm

8 Forecast at cycle k ! New background and forecast

9 Background: xb = M(xa)
∣∣
tb

! Short-range forecast (e.g., tb = 6 h)

10 Forecast: xf = M(xa)
∣∣
tf

! Extended forecast (e.g., tf = 48 h)

11 until end of cycling

1.4 Basic Estimation Problem

1.4.1 Least Squares Estimation

The least-squares approach was invented in the 1800s independently by Carl Friedrich
Gauss and Adrien-Marie Legendre for calculating planetary motion. It constitutes the
foundation of modern data assimilation (Sorenson, 1970; Kalnay, 2003; Lewis et al., 2006)
through the core concept of estimating the unknown parameters by minimizing the squared
differences between the model and the data.

From the observation model (1.2), we can express yo in terms of the state estimate x̂,
rather than the true state xt , and a linear observation operator H as

yo = Hx̂+ εr = ŷ+ εr, (1.12)

where εr is called the residual error – the difference between the true measurement yo and
the estimated measurement ŷ = Hx̂. Equation (1.12) is also called the linear regression
model (see Colloquy 1.1).

In the least-squares estimation, we seek to find a specific x̂ that minimizes a functional
J = J (x̂), defined as the sum of squared residual errors:

J = (εr )T εr = ‖εr‖2
2 =
(
yo −Hx̂

)T (yo −Hx̂
)
, (1.13)

where ‖εr‖2 =
(
(εr

1)2 + · · · + (εr
n)2
)1/2

represents the Euclidean or L2 norm. Minimization
of the quadratic function J should satisfy the following requirements, for the gradient ∇x̂J

and the Hessian ∇2
x̂J :

∇x̂J =
∂J

∂ x̂
= −2HT yo + 2

(
HT H

)
x̂ = 0 (1.14)

https://doi.org/10.1017/9781108924238.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108924238.003


Data Assimilation: General Background 17

and

∇2
x̂J = ∂2J

∂ x̂∂ x̂T
= 2
(

HT H
)

is positive definite. (1.15)

Through the necessary condition (1.14), we can calculate the minimizer x̂ – the optimal
estimate that minimizes J – as the solution of the normal equation(

HT H
)

x̂ = HT yo. (1.16)

When HT H is square (m × m) and nonsingluar – i.e., having its inverse, nonzero
determinant, and H with full rank of m – we get the solution of (1.16) as

x̂ =
(

HT H
)−1

HT yo. (1.17)

Here,
(
HT H

)−1
HT ≡ Hı is called the generalized inverse or pseudoinverse of H. The

sufficient condition (1.15) implies that, for any nonzero norm of q (i.e., for all ‖q‖ > 0),

qT
(

HT H
)

q = (Hq)T (Hq) = ‖Hq‖2
2 > 0, (1.18)

which will hold only when Hq � 0 for q � 0: This is true when the columns of H are
linearly independent (Lewis et al., 2006). Furthermore, the rank of H is m (i.e., full). These
confirm that x̂ in (1.17) is the minimizer of J only when HT H is positive definite.

Practice 1.2 Least squares cost function, J

Show that the least squares cost function, J , satisfies the following equality:

J = (yo −Hx̂
)T (yo −Hx̂

)
= (yo)T yo − 2(yo)T Hx̂+ x̂T

(
HT H

)
x̂.

Then, derive ∇x̂J and ∇2
x̂J .

Colloquy 1.1

Linear regression

Linear regression – finding a line that best fits a set of data in the least-squares
sense – is regarded as a useful paradigm for more complex inverse problems
(e.g., atmospheric/oceanic data assimilation) (see Thacker, 1992). Assume that
we use a set of data (Xi,Yi), with a total of N pairs, to develop a function
(i.e., regression model) relating the dependent variable Y (or predictand) to the
independent variable X (or predictor) as in the following form:

Yi = Ŷi + εi = aXi + b + εi, i = 1, . . . ,N, (1.19)

https://doi.org/10.1017/9781108924238.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108924238.003


18 General Background

where a and b are the slope and the intercept, respectively, of the regression line Ŷi

and εi is the residual (or error). Finding the best fit implies estimating the values
of a and b that minimize the sum of squares between the observations (Yi) and
and the model solutions (Ŷi):

SSE =
∑

i

ε2
i =
∑

i

(
Yi − Ŷi

)2 =
∑

i

(Yi − (aXi + b))2, (1.20)

where SSE stands for the error sum of squares. The following normal equations
are derived by taking the derivatives of the SSE with respect to a and b and setting
them to 0:

∂(SSE)

∂a
= 0 =

∑
i

2Xi ((aXi + b)− Yi) = 2a
∑

i

X2
i + 2b

∑
i

Xi − 2
∑

i

YiXi

∂(SSE)

∂b
= 0 =

∑
i

2 ((aXi + b)− Yi) = 2Nb + 2a
∑

i

Xi − 2
∑

i

Yi,

producing the least squares estimates of a and b as

a =
∑

i

(
Yi − Y

) (
Xi −X

)
∑

i

(
Xi −X

)2 ; b = −aX + Y,

where X and Y denote the means of X and Y , respectively (see the figure in
Colloquy 1.2).

With multiple predictors (i.e., Xik, k = 1, . . . ,K , for given Yi), we can
construct a multiple linear regression, Ŷi = b+∑k Xikak , represented in vector
form as:

Y = Xa+ ε,

where b is included in the vector a. Then, the SSE (1.20) becomes the least squares
cost function (1.13) as

SSE = εT ε = (Y− Xa)T (Y− Xa). (1.21)

We can obtain the optimal parameter a that minimizes the SSE through the
normal equation

∂(SSE)

∂a
= XT (Y− Xa) = 0, (1.22)

producing

a = (XT X)−1XT Y, (1.23)

which is equivalent to the least squares estimate (1.17).
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Colloquy 1.2

Goodness-of-fit

We can assess the goodness-of-fit by defining the total sum of squares (SST ):

SST =
∑

i

(
Yi − Y

)2
, (1.24)

which measures the prediction error without using regression. In contrast, the
SSE, defined in (1.20), reflects the prediction error using the least squares
regression. How much prediction error is reduced by using the regression?

By combining the SSE and SST , we can further define a measure – the
coefficient of determination or R2 – to test the goodness of the regression model:

R2 = SST − SSE

SST
= 1− SSE

SST
, (1.25)

which measures the proportion of variation in the predictand (i.e., dependent
variable) that has been explained by the regression model. For instance,

R2 = 50.18− 17.76

50.18
≈ 0.6461

means that 64.61% of the variance in Y can be explained by the variance in X:
The remaining variation in Y may be due to random variability. It further tells us
that the overall sum of squares of 50.18 without regression is reduced down to
17.76 by empoying the least squares regression. Note that R2 = 1 implies the
perfect linear fit; thus, the higher the R2 value is, the better the regression model
fits the data. See the following figure for interpreting the linear regression model
in a given scatter plot and the errors involved in the linear regression.
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Practice 1.3 Linear regression: Global warming vs sea level rise

Year �T (◦C) �SL (m)

1885 −0.205 0.004
1895 −0.211 0.017
1905 −0.315 0.030
1915 −0.315 0.043
1925 −0.225 0.048
1935 −0.102 0.060
1945 0.018 0.080
1955 −0.044 0.102
1965 −0.023 0.115
1975 0.056 0.133
1985 0.250 0.150
1995 0.388 0.168
2005 0.602 0.198
2008 0.650 0.211

Shown in the table are 11-year average values,
centered at the specified years, of the change in
global mean temperature (�T ) and the change in
global mean sea level (�SL). For example, the
values in 1895 are averaged over 1890–1990.

1. Plot a scatter diagram with �T on the x-axis
and �SL on the y-axis. Construct a linear
least squares regression model, i.e., calculate
a and b in (1.19), and draw the regression line.

2. Estimate the corresponding values of �SL

for the values of �T = 0.75 and 1.5◦C.
3. Discuss the accuracy of the regression model

in terms of R2 in (1.25).

1.4.2 Weighted Least Squares Estimation

In operational data assimilation, many observations – of different variables (temperature,
humidity, pressure, wind, etc.) and from different platforms (radiosonde, radar, satellite,
etc.) – are used. Previously we have acquired x̂ by minimizing J (1.13) that assumed
equal emphasis on all observations. However, we may have higher reliance (i.e., weight)
on some measurements than others. This leads to the weighted least squares estimation,
which defines the cost function as

J = (εr )T Wεr = ‖εr‖2
W = (yo −Hx̂

)T W
(
yo −Hx̂

)
, (1.26)

where W is a symmetric weight matrix. To obtain x̂ that minimizes (1.26), we should have
the following requirements:

∇x̂J =
∂J

∂ x̂
= −2HT Wyo + 2

(
HT WH

)
x̂ = 0 (1.27)

and

∇2
x̂J = ∂2J

∂ x̂∂ x̂T
= 2
(

HT WH
)

is positive definite. (1.28)

Then, we obtain the weighted least squares estimate (WLSE) x̂ from (1.27) as:

x̂ =
(

HT WH
)−1

HT Wyo, (1.29)

where W is positive definite from (1.28).
We now define the least squares cost function by normalizing the squared errors with the

observation error covariance R in (1.6) or by putting the optimal weight matrix W = R−1

from (1.26):
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Unbiased estimate Biased estimate

E(x) = xt

p(x)

E(x) ≠ xtˆ

ˆ p(x)ˆ

ˆ
ˆ

E(x) ˆE(x)
x x̂

xt xt

ˆ

Figure 1.5 Unbiased vs biased estimate x̂ in terms of the PDF of the estimate p(x̂).

J = (εr )T R−1εr = (yo −Hx̂
)T R−1 (yo −Hx̂

)
. (1.30)

By minimizing J , we obtain

x̂ =
(

HT R−1H
)−1

HT R−1yo. (1.31)

Note that (1.31) becomes (1.17) when the measurement errors are uncorrelated (i.e., R is a
diagonal matrix) and all errors have equal variance (i.e., R = σ 2I) (Gelb, 1974).

1.4.3 Best Linear Unbiased Estimate

Given the observation model (1.2), where εo has zero mean and covariance matrix
E(εo(εo)T ) = R, as in (1.6), the best linear unbiased estimate (BLUE) of the true state xt ,
based on data yo, should satisfy the following conditions: 1) to be linear; 2) to be unbiased;
and 3) to have the minimum variance among all unbiased linear estimates.

The observation model becomes linear by taking H = H, where H is the linearized
version of H , i.e.,

yo = Hxt + εo, (1.32)

and by assuming the estimate is a linear function of the data, in the form of x̂ = zT yo, as
in (1.17) and (1.29). The bias of the estimate is defined as E(x̂) − xt : if E(x̂) = xt , then x̂
is an unbiased estimate of xt . Note that the zero-mean condition (1.3) also implies that x̂
is unbiased (do Practice 1.4). Figure 1.5 provides a graphical interpretation of the unbiased
and biased estimate in terms of the PDF, which will be explained in more detail in Chapter 2.

Practice 1.4 Unbiased estimate x̂

Using Eqs. (1.17), (1.3), and (1.32), show that E(x̂) = xt .

We now discuss the minimum variance condition for BLUE. Consider a linear unbiased
estimate of xt :

x̂ = zT yo. (1.33)
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Noting that x̂ is unbiased,

E(x̂) = xt

= E
(

zT yo
)
= E

(
zT (Hx̂+ εr )

)
= zT Hxt ; (1.34)

thus, zT H = I. The covariance is given by (do Practice 1.5)

cov(x̂) = E
(

(x̂− xt )(x̂− xt )T
)

= zT Rz. (1.35)

For BLUE, based on the Gauss–Markov Theorem (see Colloquy 1.3),

zT
BLUE =

(
HT R−1H

)−1
HT R−1, (1.36)

following (1.31) and (1.43) in Colloquy 1.3. We also note that zT
BLUEH = I, and hence

E(x̂BLUE) = xt . The difference between zT
BLUE and zT is

zT
BLUE − zT = d

=
(

HT R−1H
)−1

HT R−1 − zT , (1.37)

giving dH = 0 (do Practice 1.5); then, we can rewrite (1.35) in terms of d as (do Practice 1.5)

cov(x̂) =
(

HT R−1H
)−1 + dRdT. (1.38)

The covariance of BLUE is

cov(x̂BLUE) = zT
BLUERzBLUE

=
(

HT R−1H
)−1

HT R−1R
((

HT R−1H
)−1

HT R−1
)T

=
(

HT R−1H
)−1

. (1.39)

By taking the difference between (1.38) and (1.39), we have

cov(x̂)− cov(x̂BLUE) = dRdT. (1.40)

Note that dRdT is positive semidefinite (do Practice 1.5), making

cov(x̂) ≥ cov(x̂BLUE). (1.41)

Therefore, x̂BLUE has the minimum variance (i.e., “best”) among the linear unbiased
estimate x̂ in (1.33).
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Colloquy 1.3

Gauss–Markov Theorem

If the observations constitute a general linear model in the form of (1.32), i.e.,

yo = Hxt + εo,

where H is a linear observation operator matrix of n × m, xt is an m × 1 vector
of states to be estimated, and εo is an n× 1 measurement error vector with zero
mean and covariance R (i.e., E(εo) = 0 and E(εo(εo)T ) = R), then the WLSE
in (1.31) becomes the BLUE of xt . That is,

x̂WLSE = x̂BLUE =
(

HT R−1H
)−1

HT R−1yo. (1.42)

The covariance of x̂BLUE is

cov
(
x̂BLUE

) = (HT R−1H
)−1

, (1.43)

with its diagonal elements are the minimum variance:

var
(
x̂i

)
min =

[(
HT R−1H

)−1
]

ii

. (1.44)

Practice 1.5 BLUE

Solve the following:

1. For any linear unbiased estimate x̂ = zT yo in (1.33), show that the relation in
(1.35) holds, i.e.,

cov(x̂) = zT Rz.

2. For d = zT
BLUE − zT in (1.37), show that

dH = 0.

(Hint: Note that zT H = I from (1.33).)
3. Derive the relation in (1.38) from (1.35), i.e.,

cov(x̂) = zT Rz

=
(

HT R−1H
)−1 + dRdT,

using (1.37) and dH = 0.
4. Show that dRdT in (1.38) is always positive semidefinite. (Hint: Referring to

(1.18), you may define any q ∈ Rm and multiply q or qT to both sides of dRdT .)
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Example 1.3 BLUE with two measurements

Assume that we have measurements of humidity (q) at two places in an auditorium –
say, q1 near the air conditioner and q2 away from the air conditioner. We define
the observation model similar to (1.32), with H = I and the observation error (εo)
following the statistics in (1.6), as

qo
i = q + εo

i for i = 1,2. (1.45)

The BLUE q̂ should be 1) linear (say, q̂ = ciq
o
i for i = 1,2), 2) unbiased (i.e.,

E(q̂) = q), and have 3) minimum variance. Because q̂ is unbiased,

E
(
q̂
) = q = E

(
c1q

o
1 + c2q

o
2

) = E
(
c1(q + εo

1)+ c2(q + εo
2)
) = (c1 + c2)q;

thus, c1 + c2 = 1. The variance of q̂ is (do Practice 1.6)

E
(

(q̂ − q)2
)
= c2

1σ
2
1 + (1− c1)2σ 2

2 , (1.46)

making its minimum occur when

c1 =
σ 2

2

σ 2
1 + σ 2

2

; c2 =
σ 2

1

σ 2
1 + σ 2

2

. (1.47)

Then, the BLUE q̂ becomes

q̂ = σ 2
2 qo

1 + σ 2
1 qo

2

σ 2
1 + σ 2

2

. (1.48)

Practice 1.6 Variance of BLUE

Answer the following:

1. Show how (1.46) is obtained.
2. Show how to obtain c1 in (1.47) that minimizes the variance (1.46).
3. Define a least squares cost function J as

J (q) = (q − qo
1 )2

σ 2
1

+ (q − qo
2 )2

σ 2
2

,

and find the BLUE by minimizing J . Is the solution similar to the one in (1.48)?
4. Assume that qo

1 is a background (or first guess), i.e., qo
1 = qb, and qo

2 is a real
observation, say qo

2 = q. Express q̂ in terms of the innovation (i.e., q − qb) and
compare it with the analysis equation (1.11).
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1.4.4 BLUE with a Background

Assume that we have a background xb – the model-generated gridded observations – and a
real observation yo, and we aim at getting the BLUE or the analysis, i.e., xa = x̂BLUE . The
observation model is the same as in (1.32) and the error statistics follow (1.6). We further
assume that xa is a linear combination of the background and the observation as:

xa = Kxxb +Kyyo, (1.49)

with linear operators Kx and Ky . We define the background error εb and the analysis error
εa as

εb = xb − xt and εa = xa − xt,

respectively, where εb assumed to have zero mean (i.e., E(εb) = 0) and covariance Pb.
From (1.32) and (1.49), we have

E
(
εa
) = E

(
Kxxb +Kyyo − xt

)
= E

(
Kx

(
εb + xt

)
+Ky

(
Hxt + εo

)− xt
)

= (Kx +KyH− I)E
(
xt
)
.

As we are seeking the BLUE, xa should be unbiased – i.e., E(xa) = xt , giving E(εa) = 0
and hence Kx = I − KyH. By inserting Kx into (1.49) and by simply putting Ky = K,
we have

xa = xb +K
(

yo −Hxb
)
, (1.50)

where K is called the gain or the Kalman gain, which maps from Rn to Rm, and yo −Hxb

is the innovation. Note that (1.50) is equivalent to the analysis equation (1.11) except that
the observation operator is linearized (H = H) and the weight matrix W is replaced by K
(i.e., W = K).

The gain K can be specified by finding the condition for minimum variance of εa –
another property of BLUE. This implies that the analysis error covariance Pa must have the
sum of diagonal elements that are the smallest among the linear estimates, that is,

arg min E
(
εa

i (εa)Ti
)
= arg min

(
tr(Pa)

)
, (1.51)

where tr(Pa) is the trace of a square matrix Pa , defined for its diagonal elements pa
ii as

tr(Pa) =
∑

i

pa
ii .

For the square matrices A and B, and a scalar β, the trace has the following properties:

tr(A+ B) = tr(A)+ tr(B); tr(A) = tr(AT ); tr(βA) = βtr(A),

tr(AB) = tr(BA); tr(BAB−1) = tr(A); tr(ABC) = tr(BCA) = tr(CAB), (1.52)
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and

∇Xtr(XB) = BT ; ∇Xtr(BXT ) = B; ∇Xtr(BXC) = BT CT ,

∇Xtr(XBXT ) = X(BT + B); ∇Xtr(XT BX) = (B+ BT )X. (1.53)

Equation (1.50) is represented in terms of errors as (do Practice 1.7)

εa = εb +K
(
εo −Hεb

)
= (I−KH)εb +Kεo, (1.54)

from which Pa is derived as (do Practice 1.7)

Pa = E

((
(I−KH)εb +Kεo

) (
(I−KH)εb +Kεo

)T)
= (I−KH)Pb(I−KH)T +KRKT , (1.55)

where Pb = E
(
εb(εb)T

)
and R = E

(
εo(εo)T

)
. Following (1.51), we differentiate tr(Pa)

with respect to K and set it to 0 (do Practice 1.7)

∇Ktr(Pa) = 0

= ∇K

[
tr(Pb)− 2tr(PbHT KT )+ tr(KHPbHT KT )+ tr(KRKT )

]
= −2tr(PbHT )+ 2tr(KHPbHT )+ 2tr(KR)

= 2tr
(

K(HPbHT + R)− PbHT
)
; (1.56)

thus,

K = PbHT (HPbHT + R)−1. (1.57)

Alternatively, K is expressed as (do Practice 1.7)

K =
((

Pb
)−1 +HT R−1H

)−1

HT R−1. (1.58)

Note that, with little or no background information,
(
Pb
)−1

becomes very small and (1.50)
reduces to (1.31) (Gelb, 1974).

Practice 1.7 BLUE and Kalman gain

Solve the following:

1. From (1.50), derive the error equation (1.54).
2. Derive (1.55) using the properties E(εo) = E(εb) = 0.
3. Derive (1.56) using the properties of trace (1.52) and (1.53) and the fact that Pb

and R are symmetric (i.e., (Pb)T = Pb and RT = R).
4. Derive (1.58) from (1.57). You may start by putting (1.57) as

K = IPbHT (HPbHT + R)−1,

where

I =
((

Pb
)−1

HT R−1H
)−1 ((

Pb
)−1

HT R−1H
)

.
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5. Define a cost function as

J (x) = 1

2

(
x− xb

)T (
Pb
)−1 (

x− xb
)
+ 1

2

(
yo −Hx

)T R−1 (yo −Hx
)

.

Show that the optimal estimate xa is given by

xa = xb +K
(

yo −Hxb
)
,

where K is shown as in (1.58). You may want to find xa that minimizes J , i.e.,

xa = arg min J (x)

so that

∇xJ = 0.

The result implies that the analysis obtained by minimizing the cost function J

(i.e., variational analysis) corresponds to the analysis through the minimum error
variance approach (i.e., BLUE).

6. Show that the analysis error εa is orthogonal to the analysis xa , that is,

E
(

xa
(
εa
)T ) = 0,

and make a geometric interpretation.

1.5 Optimal Interpolation

Optimal interpolation (OI) is equivalent to the BLUE obtained intermittently in a discrete
time domain when observation is available. The term “optimal” is employed in a sense that
the analysis error variance is minimized – see (1.56); thus, K in (1.57) is actually regarded
as an optimal gain, denoted by KO. By putting K = KO and substituting (1.57) into (1.55),
we obtain

Pa = (I−KOH)Pb. (1.59)

Therefore, the OI solution is nothing but the BLUE, represented by (1.50), (1.57), and (1.59).
Solving the analysis equation requires direct inversion and is computationally expensive
with all global observations. In OI, the calculation of KO is simplified by using observations
only near the grid (analysis) point. That is, OI acquires the analysis xa over an analysis
circle (or block), consisting of a grid point and nearby observations (i.e., localized) within
the so-called radius of influence, r (see Figure 1.6). Depending on r , some observations are
used twice while some other observations are not used.

The OI scheme, for a given analysis cycle, is written in terms of the analysis circle
index, i, as

xa
i = xb

i +KO
i

(
yo −Hxb

)
i

KO
i =

(
PbHT

)
i

(
(HPbHT )i + Ri

)−1

Pa
i =
(

I−KOH
)

i
Pb

i , (1.60)
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Figure 1.6 OI performed on the grid (analysis) points, centered at the analysis circles.
Depending on the size of the analysis circle, which is determined by the radius of influ-
ence, r , the numbers of observations and their usage for analysis are different.

where Pb
i is specified through statistical measures (e.g., autocorrelation functions) and

dynamic constraints (e.g., geostrophic balance). The analysis equation in OI is equivalent
to (1.11) except that the weight W is replaced by the optimal gain KO

i and the observation
operator H is linearized. That is, the analysis is given by correcting the background with
the analysis increment – the product of the optimal gain and the innovation. The optimal
gain is obtained as the product between the background error covariance in the observation
space and the inverse of total error covariance (Kalnay, 2003).

From (1.60), by representing a fixed Pb as B, the analysis increment can be expressed as

xa
i − xb

i =

Rm︷������������������������������������������������������︸︸������������������������������������������������������︷(
BHT

)
i

(
(HBHT )i + Ri

)−1 (
yo −Hxb

)
i︸�����������������������������������������︷︷�����������������������������������������︸

Rn

, (1.61)

where Rm is the model (grid) space and Rn is the observation space. Note that H performs
a transformation of Rm −→ Rn while HT does that of Rn −→ Rm. The analysis

increment is calculated first by computing
(
(HBHT )i + Ri

)−1 (
yo −Hxb

)
i

in the obser-
vation space, then by transforming it to the model space by applying (BHT )i . This implies
that the OI analysis is affected not only by the relevant observations (yo)i but also by the
information and structure of the background error covariance Bi . In OI, Bi has a stationary
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(i.e., time-invariant) structure: It is generally defined by an isotropic correlation function,
depending only on the radius of influence with zero correlations for very large separations
between grid points and observations, and enforces most dynamical balance properties
reasonably well (see Bouttier and Courtier, 2002). With complex observation operators,
calculating (BHT )i is quite difficult.

Practice 1.8 Properties of operators in analysis increment

Take the same measurements and model states as in Example 1.1; that is, the
measurements are made at three levels and the model states are calculated at six
levels (see the figure in Example 1.1). Then the analysis xa and the background xb

are given by

xa = (qa
1 , . . . ,qa

6

)
and xb =

(
qb

1, . . . ,qb
6

)
,

respectively. To avoid any confusion, set the observation levels using an alphabetical
index, say, yo = (qo

a,q
o
b,q

o
c

)T.

1. Construct the matrices of the background error covariance B and the linearized
observation operator H. [Hint: The elements of B are the covariances between grid
points (b23,b56, etc.) and those of H represent interpolation between the model
space and observation space (ha5,hc2, etc.)]

2. Using B and H from #1, evaluate the following matrices and provide interpretation
on each of them:

BHT and HBHT .

Following Hollingsworth (1986), we can extend our interpretation of OI as a filter and
an interpolator by manipulating (1.61) as follows:

xa
i − xb

i =
(

BHT
)

i

(
HBHT

)−1

i︸������������������������︷︷������������������������︸
B

(
HBHT

)
i

((
HBHT

)
i
+ Ri

)−1

︸���������������������������������������︷︷���������������������������������������︸
A

(
yo −Hxb

)
i
, (1.62)

where we put
(
HBHT

)−1
i

(
HBHT

)
i
= I. By applying A to the innovations

(
yo −Hxb

)
i
,

OI filters the innovations (or observations) to generate the analysis increments
(
xa − xb

)
i

in the observation space. Then, by further operating B, OI interpolates (or propagates)
the analysis increments from the observation space to the model space (i.e., grid points).
Note that HBHT maps the background to the observation space and the observation-error
covariances are given; thus, the filtering process occurs in the observation space by convert-
ing the innovations to the analysis increments. As

(
BHT

)
i

represents the background error
covariances operating between the observation space and the model space, the interpolating
process transforms the analysis increments from the observation points to the model grid

points through normalization by
(
HBHT

)−1
i

. When the cross-variable background error
correlations are provided, the process B can transform the analysis increment of a certain
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variable to that of another variable. Overall, the spatial propagation of the corrections by
observations (i.e., innovations) is performed by the background error covariances B.

The OI method basically assumes that, for each state variable, the analysis increment
is mainly determined by just a few relevant observations (Bouttier and Courtier, 2002).
Since the dimension of

(
(HBHT )i + Ri

)
in (1.60) is equal to the number of observations,

selecting relevant observations reduces its size (i.e., approximating a block diagonal matrix)
and makes the direct inversion viable. For effective calculation of (BHT )i and (HBHT )i , one
should employ simple observation operators (e.g., interpolation of direct state observations)
that are sparse. Due to the selection and use of local data within the analysis circles, the
OI analysis fields include spurious noise and sometimes show incoherency between small
and large scales (Lorenc, 1981; Bouttier and Courtier, 2002; Dance, 2004). The OI scheme
had been widely used in operational centers in 1980s and 1990s (e.g., Lorenc, 1981; Lyne
et al., 1982; DiMego, 1988; Kanamitsu, 1989) because of its simplicity and computational
efficiency but had been replaced by a variational method due to the disadvantages mentioned
above (e.g., Parrish and Derber, 1992; Courtier et al., 1998).

Algorithm 1.2 shows a general prediction process based on OI while Algorithm 1.3
depicts the computation process of KO in detail (e.g., Bouttier and Courtier, 2002; Dance,
2004).

Algorithm 1.2 Prediction process based on OI

/* This algorithm is based on (1.60) with Pb = B */

/* index n denotes analysis cycle (time) */

/* index i denotes analysis circle (block) centered at grid (analysis) point */

/* xf denotes the future state (forecast) and xb the background */

/* M denotes the model propagator */

1 Initiation:
(
xb
)0
i
= (xf

)0
i

at the initial time ! Provide a background at n = 0

2 for n=0 to nmax do ! Loop for analysis cycle (time)

3 for i=1 to imax do ! Loop for analysis circle (block)
4 if (yo exists) then ! When observations are available

5
(

KO
)n
i
=
(

BHT
)n
i

(
(HBHT )n

i
+ Rn

i

)−1
! Calculate the optimal gain

6 ! See Algorithm 1.3

7
(
xa
)n
i
=
(

xb
)n
i
+
(

KO
)n
i

(
yo −Hxb

)n
i

! Calculate the analysis

8
(

xf
)n+1

i
= Mn

(
xa
)n
i

! Obtain the future state using the analysis

9 else ! When no observations are available

10
(

xf
)n+1

i
= Mn

(
xf
)n
i

! Obtain the future state using current state

11 end

12
(
xb
)n+1
i

= (xf
)n+1
i

! Assign the forecast to the background

13 endfor
14 endfor
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Algorithm 1.3 Process of calculating KO for each state variable in OI

/* Calculate KO for a given state variable, e.g., temperature, humidity, etc. */

/* This algorithm is based on (1.60) with Pb = B */

1 Input: xb,yo,B,R
2 Output: KO

3 begin
4 Step 1: Determine the radius of influence r based on empirical selection criteria to

specify the analysis circle (block).
5 Step 2: Select l observations within the the analysis circle.
6 Step 3: Calculate

(
yo −Hxb

)
l

relevant to the l observations.

7 Step 4: Calculate l × l submatrices of HBHT and R to form
(
HBHT + R

)
l
.

8 Step 5: Calculate a row vector
(
BHT

)
l

for the given state variable, restricted to the

l observations.
9 Step 6: Calculate the inverse of

(
HBHT + R

)
l
.

10 Step 7: Calculate KO
l =

(
BHT

)
l

(
HBHT + R

)−1
l

.

11 end
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