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Abstract 

Herbicide-resistant weeds are fast becoming a substantial global problem, causing significant 

crop losses and food insecurity. Late detection of resistant weeds leads to increasing economic 

losses. Traditionally, genetic sequencing and herbicide dose-response studies are used to detect 

herbicide-resistant weeds, but these are expensive and slow processes. To address this problem, 

an artificial intelligence (AI)-based herbicide-resistant weed identifier program (HRIP) was 

developed to quickly and accurately distinguish acetolactate synthetase inhibitor (ALS)-resistant 

from -susceptible common chickweed plants. A regular camera was converted to capture light 

wavelengths from 300 to 1,100 nm. Full spectrum images from a two-year experiment were used 

to develop a hyperparameter-tuned convolutional neural network (CNN) model utilizing a “train 

from scratch” approach. This novel approach exploits the subtle differences in the spectral 

signature of ALS-resistant and -susceptible common chickweed plants as they react differently to 

the ALS herbicide treatments. The HRIP was able to identify ALS-resistant common chickweed 

as early as 72 hours after treatment at an accuracy of 88%. It has broad applicability due to its 

ability to distinguish ALS-resistant from -susceptible common chickweed plants regardless of 

the type of ALS herbicide or dose used. Utilizing tools such as the HRIP will allow farmers to 

make timely interventions to prevent the herbicide-escape plants from completing their life cycle 

and adding to the weed seedbank.  

 

Nomenclature: common chickweed, Stellaria media (L.) Vill. 

Keywords: Artificial intelligence model, chlorophyll fluorescence, herbicide-resistant weeds, 

light reflectance values, machine learning, spectral signature.  
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Introduction 

Use of synthetic herbicides to control weeds in agricultural and non-agricultural systems 

is a common practice in many parts of the world (Gianessi 2013). However, reliance on 

continuous use of herbicides with the same mode of action to control weeds can lead to rapid 

evolution of herbicide-resistant weed populations (Ofosu et al. 2023). Recent data shows that the 

number of unique cases (species x site of action) of herbicide-resistant weeds has significantly 

increased from zero to about 530 worldwide in just a span of 45 years (Heap 2024).  

Globally, farmers lose an estimated $95 billion annually from yield reduction due to 

uncontrolled weed infestation (ISAAA 2009). Herbicide-resistant weeds may exacerbate this 

problem (Clay 2021) and further pose a significant threat to crop production and food security 

(Heap 2014; Lonhienne et al. 2018). Herbicide-resistant weeds require herbicides from an 

alternative mode of action or more expensive control methods for effective control (Clay 2021), 

which further increases crop production costs. 

Herbicide resistance is becoming a big problem in the San Joaquin Valley of California 

which is considered the food basket of the world (Shrestha et al. 2010). There are now 161 

different unique cases of herbicide resistance observed in the U.S., thirty-two of which are in 

California (Heap 2024) and these numbers are expected to increase. Most of these cases are of 

evolved resistance to ALS or 5-enolpyruvylshikimate 3-phosphate (EPSPS) inhibiting herbicides 

(Dias et al. 2021). The occurrence of acetolactate synthetase inhibitor herbicide resistance in 

more weed species is continuously rising at an alarming rate posing a greater challenge for weed 

management, food production, and environmental health (Hanson et al. 2014). Furthermore, 

documented cases of ALS herbicide resistance in different weed species are significantly higher 

than for any other class of agricultural herbicides (Heap 2024).  

Common chickweed is a broadleaf annual weed species commonly found in agricultural 

fields infesting wheat (Triticum aestivum L.), triticale (x Triticosecale Wittmack), barley 

(Hordeum vulgare L.), oats (Avena sativa L.), and several other annual and perennial crops in the 

Central Valley of California. Overuse and reliance on a single herbicide or a similar mode of 

action to control common chickweed for extended duration has led to the evolution of herbicide-

resistant populations. Over time, the common chickweed has developed resistance to ALS 

herbicides (Saari et al. 1992). ALS inhibitors are Group 2 herbicides that prevent the ALS 

enzyme from biosynthesizing the essential branch-chain amino acids (isoleucine, leucine, and 
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valine) thus impairing plants from functioning properly (Whitcomb 1999; Zhou et al. 2007). This 

is due to mutations in the ALS gene leading to altered herbicide binding sites which make the 

enzyme less sensitive to inhibition by the herbicide (Heap 2024).  

The first resistant common chickweed to three different ALS herbicides in California was 

reported in 2022, in small grain crop fields (Heap 2024). Target-site resistance (TSR) is the most 

common type of herbicide resistance in common chickweed and has been reported in all major 

herbicide classes, including glyphosate, ALS inhibitors, and triazines. Sulfonylurea and 

imidazolinone herbicides are both linked to target-site resistance in common chickweed 

(Roberson, 2009). Over the past three decades, resistance to these two ALS herbicides was 

observed in common chickweed biotypes (Saari et al. 1992). However, it has not been confirmed 

yet if the ALS-resistant common chickweed has TSR mechanism.  

Different approaches have been developed to try to confirm herbicide-resistant weed 

populations. The standard methods are the use of genetic sequencing (Jones et al. 2023), which 

detects/confirms a resistant gene or genes in weeds, and/or herbicide dose-response studies 

(Seefelt et al. 1995). These methods are very accurate but cannot be utilized in the field, are time 

and labor-intensive, and are very costly. A new technique developed in 2020 was the use of 

Spectral Weed Indices (SWI) to try to identify glyphosate-resistant weeds. This method uses 

reflectance values from eight relevant spectral wavelengths specific for weed species to develop 

the different SWIs (Shirzadifar et al. 2020). In their study, they used discriminative wavebands 

of 490 nm, 760 nm, 520 nm, 820 nm, 850 nm, 910 nm, 880 nm, and 790 nm to develop the SWI 

for waterhemp. The results were promising, but the procedure requires the use of a proprietary 

expensive apparatus – an imaging spectrometer for hyperspectral imaging, labor-intensive pre-

processing of data, and very complex calculations. Other techniques include the use of 

unmanned aerial vehicle (UAV)-acquired thermal and multispectral images to detect the 

response of weeds. These used ArcGIS for raster and spectral classification to differentiate 

herbicide-resistant weeds from -susceptible ones (Eide et al. 2021). The study, however, showed 

that the use of thermal data is not as reliable as the use of the Normalized Difference Vegetation 

Index (NDVI).  

While previous work by Hennessy et al. (2022) has applied convolutional neural network 

(CNN) to distinguish weeds from regular crops using RGB images, they did not distinguish 

herbicide-resistant from -susceptible weeds. The use of CNNs to distinguish herbicide-resistant 
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from -susceptible weeds within the same species utilizing full spectrum (UV + visible light + 

near IR) images acquired through a readily available, converted, low-cost off-the-shelf consumer 

cameras has never been done. Development of a hyperparameter tuned CNN model for early, 

quick, and accurate detection and classification of resistant weeds even before observing the 

visible symptoms of herbicide injury is crucial in making timely interventions and establishing 

cost-effective environmentally friendly management strategies (Weis & Sökefeld, 2010).  

The objective of this study was to develop an AI based herbicide-resistant chickweed 

classification model that could accurately identify herbicide-resistant weeds expeditiously and 

more reliably using a low-cost readily available consumer camera, converted to capture full 

spectrum imagery. 

Materials and Methods 

Phase 1. Converting a regular camera to capture the full light spectrum. 

A camera (Fujifilm X-T200, Fujifilm Corp., 200 Summit Lake Drive, Valhalla, NY, 

USA) was modified for use in this experiment (Figure 1).  All standard photography cameras are 

equipped with a hot mirror filter that excludes the infrared (IR) and ultraviolet (UV) light 

spectrum from reaching the sensor. This is essential in producing high quality photographs which 

cameras are built for. The camera was converted by disassembly and removal of the built-in hot 

mirror filter to allow the sensor to capture the full light spectrum, including UV, near-IR, and 

visible light. Aside from the full spectrum images, NDVI, and hot mirror filters were also applied 

on the modified full spectrum camera to capture NDVI, and regular RGB images. 

Phase 2. Obtaining full spectrum images for the development of the herbicide-resistant weed 

classification model.  

This study utilized data from an herbicide-resistance dose response experiment conducted 

in 2023 and repeated in 2024. In both years of the experiments common chickweed plants were 

grown in a greenhouse at California State University, Fresno for a suspected ALS herbicide 

resistance dose response study. The greenhouse temperature and relative humidity was set at 21 

°C ± 2°C and 70 %, respectively, with no supplementary lighting. In those studies, there were 

three populations of suspected ALS-resistant common chickweed plants and a population of 

confirmed ALS-susceptible chickweed plants grown from seeds collected from an organic 

pistachio (Pistacia vera L.) orchard in the south-Central Valley of California. The common 

chickweed seeds were planted in plastic trays containing potting soil on 19 February 2023 for the 
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first year and on 15 December 2024 for the second-year trial. Seedlings were transplanted on 13 

March and 5 January in 2023 and 2024, respectively in 6.7 cm wide and 8.9 cm deep plastic pots 

containing an OMRI certified organic garden soil (Kellogg, Carson, CA). The plants were grown 

till the appropriate stage (approximately 7.5 cm tall with two true leaves) for herbicide 

treatments. All the plants were treated on 23 March and 30 January in 2023 and 2024, 

respectively with five different ALS herbicides (imazamox, imazethapyr, mesosulfuron-methyl, 

pyroxsulam, and tribenuron-methyl), at 0x (control), 0.5x, 1x, 2x, 4x and 8x dosage rates (where 

x = recommended label rate). The recommended label rates were 10.6 g ai ha
-1

, 21.3 g ai ha
-1

, 

1.58 g ai ha
-1

, 14.8 g ai ha
-1

, and 17.5 g ha
-1 

for imazamox, imazethapyr, mesosulfuron-methyl, 

pyroxsulam, and tribenuron-methyl, respectively. Both experiments were laid out in a completely 

randomized design with five replications of each treatment. Each plant in a pot was an 

experimental unit. The herbicides were applied at a spray volume of 93.5 L ha
-1

 with a CO2-

pressurized backpack sprayer calibrated at a speed of 4.8 km h
-1

 with 0.21 MPa. The sprayer was 

equipped with Teejet 8002 flat fan nozzles at a spray height of approximately 45 cm above the 

plants.  

High-resolution full-spectrum images of common chickweed plants treated with different 

ALS herbicides at different dosage rates were obtained using the converted camera in year one 

and year two. The captured images of herbicide-resistant and -susceptible common chickweed 

plants grown in the two years were used for the development of an AI based herbicide-resistant 

weed classification model. Full spectrum, NDVI and RGB images were obtained after the 

application of the different herbicides. The converted camera was used to capture the full 

spectrum images. NDVI and hot mirror filters were used to capture NDVI and RGB images. A 

total of 5,000 full spectrum, NDVI, and RGB (regular photos) images of herbicide-resistant and -

susceptible common chickweed plants were obtained at 1, 2, and 3 d after herbicide treatment in 

both years. After preliminary analysis, full spectrum images captured 3 days after herbicide 

application were determined to be best suited for the development of an AI based herbicide-

resistant weed classification model. The training and validation accuracy of the models 

developed using full spectrum images obtained 1 and 2 d after herbicide treatments during 

preliminary analysis were significantly lower compared to those obtained at 3 d. This is likely 

due to poor detection of any appreciable changes in light reflectance from the slower 

development of injury symptoms due to ALS inhibitor herbicides. This result is consistent with 
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the study of Shirzadifar et al. (2020), which found the earliest detectable symptoms appeared 3 d 

after treatment.   

Resistant or susceptible classification of common chickweed plants were based on the 

survival evaluation 28 days after ALS herbicides application. Common chickweed plants that 

died were classified as susceptible, while plants with any green tissue remaining and growing 

were classified as ALS-resistant weeds based on visual observation. Results of the completed 

dose-response study showed that the three common chickweed populations are resistant to ALS 

herbicides (Herrera et al. 2024).  

Phase 3. The development of a superweed classification model using full spectrum images from 

the converted camera that can classify resistant from susceptible common chickweeds. 

Full spectrum straight-out-of-camera (SOOC) JPEG images taken 3 days after herbicide 

application in both years were classified and separated into two groups– resistant and susceptible 

common chickweeds, based on final results of the concomitant dose response studies. The 

images of herbicide-resistant and -susceptible common chickweed plants from both years were 

uploaded to the program and used to develop an AI classification CNN model (herbicide-

resistant classification model).  

The herbicide-resistant weed classification model was programmed on Colab (Google, 

LLC, Mountain View, CA, USA), using Python 3.10, running TensorFlow 2.17 (Google, LLC, 

Mountain View, CA, USA), with the Keras API. A “Sequential” model with 4 convolutional 2D 

layers and 10 dense neural net layers was constructed using ADAM as the optimizer, relu, tanh, 

and sigmoid as the activation functions, and sparse categorical cross entropy loss as the loss 

function. Metrics that were used in the model were training and validation accuracy, as well as 

the training and validation loss. 

A hyperparameter tuner algorithm was then incorporated into the program to create the 

best CNN model that could yield optimal accuracy and reliability. An early stopping protocol 

through best epoch detection was then used to prevent model overfitting. 

Full spectrum images of ALS-susceptible and -resistant common chickweed plants were 

captured using the converted camera. A total of 1500 images of ALS-susceptible and -resistant 

plants were successfully imported and used by the program to develop and train the herbicide-

resistant classification model. The full spectrum photograph displayed in Figure 2 is an example 

of the successful importation of all the 1,500 images from the data directory. Keras data 
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augmentation was used to improve the training process by rotating and flipping the images 

before the construction of the CNN model. Figure 3a shows the images in their original 

orientation while Figure 3b shows the augmented and rotated images arranged on the same 

orientation. The augmented images were used to construct, train, and validate the CNN model. 

The neural network was designed as a sequential algorithm, and it was trained from 

scratch. Eighty percent (80%) of the total collected images (1,500) was used as a training data set 

and the remaining 20% was used as the validation data set. The program was deployed, and 10 

trials of 100 epochs were completed with the best model being picked by the program based on 

the validation accuracy. The best performing herbicide-resistant weed classification model was 

then trained and validated on the entire 1,500 image dataset. A hyperparameter tuning library 

(KerasTuner) was used to enhance the model’s learning process by incorporating optimal 

hyperparameter combinations to arrive at the best possible herbicide-resistant classification 

model. An early stopping function was also included to prevent overfitting. The resistant-weed 

classification model demonstrated superior performance at 36-epochs without overfitting (Figure 

4). 

Phase 4. Coding the Herbicide-resistant weed Identifier Program (HRIP) which outputs a 

prediction of ALS-susceptible or -resistant common chickweed. 

The HRIP was also programmed on Colab (Google, LLC, Mountain View, CA, USA), 

using Python 3.10, running TensorFlow 2.17 (Google, LLC, Mountain View, CA, USA), with 

the Keras API. To check the classifying ability of the newly developed CNN model and its 

accuracy, twenty-five images of ALS-susceptible and -resistant common chickweed plants were 

tested in the HRIP utilizing the herbicide-resistant weed classification model. These images of 

ALS-susceptible and -resistant common chickweed plants used were not included in the original 

training and validation datasets. The complete step-by-step process used in the identification of 

ALS-resistant common chickweed plants using the novel full-spectrum imaging and a 

hyperparameter-tuned CNN (herbicide-resistant classification model) is summarized in Figure 5. 

Results and Discussion 

The herbicide-resistant classification model with optimal hyperparameter combinations 

performed best at 36-epochs (Figure 4). It has 4 convolutional 2d layers, 10 dense neural layers, 

and an output layer. The herbicide-resistant weed classification model has a total of 1,413,506 
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parameters, all of which are considered trainable. The characteristics and properties of the newly 

built CNN model are shown in Figure 6. 

The training and validation accuracy curves for the superweed classification model 

exhibited a steady increase over 36 epochs (Figure 7). The set of hyperparameters used in the 

model rendered a remarkably high training accuracy and at the same time very high validation 

accuracy indicating that the model was very accurate in differentiating and classifying ALS-

susceptible from -resistant common chickweed. In addition, both training loss and validation loss 

curves for the superweed classification model followed decreasing trends with an optimal gap 

between them suggesting optimal learning without overfitting. A steadily decreasing trend in the 

training loss curve suggested that the superweed classification model was improving its learning 

from the data it was trained on (Figure 7). The very low validation value also showed that the 

model had achieved “optimal learning”.  The model performance on the unseen data/images was 

evaluated using the validation loss. A very low validation loss value achieved in the model 

indicated that its error on unseen images was very low, and the model was accurate in 

distinguishing ALS- resistant from - susceptible common chickweed plants.  

The HRIP was developed and appended to the newly developed herbicide-resistant weed 

classification model. Twenty-five ALS-susceptible and -resistant full spectrum images of 

common chickweed plants that the model had not analyzed before, independent of the 300-image 

validation set, were used for secondary verification of accuracy using the HRIP running the 

herbicide resistance classification model. The HRIP was able to independently classify the full 

spectrum images correctly at 88% accuracy. The performance of HRIP in identifying both 

herbicide-resistant and -susceptible common chickweed plants were equally high with 

classification accuracies of 87.5% and 88.24%, respectively (Table 1). An example of a full 

spectrum image that was accurately identified by the model as “resistant” common chickweed 

plant is shown in Figure 8. The results of this study were also matched with the actual plant 

mortality evaluation which corresponded very well (data not shown). 

Confusion Matrix for resistant and susceptible chickweed image identification using the 

HRIP is summarized in Figure 9. It shows that out of 8 images that are resistant, the herbicide-

resistant weed classification model predicted that 1 image is susceptible chickweed, and of the 

17 susceptible chickweed images, it predicted that 2images were resistant chickweed. The 

diagonal values indicate the correct predictions by the HRIP while values outside of it are 
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prediction errors. 

The development of the herbicide-resistant classification model in this study involved a 

“train from scratch” approach. This was to ensure that the model would learn effectively from a 

dataset that had been fully vetted via a completed dose response study (Herrera et al. 2024). With 

this approach the model eliminated any biases from pre-existing knowledge bases and pre-

trained weights, which are commonly encountered when utilizing publicly available image 

datasets used in “transfer learning” approaches.  

The use of the hyperparameter tuner was very helpful in determining the best 

hyperparameter combinations that led to the development of the best performing herbicide 

resistance classification model. It enhanced the model’s performance and improved its accuracy, 

precision, and recall (Bartz-Beielstein et al. 2023). Although the determination of 

hyperparameters can possibly be done manually, it can be a very time-consuming endeavor, and 

more importantly, it would be uncertain whether the optimal model had been reached with this 

trial-and-error approach. 

The effect of ALS inhibition in susceptible weeds includes disruption of photosynthesis 

transport and respiration system which leads to chlorophyll degradation (Zhou et al. 2007). 

Stress or disruption in the transport chain due to the application of ALS herbicide can be detected 

by measuring changes in the chlorophyll light absorption, reflectance patterns, and chlorophyll 

fluorescence (Kaiser et al. 2013). All vegetation, including weeds, have distinct light reflectance 

patterns which can be measured and graphed using a spectrometer (Figure 10). This is called its 

“spectral signature.” Healthy thriving plants have a very different spectral signature when 

compared to stressed, diseased, or unhealthy plants (Govender et al. 2007). It is this variation in 

the spectral reflectance between susceptible and resistant weeds when subjected to herbicide 

treatment, even when very subtle at 72 hours post application, which is exploited by the 

herbicide resistance classification model to rapidly identify resistant from susceptible strains.   

Different weed species have unique spectral signature changes depending on their 

resistance or susceptibility to herbicides which may fall within or outside the visible light 

spectrum. Kochia (Bassia scoparia) and common waterhemp (Amaranthus tuberculatus) weeds’ 

spectral signature discriminative wavebands are in the near infrared (nIR) range (> 750 nm) 

while those for common ragweed (Ambrosia artemisiifolia) are in the visible light wavelength 

450–630 nm. (Shirzadifar et al. 2020).  
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Converted full spectrum camera allows it to capture the subtle differences in the spectral 

signature of herbicide-treated plants wherever it may be in the light spectrum wavelengths 

between 300 to 1100 nm (Melentijevic 2015) – which also includes the chlorophyll fluorescence 

range of 620-750 nm. Chlorophyll fluorescence is the light emitted by the leaves on the red to 

far-red light (620-750 nm) when exposed to about 400–700 nm (Kalaji et al. 2017). This emitted 

light can be used as an indicator of a plant’s photosynthetic activity and is also useful for the 

identification of herbicide-resistant weeds (Kaiser et al. 2013). Converting the regular consumer 

camera to capture full light spectrum (300-1,100 nm) allows the inclusion of all possible areas of 

differences in spectral signatures, including the chlorophyll fluorescence wavelengths as well as 

the near IR reflectance values in the full spectrum images of common chickweed. This is the key 

in the herbicide resistance classification model’s accurate differential analysis. 

Utilization of full spectrum images to develop the ALS herbicide resistance classification model 

proved to be more robust and more accurate as compared to using RGB or NDVI images. The 

validation accuracies of the CNN model developed using full spectrum, NDVI and RGB images 

were 0.80, 0.53 and 0.65, respectively. Higher training and validation accuracy were observed on 

CNN model that was trained using full spectrum images compared to the model rendered using 

NDVI or RGB images. This is likely due to the inclusion of visible light spectrum (380-750 nm) 

as well as ultraviolet (UV) (<380 nm) and near-infrared (IR) wavelengths (750-1000 nm) in the 

full spectrum images which reveals subtle differences and details that are invisible to the human 

eye or even standard camera image sensors (Zhen et al. 2021). While near IR wavelength can 

show signs of stress in plants even before it becomes visible to the naked eyes as the unhealthy 

leaf starts to absorb more photons, the visible light spectrum including far-red light can also 

reveal minute changes in the level of photosynthetic activity (Zhen and van Iersel 2017). RGB 

wavelength reflectance in plants indicates the amount of red and blue light being absorbed as 

utilized through photosynthesis and the degree of green light spectrum reflected correlating with 

the concentration of chlorophyll. As the plant sustains injury and stress from the herbicide, it is 

unable to absorb as many red and blue light wavelengths. This results in a flattening of the 

injured plant’s spectral signature in the visible light range, as opposed to the usual peaked curve 

observed in healthy plants with the crest in the green wavelength and troughs in both the red and 

blue spectra (Figure 10).  
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The ALS herbicide injury symptoms, which include chlorosis, stunting, red leaf veins, 

and tissue necrosis, are supposed to be evident in 1-4 weeks after herbicide treatment depending 

on the dosage used and environmental conditions at the time of application (Guo et al. 2015). 

However, the effect of the ALS herbicides on the common chickweed plants was detected 3 d 

after herbicide treatment. by HRIP. The model’s ability to detect resistant chickweed plants will 

be consistent for both target site and non-target site resistance, as it was trained using full 

spectrum images of all resistant plants, regardless of the type of resistance.  Herbicide-induced 

injury symptoms were detected by the program 72 hours after herbicide treatment. This is 

primarily due to the ability of the converted camera to obtain full spectrum images and capture 

the spectral signature of common chickweed plants, in varying degrees of ALS injury symptoms, 

even before they were visible to the naked eye. This study's findings are similar to the 

observations of Shirzadifar et al. (2020) which established that light reflectance and spectral 

signature can effectively detect herbicide injury symptoms like chlorosis within 72 hours. In 

contrast, dose response studies take at least 2 months to be completed and the fastest commercial 

genetic sequencing analysis can take a minimum of 2 weeks to obtain results. Even newer bulky 

and expensive chlorophyll fluorescence imaging takes at least 96 hours to detect and classify 

superweeds after complex and potentially error prone calibration and calculations. 

The use of different ALS herbicides and their varying dosage treatments in this research 

allowed the model to better distinguish herbicide-resistant from herbicide-susceptible plants. 

This is because the images used to train the model include a wide array or spectrum of injury 

symptoms from the application of different ALS herbicides and various dosage rates –0.5x - 8x, 

where x = recommended label rate. 

The herbicide group numbering system was developed to help farmers select herbicides 

belonging to different groups to avoid using the same mode of action repeatedly (Hulme 2022). 

However, Neve (2007) suggested that the rotation of herbicide modes of action may increase 

herbicide-resistant weeds because such a practice could select for non-target site resistance 

mechanisms. Therefore, the problem of herbicide-resistant weeds seems to be an ongoing 

problem in the future unless non-herbicidal alternative technologies are developed. Hence, any 

tools that help farmers recognize herbicide-resistant weeds and take proactive measures will be 

of great benefit and tools such as this HRIP tool may play an important role. 

https://doi.org/10.1017/wet.2024.109 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2024.109


Practical Implications 

The results of this study support the research hypothesis that the use of full spectrum 

images obtained from the modified consumer camera to develop a hyperparameter-tuned CNN 

model can quickly and accurately classify putative ALS-resistant weeds. It also showed that the 

herbicide resistance classification model and HRIP developed using the full spectrum JPEG 

images can quickly and accurately distinguish an ALS -susceptible from a -resistant common 

chickweed plant.  

The HRIP can identify ALS-resistant chickweed plants as early as 72 hours after 

herbicide application at an impressive accuracy of 88%. It also exhibited robustness, expanding 

its potential as a valuable tool for real-world and real-time application. It does not require pre-

processing of the images or complex calculations to function or operate properly, which is the 

case in contemporary weed classifiers. The HRIP only needs the straight-out-of-camera (SOOC) 

JPEG images from the converted full spectrum consumer camera to be able to distinguish ALS-

resistant from -susceptible common chickweed plant. Given this simplicity, even farmers 

inexperienced with this technology will be able to utilize the application with a very low learning 

curve. It also has broad applicability due to its ability to accurately identify ALS-resistant 

chickweed plants that were treated with different ALS herbicides, regardless of their chemical 

group or dosage rate. 

Rapid and accurate detection of ALS-resistant weeds using the innovative HRIP can 

serve as a powerful tool in the fight against the emerging agricultural resistant weed problem in 

California and around the world. This system can help farmers in establishing more effective and 

safer weed management practices. It is also anticipated that the technology can be expanded to 

other weed species such as Palmer amaranth and common water hemp that are resistant to ALS 

herbicides. 

The HRIP running the herbicide resistance classification model can be integrated into a 

custom-built autonomous ground-based remotely operated vehicle (ROV) or ROVER to detect 

and dispose of herbicide-resistant weeds in real-time.  
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Table 1. Discriminative classification of common chickweed plants based on AI Herbicide-

Resistant weed Identifier Program (HRIP) running the herbicide-resistant weed classification 

model. 

 

lassification Total no. of 

images tested 

Right 

classification 

Wrong 

classification 

Accuracy 

Resistant 8 7 1 87.5% 

Susceptible 17 15 2 88.3% 

Total 25 22 3 88.0% 
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Figure 1. A converted Fujifilm X-T200 camera 
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Figure 2. Program used to successfully import the full spectrum images.  
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Figure 3. Full spectrum images before Keras data augmentation program was employed (a). 

Rotated and flipped full spectrum images improved by Keras data augmentation program (b).  
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Figure 4. Output showing 36 epochs needed to generate the most optimized/best 

convolutional neural network (CNN) model. 
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Figure 5. Step-by-Step Identification of Herbicide-Resistant Weeds Using the Herbicide-

Resistant Weed Identifier Program (HRIP). 
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Figure 6. Output describing the characteristics of the herbicide-resistant weed classification model. 
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Figure 7. Training & validation loss curves showing steadily decreasing values and the 

accuracy curves show steadily increasing values with optimal gaps between them indicating 

optimal learning without overfitting.  
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Figure 8. Herbicide-resistant weed identifier program (HRIP) which outputs weed 

classification – “Resistant”.  
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Figure 9. Confusion Matrix showing the performance of herbicide-resistant weed identifier 

program (HRIP) running the herbicide- resistant classification model. (Resistant chickweed 

image is classified positive while susceptible chickweed image is classified negative).  
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Figure 10. Illustration of comparison of spectral signatures of healthy and unhealthy plants.  
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