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Abstract
The model uncertainty issue is pervasive in virtually all applied fields but especially critical in insurance and finance.
To hedge against the uncertainty of the underlying probability distribution, which we refer to as ambiguity, the worst
case is often considered in quantifying the underlying risk. However, this worst-case treatment often yields results
that are overly conservative. We argue that, in most practical situations, a generic risk is realized from multiple
scenarios and the risk in some ordinary scenarios may be subject to negligible ambiguity so that it is safe to trust
the reference distributions. Hence, we only need to consider the worst case in the other scenarios where ambiguity
is significant. We implement this idea in the study of the worst-case moments of a risk in the hope to alleviate the
over-conservativeness issue. Note that the ambiguity in our consideration exists in both the scenario indicator and
the risk in the corresponding scenario, leading to a two-fold ambiguity issue. We employ the Wasserstein distance
to construct an ambiguity ball. Then, we disentangle the ambiguity along the scenario indicator and the risk in
the corresponding scenario, so that we convert the two-fold optimization problem into two one-fold problems. Our
main result is a closed-form worst-case moment estimate. Our numerical studies illustrate that the consideration of
partial ambiguity indeed greatly alleviates the over-conservativeness issue.

1. Introduction
This work revisits the notorious issue of model uncertainty, which is pervasive in virtually all applied
fields using data due to scarcity or low quality of data. This model uncertainty issue is especially critical
in insurance and finance for reasons such as the changing environment that introduces multiple layers of
uncertainty, increasingly complex modern insurance and financial products, and information asymmetry
between borrowers and lenders or between insurers and insureds.

Let us consider the estimation of E [h(X)], where X is a general non-negative risk variable and h(·)
is some non-negative deterministic loss function. As the probability distribution of X, denoted by FX , is
in general unknown, we need to use a reference distribution inferred from available data and sometimes
also based on expert opinions. In view of the possible scarcity or low quality of the data as well as the
possible bias of the expert, the objective is subject to an ambiguity issue, which may lead to significant
deviations from the true value of E [h(X)] and potentially derail the entire risk analysis.

In the literature, the two terms uncertainty and ambiguity are often used interchangeably. Following
Pflug and Wozabal (2007), uncertainty refers to a situation that the model is known but the realizations
are unknown while ambiguity refers to a situation that the probability distribution is unknown. This
way to distinguish the two terms seems to be consistent with a majority of recent works in this field.
Thus, in this paper, we use the term ambiguity to indicate that the underlying probability distribution is
unknown.
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To tackle the ambiguity issue, the worst-case treatment is often adopted. This treatment constructs
an ambiguity set B of possible probability distributions and considers the worst case in this ambiguity
set; that is,

sup
FX∈B

E [h(X)] . (1.1)

At the core of the worst-case treatment is the construction of such an ambiguity set B, which involves
a trade-off issue. On the one hand, this set should be broad enough to cover the true distribution with
a prescribed confidence level, but on the other hand, its construction should also be prudent enough
to avoid over-conservativeness. While efforts continue to be devoted to methodological innovations,
the over-conservativeness issue becomes prominent: When an ambiguity set is constructed to meet a
prescribed confidence level, the results provided by the worst-case treatment are often too conservative
and the realized confidence level may be unnecessarily too high. This issue represents a great obstacle
for the results to be practically useful, but it so far has received very limited discussions.

To alleviate this over-conservativeness issue, we propose a scenario analysis in accordance with the
reality that the realization of a generic risk is usually the aggregation of multiple scenarios subject to
varying extents of ambiguity. For example, when a company extends to new lines of business, these
new lines are likely subject to more ambiguity than the company’s existing lines. Similarly, an insur-
ance company faces losses from its unfamiliar territories that are subject to more ambiguity—hence
may charge an additional ambiguity premium to those losses—than from its familiar territories. In stud-
ies of mortality and morbidity, the population is often described as the composition of different age
groups among which we need to take special care of the oldest-old group. Note that scenario analysis as
one of classical approaches to risk management is emphasized in some modern regulatory frameworks
including Basel III and Swiss Solvency Test.

Suppose that there are two scenarios between which one, called ordinary scenario, has abundant
data, and the other, called ambiguous scenario, may suffer from scarcity or low quality of data. Here,
we consider only two scenarios for simplicity. It is relatively straightforward to extend the study to more
than two scenarios although the formulations will become more complicated. Denoting by Y and Z the
risks in the respective scenarios, the generic risk X, which is understood as the result of the aggregation
of Y and Z , has the stochastic representation

X = (1 − I)Y + IZ,

where I is the indicator of the ambiguous scenario, assumed to be independent of the vector (Y , Z).
Thus, X is a mixture of Y and Z with weights decided by the indicator I .

It is important to note that this is a process of aggregating the risks Y and Z from the respective
scenarios into the generic risk X rather than a process of thinning the generic risk X into different
scenarios. During this aggregation, the independence assumption between the scenario indicator I and
the vector (Y , Z) comes quite naturally. For example, still consider an insurance company extending
its business to a new territory. It would be a common practice in loss models to express its generic
loss distribution as a mixture of the loss distributions corresponding to its existing and new territories,
respectively, which is equivalent to the above-mentioned independence assumption.

The ordinary scenario, due to the abundant data, may be subject to negligible ambiguity and hence
it is safe to trust the empirical distribution when making inferences about the corresponding risk Y .
However, the ambiguous scenario may suffer from scarcity or low quality of the data, and for this reason,
the corresponding risk Z is subject to significant ambiguity. In such a situation, apparently it becomes
unwise to still apply the worst-case treatment to the generic risk in the usual way. Instead, we propose to
simply treat the risk Y in the ordinary scenario as subject to no ambiguity and fully in accordance with
the reference distribution and to apply the worst-case treatment only to the ambiguous scenario where
ambiguity is significant.

Note that the ambiguity in our consideration is twofold, adhering to both the ambiguous scenario
indicator I and the corresponding risk Z . Thus, we need to first construct an ambiguity set of possible
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probability distributions of the pair (I , Z), denoted by (FI , FZ), and then consider the worst case in this
ambiguity set. With a slight abuse of notation, we still denote by B this ambiguity set. The problem
adopted to the current context is reformulated as

sup
FX : (FI ,FZ )∈B

E [h(X)] . (1.2)

Following a recent research trend in distributionally robust optimization, we construct the ambiguity set
B in terms of the Wasserstein distance and centered at the empirical distribution of the pair (I , Z).

In order to link the problem (1.2) to an established strong duality, we disentangle the total ambi-
guity described by the set B in (1.2) along the ambiguous scenario indicator I and the corresponding
risk Z . Based on this disentanglement, we convert the two-fold optimization problem into two one-fold
problems.

For a power loss function h(x) = xp with p ≥ 1, we apply the established strong duality to solve the
worst-case estimation problem of E [Zp] and eventually obtain the worst-case moment E [Xp] in (1.2);
see Theorem 3.1. We use a power loss function here for simplicity, but extensions to other loss functions
are possible; see Remark 3.1. Based on Theorem 3.1, we conduct numerical studies to illustrate that the
consideration of partial ambiguity is indeed a promising solution to alleviate the over-conservativeness
issue.

To summarize, we study the worst-case moments of a risk whose distribution is subject to ambigu-
ity. To alleviate the over-conservativeness issue, we trace the realization of the risk from two scenarios
among which one is an ordinary scenario subject to negligible ambiguity, so that we only need to apply
the worst-case treatment to the other ambiguous scenario. We construct a Wasserstein ball to describe the
two-fold ambiguity in both the ambiguous scenario indicator and the risk in the corresponding ambigu-
ous scenario, and then we derive the worst-case moment estimates both analytically and numerically. Our
numerical studies illustrate that the consideration of partial ambiguity, which is our main contribution
of this paper, indeed greatly alleviates the over-conservativeness issue.

We would like to point out that many insurance and financial products, such as traditional reinsurance,
insurance-linked securities, catastrophe bonds, industry loss warranties, contingent convertible bonds,
and credit default swaps, are designed mainly to hedge risks in extreme scenarios where issues such
as scarcity and low quality of data are often critical. Our consideration of partial ambiguity becomes
particularly relevant to such products.

The rest of the paper is organized as follows: Section 1 ends with a brief literature review; Section
2 formulates our worst-case estimation problem under partial ambiguity; Section 3 presents our main
results; Section 4 conducts numerical studies to illustrate the benefit of our consideration of partial
ambiguity; Section 5 makes some concluding remarks; finally, the Appendix collects all proofs.

1.1. A brief literature review
The worst-case treatment as formulated in (1.1) often appears in the field of decision-making under
ambiguity. Typically, the decision-maker solves a minimax problem to find decisions that minimize the
worst-case risk. See, for example, Scarf (1958), Popescu (2007), and Delage and Ye (2010), among
others. The worst-case treatment is popular for applications in insurance, finance, and risk management.
See, for example, Artzner et al. (1999), Hürlimann (2002), Embrechts et al. (2005), Kaas et al. (2009),
Wang et al. (2013), Bernard et al. (2017, 2020), Li et al. (2018), and Cornilly et al. (2018), among many
others. Our work naturally follows these strands of research.

Many of the works cited above employ a characteristics-based approach to constructing an ambigu-
ity set; that is, the set over which the worst-case treatment takes place is constructed based on certain
distributional characteristics such as marginal distributions, moments, and a dependence structure. A
disadvantage of characteristics-based approaches is that they often yield overly conservative estimates
because the constructed ambiguity set contains all kinds of distributions including pathological ones
as long as they possess the required characteristics. For this reason, a majority of recent works have
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shifted towards divergence-based approaches following which an ambiguity set is constructed to be a
ball centered at a reference distribution with a radius specified in terms of a certain statistical divergence.

Ben-Tal et al. (2013) advocate to use φ-divergences to construct ambiguity balls for which the authors
come up with a natural interpretation in terms of statistical confidence sets. See also Glasserman and
Xu (2014), Bayraksan and Love (2015), Gupta (2019), Lam (2019), and Rahimian et al. (2019). An
advantage, among others, of using φ-divergences is that many of them enable to conduct goodness-of-fit
tests. However, some popular φ-divergences such as the Kullback–Leibler divergence and the chi-square
divergence have an obvious problem that all distributions in the ball have to be absolutely continuous
with respect to the reference distribution, which implies that they have to be discrete when, as usual,
an empirical distribution is selected as the reference distribution. See Wozabal (2012) and Gao and
Kleywegt (2022) for related discussions.

To avoid this absolute continuity restriction on the ambiguity ball, one may turn to the Wasserstein
distance, which has attracted a great deal of attention from scholars who follow divergence-based
approaches. Among many works along this direction, we name several that are closely related to our cur-
rent study: Wozabal (2012, 2014), Mohajerin Esfahani and Kuhn (2018), Blanchet and Murthy (2019),
Pesenti and Jaimungal (2020), and Gao and Kleywegt (2022). Using the Wasserstein distance has clear
advantages over other φ-divergences. With the absolute continuity restriction lifted, the constructed
ambiguity set allows for both discrete and continuous distributions. Moreover, due to its non-parametric
nature, the resulting worst-case estimation is immune to distribution types and can largely avoid the
model misspecification issue.

Note that (1.1) is a semi-infinite optimization problem, and so is (1.2), which cannot be solved com-
putationally in a straightforward way. It is necessary to further convert such an optimization problem into
a finite dimensional problem. In this regard, under the Wasserstein distance, Gao and Kleywegt (2022)
establish a strong duality result, which plays a key role in solving our worst-case estimation problem
(1.2). Independently, Blanchet and Murthy (2019) obtain a similar result, which from various aspects is
more general than that of Gao and Kleywegt (2022). Related results under simpler settings can be found
in Mohajerin Esfahani and Kuhn (2018) and Zhao and Guan (2018).

In order to alleviate the over-conservativeness issue, we propose a scenario analysis following which
we focus on ambiguous scenarios only, leading to a partial ambiguity issue. In behavioral finance,
Payzan-LeNestour and Woodford (2022) raise an outlier blindness issue that “people are hampered
in their perception of outcomes that they expect to seldom encounter, and view the magnitude of
such outcomes as less extreme than they really are.” This also motivates our consideration of partial
ambiguity.

We notice that the exact phrase of partial ambiguity has appeared in the study of Ellsberg’s two-urn
paradox; see, for example, Chew et al. (2017) and Berger (2021). In their context, partial ambiguity
refers to the situation that some prior knowledge limits the possible compositions in an urn of 100 red
and black balls, while in our context it refers to the situation that abundant information about the risk in
ordinary scenarios allows us to pin down ambiguity to the other scenarios. In the two contexts, partial
ambiguity has essentially the same meaning though presented quite differently.

Recently, Lam and Mottet (2017) evaluate performance measures over a tail region where there are
very limited data or even no data. They adopt a new approach based on the geometric premise of tail
convexity, a feature shared by virtually all practically useful models, and then consider all possible tail
densities. Although their work and ours share a similar flavor of pinning down ambiguity due to data
scarcity, essential difference exists in that they conduct optimization over all possible tail densities ful-
filling several postulated distributional constraints (thus, they follow a characteristics-based approach),
while we resort to a divergence-based approach.

Often being a critical issue in insurance practice, model uncertainty has received increasing attention
in the insurance literature. The following works, among others, have investigated or touched this issue
in various insurance contexts: Cairns (2000), Chen and Su (2009), Peters et al. (2009), Zhao and Zhu
(2011), Landsman and Tsanakas (2012), Robert and Therond (2014), Liu and Wang (2017), Fujii et al.
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(2017), and Jiang et al. (2020). More applications to practical problems in insurance have been proposed
during recent years but are still sporadic; see Wozabal (2014), Pflug et al. (2017), Lam and Mottet (2017),
Asimit et al. (2017, 2019), Ghossoub (2019a, 2019b), Blanchet et al. (2019), Birghila and Pflug (2019),
and Birghila et al. (2020), among others. We hope that our work can draw attention from actuaries and
financial analysts to incorporate the consideration of partial ambiguity when addressing the ambiguity
issue in practical problems.

2. Formulation of the problem
2.1. Notational conventions
For a general probability space (�, F , P), denote by Lp(�, F , P) the Lebesgue space with exponent p ≥
1, namely, the space of random variables with finite pth moments. For a measurable set A ⊂R

d, denote
by P⇐A) the set of probability distributions supported on A. Denote by ‖·‖p the usual p norm in R

d and

by ‖·‖Lp the Lp norm in Lp(�, F , P). Thus, for a vector x ∈R
d we have ‖x‖p =

(∑d
i=1 |xi|p

) 1
p

while for a

random variable X ∈ Lp(�, F , P) we have ‖X‖Lp = (E |X|p
)

1
p . For x, y ∈R, we write x ∨ y = max{x, y},

x ∧ y = min{x, y}, x+ = x ∨ 0, and denote by δx a Dirac measure that assigns mass 1 at point x. For a
random variable ξ , we denote its distribution by Fξ and its quantile function at level q ∈ [0, 1] by

F−1
ξ

(q) = inf
{
x ∈R : Fξ (x) ≥ q

}= sup
{
x ∈R : Fξ (x) < q

}
,

where inf ∅ is the right endpoint of Fξ and sup ∅ is the left endpoint of Fξ . Throughout the paper, we
will tacitly follow these conventions without extra explanations.

2.2. A general formulation
Consider the estimation of E [h(X)], where X is a non-negative risk variable defined on the probability
space (�, F , P) and h(·) : R+ →R+ is a deterministic measurable loss function such that the expectation
involved is finite.

Suppose that, as described before, X is the result of the aggregation of the risks in an ordinary scenario
and an ambiguous scenario, labelled as 0 and 1, respectively. Introduce a Bernoulli variable I , called
scenario indicator, with distribution

FI = (1 − q)δ0 + qδ1,

where q = P(I = 1) ∈ [0, 1] denotes the probability that scenario 1 is picked. The risk in scenario 0,
denoted by Y , is subject to negligible ambiguity and for this reason we will trust its reference distribution.
However, the risk in scenario 1, denoted by Z , is subject to significant ambiguity so that the worst-case
treatment needs to be applied when estimating the risk. In this way, the generic risk X takes the stochastic
representation

X = (1 − I)Y + IZ. (2.1)

Assuming independence between I and (Y , Z), the expectation E [h(X)] is decomposed into

E [h(X)] = P(I = 0)E [h(Y)] + P(I = 1)E [h(Z)] . (2.2)

Remark 2.1 It is important to keep in mind the following:

(a) To derive a worst-case estimate for E [h(X)] starting from (2.2), it suffices to take into account
the ambiguity adheres to FI and FZ since we fully trust the reference distribution of Y. This
leads to a two-fold ambiguity issue, which will be at the core of our analysis.

(b) The scenario indicator I and the risk Z in the ambiguous scenario are in different scales and
play distinct roles in the worst-case estimation, leading to an asymmetry issue.
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To address the asymmetry issue between I and Z in Remark 2.1(b), we scale down the risk Z by
a constant s > 0; that is, we instead consider the scaled risk Z̃ = Z

s
. The decomposition (2.2) now

becomes
E [h(X)] = (1 − q)E [h(Y)] + qE

[
h
(
sZ̃
)]

.

For the moment, the scale parameter s is simply treated as exogenous when tackling the twofold ambi-
guity issue. Later in Subsection 4.2, we will establish a mechanism to endogenize the scale parameter s
so that in the worst-case estimation of E [h(X)] the two folds play comparable roles in a certain sense.

Further, we introduce a vector V = (I, Z̃
)

whose distribution is
FV = FI × FZ̃ ∈P ({0, 1} ×R+) .

Following the divergence-based approach, we consider the true distribution FV to be within a ball
centered at its empirical version

F̂I × F̂Z̃

with

{
F̂I = (1 − qn)δ0 + qnδ1,

F̂Z̃ = 1
N

∑N
i=1 δz̃i ,

where n = n0 + N is the total number of observations counting both {y1, . . . , yn0} of Y from the ordinary
scenario 0 and {z1, . . . , zN} of Z from the ambiguous scenario 1, z̃i = zi

s
for i = 1, . . . , N denote the scaled

realizations of the risk Z , and qn = N
n

is the empirical estimate for q. This ball for FV will be described
by Br

(
F̂I × F̂Z̃

)
, where r > 0 represents the radius.

To conclude, we need to solve the worst-case estimation problem
sup

FX : FI×FZ̃∈Br(F̂I×F̂Z̃)
E [h(X)] = sup

FI×FZ̃∈Br(F̂I×F̂Z̃)

{
(1 − q)E [h(Y)] + qE

[
h
(
sZ̃
)]}

. (2.3)

2.3. Under the Wasserstein distance
To construct the ambiguity ball in (1.1), we use the following Wasserstein distance of order p ≥ 1. For
two multivariate distributions F1 and F2, their Wasserstein distance is defined to be

W(F1, F2) = inf
�:�V1 =F1, �V2 =F2

(E� [d(V1, V2)
p])

1
p , (2.4)

where V1 and V2 are two vectors distributed by F1 and F2, respectively, d(·, ·) denotes a certain distance,
� denotes a joint distribution of (V1, V2) with marginal distributions �V1 = F1 and �V2 = F2.

The definition of the Wasserstein distance (2.4) originates from optimal transportation problems.
According to Villani (2009), each joint distribution � is interpreted as a plan of transporting goods
between producers and consumers, whose spatial distributions are described by F1 and F2, respectively,
the quantity d(v1, v2)p is interpreted as the cost for transporting one unit of goods from v1 to v2, and
consequently the quantity W(FV1 , FV2 )p is interpreted as the optimal total transportation cost.

In most existing studies, the distance d(·, ·) is specified as the p norm; that is, for two vectors v1 and
v2 of the same dimension,

d(v1, v2) = ‖v1 − v2‖p .

We will simply follow this specification. Nevertheless, we would like to point out that depending on the
situation it may become crucial to employ other distances to address some practical considerations. Then
for the one-dimensional case, it is well known that the Wasserstein distance between two distributions
F1, F2 ∈P(R) takes an explicit expression in terms of their quantile functions:

W(F1, F2) =
(∫ 1

0

∣∣F−1
1 (u) − F−1

2 (u)
∣∣p du

) 1
p

; (2.5)

see, for example, Panaretos and Zemel (2019).
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Corresponding to our setting in Subsection 2.2, Vi =
(
Ii, Z̃i

)
and FVi = FIi × FZ̃i

for each i = 1, 2, �

denotes a joint distribution of (V1, V2) = (I1, Z̃1, I2, Z̃2

)
, and d(·, ·) is specified as the p norm. To simplify

the notation, we introduce the following sets:

S = {
� ∈P (({0, 1} ×R+)

2
)

: �V1 = FV1 , �V2 = FV2

}
,

SI = {
μ ∈P ({0, 1}2

)
: μI1 = FI1 , μI2 = FI2

}
,

SZ̃ = {
ν ∈P (R2

+
)

: νZ̃1
= FZ̃1

, νZ̃2
= FZ̃2

}
.

Then S = SI × SZ̃ and

W(FV1 , FV2 ) = inf
�∈S

(
E�

[‖V1 − V2‖p
p

]) 1
p , (2.6)

so that

W(FV1 , FV2 )p = inf
�∈S

{
E�

[|I1 − I2|p
]+ E�

[∣∣Z̃1 − Z̃2

∣∣p]} .

Intuitively, we can take inf�∈S onto the two terms E�

[|I1 − I2|p
]

and E�

[∣∣Z̃1 − Z̃2

∣∣p] separately, giving

W(FV1 , FV2 )p = W(FI1 , FI2 )p + W
(
FZ̃1

, FZ̃2

)p
.

It turns out that this intuition is correct, as proved by Lemma A.1 in a general context. Moreover, by
(2.5), we can easily verify the following two identities:

• With qi = P(Ii = 1) for i = 1, 2,

W(FI1 , FI2 )p =
∫ 1

0

∣∣F−1
I1

(u) − F−1
I2

(u)
∣∣p du = |q1 − q2| ;

• With s > 0 and Z̃i = Zi
s

for i = 1, 2,

W
(
FZ̃1

, FZ̃2

)p = 1

sp
W(FZ1 , FZ2 )p.

It follows that

W(FV1 , FV2 )p = |q1 − q2| + 1

sp
W(FZ1 , FZ2 )p.

Formally, we construct the ambiguity ball in our worst-case estimation problem (2.3) as

Br

(
F̂I × F̂Z̃

)
=
{

FI × FZ̃:W
(

FI × FZ̃ , F̂I × F̂Z̃

)
≤ r
}

=
{

(q, FZ):q ∈ [0, 1], |q − qn| + 1

sp
W
(

FZ , F̂Z

)p ≤ rp

}
.

Thus, our worst-case estimation problem (2.3) can be reformulated as

sup
FX : FI×FZ̃∈Br(F̂I×F̂Z̃)

E [h(X)]

= sup
(q,FZ ): q∈[0,1],|q−qn|+ 1

sp W(FZ ,F̂Z)
p≤rp

{(1 − q)E [h(Y)] + qE [h(Z)]} . (2.7)

Remark 2.2 The next task is to optimally allocate the given amount of ambiguity between the probability
q and the distribution FZ . This involves a trade-off issue given that the total amount of ambiguity as
reflected by the radius r is fixed. For example, increasing q from its empirical estimate qn influences
the value of (1 − q)E [h(Y)] + qE [h(Z)] in an intricate way: Directly, it decreases the first term and
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increases the second term, while indirectly, the deviation of q from qn consumes part of the ambiguity
and thus reduces the range for FZ in optimizing E [h(Z)]. Also keep in mind two extreme cases in which
the ambiguity is maximally allocated to the probability q and the distribution FZ , respectively. In each
case, the given amount of ambiguity is likely used up by one argument, causing the other argument to
stick to its empirical estimate. Moreover, we note that, to address the asymmetry issue in Remark 2.1(b),
we have used a scale parameter s, taken as exogenous for the moment, in constructing the worst-case
estimation problem in (2.7).

Further, we factorize the worst-case estimation problem (2.7) into two layers as

sup
FX : FI×FZ̃∈Br(F̂I×F̂Z̃)

E [h(X)]

= sup
q∈[0,1]: |q−qn|≤rp

{
(1 − q)E [h(Y)] + q sup

FZ : W(FZ ,F̂Z)
p≤sp(rp−|q−qn|)

E [h(Z)]

}

= sup
q∈[q−

n ,q+
n ]

{
(1 − q)E [h(Y)] + q sup

FZ∈Bε(F̂Z)
E [h(Z)]

}
, (2.8)

where we have used the following notation:

[q−
n , q+

n ] = [qn − rp, qn + rp] ∩ [0, 1], (2.9)

ε = ε(q) = s (rp − |q − qn|) 1
p ∈ [0, rs]. (2.10)

This way, we have successfully disentangled the ambiguity along the two folds q and FZ and
hence converted the worst-case estimation problem to a two-stage optimization problem. We need
to first solve the inner optimization, which is a standard worst-case estimation problem. Then it will
become straightforward to solve the outer optimization in (2.8), eventually completing the worst-case
problem (2.3).

Remark 2.3 Observe the range (2.9) for q, which comes from the ingenuous belief of q ∈ [0, 1]. In
practice, however, we may have a prior belief in q reflected by a restricted range q ∈ [q, q̄] ⊆ [0, 1],
which can be, for example, a confidence interval based on a rich dataset or an expert opinion. In this
case, we may utilize this information to reduce the range for q in the hope to further help alleviate the
over-conservativeness issue. Formally, we have the worst-case estimation problem

sup
FX : FI×FZ̃∈B̃r(F̂I×F̂Z̃)

E [h(X)]

over the modified ball

B̃r

(
F̂I × F̂Z̃

)
= Br

(
F̂I × F̂Z̃

)
∩
{

q ∈ [q, q̄]
}

.

Then by going along the same lines as (2.8), we can still convert the worst-case estimation problem to
a two-stage optimization problem in which the outer optimization is over

q ∈ [qn − rp, qn + rp] ∩ [q, q̄].

Thus, it becomes straightforward to address this modification to potentially refine the study, but we will
omit it to keep the paper short.

3. The main result
Many existing studies in the literature consider a concave loss function h(·). However, the case with a
convex loss function is arguably more relevant to some applications. A potential challenge with a convex
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loss function is that it grows too fast, causing the worst-case estimate to easily explode. For simplicity,
we specify h(·) as a power loss function

h(x) = xp, p ≥ 1, (3.1)

so that our work amounts to providing the worst-case pth moment of a generic risk X.
For ease of reference, we recollect here some essential steps in the worst-case estimation of

E [Xp]. Following the traditional divergence-based approaches, the worst-case estimation of E [Xp] is
constructed as

sup
FX∈Br(F̂X)

E [Xp] , p ≥ 1, (3.2)

which is conducted over the Wasserstein ball Br

(
F̂X

)
, r > 0, centered at the empirical distribution F̂X

based on the whole dataset of the generic risk X. When constructing the Wasserstein ball, following the
mainstream in related research we choose the order p of the Wasserstein distance (2.6) to be the same
as the order p of the power function (3.1). Then, the corresponding worst-case estimation problem (3.2)
is bounded according to Lemma A.2.

In our scenario analysis, the generic risk X, as described by (2.1), results from the aggregation of the
risks in an ordinary scenario 0 and an ambiguous scenario 1, and we aim to estimate

E [Xp] = (1 − q)E [Yp] + qE
[(

sZ̃
)p
]

,

where q = P(I = 1), Z̃ = Z
s
, and s > 0 is a scale parameter. Following (2.8), our worst-case estimation

problem becomes

sup
FX : FI×FZ̃∈Br(F̂I×F̂Z̃)

E [Xp] (3.3)

= sup
q∈[q−

n ,q+
n ]

{
(1 − q)E [Yp] + q sup

FZ∈Bε(F̂Z)
E [Zp]

}
, (3.4)

with ε = s (rp − |q − qn|) 1
p given in (2.10).

As the first step to solve (3.3), we work on the inner optimization in (3.4),

sup
FZ∈Bε(F̂Z)

E [Zp] , (3.5)

and the result is shown in Proposition 3.1 below, the proof of which is postponed to the Appendix. To
avoid triviality, we only consider a proper sample {z1, . . . , zN} of Z in the sense that not all sample points
are 0. Nevertheless, in case all sample points {z1, . . . , zN} of Z are 0, the aimed results are still valid: In
this case, F̂Z is degenerate at 0, supFZ∈Bε(F̂Z) E [Zp] = εp is attained at a distribution F∗

Z degenerate at ε,

and W
(

F∗
Z , F̂Z

)
= ε.

Proposition 3.1 Consider the worst-case estimation problem (3.5) in which p ≥ 1, ε > 0, and the
Wasserstein distance is specified as (2.6) with the same order p. A proper sample {z1, . . . , zN} of Z
is given. Then

sup
FZ∈Bε(F̂Z)

E [Zp] = (ε + ‖ZN‖Lp)
p , (3.6)

where ZN denotes a random variable uniformly distributed over the sample {z1, . . . , zN} and thus
‖ZN‖Lp = ( 1

N

∑N
i=1 zp

i

) 1
p .
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Clearly, the supremum (3.6) is attained at

F∗
Z = 1

N

N∑
i=1

δz∗i ,

where z∗
i =
(

1 + ε

‖ZN‖Lp

)
zi for i = 1, . . . , N. Moreover, it is easy to check that W

(
F∗

Z , F̂Z

)
= ε, which

means that the worst-case distribution F∗
Z consumes all the ambiguity ε and lies on the boundary of

Bε

(
F̂Z

)
. To see this, recall the alternative expression (2.5) of the Wasserstein distance for the univariate

case. We have

W
(

F∗
Z , F̂Z

)
=
(∫ 1

0

∣∣∣F∗−1
Z (u) − F̂−1

Z (u)
∣∣∣p du

) 1
p

=
(

1

N

N∑
i=1

∣∣z∗
i − zi

∣∣p)
1
p

= ε.

Remark 3.1 Although we focus on a non-negative risk variable X and a power loss function, our
method is applicable to a real-valued risk variable X and a general loss function h:R→R as long
as h(·) is upper semi-continuous and satisfies h (x) = O( |x|p ) for some p ≥ 1 as |x| → ∞. Indeed,
we can still arrive at the two-stage optimization (2.8) by disentangling the ambiguity along the two
folds. Furthermore, following the proof of Proposition 3.1, we can always convert the inner optimiza-
tion in (2.8) to a one-dimensional convex optimization problem to make it numerically tractable but an
explicit expression may be available only for certain special loss functions. One such example is the loss
function

h(x) = (x − d)p
+, d > 0, p ≥ 1,

for which E [h(X)] corresponds to the pth moment of the insurance payoff in a stop-loss contract. For
this example, we can achieve an explicit expression as

sup
FZ∈Bε(F̂Z)

E
[
(Z − d)p

+
]= (ε + ‖(ZN − d)+‖Lp

)p
.

However, it does not seem to be easy to establish a unified result for general convex loss functions.

Under the help of Proposition 3.1, by completing the outer optimization in (3.4), we will eventually
solve the worst-case estimation problem (3.3). To this end, introduce

C0 = ‖Y‖Lp and sC1 = ‖ZN‖Lp ,

where the distribution of Y is fully in accordance with the empirical distribution from the sample
{y1, . . . , yn0} in scenario 0. There are two cases:

C0 ≤ C1 and C0 > C1.

The case C0 ≤ C1 means that, in the Lp norm, the risk realization in the ambiguous scenario 1 tends
to be larger than that in the ordinary scenario 0, which may be the case if, for example, the ambiguous
scenario 1 is more catastrophic. For this case, we are able to obtain an analytical solution to the worst-
case estimation problem (3.3).

Theorem 3.1 Consider the worst-case estimation problem (3.3). In addition to the conditions in
Proposition 3.1, assume that C0 ≤ C1. Then the worst-case pth moment of X is

sup
FX : FI×FZ̃∈Br(F̂I×F̂Z̃)

E [Xp] =
{

(1 − qn)Cp
0 + qn(rs + C1)p, when r ≤ r∗,

(1 − q∗)Cp
0 + q∗(ε∗ + C1)p, when r > r∗.

(3.7)

In (3.7):
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• r∗ = r̄ ∨ 0, with r̄ the unique solution r to

−Cp
0 + (rs + C1)p−1

(
rs(1 − qnr−p) + C1

)= 0; (3.8)

• q∗ = q̄n ∧ q+
n , with q+

n defined in (2.9) and with q̄n the unique solution q to

−Cp
0 +
(

s(rp + qn − q)
1
p + C1

)p

− qs

(
s(rp + qn − q)

1
p + C1

)p−1

(rp + qn − q)
1
p = 0; (3.9)

• ε∗ = ε(q∗) = s(rp + qn − q∗)
1
p as defined in (2.10).

The proof of Theorem 3.1 is postponed to the Appendix, from which it is easy to see that the supre-
mum of (3.7) is always attainable. Let us observe Theorem 3.1 for the cases p > 1 and p = 1 separately.
We will see that it echoes Remark 2.2 to a certain extent.

For p > 1, it is easy to see that r∗ > 0 as Equation (3.8) yields a unique solution r̄ ∈
(

0, q
1
p
n

)
. Actually,

the left-hand side of (3.8), as a continuous and increasing function in r, diverges to −∞ as r ↓ 0, while
it takes a positive value at r = q

1
p
n since C0 ≤ C1. The first piece in (3.7) shows that, when r is relatively

small such that 0 < r ≤ r∗ = r̄, the optimization procedure requires that the ambiguity be fully allocated
to FZ to raise E [Zp], and subsequently the range for q boils down to the singleton {qn}. However, when
r is relatively large such that r > r∗ = r̄, the total amount of ambiguity is allocated to both q and FZ

according to the second piece in (3.7). Precisely, part of the ambiguity is allocated to q to shift it from
qn to q∗ ∈ (qn, qn + rp), and the remaining ambiguity, as quantified by ε∗ ∈ (0, rs) after scaling by s, is
allocated to FZ to raise E [Zp].

For p = 1, it is possible that Equation (3.8) yields a negative solution depending on the value of
qn. For this case, r∗ = 0, and thus only the second piece in (3.7) is relevant, which indicates that the
ambiguity is not fully allocated to FZ . However, it is possible that q∗ = qn + r and hence ε∗ = 0, which
means that the optimization procedure fully allocates the ambiguity to q to shift it from qn to q∗ = qn + r

and subsequently squeezes the range for FZ to the singleton
{

F̂Z

}
.

Remark 3.2 The other case C0 > C1 means that, in the Lp norm, the risk realization in the ambiguous
scenario 1 is smaller than that in the ordinary scenario 0, which may be the case when, for example,
an insurance company extends with prudence to a new line of business in which losses incurred are
subject to more ambiguity but not necessarily larger than in its ordinary business. Unfortunately, the
proof of Theorem 3.1 does not cover this case: The auxiliary function f1 (q) in (A12) does not exhibit a
clear convexity feature on [q−

n , qn], and hence it becomes troublesome to achieve an analytical solution.
Nevertheless, under the help of Proposition 3.1, the worst-case estimation problem (3.3) is numerically
tractable and we will instead seek numerical solutions in Section 4.

4. Numerical studies
This section is devoted to numerical studies to illustrate the benefit of our new approach via (3.3) giving
consideration to partial ambiguity compared with the traditional approach via (3.2).

4.1. Synthetic data
To assess the performance of the traditional and new approaches, we will generate synthetic data from a
known distribution, and then use this dataset in both approaches but pretend that we do not know the true
distribution. Such an idea of synthetic data has often been used to facilitate similar numerical studies;
see, for example, Lam and Mottet (2017).
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Precisely, given the distributions FI , FY , and FZ , the synthetic data of X can be generated in the
following steps: First, we generate a uniform random sample of U and define I = 1(U≥1−q); Second, if
U < 1 − q, then I = 0 and we generate a random sample of Y , while if U ≥ 1 − q, then I = 1 and we
generate a random sample of Z; Third, putting these into (2.1), we obtain a random sample of X.

In our numerical experiments, we will use the following distributions to model Y and Z:

• We call ξ a folded normal variable with parameters (m, v2) ∈ (− ∞, ∞) × (0, ∞) if ξ = |η|,
where η is normally distributed with mean m and variance v2, namely, η ∼N (m, v2);

• We call ξ a beta variable with parameters (a, b, c) ∈ (0, ∞)3 if ξ has the density

g(t) = 1

B(a, b)c

( t

c

)a−1 (
1 − t

c

)b−1

, 0 ≤ t ≤ c,

where B(·, ·) is the beta function;
• We call ξ a Pareto variable with parameters (α, γ ) ∈ (0, ∞)2 if ξ has the density

g(t) = αγ α

tα+1
, t ≥ γ .

4.2. On the scale parameter
Recall the asymmetry issue mentioned in Remark 2.1(b) between the scenario indicator I and the risk
Z in the ambiguous scenario. To address this issue, in Subsection 2.2, we have proposed to introduce a
constant s > 0 to scale down the risk Z , eventually leading to the worst-case estimation problem (2.7)
with the constraint

|q − qn| + 1

sp
W
(

FZ , F̂Z

)p ≤ rp; (4.1)

namely, we let q and FZ compete for the given amount of ambiguity in the worst-case estimation, while
the amount of ambiguity allocated to FZ is further scaled by s. Now we establish a mechanism to endo-
genize the scale parameter s. To clarify, we do not claim that our mechanism is universally appropriate,
but rather we think that, depending on the situation, there should be other potentially better mechanisms
to endogenize s.

Recall the two extreme cases mentioned in Remark 2.2 when allocating the ambiguity along the two
folds. The first extreme case is to maximally allocate the ambiguity to the probability q, which must be
realized at either endpoint of the interval (2.9). There is a subtlety that q may not consume all the given
ambiguity, for which case there is still ambiguity left for FZ according to (2.10). Putting together, we
obtain an estimate for E [Xp] as

(1 − q̃)Cp
0 + q̃(ε̃ + C1)

p, (4.2)

where q̃ is either q+
n or q−

n , whichever yields a larger value of (4.2), and where ε̃ is defined by

ε̃ = ε(q̃) = s (rp − |q̃ − qn|) 1
p (4.3)

according to (2.10). The second extreme case is to maximally allocate the ambiguity described by (4.1)
to the distribution FZ to raise the pth moment of Z . As FZ can always consume all the given ambiguity,
which raises the pth moment of Z to (rs + C1)p by Proposition 3.1, there is no ambiguity left for q. This
gives another estimate for E [Xp] as

(1 − qn)Cp
0 + qn(rs + C1)p. (4.4)

Our mechanism for determining the scale parameter s is based on the reasoning that, in competing
for the given ambiguity to optimize E [Xp], the scenario indicator I and the risk Z in the ambiguous
scenario should have equal power. Quantitatively, we interpret this as that the two extreme cases yield
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the same estimate for E [Xp]. Thus, by equating (4.2) and (4.4), we arrive at the equation

(1 − q̃)Cp
0 + q̃(ε̃ + C1)p = (1 − qn)Cp

0 + qn(rs + C1)p, (4.5)

which we use to endogenize s.
Once the dataset is available and the radius r is given, the values of C0, C1, and qn are known,

and we can decide q̃ and ε̃ by comparing the values of (4.2) at q̃ = q+
n and q̃ = q−

n . Then it becomes
straightforward to check the existence and uniqueness of the solution s to (4.5). We remark that, for
most practical situations where the radius r is modest, q moving from qn to q̃ is able to consume
all the ambiguity, leaving no ambiguity to FZ . More precisely, if [qn − rp, qn + rp] ⊂ [0, 1], then
[q−

n , q+
n ] = [qn − rp, qn + rp] by (2.9), and subsequently, for either q̃ = q+

n or q̃ = q−
n , we have ε̃ = 0 by

(4.3). In such a situation, Equation (4.5) is simplified to

(1 − q̃)Cp
0 + q̃Cp

1 = (1 − qn)C
p
0 + qn(rs + C1)

p,

which gives a closed-form solution

s =
(
(qn − q̃)Cp

0 + q̃Cp
1

) 1
p − C1q

1
p
n

rq
1
p
n

.

4.3. Bootstrapping
To produce the worst-case estimate for E [Xp] with a desired coverage probability, a key step is to deter-
mine an appropriate radius r for the Wasserstein ball. There have already been a few theoretical studies
under various distributional assumptions such as light tails, but the corresponding selection of the radius
either is too conservative or involves unknown constants; see, for example, Pflug and Wozabal (2007),
Fournier and Guillin (2015), and Zhao and Guan (2018), among others. Most of those theoretical stud-
ies by far are not immediately applicable in practice, and thus scholars usually resort to numerical
approaches such as bootstrapping to calibrate the Wasserstein radius r; see, for example, Mohajerin
Esfahani and Kuhn (2018) and Kannan et al. (2020) for related discussions.

In our numerical studies, we will prudently calibrate the radius r using bootstrapping. For a given
dataset of size n, we first construct resamplings from it. Each resampling yields a training dataset and
a validation dataset. Suppose that we already have k resamplings. Given a radius r for the worst-case
estimation, we process these k resamplings to examine if this level of r is high enough to guarantee the
desired coverage probability for E [Xp]. Then we identify the smallest radius r such that the coverage
probability is no less than the desired coverage probability.

Formally, the procedure consists of the following steps:

• For each resampling, with the reference distribution generated from the training dataset and the
radius r, we produce a worst-case estimate for E [Xp].

• With the reference distribution generated from the corresponding validation dataset, we have a
direct estimate for E [Xp].

• Repeat these steps for k resamplings and count the frequency that the worst-case estimate from
the training dataset is no less than the direct estimate from the validation dataset.

• We regard this frequency as the coverage probability of the corresponding approach with the
radius r. We gradually raise r if the obtained coverage probability is lower than the desired, or
gradually reduce r otherwise.

• We redo the steps above for T times.

Following the procedure, the radius r is prudently calibrated based on the available data.
Now we show how to construct the k resamplings in the traditional and new approaches, respectively.

In the traditional approach as formulated by (3.2), the generic risk X is subject to ambiguity. To construct
a resampling, we simply sample with replacement the total n data points to construct the training dataset,
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and the validation dataset comprises the rest, roughly(
1 − 1

n

)n

≈ 1

e

of the original data points that are absent from the training dataset; see Subsection 7.2 of Mohajerin
Esfahani and Kuhn (2018). Moreover, when processing this resampling, the reference distributions gen-
erated from the training dataset and the validation dataset are selected to be the empirical distributions.

In our new approach as formulated by (3.3), the moment E [Xp] is now decided by (FI , FY , FZ) among
which FI and FZ are subject to ambiguity. To reflect this two-fold ambiguity, we construct the training
dataset and the validation dataset in each resampling as follows:

• We keep the n0 data points of Y in scenario 0 unchanged and denote by F̂Y the empirical
distribution, which we treat as the true distribution of Y .

• Regarding the ambiguity of FZ , we sample with replacement the N data points in scenario 1 to
construct the training dataset, which gives the empirical distribution F̂tr

Z . The rest of the data
points absent from the training dataset form the validation dataset, which gives the empirical
distribution F̂va

Z .
• Regarding the ambiguity of FI , we sample with replacement the n = n0 + N mixed data to

construct the training dataset and estimate q̂tr to be the frequency of scenario 1, yielding the
Bernoulli distribution F̂tr

I with F̂tr
I ({1}) = q̂tr. The rest of the data points absent from the training

dataset form the validation dataset from which we obtain in the same way the frequency q̂va and
the Bernoulli distribution F̂va

I .
• When processing this resampling, the reference distributions generated from the training

dataset and the validation dataset are
(

F̂tr
I , F̂Y , F̂tr

Z

)
and

(
F̂va

I , F̂Y , F̂va
Z

)
, respectively.

4.4. Comparison with the central limit theorem approach
In this subsection, following a reviewer’s request we use the classical central limit theorem (CLT) to
provide an upper confidence bound as another conservative estimate for the pth moment. In the next
subsection, we will conduct numerical experiments to examine the advantage of our new approach over
the CLT approach.

Recall the decomposition (2.2), which, with h(x) specified to the power function xp, becomes

E [Xp] = P(I = 0)E [Yp] + P(I = 1)E [Zp] = (1 − E[I])E [Yp] + E[W],

where W denotes the product IZp and the last step holds due to the independence between I and Z . With
π = E [Xp], q = E[I], and w = E[W], we further rewrite the decomposition as

π = (1 − q)E [Yp] + w. (4.6)

To use (4.6) to estimate π , note that E [Yp] is known since we fully trust the empirical distribution of
Y from scenario 0, but q and w, due to the unknown distributions of I and W, need to be estimated. In
view of the simple linear relationship in (4.6), it is customary to estimate π by the same expression with
q and w replaced by their sample versions

qn = 1

n

n∑
i=1

Ii and wn = 1

n

n∑
i=1

Iiz
p
i ,

respectively, yielding

πn = (1 − qn)E [Yp] + wn.

In the expression for wn, whenever Ii = 0 there is no observation of Z but the product Iiz
p
i is understood

as 0.
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By the central limit theorem, we have
√

n

((
qn

wn

)
−
(

q
w

))
d→N (0, 
) ,

where d→ denotes convergence in distribution and 
 = (σij

)
2×2

is the covariance matrix of (I, W). It
follows that

√
n (πn − π)

d→N (
0, (E [Yp])2

σ11 − 2E [Yp] σ12 + σ22

)
.

Therefore, for a desired coverage probability β ∈ (0, 1), namely, the probability that the estimate is no
less than the true value, the CLT estimate for π is

πn + �−1 (β)√
n

√
(E [Yp])2

σ̂11 − 2E [Yp] σ̂12 + σ̂22,

where � (·) is the standard normal distribution function and σ̂11, σ̂12, and σ̂22 are the sample versions of
σ11, σ12, and σ22.

We would like to point out that the CLT approach and our new approach focus on different topics
and applications. The former provides approximations based on the classical limit theory, while the
latter is designed to address the ambiguity issue and the resulting worst-case estimates can be viewed as
distributionally robust bounds.

4.5. Numerical results
4.5.1. First, consider the case C0 ≤ C1 in Section 3
We specify a Bernoulli distribution for I with P(I = 1) = 0.1, a folded normal distribution for Y
with parameters (m, v2) = (2, 22), and a Pareto distribution for Z with parameters (α, γ ) = (5, 20).
Experiments are conducted for the first four moments p = 1, 2, 3, 4. It is easy to check that these moments
of Y are much smaller than those of Z , and thus the condition C0 ≤ C1 can be easily fulfilled in numerical
experiments.

We first generate a dataset of size n but pretend that we do not know the true distributions and set
the desired coverage probability to be β = 0.95. Based on this dataset, we compute the upper bound for
E [Xp] using the traditional and the new approaches adopting the worst-case treatment. In each approach,
we calibrate the radius r using bootstrapping with k = 100 resamplings and then produce the upper
bounds by solving the corresponding worst-case estimation problems. Note that for the new approach,
we use the mechanism described in Subsection 4.2 to determine the scale parameter s. Moreover, we
also apply the CLT approach proposed in Subsection 4.4 to produce the 0.95 confidence upper bound for
E [Xp]. Thus, we employ three approaches, which we call the “traditional”, the “new”, and the “CLT”
approaches to distinguish them.

Repeating the above procedure T = 100 times, the realized coverage probability in each approach is
estimated to be the frequency of the upper bound no less than the true moment E [Xp]. We specify the
size of the dataset to be n = 200 and n = 2000, and the corresponding results are shown in Tables 1 and
2, respectively. We observe the following. The traditional approach always achieves a full coverage prob-
ability, which signals the aforementioned over-conservativeness issue, while the CLT approach always
achieves coverage probabilities that are significantly lower than the desired level 0.95, which signals
significant underestimation. In contrast, our new approach achieves generally satisfactory coverage prob-
abilities. Actually, only for the fourth moment, the coverage probability from the new approach is slightly
below the desired, which indicates that a larger dataset is required for estimating higher moments.

Furthermore, we compare the traditional and new approaches that generally guarantee the desired
coverage probability. Specifically, we measure the estimation error of each approach by the mean squared
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Table 1. Performance of the different approaches when n = 200, with the desired coverage
probability specified to β = 0.95, I a Bernoulli variable with P(I = 1) = 0.1, Y a folded nor-
mal variable with parameters (m, v2) = (2, 22), and Z a Pareto variable with parameters (α, β) =
(5, 20).

p Coverage (traditional) Coverage (new) Reduction R in MSE (%) Coverage (CLT)
1 1.00 0.96 68.38 0.79
2 1.00 0.96 69.65 0.89
3 1.00 0.97 72.63 0.85
4 1.00 0.93 82.81 0.76

Table 2. Performance of the different approaches when n = 2000, with the desired coverage
probability specified to β = 0.95, I a Bernoulli variable with P(I = 1) = 0.1, Y a folded normal
variable with parameters (m, v2) = (2, 22), and Z a Pareto variable with parameters (α, β) =
(5, 20).

p Coverage (traditional) Coverage (new) Reduction R in MSE (%) Coverage (CLT)
1 1.00 0.96 71.87 0.77
2 1.00 0.97 68.54 0.89
3 1.00 0.98 71.27 0.87
4 1.00 0.94 78.90 0.81

error (MSE) of the upper bounds in the T = 100 experiments compared with the true moment. To
demonstrate the benefit of our new approach, we calculate the reduction ratio in the MSE:

R = 1 − MSE of the new approach
MSE of the traditional approach

,

and the corresponding results are also shown in Tables 1 and 2. We can observe that the new approach
significantly reduces the estimation error compared with the traditional approach.

Note that the implementation of the new approach requires an adequately large dataset. On the one
hand, the new approach is based on the assumption of abundant data from the ordinary scenario; on
the other hand, it also requires a reasonable amount of data from the ambiguous scenario in order to
effectively construct the training dataset and the validation dataset during bootstrapping.

4.5.2. Next, consider the other case C0 > C1 in Section 3
We specify a Bernoulli distribution for I with P(I = 1) = 0.1, a beta distribution for Y with parameters
(a, b, c) = (5, 1, 2), and a folded normal distribution for Z with parameters (m, v2) = (0, 12). Experiments
are conducted still for the first four moments p = 1, 2, 3, 4. It is easy to check that these moments of Y
are now larger than those of Z , and thus the condition C0 > C1 can be fulfilled in numerical experiments.

We conduct the same experiments as before with k = 100, T = 100, and the desired coverage proba-
bility β = 0.95. The numerical results for the datasets of size n = 200 and 2000 are shown in Tables 3
and 4, respectively, from which we have similar observations to those from Tables 1 and 2. In particular,
we see that the desired coverage probability 0.95 is achieved only in the traditional and new approaches,
between which the new approach, while generally retaining the desired coverage probability, greatly
reduces the estimation error for all four moments.
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Table 3. Performance of the different approaches when n = 200, the desired coverage proba-
bility specified to β = 0.95, I a Bernoulli variable with P(I = 1) = 0.1, Y a beta variable with
parameters (a, b, c) = (5, 1, 2), and Z a folded normal variable with parameters (m, v2) = (0, 12).

p Coverage (traditional) Coverage (new) Reduction R in MSE (%) Coverage (CLT)
1 1.00 1.00 53.57 0.85
2 1.00 1.00 66.33 0.79
3 1.00 0.94 79.80 0.77
4 1.00 0.94 85.05 0.75

Table 4. Performance of the different approaches when n = 2000, the desired coverage prob-
ability specified to β = 0.95, I a Bernoulli variable with P(I = 1) = 0.1, Y a beta variable with
parameters (a, b, c) = (5, 1, 2), and Z a folded normal variable with parameters (m, v2) = (0, 12).

p Coverage (traditional) Coverage (new) Reduction R in MSE (%) Coverage (CLT)
1 1.00 1.00 45.47 0.90
2 1.00 1.00 56.22 0.87
3 1.00 0.99 63.79 0.86
4 1.00 0.97 63.05 0.86

5. Concluding remarks
We revisit the worst-case estimation of the moments of a risk X whose distribution is subject to ambigu-
ity. To alleviate the over-conservativeness issue, we consider the risk X as resulting from the aggregation
of the risk Y in an ordinary scenario subject to no ambiguity and the risk Z in an ambiguous scenario
subject to significant ambiguity. The ambiguity exists in both the scenario indicator and the risk in the
ambiguous scenario. We construct a Wasserstein ball to describe this two-fold ambiguity and then we
derive worst-case estimates for the moments of X both analytically and numerically.

Several extensions are worthy of pursuit in the future. First, we may consider multiple risk scenarios
each of which is subject to a varying extent of ambiguity. With the extents of ambiguity specified, we
need to disentangle the total ambiguity along the scenario indicator and the risks from the respective
scenarios. Our current work already lends useful hints to this extension. Second, loss functions often
involve control variables, which represent, for example, a contract design, an investment strategy, or
a risk management rule. Then, we face an additional layer of optimization with respect to the control
variables, which, as pointed out by Kuhn et al. (2019), may amplify the impact of ambiguity. Third, it
is also desirable to consider a general situation involving multiple risk factors rather than multiple risk
scenarios. Then we need to deal with the worst-case estimation of the expectation E [h(Y , Z1, . . . , Zd)] in
which h is a general multivariate loss function and Y , Z1, . . ., Zd are risks subject to different extents of
ambiguity. Note that in this situation ambiguity also exists in the dependence structure of (Y , Z1, . . . , Zd).
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A. Appendix

Lemma A.1 For two random pairs V1 = (ξ1, η1) and V2 = (ξ2, η2), each with independent components
so that FVi = Fξi × Fηi for i = 1, 2, we have

W(FV1 , FV2 )p = W(Fξ1 , Fξ2 )p + W(Fη1 , Fη2 )p, (A1)

where W(·, ·) is the Wasserstein distance of order p ≥ 1 defined as in (2.4) with d(·, ·) specified as the
p norm.

Proof. As in Subsection 2.3, we introduce the following spaces:

S = {
� ∈P (R4

)
:�V1 = FV1 , �V2 = FV2

}
,

Sξ = {
μ ∈P (R2

)
:μξ1 = Fξ1 , μξ2 = Fξ2

}
,

Sη = {
ν ∈P (R2

)
:νη1 = Fη1 , νη2 = Fη2

}
.

Since FVi = Fξi × Fηi for i = 1, 2, we have S = Sξ × Sη. Clearly,

W(FV1 , FV2 )p = inf
�∈S

E�

[‖V1 − V2‖p
p

]= inf
�∈S

E�

[|ξ1 − ξ2|p + |η1 − η2|p
]

. (A2)

On the one hand, due to the super-additivity of the infimum operation, we have

W(FV1 , FV2 )p ≥ inf
�∈S

E�

[|ξ1 − ξ2|p
]+ inf

�∈S
E�

[|η1 − η2|p
]

= inf
μ∈Sξ

Eμ

[|ξ1 − ξ2|p
]+ inf

ν∈Sη

Eν

[|η1 − η2|p
]

= W(Fξ1 , Fξ2 )p + W(Fη1 , Fη2 )p.
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On the other hand, for any μ ∈ Sξ and ν ∈ Sη, we simply take the product measure �(μ,ν) = μ × ν, which
defines a joint distribution of the quadruple (ξ1, η1, ξ2, η2). Under �(μ,ν), for each i = 1, 2, the pair Vi =
(ξi, ηi) follows the distribution FVi = Fξi × Fηi . This verifies �(μ,ν) ∈ S. Therefore, by (A2),

Eμ

[|ξ1 − ξ2|p
]+ Eν

[|η1 − η2|p
] = E�(μ,ν)

[|ξ1 − ξ2|p
]+ E�(μ,ν)

[|η1 − η2|p
]

= E�(μ,ν)

[|ξ1 − ξ2|p + |η1 − η2|p
]

≥ W(FV1 , FV2 )p.

Taking infimum of the two terms on the left-hand side over μ ∈ Sξ and ν ∈ Sη, respectively, we obtain

W(Fξ1 , Fξ2 )p + W(Fη1 , Fη2 )p ≥ W(FV1 , FV2 )p.

This proves (A1).
Proof of Proposition 3.1. Introduce the space

S =
{
� ∈P (R2

+
)

: �Z = FZ , �Ẑ = F̂Z

}
.

Observe that the optimization problem (3.5) is conducted over the Wasserstein ball

Bε

(
F̂Z

)
=
{

FZ : W
(

FZ , F̂Z

)
≤ ε
}

with the Wasserstein distance W
(

FZ , F̂Z

)
= inf�∈S

(
E�

[∣∣∣Z − Ẑ
∣∣∣p]) 1

p

. Note that the infimum in defining
the Wasserstein distance is always attainable; see, for example, Theorem 4.1 of Villani (2009). Therefore,
for each FZ ∈ Bε

(
F̂Z

)
, we can find a joint distribution � ∈ S such that E�

[∣∣∣Z − Ẑ
∣∣∣p]≤ εp, while con-

versely, for each � ∈ S such that E�

[∣∣∣Z − Ẑ
∣∣∣p]≤ εp, its marginal distribution �Z = FZ belongs to the

ambiguity ball Bε

(
F̂Z

)
. This allows us to rewrite the optimization problem (3.5) in terms of �, that is,

sup
�∈S

E [Zp] (A3)

subject to E�

[∣∣∣Z − Ẑ
∣∣∣p]≤ εp.

Now we continue on the optimization problem (A3). Given a joint distribution � ∈ S, we denote by
Fi

Z the distribution of Z conditioned on Ẑ = zi, that is,

Fi
Z(dz) = P

(
Z ∈ dz| Ẑ = zi

)
, z ∈R+, i = 1, . . . , N. (A4)

In terms of this conditional distribution, by the law of total probability, we have

E [Zp] = 1

N

N∑
i=1

∫ ∞

0−
zpFi

Z(dz)

and

E�

[∣∣∣Z − Ẑ
∣∣∣p]= 1

N

N∑
i=1

∫ ∞

0−
|z − zi|p Fi

Z(dz). (A5)

Note that the construction of the conditional distributions (A4) actually establishes a mapping between
a joint distribution � ∈ S and a set of conditional distributions {F1

Z , . . . , FN
Z }. Moreover, by (A5),

E�

[∣∣∣Z − Ẑ
∣∣∣p]≤ εp if and only if

1

N

N∑
i=1

∫ ∞

0−
|z − zi|p Fi

Z(dz) ≤ εp. (A6)
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Thus, we can convert the optimization problem (A3) to

sup
F1

Z ,...,FN
Z

1

N

N∑
i=1

∫ ∞

0−
zpFi

Z(dz) (A7)

subject to (A6).

Introducing the Lagrangian multiplier λ to this new version of the optimization problem (A7), we
have

sup
FZ∈Bε(F̂Z)

E [Zp]

= sup
F1

Z ,...,FN
Z

inf
λ≥0

{
1

N

N∑
i=1

∫ ∞

0−
zpFi

Z(dz) − λ

(
1

N

N∑
i=1

∫ ∞

0−
|z − zi|p Fi

Z(dz) − εp

)}

= inf
λ≥0

sup
F1

Z ,...,FN
Z

{
1

N

N∑
i=1

∫ ∞

0−
zpFi

Z(dz) − λ

(
1

N

N∑
i=1

∫ ∞

0−
|z − zi|p Fi

Z(dz) − εp

)}
,

where we can switch the order of sup and inf based on an established strong duality in worst-case esti-
mation problems; see, for example, Theorem 1 and Proposition 2 of Gao and Kleywegt (2022). After
rearrangement, it follows that

sup
FZ∈Bε(F̂Z)

E [Zp] = inf
λ≥0

{
λεp − 1

N

N∑
i=1

inf
Fi

Z

∫ ∞

0−
(λ |z − zi|p − zp) Fi

Z(dz)

}

= inf
λ≥0

{
λεp − 1

N

N∑
i=1

inf
z≥0

(λ |z − zi|p − zp)

}
, (A8)

where the last step follows from the observation that each Fi
Z can be reduced to a Dirac measure δx at any

x ∈R+. By now, we have converted the semi-infinite optimization problem (3.5) to a one-dimensional
convex minimization problem (A8).

To solve (A8), we first consider the case p > 1. We separate λ ≥ 0 into two regions: 0 ≤ λ ≤ 1 and
λ > 1. When 0 ≤ λ ≤ 1, since there exists at least one zi > 0 for which limz→∞ (λ |z − zi|p − zp) = −∞,
we have

λεp − 1

N

N∑
i=1

(
inf
z≥0

(λ |z − zi|p − zp)

)
= ∞.

Therefore, the minimizer of the dual problem (A8) for p > 1 must be in the region λ > 1. By splitting
the range for z into (z > zi) and (0 ≤ z ≤ zi), we obtain

sup
FZ∈Bε(F̂Z)

E [Zp] = min
λ>1

{
λεp − 1

N

N∑
i=1

(
inf
z>zi

(λ(z − zi)
p − zp) ∧ inf

0≤z≤zi

(λ(zi − z)p − zp)

)}
. (A9)

Observe the function inside the first inner infimum infz>zi in (A9). By taking derivative d
dz

and letting it
be zero, we obtain a unique stationary point

z∗ = λ
1

p−1 zi

λ
1

p−1 − 1
,

which belongs to the region z > zi because λ > 1. It is easy to see that this infimum infz>zi is attained at
z∗, that is,

inf
z>zi

(λ (z − zi)
p − zp) = −zp

i

(
λ

1
p−1

λ
1

p−1 − 1

)p−1

.
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Moreover, the second inner infimum inf0≤z≤zi in (A9) is attained at zi since the inside function is decreas-
ing in z ≤ zi. Thus, between the two infima in the bracketed part of (A9) the first is smaller, and we have

sup
FZ∈Bε(F̂Z)

E [Zp] = min
λ>1

⎧⎨
⎩λεp + 1

N

N∑
i=1

(
λ

1
p−1

λ
1

p−1 − 1

)p−1

zp
i

⎫⎬
⎭

= min
λ>1

⎧⎨
⎩λεp +

(
λ

1
p−1

λ
1

p−1 − 1

)p−1

‖ZN‖p
Lp

⎫⎬
⎭ . (A10)

We continue to solve the optimization problem (A10). Looking at the inside function of λ in (A10), it
is easy to see that the minλ>1 is attained at the unique stationary point

λ∗ =
(

1 + ‖ZN‖Lp

ε

)p−1

> 1,

and we have

sup
FZ∈Bε(F̂Z)

E [Zp] =
⎧⎨
⎩λεp +

(
λ

1
p−1

λ
1

p−1 − 1

)p−1

‖ZN‖p
Lp

⎫⎬
⎭
∣∣∣∣∣∣
λ=λ∗

= (ε + ‖ZN‖Lp)
p .

This proves (3.6) for p > 1.
The case p = 1 for (A8) can be dealt with in the same way, as follows:

sup
FZ∈Bε(F̂Z)

E [Zp] = min
λ≥0

{
λε − 1

N

N∑
i=1

(
inf
z≥0

(λ |z − zi| − z)

)}

= min
λ≥1

{
λε − 1

N

N∑
i=1

(
inf
z≥0

(λ |z − zi| − z)

)}

= min
λ≥1

{
λε + 1

N

N∑
i=1

zi

}

= ε + ‖ZN‖L1 .

This proves (3.6) for p = 1 and hence complete the proof of Proposition 3.1.

Lemma A.2 Consider the optimization problem (3.2) in which F̂X is the empirical distribution of a
dataset {x1, . . . , xn}. The supremum (3.2) is finite if and only if the order of the Wasserstein distance
embedded in this worst-case estimation problem is no less than the order p of the power function.

Proof. Denoted by p′ the order of the Wasserstein distance embedded in (3.2). Following the
beginning part of the proof of Proposition 3.1, we can convert the optimization problem (3.2) to

sup
FX∈Br(F̂X)

E [Xp] = inf
λ≥0

{
λrp′ − 1

n

n∑
i=1

inf
x≥0

(
λ |x − xi|p′ − xp

)}
.

The right-hand side is finite if and only if there exists some λ ≥ 0 such that

λrp′ − 1

n

n∑
i=1

inf
x≥0

(
λ |x − xi|p′ − xp

)
< ∞,

if and only if there exists some λ ≥ 0 such that

inf
x≥0

(
λ |x − xi|p′ − xp

)
> −∞ for all i = 1, . . . , n,

if and only if p′ ≥ p.

https://doi.org/10.1017/asb.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.3


ASTIN Bulletin 465

Proof of Theorem 3.1. In view of Proposition 3.1, to solve the worst-case estimation problem (3.3),
it remains to complete the outer optimization problem in (3.4). Simply plugging into (3.4) the expression
(3.6) with ε = s (rp − |q − qn|) 1

p given in (2.10), we obtain

sup
q∈[q−

n ,q+
n ]

{
(1 − q)E [Yp] + q

(
s (rp − |q − qn|) 1

p + ‖ZN‖p

)p}
= sup

q∈[q−
n ,qn]

f1(q) ∨ sup
q∈[qn ,q+

n ]

f2(q), (A11)

where f1(q) and f2(q) are two auxiliary functions defined by

f1(q) = (1 − q)Cp
0 + q

(
s (rp − (qn − q))

1
p + C1

)p

,

f2(q) = (1 − q)Cp
0 + q

(
s (rp − (q − qn))

1
p + C1

)p

. (A12)

Given C0 ≤ C1, it is easy to deal with the first supremum of f1(q). Observe that the bracketed part(
s (rp − (qn − q))

1
p + C1

)
in f1(q) is monotonically increasing in q and larger than C0 over q ∈ [q−

n , qn].
Thus, the supremum of f1(q) is attained at the largest possible value q = qn. This reduces the optimization
problem (A11) to the second supremum.

To determine the supremum of f2(q) over q ∈ [qn, q+
n ], we observe the following derivatives:

d

dq
f2(q) = −Cp

0 +
(

s(rp + qn − q)
1
p + C1

)p

−qs
(

s(rp + qn − q)
1
p + C1

)p−1

(rp + qn − q)
1−p

p ;

d2

dq2
f2(q) = s

p

(
s(rp + qn − q)

1
p + C1

)p−2

(rp + qn − q)
1
p −2

×
(
−2ps(rp + qn − q)

1
p +1 + C1 ((1 + p)q − 2p(qn + rp))

)
.

Note that, in the expression for d2

dq2 above, the last bracketed term after C1 satisfies

(1 + p)q − 2p(qn + rp) ≤ (1 + p)(qn + rp) − 2p(qn + rp) ≤ 0.

Thus, d2

dq2 f2(q) ≤ 0 and f2(q) is concave over q ∈ [qn, q+
n ]. We now look at the derivative

d

dq
f2(q)

∣∣∣∣
q=qn

= −Cp
0 + (rs + C1)p−1

(
rs(1 − qnr−p) + C1

)
,

whose sign depends on the value of r. As it is continuous and strictly increasing in r, we define r̄ as the
unique solution to d

dq
f2(q)

∣∣∣
q=qn

= 0, namely, Equation (3.8), and separately conclude the two pieces in
(3.7) as follows:

• When 0 < r < r∗ = r̄ ∨ 0, we have d
dq

f2(q)
∣∣∣

q=qn

< 0, which, combined with the concavity of f2(q)

over the region q ∈ [qn, q+
n ], implies that f2(q) is decreasing over this region. Thus, the supremum

is attained at q = qn, giving the first expression in (3.7).
• When r ≥ r∗, we have d

dq
f2(q)

∣∣∣
q=qn

≥ 0. This implies that the supremum is attained at either the

unique solution q̄n to d
dq

f2(q) = 0, namely, Equation (3.9), or q+
n , whichever is smaller, giving

the second expression in (3.7).

This completes the proof of Theorem 3.1.
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