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Ensemble Kalman methods, introduced in 1994 in the context of ocean state estim-
ation, are now widely used for state estimation and parameter estimation (inverse
problems) in many arenae. Their success stems from the fact that they take an under-
lying computational model as a black box to provide a systematic, derivative-free
methodology for incorporating observations; furthermore the ensemble approach
allows for sensitivities and uncertainties to be calculated. Analysis of the accuracy
of ensemble Kalman methods, especially in terms of uncertainty quantification, is
lagging behind empirical success; this paper provides a unifying mean-field-based
framework for their analysis. Both state estimation and parameter estimation prob-
lems are considered, and formulations in both discrete and continuous time are
employed. For state estimation problems, both the control and filtering approaches
are considered; analogously for parameter estimation problems, the optimization and
Bayesian perspectives are both studied. As well as providing an elegant framework,
the mean-field perspective also allows for the derivation of a variety of methods used
in practice. In addition it unifies a wide-ranging literature in the field and suggests
open problems.
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1. Introduction
The ensemble Kalman methodology comprises an innovative and flexible set of
tools which can be used for both state estimation in dynamical systems and para-
meter estimation for generic inverse problems. It has primarily been developed by
practitioners in the geophysical sciences, with notable impact on the fields of ocean-
ography, oil reservoir simulation and weather forecasting. Despite its widespread
adoption in the geosciences over several decades, firm theoretical foundations are
only recently starting to emerge; the methodology is hard to analyse. The purpose
of this article is twofold: (a) to introduce a mathematical framework for the ana-
lysis of ensemble Kalman methods, describing what is known and highlighting the
many open mathematical challenges in the field, (b) to provide a literature survey
which bridges the domain-specific development of the methodology with emer-
ging mathematical analyses. In so doing we will also highlight the flexibility of the
methodology for use in widespread applications, beyond its historical development
in the geosciences.

The material is organized around the two separate themes of state estimation and
inverse problems; within each, both discrete-time and continuous-time approaches
are explained. The novel perspective which underlies all of this material is the
derivation of ensemble Kalman methods as particle approximations of carefully
designed mean-field models. The relationship of these mean-field models to exact
transport models, for Gaussian problems, serves to motivate their form.

In Section 1.1 we give an overview of the history of ensemble Kalman methods.
Section 1.2 describes the organization of the paper. In Section 1.3 we make brief
remarks about the pseudo-code that we make available as a supplementary resource.
The introduction concludes, in Section 1.4, with a summary of the notation that we
adopt throughout.
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1.1. Historical context

The Kalman filter (KF) is arguably the first setting in which the systematic integra-
tion of observational data with a dynamical system was considered, leading to both
discrete-time (Kalman 1960) and continuous-time (Kalman and Bucy 1961) for-
mulations; see Welch and Bishop (1995) for an overview. The Kalman filter applies
only in the setting of linear Gaussian dynamics and observations. In this setting it
computes the distribution of the state of the dynamical system, given observations,
exactly; this Bayesian perspective on the filter was highlighted in Ho and Lee (1964)
subsequent to the original derivation in Kalman (1960), which proceeded by com-
puting the best linear predictor of the state, given data. The extended Kalman filter
(historically denoted EKF, but the acronym ExKF is also used and is useful) was
introduced in order to extend Kalman’s ideas to nonlinear problems; see the books
by Jazwinski (2007) and Anderson and Moore (2012) for overviews. The extended
Kalman approach is based on a linearization approximation; it hence fails to exactly
compute the distribution of the state of the dynamical system, given observations,
in general. Furthermore, it requires propagation of covariance matrices, which can
be very large for applications arising in the geosciences (Ghil et al. 1981).

The ensemble Kalman filter (EnKF) was introduced in the celebrated paper by
Evensen (1994), which made the consequential observation that if an ensemble of
state estimators is employed then it can also be used to make an approximation of
the covariance. In geosciences applications this circumvents the computation of
large covariances, replacing them instead with low-rank approximations, with rank
determined by the number of ensemble members. The original paper developed the
idea in the context of ocean models, but was rapidly and concurrently developed
in a variety of geoscience application domains (van Leeuwen and Evensen 1996,
Burgers, van Leeuwen and Evensen 1998, Houtekamer and Mitchell 1998); van
Leeuwen (2020) provides a historical overview. These methods are sometimes
referred to as the stochastic EnKF: they require simulation of random variables to
implement. A different class of ensemble methods, known collectively as ensemble
square root filters, was subsequently developed (Anderson 2001, Whitaker and
Hamill 2002, Bishop, Etherton and Majumdar 2001, Hunt, Kostelich and Szunyogh
2007, Tippett et al. 2003, Sakov and Oke 2008). These methods are a form
of deterministic EnKF: they do not require simulation of random variables to
implement.

Central to our mathematical presentation of Kalman-based methods is the adop-
tion of mean-field and transport perspectives on the subject. The incorporation of
data within filtering constitutes (possibly approximate) application of Bayes’ the-
orem; Daum, Huang and Noushin (2010), Reich (2011), El Moselhy and Marzouk
(2012) and the survey by Cotter and Reich (2013) introduce novel approaches to
Bayesian inversion, rooted in transport and mean-field models. While El Moselhy
and Marzouk (2012) and Spantini, Baptista and Marzouk (2022) propose a direct
numerical approximation of the underlying optimal transport problem, Daum et al.
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(2010) and Reich (2011) pursue a homotopy approach. We note that the homotopy
approach is closely related to iterative implementations of the EnKF, as first con-
sidered by Li and Reynolds (2009), Gu and Oliver (2007) and Sakov, Oliver and
Bertino (2012); these homotopy approaches lead to continuous-time formulations
of the EnKF in the limit of infinitely many iterations, as first considered by Berge-
mann and Reich (2010a,b). Directly starting from the continuous-time filtering
perspective, mean-field models have been introduced independently in Crisan and
Xiong (2010) and Yang, Mehta and Meyn (2013).

The key connection between mean-field models and ensemble methods is that
the latter can be derived as particle approximations of the mean-field limit; this
viewpoint will play a guiding role in our presentation of the subject of ensemble
methods in this paper. In this context it is notable that the field of optimiza-
tion, which is linked to Bayesian sampling through MAP estimation (Kaipio and
Somersalo 2006), has also seen recent development using mean-field models; see
Carrillo, Choi, Totzeck and Tse (2018) for an overview and unifying mathematical
framework.

The methods covered in this survey provide only approximate solutions to the
underlying filtering, inference and/or optimization problem, in the mean-field limit.
The approximations invoked are based on assuming linear Gaussian structure,
where the mean-field models are exact, but applying the resulting methodology
outside this regime. In the context of the optimization and Bayesian approaches
to inversion, affine-invariant algorithms (introduced in Goodman and Weare 2010)
play an important conceptual role in understanding the power of ensemble Kalman
methods: affine invariance can be used to show universal convergence rates for
the class of all linear Gaussian problems. Empirically the affine invariance confers
advantages when ensemble Kalman methods are applied beyond the linear Gaussian
setting. In practice, this benefit must be weighed against the error resulting from
using ensemble Kalman methods outside the linear Gaussian setting.

Alternative methods, such as sequential Monte Carlo, can be designed to be
consistent with the underlying nonlinear filtering problem, and do not rely on being
exact only for linear Gaussian problems. Doucet, De Freitas and Gordon (2001)
and Chopin and Papaspiliopoulos (2020) survey the use of sequential Monte Carlo
methods for general discrete-time filtering and inference problems; Del Moral
(1997) and Del Moral and Guionnet (2001) prove convergence of sequential Monte
Carlo methods, including in some specific cases over long time horizons. However,
sequential Monte Carlo methods suffer from the curse of dimensionality and are
currently not directly applicable to high-dimensional problems as arising, for ex-
ample, from geophysical applications. This issue with the curse of dimensionality
provides an important motivation for the ensemble methods covered in this survey.
See Snyder, Bengtsson, Bickel and Anderson (2008), Bickel, Li and Bengtsson
(2008), Rebeschini and Van Handel (2015) and Agapiou, Papaspiliopoulos, Sanz-
Alonso and Stuart (2017) for detailed discussion of these issues. Related issues
also arise for Monte Carlo Markov chain (MCMC) when studying Bayesian inverse
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problems (Kaipio and Somersalo 2006). See Hairer, Stuart and Vollmer (2014)
for an analysis of the degeneration of performance of standard MCMC methods in
high dimensions, as well as analysis of special MCMC methods tailored to infinite-
dimensional problems; the subject is reviewed in Cotter, Roberts, Stuart and White
(2013).

This completes our chronological overview of the historical context for the
development of ensemble Kalman methods, and the specific mathematical context
which will be our focus. Each of the four subsequent sections concludes with a
bibliographical subsection in which a deeper literature review is given.

1.2. Overview

Section 2 is devoted to the problem of state estimation for discrete-time (possibly
stochastic) dynamical systems, given noisy, and possibly indirect, observations.
We formulate the problem from the perspectives of both control theory and prob-
ability, and we provide a unifying approach to algorithms for these problems; the
approach rests on transport of measures and mean-field stochastic dynamical sys-
tems. Ensemble Kalman methods are then derived as particle approximations of
the mean-field models. Section 3 adopts a perspective that parallels the previous
section, but in the continuous-time setting. Ordinary differential equations (ODEs)
and stochastic differential equations (SDEs) are used to describe the state and
its observation process, and mean-field SDEs and ODEs, and related (stochastic)
partial differential equations ((S)PDEs), are used to provide the underpinnings of
algorithms; particle approximations of the mean-field systems give rise to interact-
ing systems of SDEs which describe ensemble Kalman methods. The formulation
in continuous time is useful both because in some applications state estimation
problems are most naturally formulated this way, and because they provide insight
into discrete-time algorithms, giving rise to cleaner analysis of phenomena present
in both discrete and continuous time.

Sections 4 and 5 are devoted to the use of ensemble Kalman methods for inverse
problems, including parameter estimation, demonstrating how a useful change of
perspective opens up the use of state estimation in this broader setting. Sections 4
and 5 consider discrete and continuous time respectively, and each parallels the
ideas developed for state estimation in Sections 2 and 3 respectively. Sections 2,
3, 4 and 5 are all organized according to the flow of ideas displayed in Figure 1.1.
Indeed, starting from a probabilistic perspective, which describes the evolution
of the filtering distribution, it is possible to formulate mean-field maps whose
sample paths on state space are equal in law to the filtering evolution. Since it is
typically not tractable to identify these maps explicitly, it is of interest to determine
mean-field maps whose sample paths are only approximately equal in law to the
filtering evolution. This leads to the idea of second-order mean-field models whose
sample paths have law with first- and second-order moments which match those
of a Gaussian approximation of the Bayesian data incorporation step. Particle
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128 E. Calvello, S. Reich and A. M. Stuart

Figure 1.1. Organizational flow employed in each of Sections 2 (discrete time)
and 3 (continuous time), concerning state estimation. Sections 4 and 5 apply this
methodology to inverse problems, in discrete and continuous time respectively, by
formulating them as state estimation problems.

approximations of these second-order mean-field maps are then used to derive
implementable numerical algorithms which are the ensemble Kalman methods
implemented in practice.

Section 6 concludes the article, and in particular highlights open problems in the
area, of potential interest to the mathematical community. Appendix A is devoted
to pseudo-code for the algorithms introduced in this paper. Appendix B contains
background on the underlying Lorenz ’96 model problems that we use throughout
the paper in a number of illustrative numerical experiments. Appendices C and D
provide foundational material on mean-field maps and on stochastic integration.
Appendix E contains some observations linking different flows, in the manifold of
Gaussian probability measures, that arise in the main body of the text.

1.3. Pseudo-code

Pseudo-code describing several of the algorithms that we present and deploy in this
paper is given in Appendix A.1 The reader is encouraged to consult Algorithms 1
and 2, 3DVAR and the ensemble Kalman filter (EnKF) respectively, in the context
of the problem of state estimation for discrete-time dynamical systems presented
in Section 2. The scheme 3DVAR is employed in Examples 2.3, 2.5 and 2.16. The
ensemble Kalman filter is applied in Example 2.16. Ensemble Kalman methods
for inversion, as shown in Algorithms 3, 4 and 5, are presented in Section 4 and
applied in Examples 4.22 and 4.23.

1.4. Notation

Throughout we denote the positive integers and non-negative integers by N =

{1, 2, . . .} and Z+ = {0, 1, 2, . . .} respectively, and the notation R = (−∞,∞) and
R+ = [0,∞) for the reals and the non-negative reals. We let ⟨·, ·⟩, | · | denote the
Euclidean inner product and norm, noting that |𝑣 |2 = ⟨𝑣, 𝑣⟩. We also use | · | to
denote the resulting induced norm on matrices. We use : to denote the Frobenius
inner product between matrices, and | · |F the induced norm on matrices. For any
function 𝑔 : R𝑑1 ↦→ R𝑑2 , we let 𝐷𝑔(𝑣) ∈ R𝑑2×𝑑1 denote the Jacobian matrix of

1 The code is available at https://github.com/EdoardoCalvello/EnsembleKalmanMethods/.
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Ensemble Kalman methods: A mean-field perspective 129

first derivatives at 𝑣 ∈ R𝑑1 , and let 𝐷2𝑔(𝑣)[·, ·] denote the symmetric bilinear form
induced by second derivatives. We also use ∇, ∇· and Δ to denote the gradient,
divergence and Laplacian operations respectively.

Throughout the article we will distinguish operators acting on infinite-dimen-
sional spaces by using a calligraphic font. For example, G will denote the operator
acting on probability measures effecting a projection onto the nearest Gaussian;
in contrast, 𝐺 : R𝑑𝑢 → R𝑑𝑤 will denote the forward model in a generic inverse
problem. We will use the mathsf font to distinguish matrices and functions between
Euclidean spaces that arise in continuous time from their discrete-time counterparts.
For example, Σ will denote a covariance arising in continuous time, whilst Σ will
denote a covariance arising in discrete time; and h will denote a function defining
the observation process in continuous time, whilst ℎ will be the analogous function
in discrete time.

We use E and P to denote expectation and probability under the prevailing
probability measure; if we wish to make clear that measure 𝜋 is the prevailing
probability measure then we write E𝜋 and P𝜋 . For a measure 𝜋 we let 𝑇♯𝜋 denote
the pushforward measure induced by the map 𝑇 . We use Law(rv) to denote the law
of random variable rv. We let 𝔓 = 𝔓(R𝑑) denote the set of probability measures
on R𝑑 . Under the assumptions made in this article we are mostly able to work with
measures that have density with respect to Lebesgue measure, and so will blur the
distinction between measures and their densities. However, use of Dirac masses
will occasionally be useful.

We let 𝛿𝑢 denote the Dirac mass on R𝑑 , centred at point 𝑢 ∈ R𝑑 . The notation
N(𝑚,𝐶) denotes the distribution of a Gaussian random variable with mean 𝑚 and
covariance 𝐶. We let 𝔊 = 𝔊(R𝑑) denote the set of Gaussian probability measures
on R𝑑 (including indefinite covariances and hence all Dirac masses).

In the following let 𝐴, 𝐵, 𝐶 be symmetric matrices. We write 𝐴 ≻ 𝐵 when 𝐴−𝐵
is positive definite and 𝐴 ⪰ 𝐵 when 𝐴 − 𝐵 is positive semi-definite. We will also
write 𝐴 ≺ 𝐵 when 𝐵 − 𝐴 ≻ 0 and 𝐴 ⪯ 𝐵 when 𝐵 − 𝐴 ⪰ 0. For 𝐶 ≻ 0 (and
therefore a covariance matrix) we define ⟨·, ·⟩𝐶 and | · |𝐶 , the covariance-weighted
Euclidean inner product and norm, by ⟨𝑢, 𝑣⟩𝐶 = ⟨𝑢, 𝐶−1𝑣⟩ and |𝑣 |2

𝐶
= ⟨𝑣, 𝑣⟩𝐶 .

2. State estimation: discrete time
In Section 2.1 we provide the set-up for the problem of state estimation in discrete
time. Section 2.2 introduces an algorithm for this problem based on a control-
theoretic perspective. Section 2.3 describes the Bayesian probabilistic perspective;
in this subsection algorithms are not presented but foundations for the creation
of algorithms are laid through the decomposition of the filtering cycle into an
iteration which alternates prediction and the assimilation of data. In Section 2.4
we introduce the important idea of Gaussian projection, and the resulting Gaussian
projected filter. Section 2.5 introduces various mean-field dynamical systems
which approximate the filtering cycle; a unifying transport map perspective is
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adopted. This leads, in Section 2.6, to definitions of the ensemble Kalman filter,
the ensemble adjustment filter and the ensemble transform filter, all derived as
particle approximations of specific mean-field models. We conclude in Section 2.7
with bibliographical notes in which we review relevant literature, and include
discussion of a variety of other algorithms for state estimation, relating them to the
perspective we adopt here.

We emphasize that all the mean-field methods we derive in this section for the
solution of filtering problems, and their continuous-time counterparts in Section 3,
are exact only in the linear Gaussian setting. They may be implemented beyond
this setting, however, and are empirically found to work well for many problems.
Theory to justify this observation is very much needed. Our exposition provides a
framework for such a theory.

2.1. Set-up

The objective of sequential data assimilation is to iteratively update the state of
a (possibly stochastic) dynamical system based on (possibly noisy, nonlinear and
indirect) observations and knowledge of the dynamical and observational processes;
we refer to this as state estimation. The typical setting is one in which the initial
condition is uncertain, but this uncertainty is compensated for by (typically noisy)
observations of a (possibly nonlinear and indirect) function of the state. These
observations often live in a space of lower dimension than the dimension of the
state space, meaning that the goal of state estimation goes beyond denoising, and
into the realm of control-theoretic considerations such as observability.

A useful starting point is to consider a stochastic dynamical system in which the
evolution of the state, and the relationship between the observations (which we also
refer to as data) and the state, are defined, respectively, by the equations

𝑣𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
𝑦𝑛+1 = ℎ(𝑣𝑛+1) + 𝜂𝑛+1,

(2.1a)
(2.1b)

taken to hold for all 𝑛 ∈ Z+. We assume that for each fixed 𝑛 ∈ Z+, the state
𝑣𝑛 ∈ R𝑑𝑣 and the observations 𝑦𝑛 ∈ R𝑑𝑦 . The maps Ψ(·) and ℎ(·) describe the
systematic, deterministic components of the dynamics and observation processes,
and are assumed to be known measurable functions (with respect to the Borel
algebra), bounded on compact sets. The initial condition for 𝑣0 is assumed random
and the systematic components of the model are subjected to mean zero noise, 𝜉𝑛
and 𝜂𝑛+1. To be concrete we assume that 𝑣0, {𝜉𝑛}𝑛∈Z+ and {𝜂𝑛}𝑛∈N are mutually
independent Gaussians defined by

𝑣0 ∼ N(𝑚0, 𝐶0), 𝜉𝑛 ∼ N(0, Σ) i.i.d., 𝜂𝑛 ∼ N(0, Γ) i.i.d. (2.2)

In practice we will have available to us the observation coordinates of a specific
true realization of the random dynamical system (2.1), from which we wish to
recover the specific true realization of the state that gave rise to these observations.
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We denote the true realizations of the state of the system by the sequence {𝑣†𝑛}𝑛∈Z+ ,
and the observed data by {𝑦†𝑛}𝑛∈N. These are generated by 𝑣

†
0, {𝜉

†
𝑛}𝑛∈Z+ and

{𝜂†𝑛}𝑛∈N, specific realizations of the initial condition and state and observational
noise from the distribution defined by (2.2).

We let 𝑌†
𝑛 = {𝑦†

ℓ
}1≤ℓ≤𝑛. Our objective is to estimate the state 𝑣†𝑛 at time 𝑛

from data 𝑌†
𝑛 . Specifically, it is natural to think about this design objective in two

different ways.

Objective 1. Design an algorithm producing output 𝑣𝑛 from 𝑌
†
𝑛 so that {𝑣𝑛}𝑛∈Z+

estimates {𝑣†𝑛}𝑛∈Z+ , the true state generated by (2.1a).
Objective 2. Design an algorithm which estimates the distribution of random vari-

able 𝑣𝑛 |𝑌†
𝑛 , the conditional distribution defined by (2.1).

In both cases we are interested in Markovian formulations which update the
estimate 𝑣𝑛, or the distribution 𝑣𝑛 |𝑌†

𝑛 , sequentially as the data is acquired. In the next
two subsections we describe control-theoretic and probabilistic approaches to this
problem which, respectively, provide the basis for algorithms addressing Objectives
1 and 2. We note that fulfilling Objective 2 immediately implies resolution of
Objective 1, for example by taking the mean of 𝑣𝑛 |𝑌†

𝑛 as state estimator; but the
reverse is not typically true. However, Objective 1 is easier to address and is
especially relevant when noise levels are small; furthermore, its failure modes
serve to motivate approaches which are used to address Objective 2.

2.2. Control theory perspective

A very natural idea from control theory underlies ensemble Kalman filtering and
is encapsulated in the following algorithmic approach. This way of attacking state
estimation is most appropriate when |𝐶0 |, |Γ| and |Σ | are small so that the state
and observations are close to deterministic. To understand this setting we will first
study algorithms in which the covariances Γ and Σ are set to zero, and then return
to the inclusion of noise later.

The algorithmic idea works as follows: from current state estimate 𝑣𝑛, given
𝑌
†
𝑛 , predict the outcome of the model and data, denoted by (̂𝑣𝑛+1, ℎ̂𝑛+1), using the

update equations (2.1), but ignoring the noise; then correct the state estimate by
nudging the prediction using the mismatch between observed and predicted data
(𝑦†

𝑛+1, ℎ̂𝑛+1). This results in a deterministic map 𝑣𝑛 ↦→ 𝑣𝑛+1, assumed to hold for
all 𝑛 ∈ Z+, of the following form:

�̂�𝑛+1 = Ψ(𝑣𝑛),

ℎ̂𝑛+1 = ℎ(̂𝑣𝑛+1),

𝑣𝑛+1 = �̂�𝑛+1 + 𝐾(𝑦†
𝑛+1 − ℎ̂𝑛+1).

(2.3a)

(2.3b)

(2.3c)
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132 E. Calvello, S. Reich and A. M. Stuart

Equations (2.3a) and (2.3b) create predicted state and data from current estimate
𝑣𝑛 of the state. The difference between the predicted data ℎ̂𝑛+1 and the true data
𝑦
†
𝑛+1, the latter found from a fixed realization of (2.1), is then used to correct the

predicted state resulting in (2.3c). We can write the algorithm compactly in the
form

𝑣𝑛+1 = Ψ(𝑣𝑛) + 𝐾
(
𝑦
†
𝑛+1 − ℎ(Ψ(𝑣𝑛))

)
. (2.4)

Choice of the gain matrix 𝐾 completes definition of an algorithm which we refer
to as 3DVAR.

Remark 2.1. The nomenclature ‘3DVAR’ was coined in the geophysics com-
munity, and stands for three-dimensional variational data assimilation. This is
natural for algorithms which incorporate spatially distributed data sequentially in
time, in the context where the state variable 𝑣 varies across three spatial coordinates.
In our setting the state variable 𝑣 is not required to have any spatial structure, but
the control formulation (2.4) reproduces the 3DVAR algorithm from the geophys-
ics community when it does. Hence we still refer to it as 3DVAR. We also note
that the method is perhaps more properly termed cycled 3DVAR: ‘3DVAR’ refers
to the assimilation of data at each observation time, and ‘cycled’ refers to doing
this sequentially in time as successive observations are acquired. Pseudo-code for
3DVAR may be found as Algorithm 1 in Appendix A. The variant on 3DVAR which
uses data distributed over several time steps is known as 4DVAR; see Section 2.7.

We note that the difference between the observed value 𝑦†
𝑛+1 and its estimator

ℎ̂𝑛+1 = ℎ(Ψ(𝑣𝑛)) is often referred to as the innovation, and for this we introduce
the notation

ℑ𝑛 = 𝑦
†
𝑛+1 − ℎ̂𝑛+1. (2.5)

To illustrate 3DVAR we consider the linear setting.

Example 2.2. Assume that for matrices 𝑀, 𝐻 of appropriate dimensions,

Ψ(·) ≔ 𝑀 ·, ℎ(·) = 𝐻· (2.6)

and consider the setting in which there is no noise present. The 3DVAR algorithm
(2.4) is appropriate in this setting and reduces to

𝑣𝑛+1 = 𝑀𝑣𝑛 + 𝐾
(
𝑦
†
𝑛+1 − 𝐻𝑀𝑣𝑛

)
. (2.7)

Since there is no noise present, it follows that 𝑦†
𝑛+1 = 𝐻𝑣

†
𝑛+1 = 𝐻𝑀𝑣

†
𝑛, and hence

that

𝑣
†
𝑛+1 = 𝑀𝑣†𝑛 + 𝐾

(
𝑦
†
𝑛+1 − 𝐻𝑀𝑣

†
𝑛

)
. (2.8)

Subtracting (2.8) from (2.7) and defining 𝑒𝑛 = 𝑣𝑛 − 𝑣†𝑛, we find that

𝑒𝑛+1 = (𝐼 − 𝐾𝐻)𝑀𝑒𝑛.
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Figure 2.1. Graph of function𝑚 appearing in Lorenz ’96 model (2.9).

Since the goal of data assimilation is to recover the true state from partial obser-
vations, we wish to drive 𝑒𝑛 to zero as 𝑛 → ∞. Thus a key question, for given
forward dynamical model 𝑀 and observation operator 𝐻, is whether it is possible
to design 𝐾 to ensure that the spectrum of (𝐼 − 𝐾𝐻)𝑀 is inside the unit circle.
Such questions are at the heart of the theory of linear control. Thus the subject of
control theory is fundamentally aligned with Objective 1.

In the following example we illustrate ideas similar to those from the preceding,
linear, example but within the nonlinear context. In subsequent subsections we will
show how the ideas can be generalized to an adaptive gain matrix 𝐾𝑛, leading us
to the ensemble Kalman methodology and to addressing both Objectives 1 and 2.

Example 2.3. To illustrate the 3DVAR algorithm (2.4) for state estimation, we
consider the Lorenz ’96 (single-scale) model from Appendix B. The unknown
𝑣 ∈ 𝐶(R+,R𝐿) satisfies the equations

¤𝑣ℓ = −𝑣ℓ−1(𝑣ℓ−2 − 𝑣ℓ+1) − 𝑣ℓ + 𝐹 + ℎ𝑣𝑚(𝑣ℓ), ℓ = 1 . . . 𝐿, (2.9a)
𝑣ℓ+𝐿 = 𝑣ℓ , ℓ = 1 . . . 𝐿. (2.9b)

Here we set 𝐿 = 9, ℎ𝑣 = −0.8 and 𝐹 = 10. Function 𝑚 is shown in Figure 2.1.2
We let Ψ denote the solution operator for (2.9) over the observation time interval

𝜏, omitting the explicit dependence on 𝜏 for notational convenience. We emphasize
that at the parameter values we have chosen, the solution to (2.9) is chaotic and
exhibits sensitivity to perturbations. Prediction is thus challenging. But we will
show that use of data enables accurate prediction.

2 We note that setting ℎ𝑣 = 0 in (2.9) leads to the standard single-scale Lorenz ’96 model. We have
ℎ𝑣 ≠ 0 leading to a non-standard version of the model. However, the specific choice of function
𝑚(·) does not make any material difference to what is presented in this example; many functions
𝑚(·) for which the equation is well-posed will lead to similar conclusions. However, the specific
choice of 𝑚(·) shown in Figure 2.1 is relevant within Example B.1.
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We consider observations {𝑦†𝑛}𝑛∈Z+ arising from the model

𝑣
†
𝑛+1 = Ψ(𝑣†𝑛) + 𝜉†𝑛,
𝑦
†
𝑛+1 = ℎ(𝑣†

𝑛+1) + 𝜂†
𝑛+1,

where {𝜉†𝑛}𝑛∈Z+ , {𝜂†𝑛}𝑛∈N are mutually independent Gaussian sequences defined
by

𝜉†𝑛 ∼ N(0, 𝜎2𝐼) i.i.d., 𝜂†𝑛 ∼ N(0, 𝛾2𝐼) i.i.d.

Because of the chaotic nature of the dynamical system defined by iteration of Ψ, a
key question concerning the problem of determining the state 𝑣†𝑛 from𝑌

†
𝑛 is whether

the observations compensate for the sensitive dependence of the state evolution,
enabling accurate recovery of the state; and whether there is then a choice of 𝐾 in
3DVAR which enables this data to be used to accurately recover the state.

We assume that the observation function is linear: ℎ(𝑣) = 𝐻𝑣 for matrix
𝐻 : R9 → R6 defined by

𝐻𝑣 = (𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣7, 𝑣8)⊤. (2.10)

The 3DVAR algorithm (2.3) reduces, in the setting of this example, to the mapping

𝑣𝑛+1 = (𝐼 − 𝐾𝐻)Ψ(𝑣𝑛) + 𝐾𝑦†
𝑛+1. (2.11)

We define the filter by choosing gain 𝐾 : R6 → R9 to be

𝐾𝑤 = (𝑤1, 𝑤2, 0, 𝑤3, 𝑤4, 0, 𝑤5, 𝑤6, 0)⊤. (2.12)

To interpret the algorithm, and motivate the choice of 𝐾 , given 𝐻, notice that

𝐾𝐻𝑣 = (𝑣1, 𝑣2, 0, 𝑣4, 𝑣5, 0, 𝑣7, 𝑣8, 0)⊤, (2.13a)
(𝐼 − 𝐾𝐻)𝑣 = (0, 0, 𝑣3, 0, 0, 𝑣6, 0, 0, 𝑣9)⊤, (2.13b)

𝐻𝐾 = 𝐼 . (2.13c)

Applying the observation map 𝐻 to the recursion (2.11) and using (2.13c), we find
that

𝐻𝑣𝑛+1 = 𝑦
†
𝑛+1 = 𝐻

(
Ψ(𝑣†𝑛) + 𝜉†𝑛

)
+ 𝜂†

𝑛+1.

Assuming that 𝜎2 and 𝛾2 are small and neglecting the noise contributions shows
that

𝑦
†
𝑛+1 ≈ 𝐻Ψ(𝑣†𝑛) ≈ 𝐻𝑣†

𝑛+1.

Thus, ignoring small noise perturbations, 𝑦†
𝑛+1 ≈ 𝐻𝑣†

𝑛+1. Thus (2.11) gives

𝑣𝑛+1 ≈ (𝐼 − 𝐾𝐻)Ψ(𝑣𝑛) + 𝐾𝐻𝑣†
𝑛+1. (2.14)

Then, using (2.13a), (2.13b) and (2.14),we see that the algorithm (2.11) has the very
natural (approximate) interpretation of iterating using the model Ψ to update the
unobserved components and using the observed true state to update the observed
components. This explains why the specific choice of 𝐾 is reasonable.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000060
Downloaded from https://www.cambridge.org/core. IP address: 10.3.192.216, on 17 Jul 2025 at 12:37:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000060
https://www.cambridge.org/core


Ensemble Kalman methods: A mean-field perspective 135

(a)

(b)

Figure 2.2. In both (a) and (b) the estimates of 𝑣 ≔ 𝑣3 in time produced by 3DVAR
using observation time interval 𝜏 = 10−3 are displayed and compared with dns. In
(a) 𝜎 and 𝛾 are set to 10−3, while in (b) they are set to 10−1. The acronym ‘dns’
refers to direct numerical simulation of a true trajectory of the chaotic dynamical
system. In both cases, it is noteworthy that 3DVAR is able to synchronize with
the dns even though it is initialized far from the true initial condition. This is an
example of data assimilation overcoming sensitive dependence in a chaotic system.

Because of this interpretation it is natural to study the 3DVAR algorithm, for this
example, by displaying the output of 3DVAR on one of the unobserved components,
and comparing with the truth; the key question is whether the observed components
induce synchronization of 3DVAR with the truth in the unobserved components.
Thus, in the following numerical experiments, we display component 𝑣 ≔ 𝑣3.

Figure 2.2 illustrates the foregoing intuition about the behaviour of 3DVAR in
experiments conducted with the choice 𝜏 = 10−3. For small noise with standard
deviations of size 10−3, we observe in Figure 2.2(a) the phenomenon of near-
perfect synchronization of the 3DVAR output with the truth. Although not shown
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(a)

(b)

Figure 2.3. In both (a) and (b) the noise standard deviations 𝜎 and 𝛾 are set to
10−3. In (a) we display the estimates of 𝑣 ≔ 𝑣3 in time produced by 3DVAR
using observation time interval 𝜏 = 5 × 10−1, compared with dns; (b) displays the
estimates obtained at unit time using assimilation at 𝜏 = 5 × 10−1 and 𝜏 = 100.
Again the acronym ‘dns’ refers to direct numerical simulation of the true chaotic
dynamics. 3DVAR successfully synchronizes with the dns at the smaller value of
𝜏 but fails to do as well when the observation time interval 𝜏 is larger.

here, this synchronization occurs in all components of the solution, observed and
unobserved, and thus the entire state of 3DVAR synchronizes with the truth, up to
a small error on the scale of the noise. The algorithm thus produces an accurate
estimate of the true state. In Figure 2.2(b) larger state and observational noise, of
standard deviation 10−1, is considered. In this scenario 3DVAR still captures the
correct trend of the true dynamics, but there are clear overshoots and undershoots
in the estimates; this occurs because the noise is larger than in Figure 2.2(a) and
because noise is not accounted for in the 3DVAR algorithm.
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It is intuitive that the synchronization phenomena studied above will depend not
only on the size of the noise, but also on the observation time intervals 𝜏. Figure 2.3
illustrates the effect of varying 𝜏, in the setting where the noise standard deviation
is 10−3. The simulations show that for the larger value of 𝜏, 3DVAR does not
estimate the true state as accurately as for the smaller value.

Remark 2.4. A common source of error in application of data assimilation al-
gorithms in practice arises from the fact that the data is not produced by the
mathematical model used for assimilation. This is known as model misspecifica-
tion. For the majority of this paper we will make the perfect model assumption,
avoiding the model misspecification issue. However, we do illustrate model mis-
specification in Example B.1. In that example we assimilate data produced from
the Lorenz ’96 multiscale model, but we use the Lorenz ’96 single-scale model
(2.9) as the basis for 3DVAR; thus the model used for assimilation differs from (but
is close to) the model generating the data. The relationship between the multiscale
and single-scale models is detailed in Appendix B, where Example B.1 may also
be found.

The control-theoretic approach of 3DVAR addresses Objective 1. However,
when |𝐶0 |, |Γ| and |Σ | are no longer necessarily small, so that the state and ob-
servations are subject to noise, it is natural to try and generalize the approach to
address Objective 2, taking account of non-zero covariances; Figure 2.2(b) from
Example 2.3 shows that this may indeed be needed when the noise is larger. A
natural stochastic generalization of the observer approach is as follows: from cur-
rent state estimate 𝑣𝑛, given 𝑌†

𝑛 , predict the outcome of the model and data from
the update equations (2.1), which we denote by (̂𝑣𝑛+1, �̂�𝑛+1); then correct the state
estimate by nudging the mean of the prediction using the mismatch between ob-
served and predicted data (𝑦†

𝑛+1, �̂�𝑛+1). Given 𝑣𝑛 computed from 𝑌
†
𝑛 , this results in

state estimate 𝑣𝑛+1 from 𝑌
†
𝑛+1 defined through the following stochastic dynamical

system, assumed to hold for all 𝑛 ∈ Z+:

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
�̂�𝑛+1 = ℎ(̂𝑣𝑛+1) + 𝜂𝑛+1,

𝑣𝑛+1 = �̂�𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 − �̂�𝑛+1

)
.

(2.15a)
(2.15b)

(2.15c)

Here 𝑣0, 𝜉𝑛 and 𝜂𝑛+1 are random variables given by the known distributions in
(2.2). Note that the innovation ℑ𝑛 is now modified from (2.5) to read

ℑ𝑛 = 𝑦
†
𝑛+1 − �̂�𝑛+1. (2.16)

The data {𝑦†
𝑛+1}𝑛∈Z+ is a fixed realization of (2.1). Given this data, equations

(2.15) then define a random map 𝑣𝑛 ↦→ 𝑣𝑛+1 which uses knowledge of the model
and the observed data to update our state estimate. The predicted state and data
(̂𝑣𝑛+1, �̂�𝑛+1) are also referred to as the simulated state and data. Choice of the gain
matrix 𝐾𝑛 will complete definition of an algorithm. The key question we proceed

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000060
Downloaded from https://www.cambridge.org/core. IP address: 10.3.192.216, on 17 Jul 2025 at 12:37:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000060
https://www.cambridge.org/core


138 E. Calvello, S. Reich and A. M. Stuart

to study in subsequent sections concerns the choice of {𝐾𝑛}𝑛∈Z+ when addressing
Objective 2. Before doing so we build on Example 2.3, studying the effect of
noise on the 3DVAR algorithm, which is aimed at addressing Objective 1, and for
which 𝐾𝑛 = 𝐾 is constant. The resulting Example 2.5 demonstrates the need for
an adaptive choice of 𝐾𝑛 when noise is significant; it serves to motivate algorithms
which address Objective 2.

Example 2.5. We return to the setting of Example 2.3 and consider the effect of
including noise in 3DVAR as in (2.15). We again study the Lorenz ’96 single-scale
model (2.9) for unknown 𝑣 ∈ 𝐶(R+,R𝐿), with 𝐿 = 9, ℎ𝑣 = −0.8 and 𝐹 = 10. We
let Ψ denote the solution operator for (2.9) over the observation time interval 𝜏 and
consider observations {𝑦†𝑛}𝑛∈Z+ defined by

𝑣
†
𝑛+1 = Ψ(𝑣†𝑛) + 𝜉†𝑛,
𝑦
†
𝑛+1 = ℎ(𝑣†

𝑛+1) + 𝜂†
𝑛+1,

where {𝜉†𝑛}𝑛∈Z+ , {𝜂†𝑛}𝑛∈N are mutually independent Gaussian sequences

𝜉†𝑛 ∼ N(0, 𝜎2𝐼) i.i.d., 𝜂†𝑛 ∼ N(0, 𝛾2𝐼) i.i.d.,

with 𝜎 = 0.1 and 𝛾 = 0.1. We again assume that the observation function is linear:
ℎ(𝑣) = 𝐻𝑣 for matrix 𝐻 : R9 → R6 defined by (2.10). As in Example 2.3 we
choose fixed gain 𝐾𝑛 ≡ 𝐾 with 𝐾 : R6 → R9 defined by (2.12).

Figure 2.4 illustrates that this version of noisy 3DVAR produces trajectories that
resemble the true signal better than noise-free 3DVAR (2.11). However, the noisy
3DVAR does not perform better than the noise-free 3DVAR, in this setting where
true state and true observation noise levels are high, in a quantitative sense. To
demonstrate this, we compute the mean squared error between the estimates arising
from the 3DVAR algorithm (2.11) and the true states, and the mean squared error
between the estimates obtained using noisy 3DVAR algorithm (2.15) and the true
states. Given either method the error 𝑒 is computed using the following formula,
in which, recall, {𝑣†𝑛} is the truth and {𝑣𝑛} is the output of the 3DVAR or noisy
3DVAR algorithm:

𝑒 =
1

𝑁 · 𝑑𝑣

𝑁∑︁
𝑛=1

��𝑣†
𝑛∗+𝑛 − 𝑣𝑛∗+𝑛

��2. (2.17)

Time 𝑡∗ = 𝑛∗𝜏 is chosen to remove error from the incorrect initialization, and focus
on quantifying error in the statistical steady state, after synchronization. Here 𝑁 is
such that (𝑛∗ + 𝑁)𝜏 = 𝑇 and 𝑇 − 𝑡∗ is chosen large enough to allow time-averaging
over a long enough window to capture the statistical steady state. In this case, we
compute this average for the estimates obtained after time 𝑡∗ = 3, up to 𝑇 = 20, and
find errors 𝑒3DVAR = 1.65× 100 and 𝑒noisy3DVAR = 3.30× 100. Clearly use of noisy
3DVAR does not improve the error, in comparison with noise-free 3DVAR.
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Figure 2.4. In this experiment we set the noise levels 𝜎 = 10−1, 𝛾 = 10−1. Again
the acronym ‘dns’ refers to direct numerical simulation. We display the estimates
of 𝑣 ≔ 𝑣3 in time produced by noisy 3DVAR against the true dynamics using
observation time interval 𝜏 = 10−3. This should be compared with Figure 2.2(b),
in which the noise-free 3DVAR is deployed to solve the same problem. Notice
that adding noise to 3DVAR has not improved the recovery of the true trajectory.
However, qualitatively the output of 3DVAR now resembles the true signal more
closely.

Example 2.5 highlights the need to quantify uncertainty and pass to a probabilistic
interpretation (Objective 2) of the filtering problem; and, in particular, to make
an informed choice of adaptive gain matrices 𝐾𝑛. We turn to the probabilistic
interpretation in the next subsection; in later subsections we derive algorithms,
leading in particular to a specific choice of adaptive gain matrices.

2.3. Probabilistic perspective

We have shown that the 3DVAR methodology can recover the state of a (possibly
chaotic) dynamical system, even though the initial condition is not known, by
exploiting the observations. However, 3DVAR does not quantify uncertainty in
the state estimate; it is derived from a purely control-theoretic perspective. We
now introduce a probabilistic perspective which enables us to address the issue
of uncertainty quantification. Section 2.3.1 discusses the unconditioned dynamics
from the perspective of evolution of probability densities. In Section 2.3.2 we
define the filtering distribution and describe this from the perspective of evolution
of probability densities. Section 2.3.3 introduces the sample-path perspective on
algorithms for filtering, a central idea in this paper. In Section 2.3.4 we establish
some notation, used henceforth, that is important for the reader to internalize.

2.3.1. Unconditioned dynamics
To open our development of the probabilistic perspective we first consider the
unconditioned dynamics on state {𝑣𝑛}𝑛∈Z+ defined by (2.1a). We refer to {𝑣𝑛}𝑛∈Z+
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defined by (2.1a) as a Markov process. We let 𝑟𝑛 denote the probability density
of random variable 𝑣𝑛 and derive an evolution equation for 𝑟𝑛. Irrespective of
whether the evolution of the state {𝑣𝑛}𝑛∈Z+ defined by (2.1a) is linear, the evolution
of {𝑟𝑛}𝑛∈Z+ is linear. Furthermore, the evolution of the state and its probability
density are uncoupled from one another. The evolution of the probability density
implied by (2.1a) is given by

𝑟𝑛+1 = P𝑟𝑛, (2.18a)

(P𝑟)(d𝑣) =
(∫

𝑢∈R𝑑𝑣
𝑝(𝑢, 𝑣)𝑟(d𝑢)

)
d𝑣, (2.18b)

𝑝(𝑢, 𝑣) =
1

(2𝜋)𝑑𝑣/2√det(Σ)
exp
(
−1

2
|𝑣 − Ψ(𝑢)|2Σ

)
. (2.18c)

Thus, in particular, 𝑟𝑛 evolves in time 𝑛 through application of a linear integral
operator. The situation when we condition the state on observations is different,
leading to nonlinear evolution of densities.

2.3.2. The filtering distribution
Here we introduce the filtering distribution with density 𝜇𝑛: the distribution of the
conditioned random variable 𝑣𝑛 |𝑌†

𝑛 . This captures the knowledge of the state of
the system, and uncertainties in the state, given the observations. To understand
how uncertainty in estimates of the state evolves, it is thus important to understand
how 𝜇𝑛 evolves with 𝑛. Unlike the unconditioned dynamics, this conditioned
dynamics has a nonlinear structure. Nonlinear evolution equations arise in filtering
through the incorporation of data. This nonlinearity renders filtering a challenging
mathematical and computational problem. To define this evolution, we first define
the linear operator

(Q𝜇)(d𝑣, d𝑦) = 𝑞(𝑣, 𝑦)𝜇(d𝑣) d𝑦, (2.19a)

𝑞(𝑣, 𝑦) =
1

(2𝜋)𝑑𝑦/2√det(Γ)
exp
(
−1

2
|𝑦 − ℎ(𝑣)|2Γ

)
. (2.19b)

Then we define the 𝑛-dependent family of two nonlinear operators

B𝑛(𝜋)(d𝑣) =
∫
𝑦∈R𝑑𝑦

𝛿
𝑦
†
𝑛+1

(𝑦)𝜋(d𝑣, d𝑦)
/(∫

(𝑣,𝑦)∈R𝑑𝑣 ×R𝑑𝑦
𝛿
𝑦
†
𝑛+1

(𝑦)𝜋(d𝑣, d𝑦)
)
,

(2.20)

L𝑛(𝜇)(d𝑣) = 𝑞
(
𝑣, 𝑦

†
𝑛+1
)
𝜇(d𝑣)

/(∫
𝑣∈R𝑑𝑣

𝑞
(
𝑣, 𝑦

†
𝑛+1
)
𝜇(d𝑣)

)
. (2.21)

The nonlinear map 𝜇𝑛 ↦→ 𝜇𝑛+1 is most easily described by first introducing 𝜇𝑛+1,
the distribution of 𝑣𝑛+1 |𝑌†

𝑛 , and 𝜋𝑛+1, the distribution of (𝑣𝑛+1, 𝑦𝑛+1)|𝑌†
𝑛 . The map

from 𝜇𝑛 to 𝜇𝑛+1 is determined by equation (2.1a) and is linear, as a map from
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the space of probability measures defined on R𝑑𝑣 into itself, as discussed in the
preceding subsection; the map from 𝜇𝑛+1 to 𝜋𝑛+1 is defined by (2.1b) and is also
linear, now as a map from the space of probability measures defined on R𝑑𝑣 into
the space of probability measures defined on R𝑑𝑣+𝑑𝑦 ; the map from 𝜋𝑛+1 to 𝜇𝑛+1
is defined by conditioning 𝜋𝑛+1 on 𝑦†

𝑛+1 and is nonlinear, as a map from the space
of probability measures defined on R𝑑𝑣+𝑑𝑦 into the space of probability measures
defined on R𝑑𝑣 . Using the preceding definitions of linear and nonlinear operators,
we have

𝜇𝑛+1 = P𝜇𝑛,
𝜋𝑛+1 = Q𝜇𝑛+1,

𝜇𝑛+1 = B𝑛(𝜋𝑛+1).

(2.22a)
(2.22b)
(2.22c)

Concatenating, we find that

𝜇𝑛+1 = B𝑛(QP𝜇𝑛), 𝜇0 = N(𝑚0, 𝐶0). (2.23)

This map defines an inhomogeneous nonlinear map on the space of probability
measures on R𝑑𝑣 . The map B𝑛(QP ·) may be decomposed into two maps: (i) the
prediction P , which represents application of the dynamical model (2.1a); and (ii)
application of Bayes’ theorem3 through operatorL𝑛· ≔ B𝑛(Q·), which corresponds
to use of likelihood defined by the observation model (2.1b). With this notation we
thus obtain

𝜇𝑛+1 = P𝜇𝑛,
𝜇𝑛+1 = L𝑛(𝜇𝑛+1).

(2.24a)
(2.24b)

We refer to iteration of (2.24) as the filtering cycle. The cycle involves iterative
interleaving of prediction, using the dynamical model, a linear operation on meas-
ures, and Bayes’ theorem, using the observation model, a nonlinear operation on
measures.

It is important to appreciate that there is, in general, no closed-form expression
for 𝜇𝑛 defined by the iteration (2.24); thus (2.24) does not constitute an algorithm.
However, ifΨ and ℎ are linear then, since 𝜇0 = N(𝑚0, 𝐶0) is Gaussian, it follows that
𝜇𝑛+1, 𝜋𝑛+1, 𝜇𝑛+1 are all Gaussian for all 𝑛 ∈ Z+, and closed-form expressions, based
on dynamical updates of means and covariances, are available. This linear Gaussian
setting is discussed in the following example, and linear Gaussian examples will
be used throughout the paper. However, the main thrust of the paper concerns
nonlinear and non-Gaussian problems; for these problems further ideas, which we
will explain in subsections below, are required to make actionable algorithms from
the iteration (2.24).

3 Often referred to as the analysis step in the geophysical data assimilation community. Bayes’
theorem is discussed in more detail in Section 4.
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Example 2.6. To define the Kalman filter we consider the setting (2.6), where
Ψ(·) and ℎ(·) are both linear. Then (2.1) becomes

𝑣𝑛+1 = 𝑀𝑣𝑛 + 𝜉𝑛, (2.25a)
𝑦𝑛+1 = 𝐻𝑣𝑛+1 + 𝜂𝑛+1. (2.25b)

For this problem the mapping (2.24) may be solved explicitly. In fact 𝜇𝑛 and 𝜇𝑛 are
both Gaussian, and we write their mean–covariance pairs as (𝑚𝑛, 𝐶𝑛) and (𝑚𝑛, 𝐶𝑛)
respectively. Then 𝜇𝑛+1 is determined from 𝜇𝑛 by the formulae

𝑚𝑛+1 = 𝑀𝑚𝑛, (2.26a)

𝐶𝑛+1 = 𝑀𝐶𝑛𝑀
⊤ + Σ, (2.26b)

the prediction step. Measure 𝜇𝑛+1 is determined from 𝜇𝑛 by the application of
a Bayesian update, solving the inverse problem defined by (2.25b); this inverse
problem is for 𝑣𝑛+1 given fixed realization of data 𝑦𝑛+1 = 𝑦

†
𝑛+1 generated by (2.25).

Since the prior and posterior are Gaussian, we may complete the square to solve
the Bayesian inverse problem to give the following update formulae for the mean
and precision (inverse covariance):

𝐶−1
𝑛+1𝑚𝑛+1 = 𝐶−1

𝑛+1𝑚𝑛 + 𝐻⊤Γ−1𝑦†
𝑛+1, (2.27a)

𝐶−1
𝑛+1 = 𝐶−1

𝑛+1 + 𝐻
⊤Γ−1𝐻. (2.27b)

By use of the Woodbury matrix identity, we obtain the following formulae, ex-
pressed in terms of covariances rather than precisions:

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐶𝑛+1𝐻
⊤(𝐻𝐶𝑛+1𝐻

⊤ + Γ)−1(𝑦†
𝑛+1 − 𝐻𝑚𝑛+1

)
, (2.28a)

𝐶𝑛+1 = 𝐶𝑛+1 − 𝐶𝑛+1𝐻
⊤(𝐻𝐶𝑛+1𝐻

⊤ + Γ)−1𝐻𝐶𝑛+1. (2.28b)

The update equations (2.26) simply represent propagation of a Gaussian under the
linear dynamics defined by (2.25a); (2.28) corresponds to application of Bayes’
theorem, and in this particular linear setting to conditioning a Gaussian, using
the observations defined by (2.25b) with 𝑦𝑛+1 = 𝑦

†
𝑛+1. The Kalman filter update

equations (2.26) and (2.28) are well-defined if Γ ≻ 0.

The Gaussian setting of the preceding example is very special. But the idea of
making a Gaussian approximation will play a central role in ensemble Kalman
methods, and as a consequence the explicit calculations in the example will be
generally useful. The perspective of invoking Gaussian approximations is intro-
duced in Section 2.4; it is subsequently developed to form the backbone of the
methodology highlighted in this paper.

2.3.3. The sample-path perspective
In Section 2.3.1 we demonstrated that the (typically nonlinear) state space evolution
of {𝑣𝑛}𝑛∈Z+ defined by (2.1a) may be alternatively viewed in terms of the linear
evolution of probability density functions 𝑟𝑛 defined by (2.18). In Section 2.3.2 we
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showed that, when conditioned on observations, the evolution of the probability
density function becomes nonlinear and is defined by (2.22) or (2.24). In this section
we address the question of finding an evolution in state space that is consistent
with this nonlinear evolution of densities defined by (2.22) or (2.24). Our aim is
to generalize the control-theoretic data assimilation algorithm given by (2.15) in
order to find such an evolution.

Throughout this subsection let 𝑣𝑛 be a random variable distributed according
to Law(𝑣𝑛), let �̂�𝑛+1 be a random variable with Law(̂𝑣𝑛+1) = P Law(𝑣𝑛) and let
(̂𝑣𝑛+1, �̂�𝑛+1) be a random variable with law QLaw(̂𝑣𝑛+1). Using Law avoids a
proliferation of notation for the different measures arising from the use of various
different algorithms to approximate the filtering cycle.

All of the algorithms that we will introduce in what follows are based on a
prediction of state, and possibly observation, from Law(𝑣𝑛). To this end, recall
(2.15), and for all 𝑛 ∈ Z+,

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛, (2.29a)
�̂�𝑛+1 = ℎ(̂𝑣𝑛+1) + 𝜂𝑛+1. (2.29b)

The distributions of �̂�𝑛+1 and (̂𝑣𝑛+1, �̂�𝑛+1) given by these equations defineP Law(𝑣𝑛)
and QLaw(̂𝑣𝑛+1), respectively. A common theme in this paper is to augment these
equations for the predicted state and data with a final map, to generalize (2.15c), of
the form

(̂𝑣𝑛+1, �̂�𝑛+1) ↦→ 𝑣𝑛+1 (2.30)

or

�̂�𝑛+1 ↦→ 𝑣𝑛+1. (2.31)

These maps are chosen, respectively, to mimic (2.22) or (2.24). To be precise,
if 𝑣𝑛 ∼ 𝜇𝑛, the maps are designed so that 𝑣𝑛+1 ∼ 𝜇𝑛+1, where 𝜇𝑛 and 𝜇𝑛+1 are
related by the filtering update (2.22) or, equivalently, (2.24). A key observation
is that these maps will necessarily depend on the distributions of �̂�𝑛+1 and �̂�𝑛+1
rendering the associated Markov processes of mean-field type. Thus, in contrast
to the unconditioned dynamics, the state space evolution does not decouple from
the evolution of the associated probability density function; rather, it depends on
it. The resulting state space evolution is said to define a nonlinear Markov process.

Note that once (2.29) is augmented with either (2.30) or (2.31), we have a state
space evolution that describes the filtering process via the probability distribution
of 𝑣𝑛; the state space evolution can then be used as the basis for algorithms. Thus
the key question for such a program is the identification of either (2.30) or (2.31).
The existence of transport maps or, more generally, couplings, which define the
steps (2.30) or (2.31), follows under quite general conditions. But finding them
explicitly is generally difficult. Furthermore, the maps (2.30) and (2.31) are not
uniquely defined, in general. As a consequence of the difficulty in identifying
mean-field transport maps, the algorithms we study will be based on identifying
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maps (2.30) or (2.31), which only approximately achieve the filtering update (2.22).
However, all formulations considered in this survey will be of mean-field type.

In summary, we refer to equations (2.29), (2.30) or (2.29a), (2.31) as providing
a sample-path perspective. The resulting algorithms update state 𝑣𝑛 ↦→ 𝑣𝑛+1 and
are designed to exactly (in theory), and approximately (in practice), reproduce the
probabilistic perspective encapsulated in the three steps of (2.22), or the two steps
of (2.24). These algorithms result in a sample path {𝑣ℓ}𝑛ℓ=0 with the property that
(possibly only approximately) Law(𝑣ℓ) = 𝜇ℓ . This idea is central to the algorithmic
developments in the paper.

2.3.4. Important frequently used notation
The approximations we develop will be based on matching first- and second-order
moments. In the service of designing these approximations, it is useful to define
various first- and second-order statistics computed under the law of (̂𝑣𝑛+1, �̂�𝑛+1).
First define the mean and covariance of �̂�𝑛+1:

𝑚𝑛+1 = E�̂�𝑛+1,

𝐶𝑛+1 = E((̂𝑣𝑛+1 − 𝑚𝑛+1) ⊗ (̂𝑣𝑛+1 − 𝑚𝑛+1)).

(2.32a)

(2.32b)

Then define the mean of the predicted data, cross-covariance from predicted data
to state and covariance of the data:

𝑜𝑛+1 = E�̂�𝑛+1,

𝐶
𝑣𝑦

𝑛+1 = E((̂𝑣𝑛+1 − 𝑚𝑛+1) ⊗ (�̂�𝑛+1 − 𝑜𝑛+1)),

𝐶
𝑦𝑦

𝑛+1 = E((�̂�𝑛+1 − 𝑜𝑛+1) ⊗ (�̂�𝑛+1 − 𝑜𝑛+1)).

(2.33a)

(2.33b)

(2.33c)

From these covariances we define the matrix

𝐾𝑛 = 𝐶
𝑣𝑦

𝑛+1
(
𝐶

𝑦𝑦

𝑛+1
)−1

. (2.34)

This particular choice of 𝐾𝑛, known as the Kalman gain, plays a central role in the
mean-field maps which underpin ensemble Kalman methods through their particle
approximations. Note that if 𝐶𝑦𝑦

𝑛+1 is not invertible, then its action may still be
defined through a pseudo-inverse.

It is sometimes useful to express the Kalman gain 𝐾𝑛 in terms of the variable
ℎ̂𝑛+1 = ℎ(̂𝑣𝑛+1) and without reference to predicted data �̂�𝑛+1. For this purpose we
define the following correlation matrices, computed under the law of �̂�𝑛+1:

𝑜𝑛+1 = Eℎ(̂𝑣𝑛+1),

𝐶𝑣ℎ
𝑛+1 = E((̂𝑣𝑛+1 − 𝑚𝑛+1) ⊗ (ℎ̂𝑛+1 − 𝑜𝑛+1)),

𝐶ℎℎ
𝑛+1 = E((ℎ̂𝑛+1 − 𝑜𝑛+1) ⊗ (ℎ̂𝑛+1 − 𝑜𝑛+1)),

(2.35a)

(2.35b)

(2.35c)
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Then, in place of (2.33) and (2.34), we have

𝐶
𝑣𝑦

𝑛+1 = 𝐶𝑣ℎ
𝑛+1, 𝐶

𝑦𝑦

𝑛+1 = 𝐶ℎℎ
𝑛+1 + Γ,

𝐾𝑛 = 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1
.

(2.36a)

(2.36b)

Note that if Γ ≻ 0, 𝐾𝑛 is well-defined without recourse to the use of the pseudo-
inverse.

Example 2.7. In the setting of the linear and Gaussian Example 2.6, we have

𝐶
𝑣𝑦

𝑛+1 = 𝐶𝑛+1𝐻
⊤,

𝐶
𝑦𝑦

𝑛+1 = 𝐻𝐶𝑛+1𝐻
⊤ + Γ,

and the mean update (2.28a) may be written as

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 − 𝐻𝑚𝑛+1

)
.

In particular, only the single covariance 𝐶𝑛+1 needs to be computed. Note the
similarity of the resulting algorithm to the 3DVAR algorithm (2.8), in the linear
Gaussian setting, since in this linear case 𝑚𝑛+1 = 𝑀𝑚𝑛. It differs only through
having a time-varying gain matrix 𝐾𝑛.

This linear Gaussian setting provides some motivation for the Kalman gain. The
origin of this key concept in the more general nonlinear and non-Gaussian setting
will be described in the next subsection.

2.4. Gaussian projected filtering distribution

The Gaussian projected filter gives a Gaussian approximation of the true filtering
distribution. It is defined by the following three steps:

(i) taking input Gaussian at time 𝑛 as Law(𝑣𝑛) and pushing this measure forward
under (2.29) to find (typically non-Gaussian) measure Law(̂𝑣𝑛+1, �̂�𝑛+1);

(ii) projecting this joint measure onto the nearest Gaussian (in a sense that we
will make precise);

(iii) conditioning this Gaussian on the data 𝑦†
𝑛+1 to find output Gaussian at time

𝑛 + 1.

We note that conditioning a Gaussian random variable on linear functionals of the
random variable returns another Gaussian. Thus the algorithm maps Gaussians
to Gaussians. The resulting approximation of the filtering distribution plays an
important role in motivating the mean-field maps, introduced in Section 2.5, that
underlie ensemble Kalman methods. It is also of interest as a method in its own
right.

In what follows in this subsection we introduce the Gaussian projected approx-
imation to the evolution (2.23). In the case where Ψ(·) and ℎ(·) are linear, the
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resulting formulae deliver exact solutions of the filtering cycle (2.23), leading to
the Kalman filter as given in Example 2.6. The Gaussian projected filter also leads
to a derivation of the Kalman gain (2.34), beyond the linear Gaussian setting; an
alternative derivation, using the minimum variance approach, may be found in
Appendix C.3.

To describe the Gaussian projected approximation to the filtering distribution,
we define the map G, definition of which uses 𝔓 = 𝔓(R𝑑) and 𝔊 = 𝔊(R𝑑) defined
in Section 1.4.

Definition 2.8. Define G : 𝔓 ↦→ 𝔊 by

G𝜇 = N(𝑚𝜇, 𝐶𝜇), 𝑚𝜇 = E𝜇𝑢, 𝐶𝜇 = E𝜇((𝑢 − E𝜇𝑢) ⊗ (𝑢 − E𝜇𝑢)),

where 𝑢 ∼ 𝜇.

Thus the map G applied to measure 𝜇 simply computes the Gaussian with mean
and covariance calculated with respect to the typically non-Gaussian measure 𝜇.
Notice that G is the identity on Gaussians. Furthermore, G ◦ G = G. We refer to
this as a projection onto Gaussians because it corresponds to finding the closest
point to given measure 𝜇, with respect to a Kullback–Leibler divergence:4

G𝜇 = argmin𝜋∈𝔊𝑑KL(𝜇 | |𝜋). (2.37)

We now use mapping G to find an approximation to the evolution (2.22) which
generates measures remaining Gaussian; intuitively this will be a good approxima-
tion whilst the measures {𝜇𝑛} evolving under (2.23) remain close to Gaussian. To
this end we consider random variable 𝑣𝑛 ∼ 𝜇𝐺𝑛 , where the probability measure 𝜇𝐺𝑛
evolves according to

𝜇𝐺𝑛+1 = B𝑛(GQP𝜇𝐺𝑛 ), 𝜇𝐺0 = N(𝑚0, 𝐶0). (2.38)

This may be decomposed as follows:

𝜇𝐺𝑛+1 = P𝜇𝐺𝑛 ,
𝜋𝐺𝑛+1 = Q𝜇𝐺𝑛+1,

𝜇𝐺𝑛+1 = B𝑛

(
G𝜋𝐺𝑛+1

)
.

(2.39a)
(2.39b)
(2.39c)

Map (2.38) defines a nonlinear Markov process, similarly to (2.23). It also maps
Gaussians into Gaussians. This fact follows from the fact that the nonlinear map
B𝑛(·), which represents conditioning, maps Gaussians into Gaussians. The map
𝜇𝐺𝑛 ↦→ 𝜇𝐺

𝑛+1 hence defines a deterministic mapping from the mean 𝑚𝑛 and covari-
ance 𝐶𝑛 of 𝜇𝐺𝑛 into the mean 𝑚𝑛+1 and covariance 𝐶𝑛+1 of 𝜇𝐺

𝑛+1. We now identify
this map explicitly.

For 𝑣𝑛 ∼ 𝜇𝐺𝑛 we introduce the random variables �̂�𝑛+1, �̂�𝑛+1 defined by (2.29). It
then follows that �̂�𝑛+1 ∼ 𝜇𝐺

𝑛+1 = P𝜇𝐺𝑛 and that (̂𝑣𝑛+1, �̂�𝑛+1) ∼ 𝜋𝐺
𝑛+1 = QP𝜇𝐺𝑛 . Note

4 For details see Section 2.7.
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also that 𝜇𝐺
𝑛+1 and 𝜋𝐺

𝑛+1 are not Gaussian, but are defined by the Gaussian 𝜇𝐺𝑛 and
hence completely determined by 𝑚𝑛 and 𝐶𝑛. Thus the mean and covariance under
𝜇𝐺
𝑛+1 are (𝑚𝑛+1, 𝐶𝑛+1) given by (2.32). Furthermore, G𝜋𝐺

𝑛+1 is defined by

G𝜋𝐺𝑛+1 = N

([
𝑚𝑛+1
𝑜𝑛+1

]
,

[
𝐶𝑛+1 𝐶

𝑣𝑦

𝑛+1(
𝐶

𝑣𝑦

𝑛+1
)⊤

𝐶
𝑦𝑦

𝑛+1

])
, (2.40)

where all relevant quantities are defined in Section 2.3.4.
We now condition the Gaussian G𝜋𝐺

𝑛+1, on the second component of the vector
taking value 𝑦†

𝑛+1. From this we find the Gaussian measure 𝜇𝐺
𝑛+1 = B𝑛

(
G𝜋𝐺

𝑛+1
)

characterized by mean 𝑚𝑛+1 and covariance 𝐶𝑛+1 given by the following lemma.

Lemma 2.9. Assume that Γ ≻ 0. Let𝑚𝑛 and𝐶𝑛 denote the mean and covariance
under the Gaussian projected filter. Consider equations (2.29) initialized at 𝑣𝑛 ∼
N(𝑚𝑛, 𝐶𝑛), and then (𝑚𝑛+1, 𝐶𝑛+1) defined by (2.32); furthermore, define the mean
of the observed data and covariances given by (2.33). Then𝐶𝑦𝑦

𝑛+1 ≻ 0 for all 𝑛 ∈ Z+
and

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐶𝑣𝑦

𝑛+1
(
𝐶

𝑦𝑦

𝑛+1
)−1(

𝑦
†
𝑛+1 − 𝑜𝑛+1

)
,

𝐶𝑛+1 = 𝐶𝑛+1 − 𝐶𝑣𝑦

𝑛+1
(
𝐶

𝑦𝑦

𝑛+1
)−1(

𝐶
𝑣𝑦

𝑛+1
)⊤
,

(2.41a)

(2.41b)

where {𝑦†𝑛} arises from a fixed realization of (2.1). ^

Proof. We first note that 𝐶𝑦𝑦

𝑛+1 ≻ 0. Indeed, since by assumption Γ ≻ 0 and by
definition 𝐶ℎℎ

𝑛+1 ⪰ 0, then 𝐶ℎℎ
𝑛+1 + Γ ≻ 0. Hence by (2.36) we have that 𝐶𝑦𝑦

𝑛+1 ≻ 0.
Now consider the distribution of the Gaussian G𝜋𝐺

𝑛+1 given by (2.40). Conditioning
the resulting joint random variable on (𝑣, 𝑦) ∈ R𝑑𝑣 ×R𝑑𝑦 on 𝑦 = 𝑦†

𝑛+1, it is possible
to conclude from standard formulae for conditioned Gaussians that 𝑚𝑛+1 and 𝐶𝑛+1
are given by the expressions in (2.41).

Equations (2.29), (2.32), (2.33) and (2.41) define a mapping from 𝜇𝐺𝑛 , charac-
terized by (𝑚𝑛, 𝐶𝑛), into 𝜇𝐺

𝑛+1, characterized by (𝑚𝑛+1, 𝐶𝑛+1). They comprise an
explicit set of formulae for the mapping (2.38): since Gaussians are determined by
mean and covariance, the map on measures is completely determined by the map
from (𝑚𝑛, 𝐶𝑛) to (𝑚𝑛+1, 𝐶𝑛+1).

We note that (2.41) can also be rewritten as

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1(
𝑦
†
𝑛+1 − 𝑜𝑛+1

)
,

𝐶𝑛+1 = 𝐶𝑛+1 − 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1(
𝐶𝑣ℎ
𝑛+1
)⊤
.

(2.42a)

(2.42b)

Equations (2.29), (2.32), (2.35) and (2.42) then also define the mapping from 𝜇𝐺𝑛
into 𝜇𝐺

𝑛+1 and also comprise an explicit set of formulae for the updates of the mean
and covariance which characterize mapping (2.38).
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Finally we note that, using the definition (2.34) of Kalman gain, we can rewrite
(2.41) as

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 − 𝑜𝑛+1

)
,

𝐶𝑛+1 = 𝐶𝑛+1 − 𝐾𝑛

(
𝐶

𝑣𝑦

𝑛+1
)⊤
.

Thus we see how the Kalman gain arises naturally within the context of this
Gaussian projected filter.

Remark 2.10. The preceding explicit formulae for (2.38) involve the computa-
tion of expectations under the non-Gaussian measure Law(̂𝑣𝑛+1, �̂�𝑛+1). For this
reason they do not constitute an algorithm. A possible approach to algorithmic
implementations involves quadrature to approximate the expectations, leading, for
example, to the unscented Kalman filter approach; details may be found in Sec-
tion 2.7. However, the formulation of explicit maps on Gaussians plays another,
important, role in this paper: we use it as a way of explaining the sense in which
the distribution of our mean-field models approximate evolution of measures under
the true filtering distribution; see Section 2.5.6. The explicit map on means and
covariances can also be used to derive the Kalman filter, which applies in the linear
Gaussian setting and is presented above in Example 2.6.

2.5. Mean-field maps

In the previous section we did not adopt the sample-path perspective, but rather
chose to represent the evolution of the filtering distribution, approximately, as
the evolution of Gaussians. In this subsection we introduce our first explicit
instance of the sample-path perspective, finding an evolution in state space which
approximately captures the evolution of the filtering distribution. Like the Gaussian
projected filter it uses a Gaussian ansatz, but in a different way, leading to a state
space evolution that is not Gaussian.

Note that elements of𝔓(R𝑑) are infinite-dimensional objects, for any 𝑑. Thus the
filtering distribution defines a nonlinear evolution in an infinite-dimensional space.
This fact goes to the heart of the computational challenges faced when solving
the filtering problem. These computational challenges are further exacerbated
when 𝑑 ≫ 1. The manifold of Gaussians 𝔊(R𝑑) is finite-dimensional, because
it is parametrized by the mean and covariance and hence has dimension 1

2𝑑(𝑑 +
3). The preceding subsection provides explicit finite-dimensional maps for the
mean and covariance which characterize the Gaussian projected filter 𝜇𝐺𝑛 ↦→ 𝜇𝐺

𝑛+1,
an approximation which is (intuitively) accurate when the true filter is close to
Gaussian. Nonetheless, if 𝑑 ≫ 1 this method can still be prohibitive because the
algorithm acts on a space of dimension that grows quadratically in 𝑑.

To address the issue that the Gaussian projected filter may not be efficient if
𝑑 ≫ 1, in this section we introduce a more ambitious aim: to find maps on
finite-dimensional spaces of dimension 𝑑 with the property that (possibly only
approximately) their output is equal in law to the map on measures 𝜇𝑛 ↦→ 𝜇𝑛+1
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given by the filtering cycle. We achieve this by studying transport maps that achieve
(2.30) or (2.31); we then weaken this requirement and ask only for transport maps
that approximately achieve (2.30) or (2.31) in a manner that we will make precise.
When combined with (2.29), either (2.30) or (2.31) gives a sample-path evolution
that can be used as the basis of algorithms to solve the filtering problem. This
transport map viewpoint leads us to the subject of mean-field maps, namely random
maps that depend on the law of the state being mapped. When approximated by
particle methods, these maps lead to methods that scale linearly with 𝑑, in contrast
to the Gaussian projected filter, which scales quadratically.

This section is organized as follows. We start in Section 2.5.1 with an introduc-
tion to transport maps. Section 2.5.2 describes two distinct transport approaches
which effect exact filtering: one based on the conditioning component of the
overall Bayesian inference step, a transport between probability measures on dif-
ferent spaces; and the other based on the prior-to-posterior map that constitutes
the Bayesian inference step of filtering, a transport between probability measures
on the same space. We refer to these maps which effect exact filtering as perfect
transport.5 Sections 2.5.4 and 2.5.5 are concerned with approximations of these
two perfect transports, and are motivated in Section 2.5.3 with an explicit example.
In these approximations the pushforward under the transport map is designed to
match only the first- and second-order moments of the target measure. Hence these
approximations are closely related to, but different from, the previously defined
Gaussian projected filter; we elaborate on this connection in Section 2.5.6. That
subsection also includes Example 2.15, in which we identify mean-field formu-
lations of the Kalman filter; recall that this filter applies only to linear Gaussian
systems, and is defined in Example 2.6.

2.5.1. Transport maps
We start by setting up notation used throughout. Consider probability measures 𝜋
and 𝜋′ on R𝑑 and R𝑑′ respectively, and recall from Section 1.4 the definition of
pushforward of a measure under under 𝑇 : R𝑑 → R𝑑′ : the statement 𝜋′ = 𝑇♯𝜋 is
a succinct way of stating that if Law(𝑣) = 𝜋 and 𝑣′ = 𝑇(𝑣), then Law(𝑣′) = 𝜋′. A
transport𝑇 : R𝑑 → R𝑑′ from 𝜋 to 𝜋′ is a map with the property that the pushforward
of probability measure 𝜋 under 𝑇 , 𝑇♯𝜋, is equal to probability measure 𝜋′. In the
following we refer to 𝜋 as the source measure and 𝜋′ as the target measure defining
the transport. In our setting, 𝜋′ will be uniquely determined by 𝜋 and an observed
piece of finite-dimensional data. Thus 𝑇 depends on 𝜋, and so we may view 𝑇 as a
mapping R𝑑 ×𝔓 → R𝑑′ , suppressing, for the moment, explicit dependence on the

5 Perfect transport should not be confused with optimal transport, which identifies among all
(perfect) transport maps the one minimizing a certain cost functional such as that leading to the
Wasserstein distance. See Section 2.7, and Theorem C.6, for more details. We use perfect here
to distinguish from the approximate transport maps, based only on matching first and second
moment; these approximate transport maps underpin ensemble Kalman methods.
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observed data. We can compute the pushforward under 𝑇 on any measure in 𝔓; but
when we compute the pushforward on 𝜋 we obtain 𝜋′. We emphasize that transport
maps are not uniquely defined by their source and target measures, and require
certain conditions for their existence, which we assume here to be satisfied. The
underlying mathematical concept is that of coupling of measures. See Section 2.7
for discussion of transport, optimal transport and coupling.

We will also consider classes of approximate transport maps which do not
achieve transport from 𝜋 to 𝜋′, but instead match first- and second-order moment
information (we will be precise below). Such maps will also depend on 𝜋.

We now clarify an important notational issue. The dependence of (possibly
approximate) transport 𝑇 on a measure in 𝔓 does not affect the definition of push-
forward; we employ the following general definition of pushforward for measure-
dependent maps, taken to hold for all 𝜋1, 𝜋2 regardless of any assumed relationship
between them:

𝑇(·; 𝜋1)♯𝜋2 = 𝑇(·; �̃�)♯𝜋2

����
𝜋=𝜋1

; (2.43)

in particular,

𝑇(·; 𝜋)♯𝜋 = 𝑇(·; �̃�)♯𝜋
����
𝜋=𝜋

, (2.44a)

𝑇(·; 𝜋)♯(G𝜋) = 𝑇(·; �̃�)♯(G𝜋)
����
𝜋=𝜋

. (2.44b)

In the preceding, pushforward under �̃�-dependent map 𝑇(·, �̃�) denotes regular
pushforward with no relationship assumed between �̃� and the measure being pushed
forward. Note that we may define T : 𝔓(R𝑑) → 𝔓(R𝑑) by T (𝜋) = 𝑇(·; 𝜋)♯𝜋. The
(approximate) transport maps just identified can be recast as mean-field maps when
used in the context where source 𝜋 is the distribution of the input to 𝑇 .

2.5.2. Perfect transport
Consider the idea of finding a transport map that acts on the joint space of state
and data, to effect conditioning with respect to the observed data. To this end we
consider the dynamical system, assumed to hold for all 𝑛 ∈ Z+:

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
�̂�𝑛+1 = ℎ(̂𝑣𝑛+1) + 𝜂𝑛+1,

𝑣𝑛+1 = 𝑇𝑆
(
�̂�𝑛+1, �̂�𝑛+1; 𝜋𝑛+1, 𝑦

†
𝑛+1
)
,

(2.45a)
(2.45b)

(2.45c)

where {𝑦†𝑛} arises from a fixed realization of (2.1). Recall that 𝜇𝑛 = Law(𝑣𝑛),
𝜇𝑛+1 = Law(̂𝑣𝑛+1) and 𝜋𝑛+1 = Law(̂𝑣𝑛+1, �̂�𝑛+1).

This is an example of the sample-path perspective, and (2.29), (2.30) in particular.
The first two equations, which coincide with (2.29), effect the mappings from 𝜇𝑛
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to 𝜇𝑛+1 and from 𝜇𝑛+1 to 𝜋𝑛+1. Map6 𝑇𝑆
𝑛 (·, ·) ≔ 𝑇𝑆(·, ·; 𝜋𝑛+1, 𝑦

†
𝑛+1) is then an

explicit example of (2.30) defined to effect the desired conditioning of 𝜋𝑛+1 on
𝑦
†
𝑛+1 in order to obtain 𝜇𝑛+1. The letter 𝑆 in 𝑇𝑆 denotes the dependence of the map

on the stochastic data �̂�𝑛+1. Thus equations (2.45) define a mean-field stochastic
dynamical system mapping 𝑣𝑛 to 𝑣𝑛+1: stochastic because of the noise in (2.45a)
and (2.45b), mean-field because the map 𝑇𝑆 in (2.45c) depends on the law 𝜋𝑛+1 of
(̂𝑣𝑛+1, �̂�𝑛+1), and hence on 𝜇𝑛. The three update steps in this mean-field stochastic
dynamical system lead to the following maps on measures:

𝜇𝑛+1 = P𝜇𝑛,
𝜋𝑛+1 = Q𝜇𝑛+1,

𝜇𝑛+1 = (𝑇𝑆
𝑛 )♯𝜋𝑛+1.

(2.46a)
(2.46b)

(2.46c)

This is simply a restatement of (2.22), noting that (𝑇𝑆
𝑛 )♯ has been chosen so

that pushforward corresponds to conditioning 𝜋𝑛+1 on data 𝑦†
𝑛+1 to obtain 𝜇𝑛+1.

In particular, T 𝑆
𝑛 (𝜋𝑛+1) ≔ (𝑇𝑆

𝑛 )♯𝜋𝑛+1 has property T 𝑆
𝑛 (𝜋𝑛+1) = B𝑛(𝜋𝑛+1). Note

that the implied map from 𝜇𝑛 to 𝜇𝑛+1 is a nonlinear Markov process, because
of the dependence of 𝑇𝑆

𝑛 on 𝜋𝑛+1 and hence on 𝜇𝑛. Furthermore, we have that
Law(𝑣ℓ) = 𝜇ℓ for all ℓ ∈ Z+. The important takeaway is that (2.45) defines a
sample-path picture of the evolution of the filtering distribution: it provides a map
in state space with law governed by the filter. We emphasize again that such a
sample-path representation is not uniquely defined.

Now consider a different approach to transport for filtering: we seek a transport
map that acts on the state space only to effect Bayes’ theorem, i.e. mapping prior
𝜇𝑛+1 to posterior 𝜇𝑛+1. To this end we consider the dynamical system

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
𝑣𝑛+1 = 𝑇𝐷

(
�̂�𝑛+1; 𝜇𝑛+1, 𝑦

†
𝑛+1
)
,

(2.47a)

(2.47b)

again assumed to hold for all 𝑛 ∈ Z+. The first equation maps 𝑣𝑛 ∼ 𝜇𝑛 to
�̂�𝑛+1 ∼ 𝜇𝑛+1, thus giving a sample-path realization of (2.24a). In the second
equation, the map 𝑇𝐷

𝑛 (·) ≔ 𝑇𝐷(·; 𝜇𝑛+1, 𝑦
†
𝑛+1) is chosen so that if �̂�𝑛+1 ∼ 𝜇𝑛+1

then 𝑣𝑛+1 ∼ 𝜇𝑛+1, thus giving a sample-path realization of (2.24b). Thus we have
another instance of the sample-path perspective, and (2.29a), (2.31) in particular.

Equation (2.47) constitutes another mean-field stochastic dynamical system:
stochastic because of the noise in (2.47a); mean-field because the map𝑇𝐷 in (2.47b)
depends on the law of �̂�𝑛+1 itself, and hence on 𝜇𝑛. The symbol 𝐷 distinguishes
map 𝑇𝐷 from map 𝑇𝑆: map 𝑇𝐷 is deterministic in the sense that it does not require

6 It is convenient to use both the notation 𝑇𝑆(·, ·; 𝜋𝑛+1, 𝑦
†
𝑛+1), to be explicit about important de-

pendencies in 𝑇𝑆 , and to use the notation 𝑇𝑆𝑛 , for succinct statement of certain formulae when
dropping explicit dependence of 𝑇𝑆 on 𝜋𝑛+1 and 𝑦†

𝑛+1. We will use analogous notation for other
mean-field maps in what follows.
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stochastic data �̂�𝑛+1, in contrast to 𝑇𝑆 . Therefore we again have that Law(𝑣ℓ) = 𝜇ℓ
for all ℓ ∈ Z+, where the probability measure 𝜇𝑛 evolves according to

𝜇𝑛+1 = P𝜇𝑛,
𝜇𝑛+1 = (𝑇𝐷

𝑛 )♯𝜇𝑛+1.

(2.48a)

(2.48b)

This is simply a restatement of (2.24), noting that (𝑇𝐷
𝑛 )♯ has been chosen so that the

pushforward corresponds to the application of Bayes’ theorem to incorporate data
𝑦
†
𝑛+1. In particular, T 𝐷

𝑛 (𝜇𝑛+1) ≔ (𝑇𝐷
𝑛 )♯𝜇𝑛+1 has property T 𝐷

𝑛 (𝜇𝑛+1) = L𝑛(𝜇𝑛+1).
The evolution (2.48) is another nonlinear Markov process, now because of the
dependence of 𝑇𝐷

𝑛 on 𝜇𝑛+1. Again, the underlying sample-path representation
(2.47) is not uniquely defined.

The two transport maps 𝑇𝑆 and 𝑇𝐷 introduce an important conceptual approach
to algorithms for filtering, but determining the maps can be as hard as, or harder
than, solving the filtering problem itself. Thus, in the next two subsections, we
turn to relaxations of the perfect transport effected by 𝑇𝑆 and 𝑇𝐷 . We instead seek
mean-field maps which match only first- and second-order moment information;
this relaxation allows for approximate transport maps with simple affine forms (in
senses to be made precise). The perspective of matching first- and second-order
moments naturally suggests working with Gaussians, and hence we also relate the
approximate transport to the Gaussian projected filter.

2.5.3. Second-order transport: motivation
To motivate the more general ideas behind second-order transport, we first study
an explicit example. It is well known how to transform samples from a unit centred
Gaussian random variable onR into samples from a Gaussian random variable with
mean 𝑚 ≠ 0 and variance 𝜎 ≠ 1 by a simple scaling and shifting operation. An
appropriate generalization of such a procedure suggests consideration of the map

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
�̂�𝑛+1 = ℎ(̂𝑣𝑛+1) + 𝜂𝑛+1,

𝑣𝑛+1 = 𝑚𝑛+1 + 𝐶1/2
𝑛+1𝐶

−1/2
𝑛+1 (̂𝑣𝑛+1 − E�̂�𝑛+1),

(2.49a)
(2.49b)

(2.49c)

where 𝑚𝑛+1, 𝐶𝑛+1 and 𝐶𝑛+1 are determined by (2.32), (2.33) and (2.41), using
(2.49a) and (2.49b). Here {𝑦†𝑛} arises again from a fixed realization of (2.1). This
is a specific instance of the sample-path perspective, and (2.29), (2.31) in particular.
In this case the sample-path evolution of 𝑣𝑛 has law which only approximates the
true filtering law.

The map 𝑣𝑛 ↦→ 𝑣𝑛+1 defined by (2.49) is a mean-field map because of the depend-
ence of 𝑚𝑛+1, 𝐶𝑛+1 and 𝐶𝑛+1 on QLaw(𝑣𝑛). It may be viewed as an approximation
to (2.45) which is exact when QLaw(𝑣𝑛) is Gaussian. To demonstrate exactness on
Gaussians it suffices to show that we obtain the desired mean and covariance after
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application of the map. It is clear from (2.49c) that E𝑣𝑛+1 = 𝑚𝑛+1 and also that

E((𝑣𝑛+1 − 𝑚𝑛+1) ⊗ (𝑣𝑛+1 − 𝑚𝑛+1))

= 𝐶
1/2
𝑛+1𝐶

−1/2
𝑛+1 E((𝑣𝑛+1 − 𝑚𝑛+1) ⊗ (𝑣𝑛+1 − 𝑚𝑛+1))𝐶−1/2

𝑛+1 𝐶
1/2
𝑛+1

= 𝐶
1/2
𝑛+1𝐶

−1/2
𝑛+1 𝐶𝑛+1𝐶

−1/2
𝑛+1 𝐶

1/2
𝑛+1

= 𝐶𝑛+1.

It is important to recognize that, in general, 𝑣𝑛+1 defined by (2.49c) will not be
Gaussian-distributed since �̂�𝑛+1, defined by (2.49a), will not be Gaussian either.
However, although (2.49) does not provide a closed iteration on Gaussians, the map
from �̂�𝑛+1 to 𝑣𝑛+1 agrees with the same step in the Gaussian projected filter, at the
level of first- and second-order moments. But, because it is not a closed iteration
on 𝔊(R𝑑𝑣 ), it is clearly not the same as the Gaussian projected filter.

Whilst the mean-field map from (2.49) is a relatively transparent way to achieve
the goal of matching first- and second-order moments in the transport step, there
is an uncountable set of ways of achieving this objective; the next two subsections
demonstrate this, identifying all mean-field maps effecting approximate transport
from within two specific classes of affine transformations. We will then highlight
a small subset that have been used in practice, each of which is useful in certain
specific contexts.

2.5.4. Second-order transport: stochastic case
The first class of approximate filters determined by mean-field maps have the
sample-path form

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
�̂�𝑛+1 = ℎ(̂𝑣𝑛+1) + 𝜂𝑛+1,

𝑣𝑛+1 = 𝑇𝑆
(
�̂�𝑛+1, �̂�𝑛+1; 𝜋𝑛+1, 𝑦

†
𝑛+1
)
,

(2.50a)
(2.50b)

(2.50c)

where {𝑦†𝑛} arises from a fixed realization of (2.1). We identify 𝑇𝑆
𝑛 : R𝑑𝑣 ×R𝑑𝑦 →

R𝑑𝑣 , where 𝑇𝑆
𝑛 (·) ≔ 𝑇𝑆(· ; 𝜋𝑛+1, 𝑦

†
𝑛+1) approximates an exact transport map 𝑇𝑆

𝑛 (·) =
𝑇𝑆(· ; 𝜋𝑛+1, 𝑦

†
𝑛+1), defined previously, by matching the first- and second-order mo-

ments.
We next introduce7 𝜋 = Law(̂𝑣𝑛+1, �̂�𝑛+1) and assume that the exact and approx-

imate transport maps satisfy, respectively,

(𝑇𝑆
𝑛 )♯𝜋 = B𝑛(𝜋), (2.51a)

G
(
(𝑇𝑆

𝑛 )♯𝜋
)
= B𝑛(G𝜋), (2.51b)

7 We temporarily drop explicit notational dependence on 𝑛+1 in 𝜋 and in 𝑦†. This should not cause
confusion as the approximate map we derive is concerned simply with finding a pushforward that
approximates conditioning of Law(̂𝑣𝑛+1, �̂�𝑛+1) on �̂�𝑛+1 = 𝑦†.
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for all measures 𝜋 on the product space R𝑑𝑣 × R𝑑𝑦 . Of course, 𝑇𝑆
𝑛 and 𝑇𝑆

𝑛 will
depend on 𝜋 and then pushforward is to be interpreted as in (2.43) and (2.44). It
is intuitive that (2.51b) enforces map 𝑇𝑆

𝑛 to satisfy (2.51a) when 𝜋 is Gaussian; we
prove this in Lemma 2.11 below.

Perfect transport corresponds to asking that for all measures 𝜋 on the space
R𝑑𝑣 × R𝑑𝑦 , (2.51a) holds; second-order transport relaxes this and asks only that
(2.51b) holds. Whilst achieving (2.51a) may be harder than solving the filtering
problem directly, we will show that achieving (2.51b) is straightforward and leads
to computationally tractable methods. This gain in tractability comes at the price
of only achieving (2.51b) in place of (2.51a). However, it is intuitive that this price
will not be high for settings in which the filtering distribution, and the predictive
distribution on state and data, is not too far from Gaussian; we flesh out this idea
in Section 2.5.6 below.

Working to satisfy (2.51b) allows us to find tractable approximate second-order
transport maps by seeking 𝑇𝑆 in the form

𝑇𝑆 (̂𝑣𝑛+1, �̂�𝑛+1; 𝜋, 𝑦†) ≔ 𝐴�̂�𝑛+1 + 𝐵�̂�𝑛+1 + 𝑎. (2.52)

We allow the matrices/vectors 𝐴, 𝐵, 𝑎 to depend on (𝜋, 𝑦†); however, they are
assumed to be independent of (̂𝑣𝑛+1, �̂�𝑛+1). Making this assumption ensures that
the transport map is affine with respect to the realization of (̂𝑣𝑛+1, �̂�𝑛+1) (but not
their law). This in turn leads to tractable computations to determine 𝐴, 𝐵, 𝑎 on
the basis of matching second-order moments of perfect transport. In addition to
computational tractability, the affine form of the transport map 𝑇𝑆 is motivated by
the following, which shows that the approximate transport is perfect when applied
to a Gaussian source.

Lemma 2.11. Consider approximate transport map 𝑇𝑆
𝑛 = 𝑇𝑆 (̂𝑣𝑛+1, �̂�𝑛+1; 𝜋, 𝑦†)

with the form (2.52), assumed to satisfy (2.51b). Then 𝑇𝑆 depends on 𝜋 only
through G𝜋. Furthermore,

(𝑇𝑆
𝑛 )♯(G𝜋) = B𝑛(G𝜋);

thus, if 𝜋 is Gaussian, equation (2.51b) implies (2.51a). ^

Proof. We first note that (2.51b) is equivalent to insisting that

G
(
(𝑇𝑆

𝑛 )♯G𝜋
)
= B𝑛(G𝜋) (2.53)

for all measures 𝜋; this follows because, noting the definition (2.43) and con-
sequence (2.44), the first and second moments of (𝑇𝑆

𝑛 )♯G𝜋 and (𝑇𝑆
𝑛 )♯𝜋 agree,

because of the affine form (2.52) assumed for 𝑇𝑆
𝑛 . Recall that (𝑇𝑆

𝑛 ) depends on
(𝜋, 𝑦†) =

(
Law(̂𝑣𝑛+1, �̂�𝑛+1), 𝑦†

𝑛+1
)
. From the identity (2.53), it is clear that 𝑇𝑆

𝑛 only
depends on 𝜋 through G𝜋 because changing 𝜋 → G𝜋 leaves the identity invari-
ant, as G ◦ G = G. Now note that because Gaussians are preserved under affine
transformations,(

𝑇𝑆 (̂𝑣𝑛+1, �̂�𝑛+1; 𝜋, 𝑦†)
)♯(G𝜋) = G

((
𝑇𝑆 (̂𝑣𝑛+1, �̂�𝑛+1; 𝜋, 𝑦†)

)♯
𝜋
)
,
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or, in compact notational form,

(𝑇𝑆
𝑛 )♯(G𝜋) = G

(
(𝑇𝑆

𝑛 )♯𝜋
)
. (2.54)

The desired display in the lemma is then immediate from (2.51b).

An affine transport map of the form (2.52), when combined with particle ap-
proximations, leads to practical implementable algorithms and achieves (2.51b) by
ensuring that (𝑇𝑆

𝑛 )♯𝜋 has first and second moments which agree with those of the
Gaussian projected filter; these are given by equations (2.32), (2.33) and (2.41)
when 𝜋 is the law of (̂𝑣𝑛+1, �̂�𝑛+1).

In Appendix C.1, we identify the (uncountable) set of all possible 𝐴, 𝐵, 𝑎 which
achieve the desired matching of first- and second-order moments. Here we focus
on the two specific choices given in Example C.5 from that appendix. The first that
we highlight corresponds to the choice

𝑇𝑆
(
�̂�𝑛+1, �̂�𝑛+1; �̃�𝑛+1, 𝑦

†
𝑛+1
)
≔ �̂�𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 − �̂�𝑛+1

)
,

with 𝐾𝑛 = 𝐾(𝜋𝑛+1) given by (2.34). Thus we obtain the following mean-field
dynamical system, which corresponds to (2.15) in the setting where the Kalman
gain 𝐾𝑛 is defined by (2.34):

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
�̂�𝑛+1 = ℎ(̂𝑣𝑛+1) + 𝜂𝑛+1,

𝑣𝑛+1 = �̂�𝑛+1 + 𝐶𝑣𝑦

𝑛+1
(
𝐶

𝑦𝑦

𝑛+1
)−1(

𝑦
†
𝑛+1 − �̂�𝑛+1

)
,

(2.55a)
(2.55b)

(2.55c)

where {𝑦†𝑛} arises from a fixed realization of (2.1), and equations (2.32) and (2.33)
define the Kalman gain 𝐾𝑛 = 𝐶

𝑣𝑦

𝑛+1(𝐶𝑦𝑦

𝑛+1)−1. We refer to this as Kalman transport,
noting that it serves as a derivation of the Kalman gain, beyond the linear Gaussian
setting. This is a specific instance of the sample-path perspective, and (2.29), (2.30)
in particular. Again, this is a case in which the sample-path evolution for 𝑣𝑛 has
law which only approximates the true filtering law.

The second transport map from Example C.5 corresponds to the choice

𝑇𝑆
(
�̂�𝑛+1, �̂�𝑛+1; 𝜋𝑛+1, 𝑦

†
𝑛+1
)
≔ 𝑚𝑛+1 + 𝐶1/2

𝑛+1𝐶
−1/2
𝑛+1 (̂𝑣𝑛+1 − E�̂�𝑛+1),

leading to the mean-field map (2.49), recalling that 𝑚𝑛+1, 𝐶𝑛+1 and 𝐶𝑛+1 are
determined by (2.32), (2.33) and (2.41), using (2.49a) and (2.49b).

Remark 2.12. One important difference between the mean-field models (2.55)
and (2.49) is that the former involves inversion of matrices in data space and the
latter in state space. The relative dimensions of the two spaces plays a role in de-
termining which mean-field model is more appropriate as the basis of algorithms.
A second notable difference is that the mean-field model (2.49) does not require
generation of the stochastic data �̂�𝑛+1. This is because we may employ the identity
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E�̂�𝑛+1 = Eℎ(̂𝑣𝑛+1) and use (2.35) and (2.36) to compute 𝑚𝑛+1, 𝐶𝑛+1 and 𝐶𝑛+1. Mo-
tivated by this observation, the next subsection studies a wide class of approximate
transport maps with the property that they do not require generation of stochastic
data.

2.5.5. Second-order transport: deterministic case
We now turn our attention to approximate filters defined by deterministic mean-
field maps. We seek to approximate the exact transport (2.47) by mean-field maps
with the sample-path form

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
𝑣𝑛+1 = 𝑇𝐷

(
�̂�𝑛+1; 𝜇𝑛+1, 𝑦

†
𝑛+1
)
,

(2.56a)

(2.56b)

where {𝑦†𝑛} arises from a fixed realization of (2.1). As in the previous subsection
we drop explicit 𝑛-dependence on the measure 𝜇𝑛+1 and on the data 𝑦†

𝑛+1 when no
confusion arises from doing so. To this end we define, for �̂�𝑛+1 given by (2.29b),
𝜇 = Law(̂𝑣𝑛+1) and 𝑦† = 𝑦

†
𝑛+1. In the following, 𝑇𝐷

𝑛 : R𝑑𝑣 → R𝑑𝑣 is defined by
𝑇𝐷
𝑛 (·) = 𝑇𝐷(·; 𝜇, 𝑦†) and𝑇𝐷

𝑛 : R𝑑𝑣 → R𝑑𝑣 is defined by𝑇𝐷
𝑛 (·) = 𝑇𝐷(·; 𝜇, 𝑦†); this is

a useful notational convention for the reasons explained in the stochastic transport
setting.

Analogously to the identities (2.51) in the previous subsection, we seek an
approximation 𝑇𝐷 which, in comparison with the true transport map 𝑇𝐷 , satisfies

(𝑇𝐷
𝑛 )♯𝜇 = B𝑛(Q𝜇), (2.57a)

G
(
(𝑇𝐷

𝑛 )♯𝜇
)
= B𝑛(GQ𝜇), (2.57b)

for all measures 𝜇 on the state space R𝑑𝑣 . As in the previous subsection, where we
studied approximate stochastic transport, we again seek maps with a specific affine
form. Concretely, the maps are assumed to be affine in the pair (̂𝑣𝑛+1, ℎ̂𝑛+1), with
ℎ̂𝑛+1 = ℎ(̂𝑣𝑛+1), leading to the assumed form 𝑇𝐷

𝑛 (·) = 𝑇𝐷(·; 𝜇, 𝑦†) with

𝑇𝐷 (̂𝑣𝑛+1, ℎ̂𝑛+1; 𝜇, 𝑦†) ≔ 𝑅�̂�𝑛+1 + 𝑆ℎ̂𝑛+1 + 𝑟, (2.58)

for (𝜇, 𝑦†)-dependent matrices/vectors 𝑅, 𝑆, 𝑟 of appropriate dimensions. Note,
however, that 𝑅, 𝑆, 𝑟 are assumed to be independent of the realization (̂𝑣𝑛+1, ℎ̂𝑛+1),
depending only on its law, so that the transport map is affine in (̂𝑣𝑛+1, ℎ̂𝑛+1). With
this restriction, which will lead to practical implementable algorithms, we simply
ask that (2.57b) holds: the first and second moments of the output map agree with
those of the Gaussian projected filter, given by equations (2.32), (2.35) and (2.42).

As in the previous subsection, there are uncountably many choices of 𝑅, 𝑆, 𝑟
which we identify in Appendix C.2; Example C.12 highlights two important cases.
The first coincides with (2.49) since 𝑆 = 0, but the second leads to a new mean-field
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map. To formulate this new map we first define 𝐾𝑛 = 𝐾(𝜇) by

𝐾𝑛 = 𝐶𝑣ℎ
𝑛+1
((
𝐶ℎℎ
𝑛+1 + Γ

)
+ Γ1/2(𝐶ℎℎ

𝑛+1 + Γ
)1/2)−1

. (2.59)

We then make the choice

𝑇𝐷 (̂𝑣𝑛+1, ℎ̂𝑛+1; 𝜇, 𝑦†) ≔ �̂�𝑛+1 − 𝐾𝑛(ℎ̂𝑛+1 − Eℎ̂𝑛+1) + 𝐾𝑛(𝑦† − Eℎ̂𝑛+1),

with 𝐾𝑛 given by (2.36) and repeated here for convenience:

𝐾𝑛 = 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1
.

The second mean-field map identified in Example C.12 is

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
ℎ̂𝑛+1 = ℎ(̂𝑣𝑛+1),

𝑣𝑛+1 = �̂�𝑛+1 − 𝐾𝑛(ℎ̂𝑛+1 − Eℎ̂𝑛+1) + 𝐾𝑛

(
𝑦
†
𝑛+1 − Eℎ̂𝑛+1

)
,

(2.60a)

(2.60b)

(2.60c)

where 𝐾𝑛 and 𝐾𝑛 are computed under Law(̂𝑣𝑛+1). This is another instance of the
sample-path perspective, and (2.29), (2.31) in particular. Again this sample-path
evolution for 𝑣𝑛 has law which only approximates the true filtering law.

Remark 2.13. If the ensemble spread is such that the size of 𝐶ℎℎ
𝑛+1 is much

smaller than the size of the observational covariance Γ, then we may invoke the
approximation 𝐶ℎℎ

𝑛+1 + Γ ≈ Γ. With this approximation it follows that 𝐾𝑛 ≈ 1
2𝐾𝑛 in

(2.59). Some deterministic ensemble Kalman filters are derived from mean-field
dynamics which exploit this approximation by setting 𝐾𝑛 = 1

2𝐾𝑛 in (2.60). We
then replace (2.60c) with the compact update step

𝑣𝑛+1 = �̂�𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 −

1
2

(Eℎ̂𝑛+1 + ℎ̂𝑛+1)
)
. (2.61)

Such a formulation corresponds to the control-theoretic perspective of (2.15), with
𝐾𝑛 given by (2.36) and the innovation (2.16) replaced by

ℑ𝑛 = 𝑦
†
𝑛+1 −

1
2

(Eℎ̂𝑛+1 + ℎ̂𝑛+1). (2.62)

Filters based on this mean-field dynamics thus invoke an additional approximation
of perfect transport, over and above that stemming from matching only first and
second moments: they assume further that the observational noise dominates en-
semble variation. However, we will see that in the continuous-time limit described
in Section 3, this form of the innovation arises naturally and does not constitute an
additional approximation.

2.5.6. Second-order transport: summary
It is helpful at this point to take stock of two approximations to filtering that
we have introduced, Gaussian projected filtering and approximate transport, and
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discuss their inter-relations. For simplicity we do this in the context of mean-
field stochastic maps, but similar considerations extend to mean-field deterministic
maps. In this subsection we also include Example 2.15, demonstrating the existence
of mean-field maps for the Kalman filter which, recall, applies only in the linear
Gaussian setting.

Recall that

𝜇𝑛+1 = B𝑛(QP𝜇𝑛), 𝜇0 = N(𝑚0, 𝐶0), (2.63a)
𝜇𝐺𝑛+1 = B𝑛(GQP𝜇𝐺𝑛 ), 𝜇𝐺0 = N(𝑚0, 𝐶0), (2.63b)

With the goal of discussing the inter-relations between Gaussian projected filtering
and approximate transport methods, we let 𝜇𝑀𝐹 denote the measure associated
with using the mean-field map 𝑇𝑆

𝑛 to approximate the conditioning step in (2.22).
Using (2.51b) to rewrite the Gaussian projected filter, and using the construction
of the stochastic mean-field model (2.50), we obtain

𝜇𝐺𝑛+1 = G
(
(𝑇𝑆

𝑛 )♯(QP𝜇𝐺𝑛 )
)
, 𝜇𝐺0 = N(𝑚0, 𝐶0), (2.64a)

𝜇𝑀𝐹
𝑛+1 = (𝑇𝑆

𝑛 )♯(QP𝜇𝑀𝐹
𝑛 ), 𝜇𝑀𝐹

0 = N(𝑚0, 𝐶0). (2.64b)

Remark 2.14. Equations (2.64) show that {𝜇𝑀𝐹
𝑛 } is close to {𝜇𝐺𝑛 } if the Gaussian

projection in (2.64a) is close to the identity where it acts on the output of one
step. Equations (2.63) show that {𝜇𝐺𝑛 } is close to {𝜇𝑛} if the Gaussian projection
in (2.63b) is close to the identity where it acts on the joint space of state and
observation. Together these two facts suggest that {𝜇𝑀𝐹

𝑛 }, {𝜇𝐺𝑛 } and {𝜇𝑛} are all
close to one another if the two Gaussian projections can be viewed as being close to
the identity map, where they appear in (2.63) and in (2.64). This provides a potential
path for analysis of the mean-field model, away from the linear setting where it is
exact. Note also that (2.64a) shows that the Gaussian projected filter evolves within
the manifold of Gaussian probability measures; the mean-field model (2.64b) does
not.

Example 2.15. Assume that 𝑣0 ∼ N(𝑚0, 𝐶0), that Γ ≻ 0, and consider the Kalman
filter setting of Example 2.6; in particular, (2.6) prevails, rendering Ψ and ℎ linear.
The mean-field stochastic dynamical system (2.55) then takes the form

�̂�𝑛+1 = 𝑀𝑣𝑛 + 𝜉𝑛, (2.65a)
�̂�𝑛+1 = 𝐻�̂�𝑛+1 + 𝜂𝑛+1, (2.65b)

𝑣𝑛+1 = �̂�𝑛+1 + 𝐶𝑛+1𝐻
⊤(𝐻𝐶𝑛+1𝐻

⊤ + Γ)−1(𝑦†
𝑛+1 − �̂�𝑛+1

)
, (2.65c)

where {𝑦†𝑛} arises from a fixed realization of (2.25) and where𝐶𝑛 is the covariance
of 𝑣𝑛 and 𝐶𝑛+1 = 𝑀𝐶𝑛𝑀

⊤ + Σ is the covariance of �̂�𝑛+1. The resulting dynamics
give a sample-path representation of the Kalman filter in that 𝑣𝑛 ∼ N(𝑚𝑛, 𝐶𝑛),
where 𝑚𝑛, 𝐶𝑛 are as given in Example 2.6. This follows because the map defined
by (2.65) is well-defined, since Γ ≻ 0. Lemma 2.11 shows that the approximate
transport is exact in this Gaussian setting.
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Similar ideas can be applied to (2.49) and (2.60) to determine other mean-field
models with law equal to that of the Kalman filter. Furthermore, we observe that the
formulation based on (2.49) can be symmetrized to obtain, in the linear Gaussian
setting of (2.6),

�̂�𝑛+1 = 𝑀𝑣𝑛 + 𝜉𝑛, 𝑛 ∈ Z+, (2.66a)
𝑣𝑛+1 = 𝑚𝑛+1 + 𝐴𝑛 (̂𝑣𝑛+1 − 𝑚𝑛+1), (2.66b)

𝐴𝑛 = (𝐶𝑛+1)1/2 [(𝐶𝑛+1)1/2𝐶𝑛+1(𝐶𝑛+1)1/2]−1/2(𝐶𝑛+1)1/2, (2.66c)

with
(
𝑚𝑛+1, 𝐶𝑛+1, 𝐶

𝑣ℎ
𝑛+1, 𝐶

ℎℎ
𝑛+1
)

defined by (2.32) and (2.35), and (𝑚𝑛+1, 𝐶𝑛+1) given
by (2.41). We note that the second component of the map may be written in gradient
form, and corresponds to an optimal transport from 𝜇𝑛+1 into 𝜇𝑛+1 in the sense of
the Euclidean Wasserstein distance of optimal transportation (see Section 2.7 for
details). Indeed, this is true for an entire family of weighted Wasserstein distances:
see Example C.7. To recognize the gradient structure, define

Φ𝑛(𝑣) ≔ ⟨𝑚𝑛+1, 𝑣⟩ +
1
2
⟨𝐴𝑛(𝑣 − 𝑚𝑛+1), 𝑣 − 𝑚𝑛+1⟩

and note that then

�̂�𝑛+1 = 𝑀𝑣𝑛 + 𝜉𝑛, 𝑛 ∈ Z+, (2.67a)
𝑣𝑛+1 = ∇Φ𝑛 (̂𝑣𝑛+1). (2.67b)

2.6. Ensemble Kalman methods

The mean-field formulations from Section 2.5 provide clear insights into many of
the design choices and mechanisms that underlie ensemble Kalman methods. In
this subsection we take the mean-field models and use particle approximations to
derive implementable numerical algorithms. When approximated by interacting
particle systems, the mean-field formulations of ensemble Kalman methods lead to
actionable algorithms.

We start, in Section 2.6.1, with the setting in which transport is perfect. These
algorithms are not, in general, implementable since determining perfect transport
is itself a difficult computational task and the subject of ongoing research; see
Section 2.7. Thus we turn to particle approximations of the transports designed
to match first- and second-order statistics. This leads to the (stochastic) ensemble
Kalman filter in Section 2.6.2, and to (deterministic) ensemble square root filters
in Section 2.6.3. The methods derived in this subsection involve approximating the
Kalman gain by computing covariances under the empirical measure defined by the
ensemble of particles. To avoid overloading notation, in the rest of this subsection
𝐶𝑛+1, 𝐶𝑛+1, 𝐶𝑣𝑦

𝑛+1 and 𝐶𝑦𝑦

𝑛+1 will denote covariances computed with expectation
under the empirical measure. With this notation in place, in the rest of this specific
subsection, 𝐾𝑛 will directly refer to the particle approximation of the Kalman gain,
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computed using the covariances with respect to the empirical measure, without
further specification needed. Throughout this section {𝑦†𝑛} arises from a fixed
realization of (2.1).

2.6.1. Perfect particle filters
The mean-field equations (2.45) could, in principle, be approximated through
a particle approximation of the mean field leading to the following conceptual
(because map 𝑇𝑆

𝑛 is not known explicitly) algorithm: let J = {1, . . . , 𝐽} and
consider, for (𝑛, 𝑗) ∈ Z+ × J, the interacting particle dynamical system

�̂�
( 𝑗)
𝑛+1 = Ψ

(
𝑣

( 𝑗)
𝑛

)
+ 𝜉( 𝑗)

𝑛 ,

�̂�
( 𝑗)
𝑛+1 = ℎ

(
�̂�

( 𝑗)
𝑛+1
)
+ 𝜂( 𝑗)

𝑛+1,

𝑣
( 𝑗)
𝑛+1 = 𝑇𝑆

(
�̂�

( 𝑗)
𝑛+1, �̂�

( 𝑗)
𝑛+1; 𝜋J

𝑛+1, 𝑦
†
𝑛+1
)
,

𝜋J
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1
𝛿(

�̂�
( 𝑗)
𝑛+1, �̂�

( 𝑗)
𝑛+1

).

(2.68a)

(2.68b)

(2.68c)

(2.68d)

This evolves the particles {𝑣( 𝑗)
𝑛 } 𝑗∈J into {𝑣( 𝑗)

𝑛+1} 𝑗∈J. Here the {𝜉( 𝑗)
𝑛 } are, for each

𝑗 , random variables given by the known distribution of 𝜉𝑛 specified in (2.2) and,
furthermore, are drawn independently with respect to each (𝑛, 𝑗) ∈ Z+ × J. Similar
considerations apply to the {𝜂( 𝑗)

𝑛 } which, additionally, are independent of the {𝜉( 𝑗)
𝑛 }.

It is intuitive that the large 𝐽 limit of this system recovers the mean-field dynamics
(2.45) and, in particular,

𝜇J
𝑛 =

1
𝐽

𝐽∑︁
𝑗=1
𝛿
𝑣

( 𝑗)
𝑛

≈ 𝜇𝑛. (2.69)

Applying a similar idea to (2.47) leads to the following conceptual (because map
𝑇𝐷
𝑛 is not known explicitly) algorithm. Consider, for (𝑛, 𝑗) ∈ Z+×J, the interacting

particle dynamical system

�̂�
( 𝑗)
𝑛+1 = Ψ

(
𝑣

( 𝑗)
𝑛

)
+ 𝜉( 𝑗)

𝑛 ,

𝑣
( 𝑗)
𝑛+1 = 𝑇𝐷

(
�̂�

( 𝑗)
𝑛+1; 𝜇J

𝑛+1, 𝑦
†
𝑛+1
)
,

𝜇J
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1
𝛿
�̂�

( 𝑗)
𝑛+1
.

(2.70a)

(2.70b)

(2.70c)

This evolves the particles {𝑣( 𝑗)
𝑛 } 𝑗∈J into {𝑣( 𝑗)

𝑛+1} 𝑗∈J. The same assumptions are made
about the {𝜉( 𝑗)

𝑛 } as for the preceding interacting particle dynamical system. It is
again intuitive that the large 𝐽 limit of this system recovers the mean-field dynamics
(2.47), and the evolution (2.48). In particular, it is intuitive that (2.69) holds for this
particle approximation too. We reiterate that in practice these algorithms are, in
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general, not easy to use. More specifically, finding particle-based approximations
𝑇𝑆,𝐽 and 𝑇𝐷,𝐽 to the desired transport maps such that

lim
𝐽→∞

𝑇𝑆,𝐽 = 𝑇𝑆 , lim
𝐽→∞

𝑇𝐷,𝐽 = 𝑇𝐷

in an appropriate sense is a computationally challenging task and the subject of
ongoing research. This leads to the next two subsections in which we replace 𝑇𝑆

and 𝑇𝐷 , in the interacting particles systems (2.68) and (2.70), by the previously
introduced affine approximate transports 𝑇𝑆 and 𝑇𝐷 , respectively.

2.6.2. Stochastic ensemble Kalman filters
Particle approximation of the mean-field dynamical system (2.55), effecting Kal-
man transport, bring us to the stochastic EnKF (ensemble Kalman filter). This
method may be derived by writing down a particle approximation of the mean-
field stochastic dynamics defined by (2.55). We evolve the particles {𝑣( 𝑗)

𝑛 } 𝑗∈J into
{𝑣( 𝑗)

𝑛+1} 𝑗∈J according to the following stochastic interacting particle system, holding
for (𝑛, 𝑗) ∈ Z+ × J:

�̂�
( 𝑗)
𝑛+1 = Ψ

(
𝑣

( 𝑗)
𝑛

)
+ 𝜉( 𝑗)

𝑛 , 𝑛 ∈ Z+,
�̂�

( 𝑗)
𝑛+1 = ℎ

(
�̂�

( 𝑗)
𝑛+1
)
+ 𝜂( 𝑗)

𝑛+1, 𝑛 ∈ Z+,
𝑣

( 𝑗)
𝑛+1 = �̂�

( 𝑗)
𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 − �̂�

( 𝑗)
𝑛+1
)
,

𝜋J
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1
𝛿(

�̂�
( 𝑗)
𝑛+1, �̂�

( 𝑗)
𝑛+1

).

(2.71a)

(2.71b)

(2.71c)

(2.71d)

Here the Kalman gain from (2.34) is approximated using the empirical measure
𝜋J
𝑛+1, but it is still denoted by 𝐾𝑛 to avoid proliferation of notation; details fol-

low below. The same assumptions regarding {𝜉( 𝑗)
𝑛 } and {𝜂( 𝑗)

𝑛+1} are made as for
(2.68). We let EJ

𝑛 denote expectation under 𝜋J
𝑛. For the basic implementation of

EnKF (2.71) the desired covariance matrices, and Kalman gain (2.34), are then
approximated by expectation under 𝜋J

𝑛+1, so that8

𝐶
𝑣𝑦

𝑛+1 = EJ
𝑛+1
((
�̂�𝑛+1 − EJ

𝑛+1�̂�𝑛+1
)
⊗
(
�̂�𝑛+1 − EJ

𝑛+1 �̂�𝑛+1
))
,

𝐶
𝑦𝑦

𝑛+1 = EJ
𝑛+1
((
�̂�𝑛+1 − EJ

𝑛+1 �̂�𝑛+1
)
⊗
(
�̂�𝑛+1 − EJ

𝑛+1 �̂�𝑛+1
))
,

𝐾𝑛 = 𝐶
𝑣𝑦

𝑛+1
(
𝐶

𝑦𝑦

𝑛+1
)−1

.

Note that a pseudo-inverse may be required to define 𝐾𝑛. An alternative, avoiding
the pseudo-inverse, is to use a particle approximation in formula (2.36b), leading

8 The empirical covariance computations are often modified to accommodate the widely adopted
convention of scaling by 1/(𝐽 − 1), instead of 1/𝐽, in view of the matrix being computed from
𝐽 − 1 independent increments about the mean.
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to the use of

𝐶𝑣ℎ
𝑛+1 = EJ

𝑛+1
((
�̂�𝑛+1 − EJ

𝑛+1�̂�𝑛+1
)
⊗
(
ℎ(̂𝑣𝑛+1) − EJ

𝑛+1ℎ(̂𝑣𝑛+1)
))
, (2.72a)

𝐶ℎℎ
𝑛+1 = EJ

𝑛+1
((
ℎ(̂𝑣𝑛+1) − EJ

𝑛+1ℎ(̂𝑣𝑛+1)
)
⊗
(
ℎ(̂𝑣𝑛+1) − EJ

𝑛+1ℎ(̂𝑣𝑛+1)
))
, (2.72b)

𝐾𝑛 = 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1
, (2.72c)

to compute the gain 𝐾𝑛. The advantage of this latter formulation is that it ensures
positivity, and hence invertibility, of the covariance in data space, if Γ is positive
definite. It is hence typically preferred.

Pseudo-code for the stochastic EnKF may be found as Algorithm 2 in Ap-
pendix A.

Example 2.16. We return to the set-up of Example 2.3, and now demonstrate
performance of the stochastic EnKF on the same Lorenz ’96 model. Indeed,
we again study the Lorenz ’96 (single-scale) model for unknown 𝑣 ∈ 𝐶(R+,R𝐿)
satisfying equations (2.9) with 𝐿 = 9, ℎ𝑣 = −0.8 and 𝐹 = 10 and function 𝑚 as
shown in Figure 2.1. We consider observations {𝑦†𝑛}𝑛∈Z+ arising from the model

𝑣
†
𝑛+1 = Ψ(𝑣†𝑛) + 𝜉†𝑛,
𝑦
†
𝑛+1 = ℎ

(
𝑣
†
𝑛+1
)
+ 𝜂†

𝑛+1,

where Ψ is the solution operator for (2.9) over the observation time interval 𝜏, and
{𝜉†𝑛}𝑛∈Z+ , {𝜂†𝑛}𝑛∈N are mutually independent Gaussian sequences defined by

𝜉†𝑛 ∼ N(0, 𝜎2𝐼) i.i.d., 𝜂†𝑛 ∼ N(0, 𝛾2𝐼) i.i.d.,

with 𝜎 = 0.1 and 𝛾 = 0.1. We again assume that the observation function is linear:
ℎ(𝑣) = 𝐻𝑣 for matrix 𝐻 : R9 → R6 defined by (2.10).

Figures 2.5(a) and 2.5(b) demonstrate the performance of stochastic EnKF in
this experimental setting with 𝜏 = 10−3 and using 𝐽 = 102 and 𝐽 = 5 × 102,
respectively, against the performance of 3DVAR with no noise; note that the EnKF
uses a time-varying estimate of the gain 𝐾𝑛, whilst 3DVAR uses the fixed 𝐾

given in Example 2.3. These experiments illustrate that using sufficiently large
ensembles, the ensemble Kalman filter outperforms 3DVAR on such a nonlinear
filtering problem where the true state and observational noise levels are high. Here
outperforms refers to mean squared error in recovery of the state. To demonstrate
this improvement quantitatively, we compute (a) the mean squared error between
the estimates yielded by 3DVAR and the true states, and (b) the mean squared error
between the ensemble mean of stochastic EnKF and the true states. In particular
we report time-averaged mean squared errors obtained from both 3DVAR and
stochastic EnKF given by use of formula (2.17) from Example 2.5 using 𝑡∗ = 3
and 𝑇 = 10. An ensemble size of 𝐽 = 102 yields 𝑒EnKF = 1.05 × 100, while for
𝐽 = 5 × 102 we obtain 𝑒EnKF = 5.24 × 10−1. For comparison, the error obtained
using 3DVAR is 𝑒3DVAR = 1.85 × 100.
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(a) EnKF with ensemble size 𝐽 = 102

(b) EnKF with ensemble size 𝐽 = 5 × 102

Figure 2.5. In this experiment we set the noise levels 𝜎 = 10−1, 𝛾 = 10−1. We
display the estimates of 𝑣3 in time produced by EnKF (using ensemble average)
and 3DVAR against the true dynamics using observation time interval 𝜏 = 10−3.
Again ‘dns’ refers to direct numerical simulation. The results show that the EnKF
provides a more accurate estimate of the trajectory, albeit at higher cost in terms of
number of model evaluations.

2.6.3. Ensemble square root filters
The variants on the EnKF described in this subsection are known as ensemble square
root filters; they are based on mean-field maps (2.49) and (2.60), approximated by
interacting particle systems.

Remark 2.17. Square root filters are sometimes referred to as deterministic en-
semble Kalman filters, to distinguish them from the ensemble Kalman filters de-
scribed in the preceding subsection (see the discussion of this, and bibliographical
information, in Section 1.1). However, we have already used the terminology
‘stochastic’ and ‘deterministic’ to distinguish between different variants on the
mean-field models that we describe in Sections 2.5.4 and 2.5.5 respectively. With
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the exception of the discussion in Section 1.1, we simply refer to square root filters
for the methods introduced in this subsection. We note, however, that they are
deterministic in the sense that they do not require generation of random variables.

We introduce two families of square root filters: of adjustment and transform
type. We emphasize again that the choice of which method to use in practice
is determined by implementation details such as the number of particles 𝐽, the
dimension of state space 𝑑𝑣 , and the dimension of the observation space 𝑑𝑦 . These
implementation details, although important, are not the focus of this paper.

Ensemble adjustment Kalman filters. We introduce two different particle-based
approximations of mean-field models. Both methods are examples of a general
class of algorithms known as ensemble adjustment Kalman filters: EAKF. The
starting point for the first of these EAKF methods is the mean-field map (2.49a),
(2.49c), repeated here for convenience:

�̂�𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
𝑣𝑛+1 = 𝑚𝑛+1 + 𝐶1/2

𝑛+1𝐶
−1/2
𝑛+1 (̂𝑣𝑛+1 − E�̂�𝑛+1),

(2.73a)

(2.73b)

where 𝑚𝑛+1, 𝐶𝑛+1, and 𝐶𝑛+1 are determined by (2.32), (2.35), (2.36) and (2.41).9
As in the previous subsection the methods evolve particle ensemble {𝑣( 𝑗)

𝑛 } 𝑗∈J into
{𝑣( 𝑗)

𝑛+1} 𝑗∈J, via the predictive ensemble {�̂�( 𝑗)
𝑛+1} 𝑗∈J. However, they do not employ

simulated data {�̂�( 𝑗)
𝑛+1} 𝑗∈J; rather, they make use of {ℎ̂( 𝑗)

𝑛+1} 𝑗∈J, where ℎ̂( 𝑗)
𝑛 = ℎ(̂𝑣( 𝑗)

𝑛 ).
To define the methods it helps to introduce new notation. Slightly modifying the
notation in the preceding subsection, we now let EJ

𝑛 denote expectation with respect
to the empirical measure

𝜇J
𝑛 =

1
𝐽

𝐽∑︁
𝑗=1
𝛿
�̂�

( 𝑗)
𝑛
.

We let �̂�𝑛+1 denote the random variable with this distribution and, as before,
ℎ̂𝑛+1 = ℎ(̂𝑣𝑛+1).

Next we define matrix 𝑉𝑛 comprising scaled ensemble deviations in state space:

𝑉𝑛 =
1
√
𝐽

(
�̂�

(1)
𝑛 − EJ

𝑛�̂�𝑛, �̂�
(2)
𝑛 − EJ

𝑛�̂�𝑛, . . . , �̂�
(𝐽)
𝑛 − EJ

𝑛�̂�𝑛
)
∈ R𝑑𝑣×𝐽 .

We then define the analogous matrix 𝐻𝑛 in observation space:

𝐻𝑛 =
1
√
𝐽

(
ℎ̂

(1)
𝑛 − EJ

𝑛 ℎ̂𝑛, ℎ̂
(2)
𝑛 − EJ

𝑛 ℎ̂𝑛, . . . , ℎ̂
(𝐽)
𝑛 − EJ

𝑛 ℎ̂𝑛
)
∈ R𝑑𝑦×𝐽 .

9 Although the identity (2.41) is derived in a subsection concerning the Gaussian projected filter, it
is contained in Lemma 2.9, the proof of which simply concerns conditioning of Gaussians.
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With this notation in hand, we have, with expectations computed under EJ
𝑛,

𝐶𝑣ℎ
𝑛 = 𝑉𝑛𝐻

⊤
𝑛 , (2.74a)

𝐶ℎℎ
𝑛 = 𝐻𝑛𝐻

⊤
𝑛 , (2.74b)

and the ensemble-based approximation of the Kalman gain matrix is10

𝐾𝑛 = 𝑉𝑛+1𝐻
⊤
𝑛+1
(
𝐻𝑛+1𝐻

⊤
𝑛+1 + Γ

)−1
. (2.75)

This is a linear algebraic reformulation of the Kalman gain approximation resulting
from (2.72). By making a particle approximation of (2.73), using (2.32), (2.35),
(2.36) and (2.41), we obtain

�̂�
( 𝑗)
𝑛+1 = Ψ(𝑣( 𝑗)

𝑛 ) + 𝜉( 𝑗)
𝑛 , 𝑛 ∈ Z+,

𝑚𝑛+1 = EJ
𝑛+1�̂�𝑛+1,

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 − E

J
𝑛+1 ℎ̂𝑛+1

)
,

𝑣
( 𝑗)
𝑛+1 = 𝑚𝑛+1 + 𝐶1/2

𝑛+1𝐶
−1/2
𝑛+1

(
�̂�

( 𝑗)
𝑛+1 − 𝑚𝑛+1

)
,

(2.76a)
(2.76b)

(2.76c)

(2.76d)

where 𝐾𝑛 is given by (2.75); furthermore, 𝐶𝑛+1 and𝐶𝑛+1 are computed empirically
using

𝐶𝑛+1 = 𝑉𝑛+1𝑉
⊤
𝑛+1, 𝐶𝑛+1 = 𝑉𝑛+1

(
𝐼 + 𝐻⊤

𝑛+1Γ
−1𝐻𝑛+1

)−1
𝑉⊤
𝑛+1. (2.77)

The first of these two formulae follows similarly to (2.74); the second of these two
formulae is derived as follows:11

𝐶𝑛+1 = 𝐶𝑛+1 − 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1(
𝐶𝑣ℎ
𝑛+1
)⊤ (2.78a)

= 𝑉𝑛+1𝑉
⊤
𝑛+1 −𝑉𝑛+1𝐻

⊤
𝑛+1
(
𝐻𝑛+1𝐻

⊤
𝑛+1 + Γ

)−1
𝐻𝑛+1𝑉

⊤
𝑛+1 (2.78b)

= 𝑉𝑛+1
(
𝐼 − 𝐻⊤

𝑛+1
(
𝐻𝑛+1𝐻

⊤
𝑛+1 + Γ

)−1
𝐻𝑛+1

)
𝑉⊤
𝑛+1 (2.78c)

= 𝑉𝑛+1
(
𝐼 + 𝐻⊤

𝑛+1Γ
−1𝐻𝑛+1

)−1
𝑉⊤
𝑛+1. (2.78d)

The EAKF (2.76) takes as starting point (2.49). If instead we apply a particle
approximation to the mean-field dynamical system (2.60), we obtain a second

10 Here too, the empirical covariance computations are often modified to accommodate the widely
adopted convention of scaling by 1/(𝐽 − 1) instead of 1/𝐽.

11 Using, in the last line, the identity 𝐼 −𝑊⊤(𝑊𝑊⊤ + 𝐼)−1𝑊 = (𝐼 +𝑊⊤𝑊)−1, which holds for all
(not necessarily square) matrices𝑊 .
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version of the EAKF:

�̂�
( 𝑗)
𝑛+1 = Ψ

(
𝑣

( 𝑗)
𝑛

)
+ 𝜉( 𝑗)

𝑛 , 𝑛 ∈ Z+,
ℎ̂

( 𝑗)
𝑛+1 = ℎ

(
�̂�

( 𝑗)
𝑛+1
)
,

𝑚𝑛+1 = EJ
𝑛+1�̂�𝑛+1,

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 − E

J
𝑛+1 ℎ̂𝑛+1

)
,

𝑣
( 𝑗)
𝑛+1 = 𝑚𝑛+1 +

(
�̂�

( 𝑗)
𝑛+1 − 𝑚𝑛+1

)
− 𝐾𝑛

(
ℎ̂

( 𝑗)
𝑛+1 − E

J
𝑛+1 ℎ̂𝑛+1

)
.

(2.79a)

(2.79b)
(2.79c)

(2.79d)

(2.79e)

By making an empirical approximation of the formula (2.59), the matrix 𝐾𝑛 is
defined using the identification

𝐾𝑛 = 𝑉𝑛+1𝐻
⊤
𝑛+1

[(
𝐻𝑛+1𝐻

⊤
𝑛+1 + Γ

)
+
(
𝐻𝑛+1𝐻

⊤
𝑛+1 + Γ

)1/2
Γ1/2]−1

.

Remark 2.18. The key difference between (2.76) and (2.79) is that the former
involves inversion in state space, and the latter in data space. The relative size of
the two dimensions dictates which is preferable.

Ensemble transform Kalman filters. The two EAKFs just defined both involve
application, and inversion, of matrices which are applied on the left and act on state
space. A different class of algorithms, known as ensemble transform Kalman filters
(ETKF), involve matrix multiplication from the right, and consequently inversions
take place in the ensemble space of dimension 𝐽. In many applications this is far
smaller than the dimension of the state or data spaces, and then use of this version
of the methodology is preferred. The aim is to determine matrix 𝑍𝑛 ∈ R𝐽×𝐽 ,
and to derive Kalman gain 𝐾𝑛 from 𝑍𝑛, so that the following interacting particle
system produces an ensemble of particles {𝑣( 𝑗)

𝑛+1} 𝑗∈J with empirical covariance
𝐶𝑛+1 defined by the second item in display (2.77):

�̂�
( 𝑗)
𝑛+1 = Ψ

(
𝑣

( 𝑗)
𝑛

)
+ 𝜉( 𝑗)

𝑛 , 𝑛 ∈ Z+,
𝑚𝑛+1 = EJ

𝑛+1�̂�𝑛+1,

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐾𝑛

(
𝑦
†
𝑛+1 − E

J
𝑛+1 ℎ̂𝑛+1

)
,

𝑣
( 𝑗)
𝑛+1 = 𝑚𝑛+1 +

𝐽∑︁
𝑖=1

(
�̂�

(𝑖)
𝑛+1 − 𝑚𝑛+1

)
(𝑍𝑛)𝑖 𝑗 .

(2.80a)
(2.80b)

(2.80c)

(2.80d)

To this end we define the matrix of ensemble deviations

𝑉𝑛 =
1
√
𝐽

(
𝑣

(1)
𝑛 − EJ

∗,𝑛𝑣𝑛, 𝑣
(2)
𝑛 − EJ

∗,𝑛𝑣𝑛, . . . , 𝑣
(𝐽)
𝑛 − EJ

∗,𝑛𝑣𝑛
)
∈ R𝑑𝑣×𝐽 ,

where the expectation EJ
∗,𝑛 is with respect to the empirical measure (2.69) and 𝑣𝑛

is a random variable with this distribution. It then follows from (2.80d) that

𝑉𝑛+1 = 𝑉𝑛+1𝑍𝑛. (2.81)
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If we define
𝑍𝑛 =

(
𝐼 + 𝐻⊤

𝑛+1Γ
−1𝐻𝑛+1

)−1/2 ∈ R𝐽×𝐽 , (2.82)

then, as desired, 𝑉𝑛+1𝑉
⊤
𝑛+1 = 𝐶𝑛+1 as defined by (2.77), by virtue of (2.78). The

calculations in (2.78) can also be utilized to verify that the empirical Kalman gain
matrix defined by (2.75) satisfies

𝐾𝑛 = 𝑉𝑛+1𝑍
2
𝑛𝐻

⊤
𝑛+1Γ

−1.

Using this formula for 𝐾𝑛 in (2.76) leads to an algorithm which matches first-
and second-order statistics of the Gaussian projected filter, at 𝑛 + 1, requiring only
matrix inversions in space of dimension defined by the number of particles 𝐽.

We finally note that (2.80c) and (2.80d) can be combined into a single trans-
formation step of the form

𝑣
( 𝑗)
𝑛+1 =

𝐽∑︁
𝑖=1

�̂�
(𝑖)
𝑛+1(𝑆𝑛)𝑖 𝑗 , (2.83)

where 𝑆𝑛 ∈ R𝐽×𝐽 replaces the matrix 𝑍𝑛 in (2.80d) such that

𝑚𝑛+1 =

𝐽∑︁
𝑗=1
𝑣

( 𝑗)
𝑛+1 =

𝐽∑︁
𝑖, 𝑗=1

�̂�
(𝑖)
𝑛+1(𝑆𝑛)𝑖 𝑗

holds in addition to (2.81) with 𝑍𝑛 replaced by 𝑆𝑛.

Remark 2.19. Formulation (2.83) has a number of attractive features. First, it
clearly reveals that the analysis {𝑣( 𝑗)

𝑛+1} 𝑗∈J lies in the span of the space spanned
by the predictions {�̂�( 𝑗)

𝑛+1} 𝑗∈J, which is relevant whenever 𝐽 < 𝑑𝑣 . Second, all
particle implementations of the ensemble Kalman filter and many of its extensions
can be put into the framework (2.83) with the (possibly random) matrix 𝑆𝑛 chosen
appropriately. Third, it encodes a coupling between the prediction {�̂�( 𝑗)

𝑛+1} 𝑗∈J and
the analysis {𝑣( 𝑗)

𝑛+1} 𝑗∈J at the level of their associated empirical measures 𝜇J
𝑛 and

𝜇J
𝑛, respectively. See the following bibliographical section for more details.

2.7. Bibliographical notes

Ideas from feedback control underlie the material in Section 2.2, addressing Ob-
jective 1. Control theory is an enormous subject in its own right and we cannot
do justice to it in this paper. For the study of linear control theory, as illustrated
in Example 2.2, see Åström and Murray (2021) and Sontag (2013) for engineering
and mathematical treatments respectively. For the control-theoretic approach to
the state estimation problem see Luenberger (1964, 1971).

Our study of control-theoretic methods has focused on 3DVAR. Recent analysis
of the 3DVAR method rests heavily on ideas arising from determining modes for
dissipative evolution equations, an idea with roots in the paper by Foias and Prodi
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(1967) and unified in the book by Temam (2012). The use of these ideas in data
assimilation was introduced in Olson and Titi (2003) and developed further in
Hayden, Olson and Titi (2011) and Foias, Mondaini and Titi (2016). The papers
of Law and Stuart (2012), Law, Shukla and Stuart (2014), Law, Sanz-Alonso,
Shukla and Stuart (2016a) and Sanz-Alonso and Stuart (2015) essentially establish
the stability of these deterministic results to small noise perturbations; see also
Moodey, Lawless, Potthast and van Leeuwen (2013) for related analysis. In the
context of using observations to control the instability of chaotic systems, all of
this work may be seen as building on the study of synchronization by Pecora and
Carroll (1990), reviewed in Ashwin (2003).

In Section 2.3 we introduce the probabilistic approach to filtering, addressing
Objective 2. In low-dimensional systems, particle filters provide a flexible and
efficient tool for attacking probabilistic filtering; see Doucet et al. (2001). However,
in this paper our focus is on high-dimensional problems and Kalman-based methods
specifically. The books by Reich and Cotter (2015), Asch, Bocquet and Nodet
(2016), Law, Stuart and Zygalakis (2015), Harlim and Majda (2010), Abarbanel
(2013) and Evensen, Vossepoel and van Leeuwen (2022) provide overviews of a
variety of filtering methods, and ensemble Kalman methods from Section 2.6 in
particular.

The Kalman filter (Kalman 1960) from Example 2.6 led to arguably the first
systematic analysis of an algorithm for incorporation of discrete-time data into
estimation of a discrete-time stochastic dynamical system; it applies only to linear
Gaussian systems. The monograph by Jazwinski (2007) provides an introduction to
nonlinear filtering in both discrete and continuous time; in particular, it discusses
the extended Kalman filter (ExKF), found by applying the Kalman filter to a
linearization of the state and data dynamics. However, the ExKF does not work
well in high dimensions (Ghil et al. 1981), motivating the use of mean-field maps,
as introduced in Section 2.5, and the ensemble-based methods from Section 2.6
which approximate them. The approximation of mean-field maps by interacting
particle systems is reviewed in Sznitman (1991).

We refer the reader to the excellent monographs by Asch et al. (2016) and Evensen
et al. (2022), which emphasize important implementation details not covered in
this paper, relating to these ensemble Kalman methods; these include techniques
such as inflation and localization that are central to the success of these methods in
high dimensions. We also refer to Vetra-Carvalho et al. (2018) for a comprehensive
review of the algorithmic details of ensemble Kalman methods. Here we point to
two implementation details that are of particular practical importance. The first
concerns the use of ensemble square root filters from Section 2.6.3. The matrix
𝑍𝑛 in (2.81) is not uniquely defined by the requirement 𝑉𝑛+1𝑉

⊤
𝑛+1 = 𝐶𝑛+1. Formula

(2.82) constitutes one possible choice, which leads to a symmetric 𝑍𝑛. See Livings,
Dance and Nichols (2008) for more details. Second, finite particle implementations
of the stochastic EnKF from Section 2.6.2 entail that the random realizations
�̂�

( 𝑗)
𝑛+1 appear in the Kalman gain 𝐾𝑛 as well as in the innovation term in (2.71c).
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As first observed by Houtekamer and Mitchell (2005), this leads to a systematic
underestimation of the ensemble spread, which vanishes in the 𝐽 → ∞ limit, but
can affect the performance of the EnKF for small particle sizes. In Section 5.6
we will highlight the same effect when discussing finite particle implementations
(Nüsken and Reich 2019, Garbuno-Inigo, Nüsken and Reich 2020b) of the ensemble
Kalman sampler for Bayesian inversion, based on the mean-field model proposed
in Garbuno-Inigo, Hoffmann, Li and Stuart (2020a).

Particle-based extensions of the classical Kalman filter to nonlinear filtering
problems include the unscented Kalman filter and the ensemble Kalman filter.
While this paper focuses primarily on ensemble Kalman filter techniques, the
unscented Kalman filter is an approach based on application of quadrature to the
Gaussian projected filter from Section 2.4; see Julier, Uhlmann and Durrant-Whyte
(2000) as well as Särkkä and Svensson (2023). A discussion and evaluation in the
context of ensemble square root filters may be found in Wang, Bishop and Julier
(2004).

Much of the development of ensemble Kalman methods reflects the historical
roots of the subject in the geophysical sciences, the atmosphere-ocean sciences
in particular, including Lagrangian data assimilation, and in the modelling of
subsurface flow (Burgers et al. 1998, Houtekamer and Mitchell 1998, Anderson
2001, Bishop et al. 2001, Whitaker and Hamill 2002, Tippett et al. 2003, Hunt
et al. 2007, Li and Reynolds 2009, Sakov et al. 2012, Bocquet and Sakov 2014,
Evensen 2019, Bocquet and Sakov 2012, Bocquet et al. 2017, Gurumoorthy et al.
2017, Sampson, Carrassi, Aydoğdu and Jones 2021, Kuznetsov, Ide and Jones
2003, Salman, Kuznetsov, Jones and Ide 2006). We also mention the randomized
maximum likelihood (RML) approach to Bayesian inference, which is closely
related to the analysis step of a stochastic EnKF and was also developed primarily
through application in the geophysical sciences (Kitanidis 1995, Oliver, Cunha and
Reynolds 1997, Oliver, Reynolds and Liu 2008).

There is also a body of literature concerning the analysis and development of
ensemble methods with an emphasis on applications in complex and turbulent
flows: Grooms, Lee and Majda (2014, 2015), Robinson, Grooms and Kleiber
(2018), Lee, Majda and Qi (2017), Gottwald and Majda (2013), Kelly, Majda
and Tong (2015), Tong, Majda and Kelly (2016a,b), Kelly et al. (2015), Harlim,
Mahdi and Majda (2014), Majda and Tong (2018), Fertig, Harlim and Hunt (2007)
and Harlim and Hunt (2007a,b). The conceptual fluid dynamics models of Lorenz
(1996) (often referred to, collectively, as Lorenz ’96 models) have been particularly
influential in germinating this body of work, and we use them exclusively in our
illustrative Examples 2.3, 2.16, 2.5, 4.23 and B.1. Furthermore, we will make use
of the relationship between the multiscale and single-scale version of the model as
developed in Fatkullin and Vanden-Eijnden (2004).

Recently ensemble Kalman methods have been developed for potential use in
machine learning (Haber, Lucka and Ruthotto 2018, Kovachki and Stuart 2019,
Guth, Schillings and Weissmann 2022, Grooms 2021, Gottwald and Reich 2021,
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Yang and Grooms 2021, Pidstrigach and Reich 2023); see also Bocquet et al.
(2017) and Chen, Sanz-Alonso and Willett (2022b) for research at the intersection
of machine learning with ensemble Kalman methodology.

In this survey we started with mean-field equations, in Section 2.5, and then
discretized the mean-field limit using 𝐽 particles in subsequent subsections. It
is of interest to demonstrate that the discrete formulations which arise actually
converge to the mean-field equations in the 𝐽 → ∞ limit. This has indeed been
established for the ensemble Kalman filter when applied in the linear Gaussian
setting in which the mean-field limit exactly recovers the filtering distribution (Le
Gland, Monbet and Tran 2011, Mandel, Cobb and Beezley 2011, Kwiatkowski and
Mandel 2015) and indeed some of these results also apply in the nonlinear setting.
In the continuous-time setting, long-time error estimates, exploiting ergodicity
of the Kalman–Bucy filter itself and propagation of chaos ideas to extend to the
ensemble Kalman approximations, are developed in Del Moral and Tugaut (2018);
see Section 3.7 for further details concerning continuous time. Law, Tembine and
Tempone (2016b) have studied related work concerning the mean-field limit of
ensemble Kalman methods in the context of non-Gaussian problems. Ding, Li
and Lu (2021) and Ding and Li (2021a,b) studied particle approximation of mean-
field limits beyond the Gaussian setting, primarily in the context of the solution
of inverse problems; see the discussion in Section 5.6. Hoel, Law and Tempone
(2016) and Chernov et al. (2021) studied the use of multilevel approximation of
the mean-field limit, coupling ensemble approximations at different levels of space
or time discretization.

In Section 2.5.3 we introduce the idea of second-order transport: approximations
of the perfect transport maps that effect filtering. The non-uniqueness of second-
order transport maps is studied in continuous time, for linear Gaussian stochastic
differential equations, in Taghvaei and Mehta (2020); this work is closely related to
our analysis in the first two subsections of Appendix C. Non-Gaussian extensions
are discussed in Taghvaei and Hosseini (2022). We also highlight that it is possible
to construct second-order transport maps𝑇 , which satisfy conditions different from
(2.51b) and (2.57b), respectively. For example, one could request that

G
(
(𝑇𝑆

𝑛 )♯𝜋
)
= GB𝑛(𝜋).

This approximation has been utilized by Lei and Bickel (2011). The analogous
deterministic approach has been put forward by Tödter and Ahrens (2015) and
has been explored further, for example, in Acevedo, de Wiljes and Reich (2017).
Alternatively, one can also replace the definition (2.37) of the Gaussian projection
operator 𝐺. To this end, recall that the Kullback–Leibler divergence between
probability measures 𝜋1 and 𝜋2 on R𝑑 is defined as

𝑑KL(𝜋1 | |𝜋2) =
∫

𝜋1(𝑑𝑢) log
d𝜋1
d𝜋2

(𝑢);
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in particular, it is not symmetric in its two arguments. Gaussian variational infer-
ence (Bishop 2011) is, for example, based on the definition

G𝜇 = argmin𝜋∈𝔊𝑑KL(𝜋 | |𝜇) (2.84)

in place of (2.37); note, however, that the minimizer of (2.84) may not be unique,
whilst the minimizer of (2.37) is always unique.

While we follow the moment matching perspective on the derivation of en-
semble Kalman filter methods in this survey, we mention in passing that there is
an alternative perspective based on linear minimum variance estimators. See van
Leeuwen (2020) in the context of the stochastic ensemble Kalman filter, and Ap-
pendix C.3 as well as Lei and Bickel (2011) for nonlinear extensions. The Bayes
linear methodology is an alternative approach of interest (Goldstein and Wooff
2007).

Even in the mean-field limit 𝐽 → ∞, the ensemble Kalman filter provides
approximations only to approximate transport-based filters. They are only exact
in the linear Gaussian setting (Le Gland et al. 2011); recent works develop new
tools of analysis to extend this to nonlinear filtering problems that are close to
Gaussian (Carrillo, Hoffmann, Stuart and Vaes 2024, Calvello, Monmarché, Stuart
and Vaes 2024). As mentioned in Section 1.1, sequential Monte Carlo methods
can be designed to be consistent with the underlying nonlinear filtering problem,
as defined, for example, by perfect transport-based filters. Foundational analysis
of these particle methods is undertaken in Crisan, Del Moral and Lyons (1999)
and Del Moral (2004); but we reiterate that, in contrast to ensemble Kalman-based
methods, they do not scale well to high dimensions. We also point to Del Moral,
Doucet and Jasra (2006) for an application of the sequential Monte Carlo method
to Bayesian inference problems; the approach therein is closely related to iterative
implementations of the EnKF that were subsequently developed in Li and Reynolds
(2009), Gu and Oliver (2007) and Sakov et al. (2012).

Despite only providing approximations to the exact filtering distribution, i.e. from
the perspective of Objective 2, accuracy and stability results for the ensemble Kal-
man filter, viewed as a state estimator and hence from the perspective of Objective 1,
have been derived. See, for example, González-Tokman and Hunt (2013), Kelly,
Law and Stuart (2014), Tong et al. (2016a,b) and Del Moral and Horton (2023).
Mechanisms for finite-time filter divergence have also been identified (Gottwald
and Majda 2013, Kelly et al. 2015).

Extending the ensemble Kalman filter to strongly nonlinear and high-dimensional
state estimation problems constitute an area of active ongoing research. The cur-
rent state of the art has been summarized in van Leeuwen et al. (2019) in the
context of high-dimensional geophysical applications. Extensions of the transport
framework (2.47), which build on approximating the perfect transport maps 𝑇𝐷 in
(2.47b) in an asymptotically consistent manner, include the work by Reich (2013),
Cheng and Reich (2015), Spantini et al. (2022) and Zech and Marzouk (2022).
In an alternative line of research there have been several proposals to construct
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hybrid methods, which aim to adaptively bridge between the ensemble Kalman and
particle filters, including the work by Stordal et al. (2011), Frei and Künsch (2013),
Chustagulprom, Reich and Reinhardt (2016) and Nerger (2022).

In this context, the transformation formula (2.83) proves to be rather useful since
most existing particle-based methods can be covered by appropriate choices of 𝑆𝑛,
where 𝑆𝑛 is typically the realization of a random matrix. See Reich and Cotter
(2015) for more details. For example, a resampling step in a sequential Monte
Carlo method gives rise to a matrix 𝑆𝑛 with a single non-zero entry equal to one in
each of its columns. More generally it holds that, for all 𝑗 ∈ J,∑︁

𝑖∈J
(𝑆𝑛)𝑖 𝑗 = 1.

In particular, the matrix 𝑆𝑛 can be chosen to correspond to an optimal coupling
between two discrete random variables (Reich 2013), which builds a link between
filtering and optimal transport also explored in Corenflos, Thornton, Deligiannidis
and Doucet (2021). The subject of optimal transport is given a comprehensive
treatment in Villani (2008); see also Villani (2021). Computational aspects of
the subject including entropy-regularized optimal transport are discussed in Cu-
turi (2013) and Peyré and Cuturi (2019). Entropy-regularization is linked to the
Schrödinger bridge problem, and connections with data assimilation are developed
in Reich (2019). See also Section 1.1 for discussion of transport-based methodolo-
gies within the context of ensemble Kalman methods. See Example C.7 and Reich
and Cotter (2015) for the connection between the map (2.67) and optimal transport.
For a derivation of the standard formulae for mean and covariance of conditioned
Gaussians used in the proof of Lemma 2.9, see Eaton (2007).

Finally we observe that we do not discuss, in this paper, the smoothing approach
to state estimation from data in model (2.1). This approach aims at finding the entire
sequence {𝑣ℓ}𝑛ℓ=0 from the data 𝑌†

𝑛 . Thus state estimates depend on data in their
future. To read about smoothing, see Evensen et al. (2022) and Sanz-Alonso, Stuart
and Taeb (2023). We note here that there is a smoothing counterpart of the 3DVAR
algorithm (see Remark 2.1) known as 4DVAR because, for physical systems, it uses
data distributed in the three space dimensions and one time dimension.

3. State estimation: continuous time
This section is devoted to deriving, and studying properties of, continuous-time
analogues of concepts introduced in the previous Section 2. We start in Section 3.1
by defining the set-up. Thereafter the subsections mirror those from Section 2,
describing the relevant continuous-time analogues; in particular, we conclude in
Section 3.7 with bibliographical notes.

All problems arising in practice are implemented as algorithms in discrete time,
so it is important to establish motivation for the continuous-time formulations.
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There are two primary reasons for introducing them. The first is that continuous-
time limits of the discrete algorithms provide a way to understand and interpret
the behaviour of the discrete algorithms; results about accuracy, stability and
uncertainty quantification, which shed light on the relative merits of different
algorithmic approaches, are often cleanest in the continuous-time setting. The
second is that many problems arising in practice involve physical processes which
evolve in continuous time; the data informing these models is typically discrete in
time, but when the observations take place at very high frequency, it is insightful
to consider the idealization of continuous-time data. Both of these motivations
underlie the developments in this section.

3.1. Set-up

We start by recalling the discrete-time set-up (2.1) for state-observation coevolution:
for all 𝑛 ∈ Z+ we have

𝑣𝑛+1 = Ψ(𝑣𝑛) + 𝜉𝑛,
𝑦𝑛+1 = ℎ(𝑣𝑛+1) + 𝜂𝑛+1;

we assume that 𝑣0, {𝜉𝑛}𝑛∈Z+ and {𝜂𝑛}𝑛∈N are mutually independent Gaussians
defined by

𝑣0 ∼ N(𝑚0, 𝐶0), 𝜉𝑛 ∼ N(0, Σ) i.i.d., 𝜂𝑛 ∼ N(0, Γ) i.i.d.

We introduce a small increment in time, denoted byΔ𝑡. From the map Ψ(·) defining
the systematic component of the state dynamics, we now define an infinitesimal
analogue 𝑓 (·). We also introduce the rescaled observation operators h(·) from the
original nonlinear observation operator ℎ(·), and we introduce state/observational
covariances (Γ, Σ) by rescaling (Γ, Σ):

Ψ(𝑣) = 𝑣 + Δ𝑡 𝑓 (𝑣), ℎ(𝑣) = Δ𝑡h(𝑣), (3.1a)
Σ = Δ𝑡Σ, Γ = Δ𝑡Γ. (3.1b)

By virtue of our assumptions on Ψ and ℎ, functions 𝑓 and h are assumed to
be known measurable functions (with respect to the Borel algebra), bounded on
compact sets. In the linear setting Ψ(·) = 𝑀 ·, ℎ(·) = 𝐻· we will also introduce an
infinitesimal vector field 𝑓 (·) = 𝐹· for matrix 𝐹, and rescaled linear observation
operator H:12

𝑀 = I + Δ𝑡𝐹, 𝐻 = Δ𝑡H. (3.2)

The observation {𝑦𝑛} is best thought of, in the scalings we introduce, as capturing
increments of a process {𝑧𝑛}. To capture this, and extend it to the specific realiz-
ation of the data appearing in the algorithms, and the artificial data used in some

12 Note the difference, conceptual and notational, between the discrete-time objects (ℎ(·), 𝐻, Γ, Σ)
and the related continuous-time objects (h(·),H, Γ, Σ).
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algorithms, we introduce the variables 𝑧𝑛, 𝑧†𝑛, �̂�𝑛 by assuming that

𝑦𝑛+1 ≔ 𝑧𝑛+1 − 𝑧𝑛 = Δ𝑧𝑛+1, (3.3a)

𝑦
†
𝑛+1 ≔ 𝑧

†
𝑛+1 − 𝑧

†
𝑛 = Δ𝑧

†
𝑛+1, (3.3b)

�̂�𝑛+1 ≔ �̂�𝑛+1 − �̂�𝑛 = Δ�̂�𝑛+1. (3.3c)

Note that 𝑧𝑛, 𝑧†𝑛, �̂�𝑛 have dimension 𝑑𝑧 = 𝑑𝑦 . We assume that 𝑧0 = 𝑧
†
0 = �̂�0 = 0.

Then 𝑧𝑛, 𝑧†𝑛, �̂�𝑛 are uniquely defined from 𝑦𝑛, 𝑦†𝑛, �̂�𝑛, respectively.
In the following we define 𝑡𝑛 = 𝑛Δ𝑡. With the scalings above in hand, we may

view the state 𝑣𝑛 and observation 𝑦𝑛 as relating to approximations of continuous-
time processes 𝑣(·) and 𝑧(·): 𝑣𝑛 ≈ 𝑣(𝑡𝑛), 𝑧𝑛 ≈ 𝑧(𝑡𝑛). We also introduce continuous-
time process �̂�(·), which will be used in the prediction steps of algorithms, and(
𝑧†(·), �̂�(·)

)
, which denotes the continuous-time observed data that we are condition-

ing on, and predicted data, respectively. We assume that 𝑧(0) = 𝑧†(0) = �̂�(0) = 0.
Under the rescalings above, and in the limit Δ𝑡 → 0, the data assimilation prob-
lem may be reformulated in terms of SDEs. Furthermore, the related mappings
on measures, and discrete-time algorithms that stem from them, may be reformu-
lated in terms of SPDEs and SDEs respectively; we now go on to identify these
continuous-time stochastic processes.

Applying the rescalings in (3.1) and the reparametrization of 𝑦𝑛+1 in (3.3a), we
obtain the system

𝑣𝑛+1 = 𝑣𝑛 + Δ𝑡 𝑓 (𝑣𝑛) + 𝜉𝑛, (3.4a)
𝑧𝑛+1 = 𝑧𝑛 + Δ𝑡h(𝑣𝑛+1) + 𝜂𝑛+1, (3.4b)

for all 𝑛 ∈ Z+, where we assume that 𝑣0, {𝜉𝑛}𝑛∈Z+ and {𝜂𝑛}𝑛∈N are mutually
independent Gaussians defined by

𝑣0 ∼ N(𝑚0, 𝐶0), 𝜉𝑛 ∼ N(0,Δ𝑡Σ) i.i.d., 𝜂𝑛 ∼ N(0,Δ𝑡Γ) i.i.d.

Note that (3.4) is a variant on the Euler–Maruyama discretization of a vector-valued
SDE. Indeed, by taking the Δ𝑡 → 0 limit it is clear that the natural continuous-time
analogue of equations (2.1) is the SDE

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊, 𝑣0 ∼ N(𝑚0, 𝐶0),

d𝑧 = h(𝑣) d𝑡 +
√

Γ d𝐵, 𝑧(0) = 0,

(3.5a)

(3.5b)

taken to hold for all 𝑡 ∈ R+. The vector fields 𝑓 (·) and h(·) describe the system-
atic, deterministic components of the dynamics and observation processes and are
assumed to be known. The systematic components of the model are subjected to
white noise defined through the independent standard Brownian motions 𝑊 and
𝐵, in R𝑑𝑣 and R𝑑𝑧 respectively, and correlated across the state and data spaces via
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the covariances Σ, Γ. The initial condition for 𝑣 is Gaussian and independent of𝑊
and 𝐵. Analogous to the discrete-time setting, we assume that

𝐶0 ⪰ 0, Σ ⪰ 0, Γ ≻ 0. (3.6)

Note that, for each fixed 𝑡 ∈ R+, the state 𝑣(𝑡) ∈ R𝑑𝑣 and the observations 𝑧(𝑡) ∈ R𝑑𝑧 .
Throughout we use † again to denote a specific realization of a process, as in

the discrete-time setting. We assume that we have available to us a sample path
{𝑧†(𝑡)}𝑡∈R+ of the observation coordinates of a realization of the SDE (3.5). From
this sample path we wish to recover the true realization of the state {𝑣†(𝑡)}𝑡∈R+
which gave rise to it. These observation and state sample paths are generated by
𝑣
†
0, {𝑊

†}𝑡∈R+ and {𝐵†}𝑡∈R+ , specific realizations of the initial condition and the
Brownian motions driving the state and observation components of (3.5). We also
introduce 𝑍†(𝑡) = {𝑧†(𝑠)}0≤𝑠≤𝑡 .

Analogously to the discrete-time setting, it is natural to establish two distinct
objectives, both related to recovery of the state from the observation.

Objective 1. Design an algorithm that produces output 𝑣(𝑡) from 𝑍†(𝑡) so that
{𝑣(𝑡)}𝑡∈R+ estimates {𝑣†(𝑡)}𝑡∈R+ , the true signal generated by (3.5a).

Objective 2. Design an algorithm which estimates the distribution of random vari-
able 𝑣(𝑡)|𝑍†(𝑡), the conditional distribution defined by (3.5).

As in discrete time, we are interested in Markovian formulations that update the
estimate 𝑣(𝑡), or the distribution 𝑣(𝑡)|𝑍†(𝑡), sequentially as the data is acquired. All
of the algorithms we describe depend only on the increments of the process 𝑧†(𝑡),
hence the fixing of 𝑧†(0) = 0 is immaterial. In the next two subsections we describe
control-theoretic and probabilistic approaches to this problem which, respectively,
provide the basis for algorithms addressing Objectives 1 and 2. Following the
road map from the previous section in the discrete-time setting, we then proceed
to study exact transport leading to mean-field equations related to Objective 2;
we then study second-order approximations of exact transport, and finally reach
ensemble Kalman methods through particle approximations.

3.2. Control theory perspective

As for the time-discrete problem, we again start with the control-theoretic approach
based on the small uncertainty assumption. Specifically we assume that the three
covariances appearing in (3.6) are small so that the states and observations can be
well approximated as deterministic. In this setting we derive a continuous-time
analogue of the 3DVAR methodology.

Applying the rescalings (3.1) to (2.3) we obtain, in the deterministic setting,

�̂�𝑛+1 = 𝑣𝑛 + Δ𝑡 𝑓 (𝑣𝑛), (3.7a)
�̂�𝑛+1 = �̂�𝑛 + Δ𝑡h(̂𝑣𝑛+1), (3.7b)

𝑣𝑛+1 = �̂�𝑛+1 + 𝐾
(
Δ𝑧

†
𝑛+1 − Δ�̂�𝑛+1

)
. (3.7c)
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The observed increments Δ𝑧
†
𝑛+1 are defined in (3.3b), and are derived from a

specific fixed realization of (3.5). For fixed observed increments Δ𝑧†
𝑛+1, equations

(3.7) define a deterministic map 𝑣𝑛 ↦→ 𝑣𝑛+1. Taking the continuous-time limit, and
eliminating �̂�, we obtain the following estimator 𝑣 for 𝑣† given 𝑍†,

d𝑣 = 𝑓 (𝑣) d𝑡 + 𝐾(d𝑧† − h(𝑣) d𝑡), (3.8)

where 𝑧† (the data) is obtained from a specific fixed realization of (3.5):

d𝑣† = 𝑓 (𝑣†) d𝑡 +
√

Σ d𝑊†, 𝑣†(0) ∼ N(𝑚0, 𝐶0), (3.9a)

d𝑧† = h(𝑣†) d𝑡 +
√

Γ d𝐵†, 𝑧†(0) = 0. (3.9b)

Equation (3.8) defines a continuous-time analogue of the 3DVAR algorithm (2.4)
and gain matrix 𝐾 should be viewed as a parameter to be chosen. The equation
has the form of a controlled ordinary differential equation (ODE); typically it is
initialized with 𝑣(0) ∼ N(𝑚0, 𝐶0).

We now include the effect of uncertainty, allowing for non-zero covariances in
(3.6). Accounting for noise in the expressions for �̂�𝑛+1 and �̂�𝑛+1 in (3.7), we obtain
the following rescaling of (2.15):

�̂�𝑛+1 = 𝑣𝑛 + Δ𝑡 𝑓 (𝑣𝑛) + 𝜉𝑛,
�̂�𝑛+1 = �̂�𝑛 + Δ𝑡h(̂𝑣𝑛+1) + 𝜂𝑛+1,

𝑣𝑛+1 = �̂�𝑛+1 + 𝐾𝑛

(
Δ𝑧

†
𝑛+1 − Δ�̂�𝑛+1

)
,

for all 𝑛 ∈ Z+, where we assume 𝑣0, {𝜉𝑛}𝑛∈Z+ and {𝜂𝑛}𝑛∈N are mutually independ-
ent Gaussians defined by (3.1). We may now formally take the Δ𝑡 → 0 limit and
obtain the following continuous-time analogue of (2.15), namely the controlled
SDE formulation

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + 𝐾(d𝑧† − d�̂�),

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵.

(3.10a)

(3.10b)

where 𝑧† is given by (3.9). The standard Brownian motions 𝑊,𝑊†, 𝐵 and 𝐵†,
in R𝑑𝑣 , R𝑑𝑣 , R𝑑𝑧 and R𝑑𝑧 respectively, are all independent of one another. As
in the discrete-time analogue, encapsulated in (2.15), the choice of a (now time-
dependent) gain matrix 𝐾 remains to be determined and is crucial for the success
of such a methodology; and as in discrete time, a time-evolving gain matrix is often
desirable. To determine 𝐾 we adopt a mean-field perspective, as we did in discrete
time. To this end we now discuss the evolution of probability measures describing
the conditional distribution of 𝑣(𝑡)|𝑍†(𝑡).
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3.3. Probabilistic perspective

We start, in Section 3.3.1, by discussing the unconditioned dynamics and intro-
ducing the Fokker–Planck equation associated with the state space evolution. In
Section 3.3.2 we take the formulation of the filtering iteration in discrete time, from
Section 2.3, and take a continuous-time limit to derive the Kushner–Stratonovich
equation; we study the linear Gaussian setting, and the Kalman–Bucy filter, as a
special case. In Section 3.3.3 we introduce the sample-path perspective, central to
the algorithmic approach developed in this paper. Section 3.3.4 defines notation
that will be useful throughout the remainder of this section on continuous-time data
assimilation.

The derivation of continuous-time limits in the previous two subsections is
relatively straightforward. However, there is an important practical and theoretical
issue which we need to address. As mentioned at the start of Section 3, continuous-
time observations 𝑧†(𝑡) are typically an idealization of discrete-time data collected
at instances 𝜏𝑘 = 𝑘𝛿, 𝛿 > 0, 𝑘 ∈ N only.13 In order to make use of continuous-time
algorithms and theory it is then useful to construct a continuous-time approximation
𝑧†, 𝛿; to be concrete we will use piecewise linear interpolation. With this set-up we
need to deal with two small parameters: the time-step Δ𝑡 used in (3.1) to obtain
a continuous-time limit, and the data sampling interval 𝛿. The following remark
addresses choices that we make in these notes about the manner in which we take
the limit (Δ𝑡, 𝛿) → 0.

Remark 3.1. There are results for continuous-time filtering which imply that
the desired limiting equation can be found in either Itô or Stratonovich forms by
considering different orders of the limitsΔ𝑡 → 0 and 𝛿 → 0; see the bibliographical
notes in Section 3.7. Many theoretical results are derived by first taking 𝛿 → 0 and
thenΔ𝑡 → 0. From a practical and theoretical perspective, however, it is sometimes
more convenient to first consider the limit Δ𝑡 → 0 followed by the limit 𝛿 → 0.
We will utilize the latter sequence of limits in the following subsection in order to
derive a set of evolution equations for the conditional probability measure 𝜇(𝑣, 𝑡)
solving Objective 2. These equations will in turn guide our choice of the gain
matrix 𝐾 in (3.10a). We emphasize that the choice about the order in which to take
the limits (Δ𝑡, 𝛿) → 0 is problem-dependent and should be considered carefully
whenever continuous-time modelling is employed.

When the data 𝑧† arises itself from numerical simulations of a continuous prob-
lem, then it is most convenient to set 𝛿 = Δ𝑡, and hence 𝜏𝑘 = 𝑡𝑘 ; this is implicitly
used in the derivation of the continuous-time sample-path equations in the two
preceding subsections.

13 Non-equally spaced data is also of relevance in this context, but we do not consider it here.
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3.3.1. Unconditioned dynamics
First consider the continuous-time limit of the evolution associated with P from
(2.18b), (2.18c) which, with the scaling adopted in this section, is defined by

(P𝜇)(d𝑣) =
(∫

𝑢∈R𝑑𝑣
𝑝(𝑢, 𝑣)𝜇(d𝑢)

)
d𝑣, (3.11a)

𝑝(𝑢, 𝑣) =
1

(2𝜋Δ𝑡)𝑑𝑣/2√det(Σ)
exp
(
− 1

2Δ𝑡
|𝑣 − 𝑢 − Δ𝑡 𝑓 (𝑢)|2Σ

)
. (3.11b)

Now view 𝑟𝑛 given by (2.18a) as approximating 𝑟(𝑡𝑛). Recall that the underlying
continuous-time limit of the sample-path evolution is given by the SDE (3.5a). Thus
the time evolution of the probability density 𝑟(·, 𝑡) is given by the Fokker–Planck
equation14

𝜕𝑡𝑟 = −∇ · (𝑟 𝑓 ) + 1
2
∇ · (∇ · (𝑟Σ)). (3.12)

Note that, as in discrete time, this evolution is linear and decoupled from the state
space evolution (3.5a). We refer to the latter as a continuous-time Markov process.

3.3.2. The filtering distribution
As in discrete time, we now consider the evolution equation for the state conditioned
on observations. Our starting point here is the iteration on measures, the filtering
cycle, defined by (2.24), under the scalings (3.1). We assume that 𝛿 is an integer
multiple of Δ𝑡 so that the {𝜏𝑘} are a subset of the {𝑡𝑛}. In what follows we will
first fix 𝛿 and let Δ𝑡 → 0; in order to obtain the integer multiple property we
thus consider Δ𝑡 → 0 along a subsequence. We replace the true observation path
𝑧†(𝑡) with its piecewise linear approximation 𝑧†, 𝛿(𝑡) based on linear interpolation
of values {𝑧†(𝜏𝑘)}. To be precise we assume that the derivative is càdlàg.15 We
then have that the implied observation increments Δ𝑧†

𝑛+1 are constant over the time
intervals [𝑡𝑛, 𝑡𝑛+1) and are given by

Δ𝑧
†
𝑛+1 =

d𝑧†, 𝛿

d𝑡
(𝑡𝑛)Δ𝑡. (3.13)

In this setting, the operators P and L𝑛, defined by (2.18) and (2.21), respectively,
become

(P𝜇)(d𝑣) =
(∫

𝑢∈R𝑑𝑣
𝑝(𝑢, 𝑣)𝜇(d𝑢)

)
d𝑣, (3.14a)

L𝑛(𝜇)(d𝑣) = 𝑞(𝑣,Δ𝑧†
𝑛+1)𝜇(d𝑣)

/(∫
R𝑑𝑣

𝑞
(
𝑣,Δ𝑧

†
𝑛+1
)
𝜇(d𝑣)

)
, (3.14b)

14 Here, and in what follows, we use the standard notation from continuum mechanics for the
divergence of vector and second-order tensor fields, and for the gradient of scalar and vector
fields; see Section 3.7 for references.

15 Continuous from the right, limits exist from the left.
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where, from (2.18) and (2.19) with the scalings (3.1),(3.3b),

𝑝(𝑢, 𝑣) =
1

(2𝜋Δ𝑡)𝑑𝑣/2√det(Σ)
exp
(
− 1

2Δ𝑡
|𝑣 − 𝑢 − Δ𝑡 𝑓 (𝑢)|2Σ

)
, (3.15a)

𝑞(𝑣,Δ𝑧) =
1

(2𝜋Δ𝑡)𝑑𝑦/2√det(Γ)
exp
(
− 1

2Δ𝑡
|Δ𝑧 − Δ𝑡h(𝑣)|2Γ

)
. (3.15b)

With these formulae in hand we may now derive the continuous-time analogue of
(2.24), for 𝜇(𝑣, 𝑡).

For ease of exposition we assume that 𝜇 has density 𝜌 and derive the equation
satisfied by 𝜌. To do this we employ the split-step principle: we find the continuous-
time evolution equation associated with each of P and L𝑛 (equations (3.14a) and
(3.14b) respectively) separately, and then add the right-hand sides of the resulting
evolution equations to obtain the desired continuous-time limit resulting from the
composition of L𝑛 and P . We use 𝑟 as a dummy variable to denote the density
being evolved, for both of the split-steps, and in both discrete (𝑟𝑛) and continuous
(𝑟(𝑡)) time, in what follows.

First recall that the continuous-time limit of the evolution associated with P ,
as defined by (3.14a) and (3.15a), is given by the Fokker–Planck equation (3.12).
Secondly, consider the second component of the split-step argument: we determine
a continuous-time limit of the evolution associated with L𝑛 as described by (3.14b)
and (3.15b). The following lemma presents an evolution equation for 𝑟 associated
with L𝑛, describing how observation of the piecewise continuous interpolated data
𝑧†, 𝛿(𝑡) changes the density 𝑟(𝑡, 𝑣).

Lemma 3.2. Assume that Γ ≻ 0. The continuous-time limit of the evolution
associated with L𝑛, as described by (3.14b) and (3.15b), is given by

𝜕𝑡𝑟 =

〈
h − Eh,

d𝑧†, 𝛿

d𝑡

〉
Γ
𝑟 − 1

2
{
|h|2Γ − E|h|2Γ

}
𝑟. (3.16)

^

Proof. Consider the discrete-time evolution

𝑟𝑛+1 = L𝑛𝑟𝑛, (3.17)

where L𝑛 is defined by (3.14b) and (3.15b). By Taylor expansion we have

exp
(
− 1

2Δ𝑡
��Δ𝑧†

𝑛+1 − Δ𝑡h(𝑣)
��2
Γ

)
= 1 − Δ𝑡

2

����Δ𝑧†𝑛+1
Δ𝑡

− h(𝑣)
����2
Γ
+𝑂(Δ𝑡2).

Then, using expressions (3.14b) and (3.15b), we obtain

(L𝑛𝑟𝑛)(𝑣) =
1

𝐶(Δ𝑡)

(
1 − Δ𝑡

2

����Δ𝑧†𝑛+1
Δ𝑡

− h(𝑣)
����2
Γ
+𝑂(Δ𝑡2)

)
𝑟𝑛(𝑣), (3.18)
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where

𝐶(Δ𝑡) =
∫
R𝑑𝑣

(
1 − Δ𝑡

2

����Δ𝑧†𝑛+1
Δ𝑡

− h(𝑣)
����2
Γ
+𝑂(Δ𝑡2)

)
𝑟𝑛(𝑣) d𝑣.

By integrating and noting that 𝑟𝑛 is a density, it follows that

𝐶(Δ𝑡) = 1 − Δ𝑡

2
E

����Δ𝑧†𝑛+1
Δ𝑡

− h(𝑣)
����2
Γ
+𝑂(Δ𝑡2), (3.19)

where expectation is with respect to 𝑣 distributed as random variable with density
𝑟𝑛. Hence, combining (3.18) and (3.17), we obtain, to leading order in Δ𝑡,

𝑟𝑛+1 = 𝑟𝑛

{
1 + Δ𝑡

〈
h − Eh,

d𝑧†, 𝛿

d𝑡

〉
Γ
− Δ𝑡

2
{
|h|2Γ − E|h|2Γ

}
+𝑂(Δ𝑡2)

}
;

here we have used that the data increments Δ𝑧†
𝑛+1 are given by (3.13) for fixed 𝛿.

Taking the continuous-time limit Δ𝑡 → 0 with fixed observation interval 𝛿 > 0
leads to the evolution equation (3.16).

Now taking the 𝛿 → 0 limit in (3.16), we obtain the following non-local nonlinear
stochastic evolution equation for density 𝑟(𝑣, 𝑡):

d𝑟 = ⟨h − Eh, ◦d𝑧†⟩Γ𝑟 −
1
2
{
|h|2Γ − E|h|2Γ

}
𝑟 d𝑡. (3.20)

Here ◦ denotes Stratonovich integration; this form of integration arises in the limit
𝛿 → 0 because the equation is derived by making a smooth approximation 𝑧†, 𝛿
of 𝑧† and passing to the limit. Recall that 𝑧† is given by (3.9). The equation is
non-local and nonlinear because E denotes expectation at time 𝑡 with respect to
density 𝑟(·, 𝑡).

We now wish to invoke the split-step principle and combine the evolutions (3.12)
and (3.20). However, before doing this we proceed to convert equation (3.20) into
its more common Itô representation. For this, the following lemma is crucial. In
proving it we will use the concepts of quadratic variation and covariation. For
an introduction to these concepts consult the lecture notes by Eberle, which are
referenced in Section 3.7. We note that quadratic variation and covariation are
first defined between scalar-valued process and can then be lifted to define (i) the
covariation of an inner product ⟨𝑥, 𝑦⟩ between vector processes 𝑥 and 𝑦, which
is scalar-valued, (ii) the quadratic variation of vector process 𝑥, which is matrix-
valued, and (iii) the covariation of vector process 𝑥 with scalar process 𝑧, which is
vector-valued.

Use of quadratic variation and covariation leads to a succinct, streamlined proof.
Furthermore, in Appendix D we provide explicit calculations for the reader who is
interested in understanding the details of the conversion by means of the definitions
of Itô and Stratonovich integrals as limits. In particular, the concepts underlying
the quadratic variation and covariation calculations in the following are derived
from first principles in Lemma D.1.
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Lemma 3.3. Assume that Γ ≻ 0 and that 𝑧† is given by (3.9). The Itô and
Stratonovich interpretations of the stochastic forcing term in (3.20) are related
through

d𝑟 = ⟨h − Eh, ◦d𝑧†⟩Γ𝑟 −
1
2
{
|h|2Γ − E|h|2Γ

}
𝑟 d𝑡

= ⟨h − Eh, d𝑧† − Eh d𝑡⟩Γ𝑟. ^

Proof. Using the formula for the Itô–Stratonovich conversion between two semi-
martingales, we have

⟨h − Eh, ◦d𝑧†⟩Γ𝑟 = ⟨h − Eh, d𝑧†⟩Γ𝑟 +
1
2

d
[
⟨(h − Eh)𝑟, 𝑧†⟩Γ

]
, (3.21)

where [⟨·, ·⟩] denotes covariation of the inner product ⟨·, ·⟩. Note that (3.9b) implies
that the quadratic variation of 𝑧† is given by the matrix identity [𝑧†, 𝑧†] = 𝑡Γ.
Furthermore, because of (3.20), the conversion formula (3.21) and the fact that
d[𝑧†, 𝑧†] = Γ d𝑡, it follows that the covariation between scalar 𝑟 and vector 𝑧†
satisfies the vector identity

d[𝑟, 𝑧†] = (h − Eh)𝑟 d𝑡. (3.22)

Consider 𝜓 : R → R𝑑𝑦 so that derivative 𝜓′(𝑟) may be identified with an element
in R𝑑𝑦 . Then, for any such differentiable 𝜓,

d[⟨𝜓(𝑟), 𝑧†⟩Γ] = ⟨𝜓′(𝑟), d[𝑟, 𝑧†]⟩Γ. (3.23)

We now apply this identity in the setting where 𝜓(𝑟) = (h − Eh)𝑟 , noting that 𝑟
defines the expectation in this definition. Thus

𝜓′(𝑟) 𝛿𝑟 = (h − Eh) 𝛿𝑟 −
(∫

h 𝛿𝑟 d𝑣
)
𝑟.

Hence the covariation in (3.21) satisfies, using (3.23) for the first equality and (3.22)
for the second equality,

d[⟨(h − Eh)𝑟, 𝑧†⟩Γ] = ⟨h − Eh, d[𝑟, 𝑧†]⟩Γ −
(∫

⟨h, d[𝑟, 𝑧†]⟩Γ d𝑣
)
𝑟

= |h − Eh|2Γ𝑟 d𝑡 − E
(
⟨h, h − Eh⟩Γ

)
𝑟 d𝑡

=
{
|h − Eh|2Γ − E|h − Eh|2Γ

}
𝑟 d𝑡.

Using this identity in (3.21) and rearranging, we find that

⟨h − Eh, ◦d𝑧†⟩Γ𝑟 −
1
2
{
|h|2Γ − E|h|2Γ

}
𝑟 d𝑡 = ⟨h − Eh, d𝑧† − Eh d𝑡⟩Γ𝑟,

which in turn leads to the following desired Itô representation of (3.20):

d𝑟 = ⟨h − Eh, d𝑧† − Eh d𝑡⟩Γ𝑟. (3.24)
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Using the Itô form of the equation from the preceding lemma, the Fokker–Planck
equation (3.12) and the split-step principle deliver the following.

Theorem 3.4. Assume that Γ ≻ 0 and that 𝑧† is given by (3.9). The time evolution
of the density 𝜌(·, 𝑡) for the random variable 𝑣(𝑡)|𝑍†(𝑡) is characterized by the Itô
SPDE

d𝜌 = −∇ · (𝜌 𝑓 ) d𝑡 + 1
2
∇ · (∇ · (𝜌Σ)) d𝑡 + ⟨h − Eh, d𝑧† − Eh d𝑡⟩Γ𝜌. (3.25)

^

Equation (3.25) is known as the Kushner–Stratonovich equation. Equation (3.25)
is to be interpreted in the Itô sense with respect to the driving noise 𝑧†(𝑡). The
equation is nonlinear, unlike the unconditioned dynamics governed by the Fokker–
Planck equation (3.12). The corresponding Stratonovich formulation follows im-
mediately from (3.20) in combination with (3.12):

d𝜌 =

(
−∇ · (𝜌 𝑓 ) + 1

2
∇ · (∇ · (𝜌Σ)) − 1

2
{
|h|2Γ − E|h|2Γ

}
𝜌

)
d𝑡 (3.26a)

+ ⟨h − Eh, ◦d𝑧†⟩Γ𝜌. (3.26b)

Example 3.5. We consider the setting where

𝑓 (·) = 𝐹 ·, h(·) = H· (3.27)

in equations (3.5) so that

d𝑣 = 𝐹𝑣 d𝑡 +
√

Σ d𝑊, 𝑣(0) ∼ N(𝑚0, 𝐶0),

d𝑧 = H𝑣 d𝑡 +
√

Γ d𝐵, 𝑧(0) = 0.

(3.28a)

(3.28b)

Now consider data 𝑧†(𝑡) generated by

d𝑣† = 𝐹𝑣† d𝑡 +
√

Σ d𝑊†, 𝑣†(0) ∼ N(𝑚0, 𝐶0), (3.29a)

d𝑧† = H𝑣† d𝑡 +
√

Γ d𝐵†, 𝑧†(0) = 0. (3.29b)

We are interested in the filtering distribution for 𝑣(𝑡)|𝑍†(𝑡).
Because of the linearity and additive Gaussian noise, this filtering distribution

is Gaussian and is given by the Kalman–Bucy filter, the continuous-time analogue
of the Kalman filter described in Example 2.6. Indeed, if Γ ≻ 0 in (3.28), then
the density 𝜌(·, 𝑡) associated with the random variable 𝑣(𝑡)|𝑍†(𝑡), with 𝑧† given by
(3.29), is Gaussian with mean 𝑚(·) and covariance 𝐶(·) given by

d𝑚 = 𝐹𝑚 d𝑡 + 𝐶H⊤Γ−1(d𝑧† − H𝑚 d𝑡), 𝑚(0) = 𝑚0,

d𝐶 = 𝐹𝐶 d𝑡 + 𝐶𝐹⊤ d𝑡 + Σ d𝑡 − 𝐶H⊤Γ−1H𝐶 d𝑡, 𝐶(0) = 𝐶0.

(3.30a)
(3.30b)
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These equations for the mean and covariance of the Kalman–Bucy filter may be
obtained by taking the continuous-time limit of the Kalman filter from Example 2.6
under the scalings (3.1b), (3.2) and (3.3b).

The Kalman–Bucy filter also yields an exact solution of the Kushner–Stratonovich
equation (3.25) under (3.27). Indeed, if 𝜌(·, 0) is initialized at the Gaussian with
mean 𝑚0 and covariance𝐶0 then 𝜌(·, 𝑡) solving the Kushner–Stratonovich equation
(3.25) has solution given by the Gaussian N

(
𝑚(𝑡), 𝐶(𝑡)

)
.

3.3.3. The sample-path perspective
Similarly to the discrete-time setting, a key idea in developing algorithms for filter-
ing in continuous time is the sample-path perspective. We will seek to identify (for
implementable algorithms only approximately) mean-field SDEs with the property
that their solution 𝑣(𝑡), has Law(𝑣(𝑡)) equal to that given by the density 𝑟 governed
by the Kushner–Stratonovich equation (3.25). Analogously to discrete time, the
mean-field SDEs will couple to the solution of the equation for evolution of the
density; the resulting processes are termed nonlinear Markov processes. We will
first introduce Gaussian projected filters and then discuss mean-field models de-
rived through the sample-path perspective. To these ends we now introduce some
important notational conventions.

3.3.4. Important frequently used notation
The notation we define here is used primarily to discuss exact (and approximate)
mean-field models, here evolving in continuous time, to (approximately) solve the
filtering problem. In discrete time, expectations may be taken under the law of
the (possibly approximate) discretely evolving mean-field model, or under the pre-
dictive distribution found from pushing this law forward under the model. This
distinction disappears in continuous time, and we simply need to compute expect-
ations under the (possibly approximate) continuously evolving mean-field models
that we will introduce later. To this end we define, with 𝑚 ≔ E𝑣,

𝐶 ≔ E((𝑣 − 𝑚) ⊗ (𝑣 − 𝑚)),
𝐶𝑣 𝑓 ≔ E((𝑣 − 𝑚) ⊗ ( 𝑓 (𝑣) − E 𝑓 (𝑣))),
𝐶𝑣h ≔ E((𝑣 − 𝑚) ⊗ (h(𝑣) − Eh(𝑣))).

(3.31a)
(3.31b)
(3.31c)

All expectations are under the mean-field model for 𝑣. The covariances should be
viewed as functions of time 𝑡. In deriving continuous-time models from discrete-
time models, we will also use discrete-time analogues, computed under the law of
random variable 𝑣𝑛 and denoted by 𝐶𝑛, 𝐶

𝑣 𝑓
𝑛 and 𝐶𝑣h

𝑛 .

3.4. Gaussian projected filtering distribution

As in discrete time, the Gaussian projected filtering distribution plays an important
conceptual role in understanding later filtering algorithms. The evolution equations
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for the mean 𝑚 and the covariance matrix 𝐶 follow naturally from a continuous-
time limit of the associated discrete-time filtering formulations. We summarize the
resulting equations in the following.

Theorem 3.6. Assume that Γ ≻ 0, and that 𝑧† is given by (3.9). Consider
the discrete-time Gaussian projected filter, namely the map from (𝑚𝑛, 𝐶𝑛) to
(𝑚𝑛+1, 𝐶𝑛+1) defined by choosing 𝑣𝑛 ∼ N(𝑚𝑛, 𝐶𝑛) and then using (2.29), (2.32),
(2.35) and (2.42). Under the rescalings (3.1), and in the limit Δ𝑡 → 0, we obtain
the following continuous-time limit of this map:

d𝑚 = E 𝑓 (𝑣) d𝑡 + 𝐶𝑣hΓ−1(d𝑧† − Eh(𝑣) d𝑡),
d𝐶 = 𝐶𝑣 𝑓 d𝑡 + (𝐶𝑣 𝑓 )⊤ d𝑡 + Σ d𝑡 − 𝐶𝑣hΓ−1(𝐶𝑣h)⊤ d𝑡,

(3.32a)
(3.32b)

where the expectations and covariances are computed under N
(
𝑚(𝑡), 𝐶(𝑡)

)
, using

(3.31). ^

Remark 3.7. Note that the preceding equation implicitly defines gain matrix

𝐾 = 𝐶𝑣hΓ−1. (3.33)

This specific choice of gain will play a central role in what follows.

Proof of Theorem 3.6. The Gaussian projected filter is defined by evolution of
mean and covariance given by equations (2.32), (2.35) and (2.42), repeated and
reordered here for convenience:

𝑚𝑛+1 = EΨ(𝑣𝑛),

𝐶𝑛+1 = E((Ψ(𝑣𝑛) − 𝑚𝑛+1) ⊗ (Ψ(𝑣𝑛) − 𝑚𝑛+1)) + Σ,

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1(
𝑦
†
𝑛+1 − Eℎ̂𝑛+1

)
,

𝐶𝑛+1 = 𝐶𝑛+1 − 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1(
𝐶𝑣ℎ
𝑛+1
)⊤
,

𝐶𝑣ℎ
𝑛+1 = E((̂𝑣𝑛+1 − E�̂�𝑛+1) ⊗ (ℎ̂𝑛+1 − Eℎ̂𝑛+1)),

𝐶ℎℎ
𝑛+1 = E((ℎ̂𝑛+1 − Eℎ̂𝑛+1) ⊗ (ℎ̂𝑛+1 − Eℎ̂𝑛+1)).

Recall that ℎ̂𝑛+1 ≔ ℎ(̂𝑣𝑛+1). Expectations in the prediction step are with respect
to the law of 𝑣𝑛 ∼ N(𝑚𝑛, 𝐶𝑛), and expectations in the analysis step are with
respect to the law of �̂�𝑛+1 given by (2.29a), assuming that 𝑣𝑛 ∼ N(𝑚𝑛, 𝐶𝑛); thus
Law(̂𝑣𝑛+1) = P Law(𝑣𝑛).

We now impose the rescalings (3.1) on these equations. The reader’s attention is
drawn to the fact that ℎ = Δ𝑡h when reading the next formula in order to understand
the scalings with Δ𝑡; a similar notational shift from regular font to mathsf occurs in
other formulae that follow it, and is crucial to understanding orders of magnitude
with respect to Δ𝑡. Under the rescalings and using that 𝜉𝑛+1 = 𝑂(Δ𝑡1/2) and has
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mean zero,

𝐶𝑣ℎ
𝑛+1 = Δ𝑡E((𝑣𝑛 − E𝑣𝑛 + 𝜉𝑛 +𝑂(Δ𝑡)) ⊗ (h(𝑣𝑛) − Eh(𝑣𝑛) + 𝐷h(𝑣𝑛)𝜉𝑛 +𝑂(Δ𝑡)))

= Δ𝑡E((𝑣𝑛 − E𝑣𝑛) ⊗ (h(𝑣𝑛) − Eh(𝑣𝑛))) +𝑂(Δ𝑡2)
= Δ𝑡𝐶𝑣h

𝑛 +𝑂(Δ𝑡2).

Similarly

𝐶ℎℎ
𝑛+1 = Δ𝑡2E

(
(h(𝑣𝑛) − Eh(𝑣𝑛) +𝑂(Δ𝑡1/2)) ⊗ (h(𝑣𝑛) − Eh(𝑣𝑛) +𝑂(Δ𝑡1/2))

)
= 𝑂(Δ𝑡2).

Thus, since Γ = Δ𝑡Γ,

𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1
= 𝐶𝑣h

𝑛 Γ−1 +𝑂(Δ𝑡), (3.34a)

𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1
𝐶𝑣ℎ
𝑛+1 = Δ𝑡𝐶𝑣h

𝑛 Γ−1(𝐶𝑣h
𝑛

)⊤ +𝑂(Δ𝑡2). (3.34b)

Furthermore, since Ψ(𝑣𝑛) = 𝑣𝑛 + Δ𝑡 𝑓 (𝑣𝑛) and 𝑚𝑛+1 = E𝑣𝑛 + Δ𝑡E 𝑓 (𝑣𝑛),

E((Ψ(𝑣𝑛) − 𝑚𝑛+1) ⊗ (Ψ(𝑣𝑛) − 𝑚𝑛+1)) = 𝐶𝑛 + Δ𝑡𝐶
𝑣 𝑓
𝑛 + Δ𝑡

(
𝐶

𝑣 𝑓
𝑛

)⊤ +𝑂(Δ𝑡2).

Using these approximations, and the fact that Δ𝑧†
𝑛+1 = 𝑂(Δ𝑡1/2), we obtain

𝑚𝑛+1 = 𝑚𝑛 + Δ𝑡E 𝑓 (𝑣𝑛),

𝐶𝑛+1 = 𝐶𝑛 + Δ𝑡𝐶
𝑣 𝑓
𝑛 + Δ𝑡

(
𝐶

𝑣 𝑓
𝑛

)⊤ + Δ𝑡Σ +𝑂(Δ𝑡2),

𝑚𝑛+1 = 𝑚𝑛+1 + 𝐶𝑣h
𝑛 Γ−1(Δ𝑧†

𝑛+1 − Δ𝑡Eh(̂𝑣𝑛+1)
)
+𝑂(Δ𝑡3/2),

𝐶𝑛+1 = 𝐶𝑛+1 − Δ𝑡𝐶𝑣h
𝑛 Γ−1(𝐶𝑣h

𝑛

)⊤ +𝑂(Δ𝑡2),

𝐶
𝑣 𝑓
𝑛 = E((𝑣𝑛 − 𝑚𝑛) ⊗ ( 𝑓 (𝑣𝑛) − E 𝑓 (𝑣𝑛))),
𝐶𝑣h
𝑛 = E((𝑣𝑛 − 𝑚𝑛) ⊗ (h(𝑣𝑛) − Eh(𝑣𝑛))).

In the following, 𝐶𝑣h, 𝐶𝑣 𝑓 are functions of time, defined by (3.31), and 𝐶𝑣h
𝑛 , 𝐶

𝑣 𝑓
𝑛

are discrete-time analogues computed under the law of 𝑣𝑛.
Combining the prediction and analysis steps, we find that

𝑚𝑛+1 = 𝑚𝑛 + Δ𝑡E 𝑓 (𝑣𝑛) + 𝐶𝑣h
𝑛 Γ−1(Δ𝑧†

𝑛+1 − Δ𝑡Eh(̂𝑣𝑛+1)
)
+𝑂(Δ𝑡3/2),

𝐶𝑛+1 = 𝐶𝑛 + Δ𝑡𝐶
𝑣 𝑓
𝑛 + Δ𝑡

(
𝐶

𝑣 𝑓
𝑛

)⊤ + Δ𝑡Σ − Δ𝑡𝐶𝑣h
𝑛 Γ−1(𝐶𝑣h

𝑛

)⊤ +𝑂(Δ𝑡2).

Taking the Δ𝑡 → 0 limit, we deduce the continuous-time analogue of equations
(2.32) and (2.35), namely (3.32) as desired.

Example 3.8. In the linear setting (3.27), the Gaussian projected filter (3.32)
reduces to the Kalman–Bucy filter from Example 3.5.

3.5. Mean-field evolution equations

In the preceding subsection we approximated the evolution of the filtering dis-
tribution by the evolution of a Gaussian. Here we take a different approach,
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seeking a sample-path perspective, identifying mean-field SDEs which (possibly
only approximately) have solutions with law given by the filtering distribution. We
develop a continuous-time analogue of the discrete time mean-field approach from
Section 2.5.

In Section 3.5.1 we describe work concerning the derivation of explicit mean-
field SDEs equal in law to the filtering distribution; this is a departure from our
discussion of this topic in discrete time where no explicit maps were identified in the
general setting. Sections 3.5.2 and 3.5.3 describe a variety of explicit approximate
mean-field SDEs, based on matching first- and second-order moment information,
and arising from rescaling of the discrete-time setting.

3.5.1. Perfect transport
Here we seek a mean-field dynamical system with law given by that of the Kushner–
Stratonovich equation. The analogue of the discrete-time transport map 𝑇𝑆

𝑛 , is to
find transport evolution equations for 𝑣 and �̂� in the form of a mean-field SDE. We
will seek to achieve this in the specific sample-path form

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + 𝑎(𝑣; 𝜌) d𝑡 + 𝐾(𝑣; 𝜌)(d𝑧† − d�̂�), (3.35a)

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵, (3.35b)

where 𝜌 is the time-dependent density of 𝑣. Note that (3.35b) simply generates
simulated data from the state 𝑣. On the other hand, (3.35a) combines the underlying
known model evolution with a nudged innovation term, based on the difference
between the observed and simulated data, and a correction to the drift 𝑓 . The
nudging and correction terms are defined by gain 𝐾 and drift correction 𝑎. The
goal is to choose drift correction 𝑎 and gain 𝐾 such that the induced time evolution
of the density 𝜌 of 𝑣 agrees with the density 𝜌 given by the Kushner–Stratonovich
equation (3.25). We thus find a controlled SDE, similar in form to that proposed
in (3.10) but with an additional drift term and with mean-field dependence.

Remark 3.9. We emphasize that, as in the discrete-time transport formulation,
there is a considerable degree of non-uniqueness in the choice of transport in
general, and here in the choice of 𝑎 and 𝐾 specifically. We make specific, simple,
choices in the theorem that follows. Working in continuous time enables very
explicit identification of exact mean-field models; this is not possible in discrete
time.

The following theorem identifies a sample-path perspective that exactly captures
evolution of the filtering distribution.

Theorem 3.10. Assume that Γ ≻ 0 and that there exists 𝐾 = 𝐾(𝑣; 𝜌) satisfying
the identity

−∇ · (𝜌𝐾⊤) = Γ−1(h − Eh)𝜌. (3.36)
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Consider the stochastic mean-field dynamics given by

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + ∇ · (𝐾Γ𝐾⊤) d𝑡 − 𝐾Γ∇ · 𝐾⊤ d𝑡 + 𝐾(d𝑧† − d�̂�),

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵,

(3.37a)

(3.37b)

where 𝑧† is given by (3.9). Assume that solution 𝑣 has law with smooth density
and that the Kushner–Stratonovich equation (3.25) has smooth density as solution.
Then the law of 𝑣 has density given by the Kushner–Stratonovich equation (3.25).^

Proof. To simplify calculations we will first look at choosing 𝑎 and𝐾 to get agree-
ment, at the level of densities of 𝑣, with (3.24). A straightforward modification,
using the split-step principle again, then provides the generalization to (3.25). This
split-step approach enables us to consider only the case where 𝑓 (·) ≡ 0 and Σ = 0.

Note that, in (3.35), 𝑧† is a fixed, given, trajectory and we are interested in
the evolution of the probability density induced for 𝑣 by the randomness over the
distribution on trajectories �̂�. Using (3.35b) in (3.35a), and recalling that it suffices
to set 𝑓 and Σ to zero, we obtain

d𝑣 = 𝑎(𝑣; 𝜌) d𝑡 + 𝐾(𝑣; 𝜌)(d𝑧† − h(𝑣) d𝑡 −
√

Γ d𝐵). (3.38)

Applying Fokker–Planck analysis, modified to the mean-field setting, shows that
the time evolution of the density 𝜌 of 𝑣 under (3.35) is provided by the nonlinear
(because of dependence of 𝑎, 𝐾 on 𝜌) SPDE16 to be interpreted in the Itô sense:

d𝜌 = −∇ · (𝜌(𝑎 − 𝐾h)) d𝑡 − ⟨∇ · (𝜌𝐾⊤), d𝑧†⟩ + ∇ · (∇ · (𝜌𝐾Γ𝐾⊤)) d𝑡. (3.39)

Note that, although 𝑧† is a fixed trajectory, it contributes to the diffusion term in
this Fokker–Planck equation, explaining the factor 1 rather than 1/2. This arises
as a contribution from the quadratic variation of the path of 𝑧† to the evolution of
𝜌. For further details on the derivation of (3.39), see Lemma D.2 in Appendix D.
To get agreement with (3.24), 𝑎 and 𝐾 have to be chosen such that

𝜌⟨(h − Eh), Γ−1(d𝑧† − Eh d𝑡)⟩
= −∇ · (𝜌(𝑎 − 𝐾h)) d𝑡 − ⟨∇ · (𝜌𝐾⊤), d𝑧†⟩ + ∇ · (∇ · (𝜌𝐾Γ𝐾⊤)) d𝑡.

Equating the two terms involving the data 𝑧† shows immediately that 𝐾(𝑣; 𝜌) has
to satisfy the (vector-valued) PDE (3.36). From this, equating the terms that do not

16 Here we use the standard convention from continuum mechanics that the divergence of a matrix is
to be interpreted via computation of derivatives with respect to the second index; see Section 3.7
for references to relevant continuum mechanics textbooks. Strictly speaking, equation (3.39) is
an SPDE only if we now view 𝑧† as a random variable rather than a fixed realization.
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involve the data 𝑧†, it follows that 𝑎(𝑣; 𝜌) has to satisfy

∇ · (𝜌𝑎) = ∇ · (∇ · (𝜌𝐾Γ𝐾⊤)) + ∇ · (𝜌𝐾(h − Eh))
= ∇ · (∇ · (𝜌𝐾Γ𝐾⊤)) − ∇ · (𝐾Γ∇ · (𝜌𝐾⊤))
= ∇ · (𝜌(∇ · (𝐾Γ𝐾⊤) − 𝐾Γ∇ · 𝐾⊤)).

A natural choice for 𝑎 is provided by asking that the term on which the divergence
acts is zero. This yields

𝑎 = ∇ · (𝐾Γ𝐾⊤) − 𝐾Γ∇ · 𝐾⊤, (3.40)

a solution for 𝑎 with no explicit dependence on 𝜌; note, however, that 𝑎 does depend
on 𝜌 implicitly through the dependence of 𝐾 on 𝜌.

With these choices of 𝑎, 𝐾 , and applying the split-step principle so that the mean-
field dynamics are consistent with (3.25) rather than (3.24), we obtain a version
of the feedback particle filter; in particular, we find the equation in its stochastic
mean-field formulation given by (3.37), where 𝐾 = 𝐾(𝑣; 𝜌) solves (3.36) and 𝜌

evolves according to the Kushner–Stratonovich equation (3.25), an equation which
also defines the law of 𝑣.

Remark 3.11. There is an interesting interpretation of the contribution 𝑎 to the
drift term in (3.37): it is simply the Itô-to-Stratonovich-like correction with regard
to the 𝑣-dependence in 𝐾(𝑣; 𝜌). However, there is a subtlety that the equation
for 𝜌 itself depends on the data 𝑧† and the correction does not account for the
𝜌-dependence of 𝐾(𝑣; 𝜌): the Stratonovich correction is only with respect to 𝑣-
dependence of the drift, while an Itô interpretation is retained with respect to the
𝜌 dependence. We refer to Appendix D.3 for discussion of this unusual form of
stochastic integration. There we also derive the full Stratonovich correction (with
respect to both 𝑣 and 𝜌 dependence) of the exact mean-field model.

Remark 3.12. The mean-field equations (3.37) require a gain 𝐾(𝑣; 𝜌) which sat-
isfies (3.36). Let E denote expectation with respect to random variable 𝑣 distributed
according to probability measure with density 𝜌. Using appropriately regular test
functions 𝜓 : R𝑑𝑣 → R𝑑𝑣 , chosen to have mean-zero under E, equation (3.36) can
be rephrased in the weak form17

E(𝐾⊤∇𝜓) = Γ−1𝐶h𝜓; (3.41)

here 𝐶h𝜓 denotes the covariance between h under E and, in what follows, we also
let 𝐶𝑣h denote covariance between 𝑣 and h. The particular choice 𝜓(𝑣) = 𝑣 − E𝑣
leads to

E𝐾 = 𝐶𝑣hΓ−1. (3.42)

17 Recall that the conventions from continuum mechanics that we use to define the divergence and
gradient of vector fields are discussed in Section 3.7.
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Note, in particular, that this identity can be satisfied by making the constant gain
ansatz that 𝐾 is independent of 𝑣 and is then given by

𝐾 = 𝐶𝑣hΓ−1, (3.43a)
𝐶𝑣h = E((𝑣 − E𝑣) ⊗ (h(𝑣) − Eh(𝑣))). (3.43b)

More generally speaking, we note that (3.41) is amenable to numerical approxim-
ations. This will be discussed further in Section 3.6.1 below.

We close this subsection with the mean-field formulation using deterministic
innovations:

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + 1
2

(∇ · (𝐾Γ𝐾⊤) − 𝐾Γ∇ · 𝐾⊤) d𝑡 + 𝐾
(

d𝑧† − 1
2

(h + Eh) d𝑡
)
,

(3.44)
where 𝑧† is given by (3.9). The relationship between this equation and (3.37) is
analogous to the relationship between (2.61) and (2.15) already encountered in the
discrete-time setting. See Section 3.7 for discussion of the historical development
of the various exact mean-field models presented here.

3.5.2. Second-order transport: stochastic case
Recall that in the discrete-time setting there is an uncountable set of maps that
effect approximate transport, in the sense of matching the first- and second-order
statistics of the analysis map, using either stochastic or deterministic models. These
are elucidated in Appendix C. In the main text, however, we have concentrated on
a handful of examples. In this and the next subsection we study continuous-time
analogues of some of these examples, starting with the Kalman transport map
(2.55) recalled here, and reformulated, for convenience:18

�̂�𝑛+1 = Ψ(𝑣𝑛) + N(0, Σ), (3.45a)
�̂�𝑛+1 = ℎ(̂𝑣𝑛+1) + N(0, Γ), (3.45b)

𝑣𝑛+1 = �̂�𝑛+1 + 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1(
𝑦
†
𝑛+1 − �̂�𝑛+1

)
. (3.45c)

We now apply the rescaling (3.1) to obtain, using (3.34a),

�̂�𝑛+1 = 𝑣𝑛 + Δ𝑡 𝑓 (𝑣𝑛) +
√
Δ𝑡N(0, Σ),

�̂�𝑛+1 = �̂�𝑛 + Δ𝑡h(̂𝑣𝑛+1) +
√
Δ𝑡N(0, Γ),

𝑣𝑛+1 = �̂�𝑛+1 + 𝐶𝑣h
𝑛 Γ−1(Δ𝑧†

𝑛+1 − Δ�̂�𝑛+1
)
+𝑂(Δ𝑡3/2).

18 The Gaussian notation used in the first two equations is shorthand for the first two equations
appearing in (2.15), together with the assumptions detailed following those equations. Thus we
use N(0, Σ) to denote an i.i.d. realization from the stated Gaussian distribution, and similarly for
other variables. We use variants of this notation in what follows.
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The preceding calculation, leading to𝑂(Δ𝑡3/2) error, uses the fact that the noises en-
tering the equations for �̂�𝑛+1, �̂�𝑛+1 and 𝑧†

𝑛+1 are independent. Taking the continuous-
time limit, we obtain

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + 𝐶𝑣hΓ−1(d𝑧† − d�̂�),

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵.

(3.46a)

(3.46b)

Again𝑊, 𝐵 are independent standard Brownian motions of appropriate dimensions
and 𝑧† is given by (3.9). This is an instance of a sample-path perspective that leads
to approximation of the true filtering evolution.

Remark 3.13. Note the recurrence of the continuous time gain 𝐾 first identified
in Remark 3.7. In this subsection we have derived the mean-field equations (3.46)
from the associated stochastic discrete-time formulation (3.45). However, there is
another way to derive the gain, as outlined in Remark 3.12.

3.5.3. Second-order transport: deterministic case
We may apply a similar analysis to that in Section 3.5.2 but instead working in the
setting of deterministic transport, starting from the discrete-time transport (2.60).
We may rewrite and reformulate this equation here to obtain

�̂�𝑛+1 = Ψ(𝑣𝑛) + N(0, Σ), ℎ̂𝑛+1 = ℎ(̂𝑣𝑛+1),

𝑣𝑛+1 = �̂�𝑛+1 − 𝐾𝑛(ℎ̂𝑛+1 − Eℎ̂𝑛+1) + 𝐾𝑛

(
𝑦
†
𝑛+1 − Eℎ̂𝑛+1

)
,

where

𝐾𝑛 = 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1
, 𝐾𝑛 = 𝐶𝑣ℎ

𝑛+1
((
𝐶ℎℎ
𝑛+1 + Γ

)
+ Γ1/2(𝐶ℎℎ

𝑛+1 + Γ
)1/2)−1

.

Applying the rescalings (3.1) gives

�̂�𝑛+1 = 𝑣𝑛 + Δ𝑡 𝑓 (𝑣𝑛) +
√
Δ𝑡N(0, Σ),

𝑣𝑛+1 = �̂�𝑛+1 + 𝐶𝑣h
𝑛 Γ−1

(
Δ𝑧

†
𝑛+1 −

1
2

(h(̂𝑣𝑛+1) + Eh(̂𝑣𝑛+1)Δ𝑡
)
+𝑂(Δ𝑡2),

where we have used

𝐾𝑛 = 𝐶𝑣h
𝑛 Γ−1 +𝑂(Δ𝑡), 𝐾𝑛 =

1
2
𝐶𝑣h
𝑛 Γ−1 +𝑂(Δ𝑡).

Taking the continuous-time limit, we obtain

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + 𝐶𝑣hΓ−1
(

d𝑧† − 1
2

(h(𝑣) + Eh(𝑣)) d𝑡
)
, (3.47)

where, once again, 𝑧† is given by (3.9).
These mean-field equations can also be derived directly from the general mean-

field equation (3.44), assuming a deterministic innovation, invoking the constant
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gain approximation 𝐾 = 𝐾(𝜌) and using (3.42). The reasoning is similar to that in
Remark 3.13.

Example 3.14. We now consider mean-field formulations of the Kalman–Bucy
filter from Example 3.5. First consider the evolution of random variable 𝑣 initialized
at a Gaussian and satisfying

d𝑣 = 𝐹𝑣 d𝑡 +
√

Σ d𝑊 + 𝐶𝐻⊤Γ−1(d𝑧† − d�̂�), (3.48a)

d�̂� = 𝐻𝑣 d𝑡 +
√

Γ d𝐵, (3.48b)

where 𝐶 is the covariance of 𝑣 and where 𝑧† is given by (3.29). Then direct
calculation shows that the mean and covariance of 𝑣 satisfy equations (3.30). Thus
we have identified a sample-path perspective leading to a mean-field SDE for 𝑣
with law equal to that of the Kalman–Bucy filter.

Similar considerations, starting at (3.47), give the following variant of the pre-
ceding mean-field Kalman–Bucy filter:

d𝑣 = 𝐹𝑣 d𝑡 +
√

Σ d𝑊 + 𝐶𝐻⊤Γ−1
(

d𝑧† − 1
2
𝐻(𝑣 + 𝑚) d𝑡

)
, (3.49)

where (𝑚,𝐶) are the mean and covariance of 𝑣 and where 𝑧† is given by (3.29).
Again direct computations verify this. An important observation highlighted by
this example is that mean-field models consistent with a given measure evolution
are not typically unique.

3.6. Ensemble Kalman methods

We now discuss several particle approximations of the mean-field equations derived
in the preceding subsections. We start with the mean-field equations (3.37), based
on perfect transport, before considering particle approximations for continuous-
time approximate sample path, and hence transport, formulations. Throughout this
subsection, 𝑧† is given by (3.29).

3.6.1. Perfect particle filters
As in Section 2.6.1, we define J ≔ {1, . . . , 𝐽}. The desired approximation to
the mean-field model (3.37) evolves particle ensemble {𝑣( 𝑗)} 𝑗∈J and its associated
empirical measure

𝜇J(𝑡) =
1
𝐽

𝐽∑︁
𝑗=1
𝛿𝑣( 𝑗) (3.50)

according to the interacting particle system

d𝑣( 𝑗) = 𝑓 (𝑣( 𝑗)) d𝑡 + 𝑎( 𝑗) d𝑡 +
√

Σ d𝑊 ( 𝑗) + 𝐾 ( 𝑗)(d𝑧† − d�̂�( 𝑗)),

d�̂�( 𝑗) = h(𝑣( 𝑗)) d𝑡 +
√

Γ d𝐵( 𝑗),

(3.51a)

(3.51b)
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where 𝑧† is given by (3.9) and the {𝑊 ( 𝑗)} 𝑗∈J and {𝐵( 𝑗)} 𝑗∈J are mutually independent
collections of i.i.d. Brownian motions in R𝑑𝑣 and R𝑑𝑦 respectively. The interaction
between the particles arises from the gain matrices

𝐾 ( 𝑗) ≔ 𝐾J(𝑣( 𝑗); 𝜇J), (3.52)

𝑗 ∈ J, where the matrix-valued function 𝐾J approximates the solution 𝐾 of (3.36);
the drift term 𝑎( 𝑗) is defined by (3.40) with 𝐾(𝑣) replaced by 𝐾J(𝑣; 𝜇J) and then
evaluated at 𝑣 = 𝑣( 𝑗). The key analysis question underlying the particle meth-
odology is to show that the empirical measure (3.50) approximates the law of 𝑣
satisfying (3.37). This type of question is widely studied for numerous problems
in the physical, biological and social sciences; see Section 3.7.

Remark 3.15. In practice, this particle approximation of the perfect particle filter
is impractical except in low-dimensional systems. This is because of the challenge
of numerically approximating equation (3.36) for 𝐾 , or its weak formulation (3.41).
In this remark we discuss various approximation approaches that make this problem
tractable.

We start with the numerical approximation of the weak formulation (3.41). Let
F denote a space of vector-valued functions mapping R𝑑𝑣 into R𝑑 , and that are
mean zero with respect to expectation E under density 𝜌.19 We make the ansatz
that 𝐾⊤ = ∇Ψ, for some Ψ ∈ F . Then (3.41) can be rewritten as

E(∇Ψ∇𝜓) = Γ−1𝐶h𝜓,

assumed to hold for all 𝜓 ∈ F .
In order to obtain the desired numerical approximation 𝐾J, let EJ denote ex-

pectation with respect to the empirical measure (3.50) and consider (𝐾J)⊤ = ∇ΨJ

and
EJ(∇ΨJ∇𝜓) = Γ−1𝐶h𝜓 (3.53)

with the correlation 𝐶h𝜓 approximated by

𝐶h𝜓 = EJ((h(𝑣) − EJh(𝑣)) ⊗ (𝜓(𝑣) − EJ𝜓(𝑣))).

The final step in the numerical approximation is to choose an appropriate finite-
dimensional subspace F𝐿 ⊂ F of dimension 𝐿 ≪ 𝐽 and to determine ΨJ ∈ F𝐿

such that (3.53) holds for all 𝜓 ∈ F𝐿 .
Alternatively we may return to the strong formulation (3.36). We again make

the ansatz 𝐾⊤ = ∇Ψ, giving rise to the differential equation

L𝜌Ψ = −Γ−1(h − Eh)

19 We will consider different choices for 𝑑 but use the same notation for the space.
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with differential operator L𝜌 20 defined by

L𝜌Ψ = 𝜌−1∇ · (𝜌∇Ψ) = ΔΨ + ∇Ψ∇ log 𝜌.

Note that in the case of scalar observations, L𝜌 is the infinitesimal generator of a
diffusion process with invariant density 𝜌; in the vector case the same statement
holds component by component. This fact may be used to approximate the action
of L𝜌 via its heat semigroup, and this may be used as the basis for numerical
approximations. See Section 3.7 for references to the relevant literature.

The two general approaches to approximating the gain matrix in (3.52), outlined
in the preceding remark, are interesting theoretically and perhaps hold promise in
the future as computer power grows, but they lead to very expensive computations.
To address this we now return to the constant gain approximation from Remark 3.12,
now in the particle setting. In the current context the identification of 𝐾J arises
from (3.53), by making the choice Ψ(𝑣) = (𝐾J)⊤(𝑣 − EJ𝑣) and 𝜓(𝑣) = 𝑣 − EJ𝑣.
These choices result in the following approximation of (3.43):

𝐾J = 𝐶𝑣hΓ−1, (3.54a)
𝐶𝑣h = EJ((𝑣 − EJ𝑣) ⊗ (h(𝑣) − EJh(𝑣))). (3.54b)

Note that the constant gain approximation (3.54) also implies that the drift term
𝑎( 𝑗) in (3.51) vanishes. We summarize numerical implementation details in the
following two subsections.

3.6.2. Stochastic ensemble Kalman filters
We now consider the mean-field model (3.46) and its numerical approximation.
Since the drift correction 𝑎 does not appear here, the only significant difference,
in comparison with the interacting particle approximation (3.51), arises from the
choice of the interaction term, 𝐾 ( 𝑗). This gain is now independent of 𝑗 and
determined by (3.54). In summary, we obtain the following SDEs: for 𝑗 ∈ J ≔

{1, . . . , 𝐽} we have

d𝑣( 𝑗) = 𝑓 (𝑣( 𝑗)) d𝑡 +
√

Σ d𝑊 ( 𝑗) + 𝐶𝑣hΓ−1(d𝑧† − d�̂�( 𝑗)),

d�̂�( 𝑗) = h(𝑣( 𝑗)) d𝑡 +
√

Γ d𝐵( 𝑗).

(3.55a)

(3.55b)

Here, again, 𝑧† is given by (3.9) and the {𝑊 ( 𝑗)} 𝑗∈J and {𝐵( 𝑗)} 𝑗∈J are mutually
independent collections of i.i.d. Brownian motions. The {𝑣( 𝑗)}𝐽

𝑗=1 provide a time-
evolving ensemble which approximates the filtering distribution via (3.50); the
equations are derived based on use of second-order transport approximation of per-
fect transport. Each equation for 𝑣( 𝑗) evolves according to the underlying dynamics
model, together with a nudging term based on the difference between simulated
data �̂�( 𝑗) and observed data 𝑧†. The gain couples the particles together.

20 Not to be confused with operator L𝑛 defined by viewing Bayes’ theorem, within filtering, as a
prior-to-posterior map at time 𝑛.
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3.6.3. Deterministic ensemble Kalman filters
Similarly we may make an empirical approximation of the mean-field model (3.47)
as follows: for 𝑗 ∈ J ≔ {1, . . . , 𝐽} we consider

d𝑣( 𝑗) = 𝑓 (𝑣( 𝑗)) d𝑡 +
√

Σ d𝑊 ( 𝑗) + 𝐶𝑣hΓ−1
(

d𝑧† − 1
2
(
h(𝑣( 𝑗)) + EJh(𝑣)

)
d𝑡
)
.

(3.56)

The notation is as in the preceding subsection and, in particular, the formula (3.50)
again gives the particle approximation of the approximate filter; now the relevant
approximate filter is defined by the distribution of (3.56).

3.7. Bibliographical notes

The entirety of Section 3 is framed in the language of SDEs; see Evans (2012) and
Øksendal (2013) for background in this area. In passing from discrete to continuous
time we often invoke ideas from the numerical solution of SDEs; see Kloeden and
Platen (1991) and Higham (2001) for introductions to this area. The conventions
from continuum mechanics, that we use to define the divergence and gradient of
vector fields, are the same as those adopted, and described in detail, in Gonzalez
and Stuart (2008) and Gurtin (1982).

Next we review literature in the control-theoretic approach introduced in Sec-
tion 3.2. For a general overview of control theory in continuous time see Sontag
(2013). Our presentation of control-theoretic methods for data assimilation focuses
on 3DVAR. Theoretical analysis of the continuous-time 3DVAR algorithm (3.8)
may be found in Law et al. (2014), Blömker, Law, Stuart and Zygalakis (2013),
Azouani, Olson and Titi (2014), Gesho, Olson and Titi (2016), Olson and Titi
(2003), Mondaini and Titi (2018) and Larios and Pei (2024).

We now review the probabilistic approach introduced in Section 3.3. The
Kalman–Bucy filter (Kalman and Bucy 1961) contains what is perhaps the first sys-
tematic derivation and analysis of an algorithm for the incorporation of continuous-
time data into estimation of a sample path of an SDE. Its extension to nonlinear
and non-Gaussian distributions is provided by the Kushner–Stratonovich equa-
tion (3.25). A heuristic derivation of both the Kalman–Bucy filter as well as the
Kushner–Stratonovich equation can be found in Jazwinski (2007), while Bain and
Crisan (2008) cover the field of continuous-time filtering in full detail.

The idea of Strang splitting, which we use to derive the Kushner–Stratonovich
equation, originates in Strang (1968); for an overview of splitting methods see
McLachlan and Quispel (2002). Furthermore, we rely on robustness results for
continuous-time filtering (Clark and Crisan 2005), which imply that smooth ap-
proximations 𝑧†, 𝛿 to stochastic observations 𝑧† are justified and that the order of
taking limits Δ𝑡 → 0 and 𝛿 → 0 can be accounted for by appropriate Stratonovich-
to-Itô correction terms. An introduction to the required covariation formulae used

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000060
Downloaded from https://www.cambridge.org/core. IP address: 10.3.192.216, on 17 Jul 2025 at 12:37:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000060
https://www.cambridge.org/core


Ensemble Kalman methods: A mean-field perspective 195

in the proof of Lemma 3.3 and identity (3.23), which follows from covariation of
stochastic integrals, can be found in Eberle (2019). We note that robustness results
do not carry over to associated mean-field equations and filtering problems with
correlated noise (Coghi, Nilssen, Nüsken and Reich 2023).

The numerical approximation of the Kushner–Stratonovich equation (3.25) has
a long history. Crisan and Lyons (1999) have demonstrated how (3.25) can be
approximated by a particle method; this is a generalization of the bootstrap particle
filter to continuous time (Crisan et al. 1999). See also Bain and Crisan (2008) for
a detailed discussion of alternative approximation techniques. Hu, Kallianpur and
Xiong (2002) discussed the solution of the unnormalized and linear version of the
Kushner–Stratonovich equation known as the Zakai equation.

A mean-field approach to the Kushner–Stratonovich equation (3.25) appeared
first in the work of Crisan and Xiong (2010), which utilizes robustness results and
smoothed data 𝑧†, 𝛿 in the 𝛿 → 0 limit. The mean-field equations (3.44) were pro-
posed in Yang et al. (2013) (in the one-dimensional setting), while the stochastic
counterpart appeared first in Reich (2019). The mathematical relationship between
the various mean-field formulations has been analysed in Pathiraja, Reich and
Stannat (2021). Numerical implementations of the mean-field equations (3.37) are
discussed in Taghvaei, de Wiljes, Mehta and Reich (2017), while Taghvaei, Mehta
and Meyn (2020) provide a detailed analysis of the diffusion map approximation
discussed after (3.15). The constant gain approximation 𝐾 = 𝐶𝑣hΓ, which corres-
ponds to the ensemble Kalman filter, arises as a particular scaling limit from the
diffusion map approach, as discussed, for example, in Taghvaei et al. (2017). See
also the recent survey by Taghvaei and Mehta (2023).

The continuous-time ensemble Kalman filter formulations (3.55) and (3.56) ap-
peared first in Bergemann and Reich (2012). These formulations are based on
earlier work on homotopy formulations of the Bayesian inference step by Berge-
mann and Reich (2010b) and Reich (2011). See also the subsequent derivations in
Law et al. (2015), which contains a unified derivation of the Kalman–Bucy filter,
continuous-time 3DVAR and continuous-time ensemble Kalman methods, starting
from their discrete-time counterparts.

Rigorous derivation of continuous-time ensemble Kalman filter formulations
from their discrete-time counterparts can be found in Lange and Stannat (2021a,b),
Blömker, Schillings and Wacker (2018) and Blömker, Schillings, Wacker and
Weissmann (2022). Derivation and analysis of the properties of continuous-time
limits in the context of solving inverse problems may be found in Schillings and
Stuart (2017); see Section 5.6. Numerical time-stepping methods for continuous-
time ensemble Kalman filter formulations are analysed in Amezcua, Kalnay, Ide
and Reich (2014).

Ding et al. (2021) and Ding and Li (2021a,b) have undertaken a systematic
analysis of the link between interacting particle systems and mean-field systems in
continuous time, mostly focused on the solution of inverse problems; however, the
methods developed are more widely applicable. Similar to the stochastic ensemble
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Kalman filter, particle implementation (3.55) leads to undesirable correlations
via the synthetic data �̂�( 𝑗), which appear both in the gain 𝐾J = 𝐶𝑣hΓ−1 and the
innovation term dℑ = d𝑧† − d�̂�( 𝑗), effectively giving rise to coloured noise. These
numerically induced correlations vanish in the limit 𝐽 → ∞.

Well-posedness, stability and accuracy results for the ensemble Kalman filter
first appeared in Kelly et al. (2014), where the incompressible Navier–Stokes equa-
tions were studied, using the continuous-time formulations of stochastic ensemble
Kalman methods first identified in Reich (2011) and reviewed in Law et al. (2015).
Subsequent analyses of related issues for variants on the continuous-time ensemble
Kalman filter may be found in de Wiljes, Reich and Stannat (2018) and de Wiljes
and Tong (2020). Del Moral and Tugaut (2018) have initiated a line of research
related to the use of particle approximations of mean-field models to understand
long-time error estimates for particle systems approximating the Kalman–Bucy
filter, the setting in which mean-field ensemble Kalman filters exactly reproduce
the true filtering distribution; see Bishop, Del Moral and Pathiraja (2018), Bishop,
Del Moral, Kamatani and Remillard (2019), Bishop and Del Moral (2019), Bishop,
Del Moral and Niclas (2020) and, for an overview, Bishop and Del Moral (2023).
The control perspective deployed in Law et al. (2014) and Azouani et al. (2014)
to study filter stability and accuracy has been unified and extended to ensemble
Kalman filter formulations in Biswas and Branicki (2024), utilizing a particular
form of covariance localization and additive inflation.

The classical Kalman filter can be viewed from the perspective of minimum
variance estimation (discussed in discrete time in Section C.3) and optimal control
(Kalman and Bucy 1961). This perspective has recently been extended to nonlin-
ear filtering in Kim and Mehta (2024a,b), which opens up new perspectives for
developing and analysing numerical algorithms.

4. Inverse problems: discrete time
In this section we adapt the ideas of Section 2 to solve inverse problems. We
start in Section 4.1 with statement of the inverse problem, followed in Sections 4.2
and 4.3 by discussion of optimization and Bayesian approaches respectively; these
are analogous to the presentation of control and probabilistic approaches to the data
assimilation problem in Sections 2.2 and 2.3.

The basic methodology we highlight is to formulate filtering problems which
(possibly only approximately) solve the inverse problem. Section 4.4 is devoted to
Bayesian probabilistic filtering methods that solve the inverse problem by morphing
the prior into the posterior in a finite time; Section 4.5 discusses filtering methods
which work on infinite-time horizons, exhibiting exponential convergence to ap-
proximate solutions of the optimization or Bayesian formulations of the problem
from arbitrary starting points. In both Sections 4.4 and 4.5 we demonstrate the use
of Gaussian projected filtering and ensemble Kalman methods to solve the filtering
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problems that arise. In Section 4.6 we present numerical examples illustrating
ensemble Kalman methods for inverse problems. We conclude in Section 4.7 with
bibliographical notes.

Remark 4.1. In Sections 4.4 and 4.5 we present only mean-field statements of
the Gaussian projected filter and ensemble Kalman-based methods. The reader can
generalize the ideas in Section 2, based on interacting particle system approxim-
ations, to derive implementable algorithms from the ensemble-based mean-field
algorithms introduced. Similarly, the unscented Kalman filter can be used to de-
rive implementable algorithms from the Gaussian projected filters introduced here,
as discussed in Section 2.7. Pseudo-code for the schemes implemented in the
numerical examples of Section 4.6 may be found in Appendix A.

4.1. Set-up

This subsection and Section 5 are entirely devoted to solution of the inverse problem
of finding unknown parameter 𝑢 ∈ R𝑑𝑢 from data 𝑤 ∈ R𝑑𝑤 , when 𝑤 is related to 𝑢
via the equation

𝑤 = 𝐺(𝑢) + 𝛾. (4.1)

Here 𝐺 : R𝑑𝑢 → R𝑑𝑤 is the forward model and 𝛾 represents noise polluting the
data. We assume that𝐺 is measurable with respect to the Borel algebra on input and
output spaces, and is bounded on compact subsets of R𝑑𝑢 . The basic methodology
we highlight is to formulate filtering problems which (possibly only approximately)
solve the inverse problem.

Remark 4.2. The filtering problem from Section 2.1 requires solution of an
inverse problem, defined by (2.1b), at each step 𝑛; this inverse problem is a specific
instance of (4.1). Indeed, the map L𝑛 in (2.24b) denotes Bayesian solution of
this inverse problem, a concept we will define, in the more general setting of this
section, in Section 4.3. Furthermore, the smoothing problem, referred to at the
very end of Section 2.7, can also be formulated as an instance of the general inverse
problem (4.1).

We will work in a setting where we assume a probabilistic model for the joint
random variable (𝑢, 𝑤). We then assume that we have available to us 𝑤†, the
observation coordinate of a specific realization (𝑢†, 𝑤†) under this probabilistic
model. This realization is itself generated by 𝛾†, a specific realization of the
observational noise. We will consider two approaches to the inverse problem.

Objective 1. Design an algorithm producing output 𝑢 from 𝑤† so that 𝑢 estimates
𝑢†, the true state underlying the data.

Objective 2. Design an algorithm which estimates the distribution of random vari-
able 𝑢 |𝑤†.
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In Section 4.2 we define an optimization approach to determine an approximation
of 𝑢† from 𝑤†, addressing Objective 1. In Section 4.3 we define the Bayesian prob-
abilistic formulation, which also underpins the algorithms derived in the remainder
of the section, addressing Objective 2.

4.2. Optimization formulation

Given matrices 𝐶0 ≻ 0, Γ ≻ 0, vector 𝑚0 and the specific data realization, namely
𝑤†, we may define the nonlinear least-squares loss function Φ and its Tikhonov-
regularized counterpart Φ𝑅 as follows:

Φ(𝑢) =
1
2
|𝑤† − 𝐺(𝑢)|2Γ,

Φ𝑅(𝑢) = Φ(𝑢) + 1
2
|𝑢 − 𝑚0 |2𝐶0

.

(4.2a)

(4.2b)

Minimization of Φ𝑅 constitutes a solution to the inverse problem. The specific
weighted norms used in the least-squares loss Φ, and the regularization leading
to Φ𝑅, are best understood from the probabilistic formulation in the following
subsection; however, the remainder of this subsection can be understood without
recourse to this probabilistic formulation.

The Tikhonov regularized least-squares problem associated with the inverse
problem (4.1) may be viewed as an unregularized least-squares problem arising
from the modified inverse problem

𝑤𝑅 = 𝐺𝑅(𝑢) + 𝛾𝑅,

where we write

𝑤𝑅 ≔

(
𝑤

𝑚0

)
, 𝐺𝑅(𝑢) ≔

(
𝐺(𝑢)
𝑢

)
, Γ𝑅 ≔

(
Γ 0
0 𝐶0

)
, (4.3)

for 𝛾𝑅 being the generalized observation error. In particular, the cost functional
(4.2b) can be rewritten as

Φ𝑅(𝑢) =
1
2
|𝑤†

𝑅
− 𝐺𝑅(𝑢)|2Γ𝑅

, (4.4)

for

𝑤
†
𝑅
≔

(
𝑤†

𝑚0

)
. (4.5)

Remark 4.3. A building block in many algorithms for minimization ofΨ : R𝑑𝑢 →
R+ is gradient descent. In basic form, this is an iteration for sequence {𝑢𝑛}𝑛∈Z+
defined by

𝑢𝑛+1 = 𝑢𝑛 − 𝛼∇Ψ(𝑢𝑛). (4.6)

To solve the inverse problem, we can use iteration (4.6) with Ψ = Φ or Ψ = Φ𝑅.
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Ensemble Kalman methods: A mean-field perspective 199

In Section 4.5.2 we develop derivative-free affine-invariant algorithms21 based
on Gaussian projected and ensemble Kalman filters. These algorithms offer an
alternative to (4.6); they only approximately minimize the least-squares objective,
in general. However, in the quadratic case they reproduce an exact mean-field
gradient descent algorithm, as we will show as this section unfolds.

4.3. Bayesian formulation

We now consider the Bayesian approach to this inverse problem. We again assume
𝐶0 ≻ 0 and Γ ≻ 0, as in the previous subsection. To be concrete we assume prior
𝑢 ∼ N(𝑚0, 𝐶0), that 𝛾 ∼ N(0, Γ) and that 𝑢 and 𝛾 are independent. It then follows
that the likelihood 𝑤 |𝑢 ∼ N(𝐺(𝑢), Γ). Application of Bayes’ theorem shows that
the posterior distribution on 𝑢 |𝑤† is distributed according to measure 𝜇 given by

𝜇(d𝑢) =
1
𝒵

exp(−Φ𝑅(𝑢)) d𝑢,

𝒵 =

∫
R𝑑𝑢

exp(−Φ𝑅(𝑢)) d𝑢.

(4.7a)

(4.7b)

We note that the least-squares-based optimization approaches to the inverse prob-
lem introduced in the preceding subsection can now be explicitly linked to the
probabilistic formulation of the inverse problem. In particular, minimizing Φ is
referred to as the maximum likelihood approach, whilst minimizing Φ𝑅 is called
the maximum a posteriori approach.

Example 4.4. Consider the case of linear forward model

𝐺(·) = 𝐿 · . (4.8)

Thus Φ𝑅 is quadratic and it is straightforward to show that the Hessian of Φ𝑅 is
greater than or equal to, in the sense of quadratic forms, 𝐶−1

0 . Since 𝐶−1
0 ≻ 0,

we deduce that Φ𝑅 has a unique critical point and this critical point is a global
minimizer. It is then natural to define

𝐿𝑅 ≔

(
𝐿

𝐼

)
(4.9)

and note that, with this definition, 𝐺𝑅(·) = 𝐿𝑅 ·. We then have

Φ𝑅(𝑢) =
1
2
|𝑤†

𝑅
− 𝐿𝑅𝑢 |2Γ𝑅

.

Since Φ𝑅 is quadratic we deduce that the posterior 𝜇 is Gaussian. We denote the

21 See Remark 4.18 for a discussion of the implications of affine invariance, in the discrete-time
setting. We will study affine invariance in detail in continuous time in Section 5; see Definition 5.11
and Remark 5.12.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000060
Downloaded from https://www.cambridge.org/core. IP address: 10.3.192.216, on 17 Jul 2025 at 12:37:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000060
https://www.cambridge.org/core


200 E. Calvello, S. Reich and A. M. Stuart

mean by 𝑚post and the covariance by 𝐶post. Matrix 𝐶post is readily defined via its
precision, the Hessian of Φ𝑅:

𝐶−1
post = S = 𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅 . (4.10)

As discussed above, 𝐶−1
post ≻ 0 so that 𝐶post ≻ 0; in particular, 𝐶post is hence indeed

invertible. The minimizer of Φ𝑅 is at the mean 𝑚post of the posterior, which solves
the normal equations

𝐶−1
post𝑚post = 𝐿

⊤
𝑅Γ−1

𝑅 𝑤
†
𝑅
. (4.11)

This representation of the posterior, which is Gaussian, is in terms of the precision
matrix and the mean. There is an alternative and useful representation formula for
the posterior covariance and mean, derived as follows. Consider the Gaussian
random variable (𝑢, 𝑤) defined by choosing 𝑢 ∼ N(𝑚0, 𝐶0) and 𝑤 |𝑢 ∼ N(𝐿𝑢, Γ).
Then the solution of the Bayesian inverse problem (4.7) is given in this linear setting
by the distribution of 𝑢 |𝑤†. By using standard conditioning formulae for Gaussian
random variables, we obtain

𝑚post = 𝑚0 + 𝐶0𝐿
⊤(𝐿𝐶0𝐿

⊤ + Γ)−1(𝑤† − 𝐿𝑚0), (4.12a)
𝐶post = 𝐶0 − 𝐶0𝐿

⊤(𝐿𝐶0𝐿
⊤ + Γ)−1𝐿𝐶0. (4.12b)

These formulae are equivalent to (𝑚1, 𝐶1) found from the Kalman filter Bayesian
update step (2.28) of Example 2.6, with the choices 𝑀 = I, Σ = 0, 𝐻 = 𝐿 and
Γ = Γ.

Remark 4.5. A commonly used methodology for sampling from target distribu-
tion 𝜇 on R𝑑𝑢 is MCMC. At abstract level this defines a Markov chain for density
𝜌𝑛 given by transition kernel K(𝛼), where 𝛼 describes hyper-parameters that define
the specific method used. Thus

𝜌𝑛+1 = K(𝛼)𝜌𝑛. (4.13)

This is a linear iteration for the density 𝜌𝑛, designed to converge to the target
density, defined by the posterior, as 𝑛 → ∞. In Section 4.5.3 we show how mean-
field ensemble Kalman methods, which induce a nonlinear iteration on density 𝜌𝑛,
may be used as an alternative to (4.13), defining an approximate Bayesian posterior
by iterating to infinity. Furthermore, this iteration will be shown to be exact for
Gaussian posteriors, and to benefit from affine invariance.22

4.4. Finite-time algorithms

The basic idea used in this subsection, to address the solution of inverse problems,
is rooted in a sequential formulation of Bayesian inference. From this sequential

22 Recall that discussion of the implications of affine invariance may be found in Remark 4.18, in the
discrete-time setting, and that in Section 5 we will study affine invariance in detail in continuous
time.
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formulation we derive a filtering problem whose solution, at a particular time, gives
the desired posterior. Section 4.4.1 describes the formulation, Section 4.4.2 the
use of Gaussian projected filters and Section 4.4.3 the use of ensemble Kalman
methods.

4.4.1. Formulation
To understand this sequential approach we define, for integer 𝑁 > 1,

Φ𝑅,𝑛(𝑢) =
𝑛

𝑁
Φ(𝑢) + 1

2
|𝑢 − 𝑚0 |2𝐶0

, (4.14)

noting that Φ𝑅,𝑁 (𝑢) = Φ𝑅(𝑢). Now consider the sequence 𝜇𝑛 of probability
measures with negative log density given (up to an additive constant with respect
to variation of 𝑢) by Φ𝑅,𝑛(𝑢). Then the Bayesian inference problem (4.7) can be
reformulated as a sequence of 𝑁 Bayesian inference steps where the prior 𝜇𝑛 is
morphed into posterior 𝜇𝑛+1 using the data likelihood exp(−Φ(𝑢)/𝑁) in each step:

𝜇𝑛+1(d𝑢) ∝ exp
(
− 1
𝑁
Φ(𝑢)

)
𝜇𝑛(d𝑢). (4.15)

Hence

𝜇𝑛(d𝑢) ∝ exp
(
− 𝑛
𝑁
Φ(𝑢)

)
𝜇0(d𝑢). (4.16)

Thus
𝜇𝑁 (d𝑢) ∝ exp(−Φ(𝑢))𝜇0(d𝑢). (4.17)

The initial prior is set to 𝜇0 = N(𝑚0, 𝐶0) and the 𝑁th posterior 𝜇𝑁 delivers the
desired Bayesian solution to the inverse problem, given in (4.7).

Remark 4.6. Here we have introduced an iteration index 𝑛 to morph from prior to
posterior. In what follows we will identify 𝑛 with an artificial time and then import
ideas from filtering to solve the inverse problem. Notice that, in this approach,
the single inverse problem (4.17) of interest, is replaced by 𝑁 inverse problems of
the form (4.15). This can be beneficial because each of the 𝑁 inverse problems
(4.15) is easier to solve than the single inverse problem (4.17), because the defining
change of measure is closer to the identity.

A variant on this idea is to morph from prior to posterior by (possibly artifi-
cially) considering the data 𝑤 as sequentially acquired and incrementally including
components of the data at each step 𝑛, again leading to a sequence of measures
{𝜇𝑛}𝑁𝑛=0, with 𝜇𝑁 equal to the posterior.

Given this sequence of measures 𝜇𝑛, it is possible to identify a stochastic dy-
namical system with filtering distribution 𝜇𝑛. Application of any filtering method
to this filtering problem, and ensemble Kalman filters in particular, then provides
a method to approximate the posterior distribution. These sequential formulations
of Bayesian inversion are well known and have, for example, been exploited in
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202 E. Calvello, S. Reich and A. M. Stuart

the use of sequential Monte Carlo methods for Bayesian inference; see Section 4.7
for details.

Remark 4.7. To employ sequential Monte Carlo methods based on (4.15) it is
necessary to invoke some form of approximation. The resulting outcome of such
approximations depends on the choice of positive integer 𝑁 . Empirically it is found
that choosing 𝑁 ≫ 1 gives better approximations of the desired posterior (4.17);
however, this must be traded against the additional cost of taking 𝑁 steps.

Standard particle filter-based sequential Monte Carlo methods do not always
scale well to high dimensions, in the same way that the particle filter for state
estimation scales poorly. Consequently, ensemble Kalman variants of sequential
Monte Carlo methods have an important place in the field, and we will deploy these,
and variants of them, after introducing the stochastic dynamical system underlying
sequential Monte Carlo.

Our first step is to show how to realize (4.15) via a filtering problem which
we refer to as a transport problem:23 it transports the prior initial condition into
the desired posterior, through a discrete-time evolution. See Theorem 4.8 below
and note that in Section 5.4.1 analogous developments are made in continuous
time. The transport problem is exact: it introduces no approximations. To derive
algorithms we proceed to discuss approximations to the transport. We follow
discussion of exact transport with study of the Gaussian projected filter, applied in
this inverse problem context, in Section 4.4.2, and the continuous-time analogue in
Section 5.4.2. Study of Gaussian projection is then followed by discussion of the
application of mean-field Kalman transport algorithms to the transport problem in
Section 4.4.3; continuous-time analogues are covered in Section 5.4.3.

In the following development we define Δ𝑡 so that

𝑁Δ𝑡 = 1. (4.18)

Now consider the combined state-observation system in the form

𝑢𝑛+1 = 𝑢𝑛, (4.19a)

𝑤𝑛+1 = 𝐺(𝑢𝑛+1) + 1
√
Δ𝑡
𝛾𝑛+1, (4.19b)

for 𝑛 ∈ {0, . . . , 𝑁−1}, where {𝛾𝑛+1}𝑁−1
𝑛=0 is an i.i.d. sequence with variance N(0, Γ).

It is intuitive that, since 𝑁Δ𝑡 = 1, 𝑢0 ∼ N(𝑚0, 𝐶0) and the observed data 𝑤†
𝑛+1 = 𝑤†

for all 𝑛 ∈ {0, . . . , 𝑁 −1}, then 𝑢𝑁 conditioned on𝑊†
𝑁
≔ {𝑤†

𝑛+1}
𝑁−1
𝑛=0 is distributed

as 𝜇, defined as in (4.7). Indeed, using (4.19b) for 𝑛 ∈ {0, . . . , 𝑁 − 1} corresponds
to making 𝑁 independent noisy observations of 𝐺(𝑢0), all with noise variance
Δ𝑡−1Γ; this is statistically equivalent to a single noisy observation of 𝐺(𝑢0) with

23 Note that we have introduced transport ideas in Section 2 to underpin algorithms which approx-
imate the Bayesian inference that defines the analysis step in filtering.
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Ensemble Kalman methods: A mean-field perspective 203

noise variance Γ. Since 𝑢0 is initialized as N(𝑚0, 𝐶0) (the prior), the problem
reduces to the Bayesian inverse problem for 𝑢 |𝑤†.

This intuition may be substantiated by using the discussion around equations
(4.14) and (4.15). In order to avail ourselves of the results from Section 2, we first
rescale the observation equation in (4.19) to obtain

𝑢𝑛+1 = 𝑢𝑛,

𝑦𝑛+1 = Δ𝑡𝐺(𝑢𝑛+1) + 𝜂𝑛+1,

(4.20a)
(4.20b)

with 𝜂𝑛+1 ∼ N(0,Δ𝑡Γ) and 𝑦𝑛+1 = Δ𝑡𝑤𝑛+1. Denote the observed data by 𝑌†
𝑛 =

{𝑦†
ℓ
}𝑛
ℓ=1, where 𝑦†

ℓ
= Δ𝑡𝑤

†
ℓ
. We may then show the following.

Theorem 4.8. Consider the dynamical system (4.20) and assume that 𝐶0 ≻ 0,
Γ ≻ 0 and 𝑁Δ𝑡 = 1. Assume also that 𝑢0 ∼ N(𝑚0, 𝐶0) and 𝜂𝑛+1 ∼ N(0,Δ𝑡Γ);
furthermore, assume that {𝜂𝑛}𝑁𝑛=1 forms an i.i.d. sequence, independent of 𝑢0.
Then 𝜇𝑛, the law of 𝑢𝑛 |𝑌†

𝑛 defined by (4.20), satisfies (4.15), and in particular 𝜇𝑁
is equal to the posterior distribution 𝜇, if the data is chosen as 𝑦†𝑛 = Δ𝑡 𝑤†, for
𝑛 ∈ {1, . . . , 𝑁}. ^

Proof. Let 𝜇𝑛 be the law of 𝑢𝑛 |𝑌†
𝑛 . Since (in the notation of Section 2) 𝜇𝑛+1 = 𝜇𝑛

we see that the mapping 𝜇𝑛 to 𝜇𝑛+1 is simply given by Bayes’ theorem: 𝜇𝑛+1 =

L𝑛(𝜇𝑛). This observation yields the following identity, expressed in terms of 𝜌𝑛
the Lebesgue density of measure 𝜇𝑛:

log 𝜌𝑛+1 − log 𝜌𝑛 = − 1
2Δ𝑡

|𝑦†𝑛 − Δ𝑡𝐺(𝑢)|2Γ + const.

= −Δ𝑡
2
|𝑤† − 𝐺(𝑢)|2Γ + const.

Summing over 𝑛 ∈ {0, . . . , 𝑁 − 1}, using the fact that

log 𝜌0 = −1
2
|𝑢 − 𝑚0 |2𝐶0

+ const.,

we deduce that

log 𝜌𝑛 = −Φ𝑅,𝑛 + const.,

with Φ𝑅,𝑛 given by (4.14). Choosing 𝑛 = 𝑁 gives the desired result concerning the
posterior.

Thus we may approach the problem of (approximately) sampling from 𝜇 by
(approximately) solving the filtering problem defined by (4.20), for 𝜇𝑛, until discrete
time 𝑛 = 𝑁 . In particular, we may use the Gaussian projected filter or ensemble
Kalman methods to approximate this filtering problem. In the next two subsections
we consider, respectively, these two approximation methods.
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204 E. Calvello, S. Reich and A. M. Stuart

4.4.2. Algorithms: Gaussian projected filter
We now apply the ideas from Section 2.4, which concerns the Gaussian projected
filter in the general setting, to the specific setting of the stochastic dynamical system
(4.20). Let E denote expectation under 𝑢 ∼ N(𝑚𝑛, 𝐶𝑛) and define

𝐶𝑢𝐺
𝑛 = E((𝑢 − E𝑢) ⊗ (𝐺(𝑢) − E𝐺(𝑢))),

𝐶𝐺𝐺
𝑛 = E((𝐺(𝑢) − E𝐺(𝑢)) ⊗ (𝐺(𝑢) − E𝐺(𝑢))).

(4.21a)
(4.21b)

Noting that prediction under (4.20a) is trivial, it follows that the predicted mean
and covariance satisfy 𝑚𝑛+1 = 𝑚𝑛 and 𝐶𝑛+1 = 𝐶𝑛. Hence, using (2.42) in the
specific setting of (4.20) yields

𝑚𝑛+1 = 𝑚𝑛 + Δ𝑡𝐶𝑢𝐺
𝑛

(
Γ + Δ𝑡𝐶𝐺𝐺

𝑛

)−1(𝑤† − E𝐺(𝑢)),

𝐶𝑛+1 = 𝐶𝑛 − Δ𝑡𝐶𝑢𝐺
𝑛

(
Γ + Δ𝑡𝐶𝐺𝐺

𝑛

)−1(
𝐶𝑢𝐺
𝑛

)⊤
.

(4.22a)

(4.22b)

Note that the difference between the data 𝑤† and the mean of 𝐺(𝑢) under the
Gaussian at step 𝑛 acts as a forcing term in the evolution of the mean from 𝑛

to 𝑛 + 1, promoting a Gaussian which agrees with the data. This forcing term
is weighted by covariance information. The covariance of the Gaussian projected
filter is non-increasing from step to step since ⟨𝑢, 𝐶𝑛+1𝑢⟩ ≤ ⟨𝑢, 𝐶𝑛𝑢⟩ for all 𝑢 ∈ R𝑑𝑢 ;
this reflects the fact that more information is received at each step 𝑛 ↦→ 𝑛 + 1 as the
unknown 𝑢 is repeatedly observed.

Example 4.9. In the setting of the linear inverse problem (4.4), where𝐺(𝑢) = 𝐿𝑢,
the Gaussian projected filter equations (4.22) reduce to

𝑚𝑛+1 = 𝑚𝑛 + Δ𝑡𝐶𝑛𝐿
⊤(Γ + Δ𝑡𝐿𝐶𝑛𝐿

⊤)−1(𝑤† − 𝐿𝑚𝑛), (4.23a)
𝐶𝑛+1 = 𝐶𝑛 − Δ𝑡𝐶𝑛𝐿

⊤(Γ + Δ𝑡𝐿𝐶𝑛𝐿
⊤)−1𝐿𝐶𝑛. (4.23b)

These equations may be iterated to map from (𝑚0, 𝐶0) directly to (𝑚𝑛, 𝐶𝑛), obtain-
ing

𝑚𝑛 = 𝑚0 + 𝑛Δ𝑡𝐶0𝐿
⊤(Γ + 𝑛Δ𝑡𝐿𝐶0𝐿

⊤)−1(𝑤† − 𝐿𝑚0), (4.24a)
𝐶𝑛 = 𝐶0 − 𝑛Δ𝑡𝐶0𝐿

⊤(Γ + 𝑛Δ𝑡𝐿𝐶0𝐿
⊤)−1𝐿𝐶0. (4.24b)

These formulae may also be obtained by applying Bayes’ formula, in the linear
setting, to (4.16) and using (4.18), namely 𝑁Δ𝑡 = 1. The Gaussian posterior
measure 𝜇 = N(𝑚post, 𝐶post) given by (4.10) and (4.11) may now be found by
choosing mean and covariance (𝑚post, 𝐶post) = (𝑚𝑁 , 𝐶𝑁 ). This follows from
Section 2 because the Gaussian projected filter recovers the Kalman filter, which is
exact for linear Gaussian problems.

4.4.3. Algorithms: ensemble Kalman filter
Recall that mean-field models lead to ensemble Kalman methods through particle
approximation. In this section we simply highlight use of one of the mean-field
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Ensemble Kalman methods: A mean-field perspective 205

models, in the context of inverse problems, namely the stochastic Kalman transport
approach from Section 2.5.4 and its deterministic variant from Section 2.5.5. We
leave details of particle approximations of these mean-field models to the reader,
and to Appendix A for related pseudo-code.

Employing the state-observation model (4.20) within the stochastic Kalman
transport model (2.55), we obtain the mean-field dynamical system, for i.i.d. unit
Gaussian sequence {𝜉𝑛} in R𝑑𝑤 ,

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡𝐶𝑢𝐺
𝑛

(
Δ𝑡𝐶𝐺𝐺

𝑛 + Γ
)−1
(
𝑤† − 𝐺(𝑢𝑛) −

√︂
Γ
Δ𝑡
𝜉𝑛

)
,

𝐶𝑢𝐺
𝑛 = E((𝑢𝑛 − E𝑢𝑛) ⊗ (𝐺(𝑢𝑛) − E𝐺(𝑢𝑛))),

𝐶𝐺𝐺
𝑛 = E((𝐺(𝑢𝑛) − E𝐺(𝑢𝑛)) ⊗ (𝐺(𝑢𝑛) − E𝐺(𝑢𝑛))).

(4.25a)

(4.25b)
(4.25c)

Note that, here, expectation E is computed under the law of 𝑢𝑛 itself. As for
the Gaussian projected filter (4.22), the evolution promotes a distribution which
is compatible with the data, here with a forcing term, weighted by covariance
information, applied to the evolution of the state 𝑢𝑛; but unlike the mean-field
evolution equation for the mean, there is additional noise for the state evolution.

Recall Theorem 4.8. Since the ensemble Kalman transport algorithm used here
provides an approximation of the filtering distribution for the dynamical system
(4.20), it follows that the random variable 𝑢𝑁 provides an approximation to the
posterior distribution 𝜇, provided that 𝑢0 ∼ N(𝑚0, 𝐶0), the prior distribution. This
statement can be made exact in the linear case, as the following example shows.

Example 4.10. Assume𝐺(𝑢) = 𝐿𝑢 for 𝐿 ∈ R𝑑𝑤×𝑑𝑢 so that the posterior distribu-
tion of the Bayesian inverse problem 𝜇 is given in Example 4.4. Then the solution
of the mean-field model (4.25) satisfies 𝑢𝑁 ∼ 𝜇. This is a specific instance of
what we observed in Example 2.15, namely that the mean-field model reproduces
the Kalman filter on linear Gaussian problems. We note also that the Gaussian
projected filter is identical to the Kalman filter in this case; see Example 4.9.

Although it is implicit in Example 4.4, in this specific inverse problem context
we demonstrate the equivalence with the Kalman filter explicitly. To do this we note
that, in the linear setting, equation (4.25) defines a closed evolution in the set of
Gaussian probability measures. The updates for the mean𝑚𝑛 and covariance𝐶𝑛 of
𝑢𝑛 then coincide with the Kalman filter, and hence the Gaussian projected filter, in
this linear case given by equations (4.23). Indeed, by taking the expectation under
the law of 𝑢𝑛 of (4.25a), it is readily checked that in the linear setting we obtain
(4.23a) for the mean update. To obtain the evolution equation of the covariance,
recall that

𝐶𝑛+1 = E((𝑢𝑛+1 − 𝑚𝑛+1) ⊗ (𝑢𝑛+1 − 𝑚𝑛+1)). (4.26)

Substituting into (4.26) the expression for 𝑢𝑛+1, given by (4.25a) in the linear setting
𝐺(𝑢) = 𝐿𝑢, and the expression for 𝑚𝑛+1, given by (4.23a), and then computing the
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expectation yields (4.23b). It follows from the calculations of Example 4.9 that
𝑢𝑁 ∼ 𝜇.

We conclude this subsection by stating the corresponding deterministic transport
formulation. We employ the approximation (2.61). This holds in our case provided
Δ𝑡 is small enough. Choosing 𝐾𝑛 as implicitly defined in (4.25), we obtain, with
expectation E computed under the law of 𝑢𝑛 itself, the following mean-field model:

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡𝐶𝑢𝐺
𝑛

(
Δ𝑡𝐶𝐺𝐺

𝑛 + Γ
)−1
(
𝑤† − 1

2
(𝐺(𝑢𝑛) + E𝐺(𝑢𝑛))

)
,

𝐶𝑢𝐺
𝑛 = E((𝑢𝑛 − E𝑢𝑛) ⊗ (𝐺(𝑢𝑛) − E𝐺(𝑢𝑛))),

𝐶𝐺𝐺
𝑛 = E((𝐺(𝑢𝑛) − E𝐺(𝑢𝑛)) ⊗ (𝐺(𝑢𝑛) − E𝐺(𝑢𝑛))).

(4.27a)

(4.27b)
(4.27c)

4.5. Infinite-time algorithms

Algorithms which (approximately) transport prior to posterior in finite time, as
described in the preceding subsection, are attractive. However, they can be quite
rigid as they do not benefit from strong stability to perturbations. An alternative,
pursued in this section, is to seek algorithms which converge to the desired solution
on an infinite time horizon, from arbitrary starting points, and which exhibit expo-
nential stability. This is hard to achieve in general, but can be achieved exactly for
Gaussian problems. When applied beyond the Gaussian setting this hence leads to
a methodology consistent with the application of ensemble Kalman filter approx-
imations, which themselves invoke a Gaussian ansatz and yet are used beyond the
Gaussian setting. Section 4.5.1 describes the infinite time horizon formulation. In
Section 4.5.2 we consider this infinite time horizon perspective for the solution of
optimization problems associated with the inverse problem (4.1). Section 4.5.3
considers the same perspective for Bayesian inversion.

4.5.1. Formulation
To motivate what follows, we consider algorithms that solve the optimization
problem by extending ideas from the previous section to iterate a filtering problem
over an infinite time horizon. To explain this idea, recall the identity (4.16), restated
here for convenience:

𝜇𝑛(d𝑢) ∝ exp
(
− 𝑛
𝑁
Φ(𝑢)

)
𝜇0(d𝑢).

We note that if we evaluate this identity at 𝑛 = 𝑁 then we obtain the Bayesian
posterior distribution; the resulting algorithms are based on solving the associated
filtering problem on interval 𝑛 = 0, 1, . . . , 𝑁 . Now we observe that if, instead, we
iterate 𝑛 → ∞ for fixed 𝑁 (and hence fixed Δ𝑡), then 𝜇𝑛 will converge to a sum
of Dirac measures supported at global minimizers of Φ that are contained in the
support of 𝜇0. Thus we can iterate algorithms such as the Gaussian projected filter
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from Section 4.4.2, or the ensemble Kalman filter from Section 4.4.3, to 𝑛 = ∞, in
order to obtain an approximate solution of the optimization problem for Φ, within
the support of 𝜇0.

In the following example we study both the Gaussian projected filter and the
ensemble Kalman filter in the linear Gaussian setting. We consider their application
when we iterate 𝑛 → ∞ for fixed 𝑁 . The two algorithms coincide in this linear
Gaussian setting. Studying their properties gives insight into the proposed iterative
approach to optimization. In particular it motivates the use of regularization and
variance inflation, as introduced following the example.

Example 4.11. We consider the setting of Example 4.9, where the linear inverse
problem with 𝐺(𝑢) = 𝐿𝑢 is considered, making the additional assumption that
𝐿𝐶0𝐿

⊤ has full rank. The Gaussian projected filter equations (4.22), iterated over
𝑛 steps, give the single-step update (4.24). Since 𝐿𝐶0𝐿

⊤ has full rank, this delivers
the following closed-form update in the image of 𝐿:

𝐿𝑚𝑛 = 𝐿𝑚0 + Δ𝑡𝐿𝐶0𝐿
⊤
(

1
𝑛

Γ + Δ𝑡𝐿𝐶0𝐿
⊤
)−1

(𝑤† − 𝐿𝑚0), (4.28a)

𝐿𝐶𝑛𝐿
⊤ = 𝐿𝐶0𝐿

⊤ − Δ𝑡𝐿𝐶0𝐿
⊤
(

1
𝑛

Γ + Δ𝑡𝐿𝐶0𝐿
⊤
)−1

𝐿𝐶0𝐿
⊤. (4.28b)

If we fix Δ𝑡 and let 𝑛→ ∞, then we see that

𝐿𝑚𝑛 = 𝑤† +𝑂(1/𝑛),
𝐿𝐶𝑛𝐿

⊤ = 𝑂(1/𝑛).

We notice from the previous example that there are two issues when letting 𝑛→ ∞
for fixed Δ𝑡. First, the mean converges to a point 𝑚∞ solving 𝐿𝑚∞ = 𝑤†, rather
than a minimizer of the regularized functional Φ𝑅(·). Secondly, the convergence
rate is only of order 1/𝑛.

We now seek to address the two problems identified in this example, to develop
improved methodology.

Regularization. The first problem identified in Example 4.11, namely that regu-
larization disappears when taking 𝑛 → ∞, can be addressed by considering the
iteration defined by

𝜇𝑛(d𝑢) ∝ exp(−𝑛Δ𝑡Φ𝑅(𝑢)) 𝜇0(d𝑢) (4.29)

instead of the iteration defined by (4.16). Recalling 𝐺𝑅, Γ𝑅 defined by (4.3) and
assuming that Γ𝑅 ≻ 0, then a sequence of measures 𝜇𝑛 given by (4.29) may be
generated by the filtering distribution associated with the following modification
of (4.20):

𝑢𝑛+1 = 𝑢𝑛,

𝑦𝑛+1 = Δ𝑡𝐺𝑅(𝑢𝑛+1) + 𝜂𝑛+1.

(4.30a)
(4.30b)
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Here 𝜂𝑛+1 ∼ N(0,Δ𝑡Γ𝑅), and we consider the setting where the observed data
is 𝑦†

𝑛+1 = Δ𝑡𝑤
†
𝑅

. Note that 𝑤†
𝑅

is the fixed vector defined in (4.5). We may
apply sequential filtering techniques, such as the Gaussian projected filter and
the ensemble Kalman filter, to the filtering problem defined by (4.30). Since 𝜇𝑛
converges to a Dirac delta distribution centred about the minimizer of Φ𝑅, within
the support of 𝜇0, this addresses the first problem. However, the rate of convergence
remains of order 1/𝑛 so that the second problem is not addressed; this is verified
explicitly for the linear case in the forthcoming Example 4.15.

Variance inflation. The second problem identified in Example 4.11 is algebraic
convergence. The root cause of the algebraic convergence is the collapse of the
covariance 𝐶𝑛 to zero. Therefore, in order to accelerate the convergence rate,
we need to modify the sequential update steps to ensure that the covariance of
(approximate) filters does not collapse to zero; at the same time we must ensure
that the mean 𝑚𝑛 still converges, exactly in the linear setting and approximately in
the general nonlinear case, to the minimizer of Φ𝑅 as 𝑛→ ∞.

In order to achieve this non-collapsing covariance we modify (4.30) by adding
a form of variance inflation to the evolution of the parameter 𝑢𝑛, and consider the
stochastic dynamical system given by

𝑢𝑛+1 = 𝑢𝑛 + 𝜉𝑛,
𝑦𝑛+1 = Δ𝑡𝐺𝑅(𝑢𝑛+1) + 𝜂𝑛+1.

(4.31a)
(4.31b)

Here 𝜉𝑛 ∼ N(0, 𝛽Δ𝑡Σ𝑛), 𝛽 ≥ 0 and 𝜂𝑛+1 ∼ N(0,Δ𝑡Γ𝑅) for covariance inflation
matrix Σ𝑛 to be defined. Note that if 𝛽 = 0 we simply recover (4.30).

We now discuss the choice of Σ𝑛. Because the true covariance that we wish to
recover is that of filtering distribution, it is natural that Σ𝑛 is defined in terms of the
covariance of the filter. Defining 𝑌†

𝑛 = {𝑦†
ℓ
}𝑛
ℓ=1 with 𝑦†

ℓ
≔ Δ𝑡𝑤

†
𝑅

, we may consider
the filtering distribution defined by random variable 𝑢𝑛 |𝑌†

𝑛 . We let 𝐶𝑛 denote the
covariance under this filtered random variable. We then set Σ𝑛 ≔ 𝐶𝑛.

Remark 4.12. With this choice of 𝐶𝑛, equation (4.31) defines a form of mean-
field model for state-observation evolution. Previously in this paper the state-
observation models we have considered have not been of mean-field type; we
only introduced mean-field models as the basis of sample-path-based algorithms
to (approximately) solve a filtering problem. Here, in contrast, the mean-field
dependence of the proposed model (4.31), with Σ𝑛 ≔ 𝐶𝑛, is through the filtering
distribution associated with 𝑢𝑛 |𝑌†

𝑛 . Thus, even before we develop mean-field
models to approximate the law of the filtering distribution via sample-path-based
algorithms, the underlying state-observation model is linked to filtering.

Although the filtering distribution depends on the history𝑌†
𝑛 , equation (4.31) can

be rendered Markovian by coupling it to the evolution of the filtering distribution
𝜇𝑛 ↦→ 𝜇𝑛+1, and noting that 𝐶𝑛 is computed under 𝜇𝑛.
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We note that, in practice, identification of the exact covariance of the filtering
distribution is not possible. Thus, in the Gaussian projected filter and ensemble
Kalman filter that follow, we will use approximations of 𝐶𝑛; however, we will also
denote these approximations by 𝐶𝑛 to avoid proliferation of notation.

We now derive implementable algorithms to approximate the filtering distribu-
tion defined by (4.31).

Gaussian projected filter. We begin by applying the ideas from Section 2.4, which
concerns the Gaussian projected filter in the general setting, to the specific setting
of the stochastic dynamical system (4.31). Using (2.42) in the specific setting of
(4.31) yields

𝑚𝑛+1 = 𝑚𝑛,

𝐶𝑛+1 = (1 + 𝛽Δ𝑡)𝐶𝑛,

𝑚𝑛+1 = 𝑚𝑛+1 + Δ𝑡𝐶𝑢𝐺
𝑅,𝑛+1

(
Δ𝑡𝐶𝐺𝐺

𝑅,𝑛+1 + Γ𝑅

)−1(
𝑤
†
𝑅
− ô𝑛+1

)
,

𝐶𝑛+1 = 𝐶𝑛+1 − Δ𝑡𝐶𝑢𝐺
𝑅,𝑛+1

(
Δ𝑡𝐶𝐺𝐺

𝑅,𝑛+1 + Γ𝑅

)−1(
𝐶𝑢𝐺
𝑅,𝑛

)⊤
.

(4.32a)

(4.32b)

(4.32c)

(4.32d)

Here we define

ô𝑛+1 = E𝐺𝑅(�̂�𝑛+1),

𝐶𝑢𝐺
𝑅,𝑛+1 = E((�̂�𝑛+1 − E�̂�𝑛+1) ⊗ (𝐺𝑅(�̂�𝑛+1) − E𝐺𝑅(�̂�𝑛+1))),

𝐶𝐺𝐺
𝑅,𝑛+1 = E((𝐺𝑅(�̂�𝑛+1) − E𝐺𝑅(�̂�𝑛+1)) ⊗ (𝐺𝑅(�̂�𝑛+1) − E𝐺𝑅(�̂�𝑛+1))),

(4.33a)

(4.33b)

(4.33c)

where, in (4.32), all expectations are with respect to �̂�𝑛+1 ∼ N(𝑚𝑛+1, 𝐶𝑛+1). Note
that we have used the covariance of the Gaussian projected filter to define the
variance inflation required to determine (4.32b), since we do not have the covariance
under the true filtering distribution.

Ensemble Kalman filter. Instead of the Gaussian projected filter, we may use the
ensemble Kalman filter. We use the covariance 𝐶𝑛 of the ensemble Kalman filter
to define the variance inflation since, again, we do not have the covariance under
the true filtering distribution. With these considerations in hand, application of the
stochastic Kalman transport mean-field model (2.55) to (4.31) yields

�̂�𝑛+1 = 𝑢𝑛 + 𝜉𝑛,
�̂�𝑛+1 = Δ𝑡𝐺𝑅(�̂�𝑛+1) + 𝜂𝑛+1,

𝑢𝑛+1 = �̂�𝑛+1 + 𝐶𝑢𝐺
𝑅,𝑛+1

(
Δ𝑡𝐶𝐺𝐺

𝑅,𝑛+1 + Γ𝑅

)−1(
Δ𝑡𝑤

†
𝑅
− �̂�𝑛+1

)
.

(4.34a)
(4.34b)

(4.34c)

Here 𝜉𝑛 ∼ N(0, 𝛽Δ𝑡𝐶𝑛), 𝜂𝑛+1 ∼ N(0,Δ𝑡Γ𝑅) and expectations appearing in (4.33),
to define

(
𝐶𝑢𝐺
𝑅,𝑛+1, 𝐶

𝐺𝐺
𝑅,𝑛+1

)
, are computed under the law of �̂�𝑛+1.
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Remark 4.13. Recall the mean-field dynamical system (4.31) and consider its
filtering distribution. In Section 4.5.2 we show that in the linear case the mean of
the filtering distribution converges to the posterior mean of the underlying Bayesian
inverse problem, and hence to a minimizer of the Tikhonov regularized least-
squares function Φ𝑅. For 𝛽 = 0 convergence is algebraic, whilst it is exponential
for 𝛽 > 0. Furthermore, in Section 4.5.3, we show that for a particular choice of
𝛽, in the linear case the filtering distribution converges to the Bayesian posterior
distribution defined by the inverse problem.

Recall that the Gaussian projected filter (4.32) and the mean-field ensemble
Kalman filter (4.34) exactly reproduce the evolution of the filtering distribution, for
linear Gaussian problems. As a consequence everything stated in this remark for
the filtering distribution applies also to the law defined by (4.32) and by (4.34).

We also note that it is possible to use corresponding deterministic transport
formulations in place of (4.34). We employ the approximation (2.61). This holds
in our case provided Δ𝑡 is small enough. Choosing 𝐾𝑛 as implicitly defined in
(4.34), we obtain the following mean-field model:

�̂�𝑛+1 = 𝑢𝑛 + 𝜉𝑛,

𝑢𝑛+1 = �̂�𝑛+1 + Δ𝑡𝐾𝑛

(
𝑤
†
𝑅
− 1

2
(
𝐺𝑅(�̂�𝑛+1) + 𝑜𝑛+1

))
,

𝐾𝑛 = 𝐶𝑢𝐺
𝑅,𝑛+1

(
Δ𝑡𝐶𝐺𝐺

𝑅,𝑛+1 + Γ𝑅

)−1
.

(4.35a)

(4.35b)

(4.35c)

Here 𝜉𝑛 ∼ N(0, 𝛽Δ𝑡𝐶𝑛). All expectations used to define
(
𝐶𝑢𝐺
𝑅,𝑛+1, 𝐶

𝐺𝐺
𝑅,𝑛+1, 𝑜𝑛+1

)
are given by (4.33), computed under the law of �̂�𝑛+1. This also exactly solves the
filtering problem defined by (4.31), in the linear Gaussian setting.

Remark 4.14. We note that it is possible to replace (4.34) with the mean-field
model

�̂�𝑛+1 = 𝑢𝑛 +
𝛾

2
(𝑢𝑛 − E𝑢𝑛),

�̂�𝑛+1 = Δ𝑡𝐺𝑅(�̂�𝑛+1) + 𝜂𝑛+1,

𝑢𝑛+1 = �̂�𝑛+1 + 𝐶𝑢𝐺
𝑅,𝑛+1

(
Δ𝑡𝐶𝐺𝐺

𝑅,𝑛+1 + Γ𝑅

)−1(
Δ𝑡𝑤

†
𝑅
− �̂�𝑛+1

)
.

(4.36a)

(4.36b)

(4.36c)

Here the expectation on 𝑢𝑛 is with respect to the approximate filtering distribution
generated by this model. Now note that the predictive mean and covariance defined
by (4.34) are governed by (4.32a), (4.32b). The same equations govern the evolution
of predictive mean and covariance of (4.36) provided that we choose 𝛾 to be the
unique positive solution of the equation 𝛾 + 𝛾2/4 = Δ𝑡𝛽. Thus the resulting
methodology will coincide with the Gaussian projected filter and with the ensemble
Kalman filter on linear Gaussian problems.
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4.5.2. Algorithms for optimization formulation
Recall that we have introduced the non-standard mean-field dynamical system
(4.31). We have also described how the filtering distribution of the dynamical sys-
tem may be approximated by the Gaussian projected filter (4.32) and the mean-field
ensemble Kalman filter (4.34). In this subsection we substantiate the statements
made about these algorithms in Remark 4.13. We initially discuss algorithms with
algebraic convergence, for 𝛽 = 0; and then we introduce a generalization of the
analysis to 𝛽 > 0 which allows us to obtain exponential convergence.

Algebraic convergence. Here we consider the setting of (4.31) where 𝛽 = 0. Recall
that for this choice of 𝛽, the stochastic dynamical system (4.31) reduces to (4.30).
The following example illustrates that in the linear case where 𝐺𝑅(·) = 𝐿𝑅 ·, we
recover an algebraic rate of convergence of the filtering distribution to a Dirac
distribution at the posterior mean, when fixing Δ𝑡 and taking 𝑛 → ∞. This is
analogous to Example 4.11, which considers algorithms based on 𝐿, not 𝐿𝑅.

Example 4.15. Assume that 𝑢0 is initialized at a Gaussian N(𝑚0, 𝐶0) and assume
also that 𝐶0, Γ𝑅 ≻ 0. Consider the setting where 𝐺𝑅(·) = 𝐿𝑅 · for matrix 𝐿𝑅 ∈
R(𝑑𝑤+𝑑𝑢)×𝑑𝑢 . Now consider the filtering distribution 𝑢𝑛 |𝑌†

𝑛 given in (4.30), with 𝑌†
𝑛

data defined 𝑦†𝑛 = Δ𝑡𝑤
†
𝑅

, with 𝑤†
𝑅

as in (4.5).
The desired filtering distribution is Gaussian N(𝑚𝑛, 𝐶𝑛). We now show that

the iteration (𝑚𝑛, 𝐶𝑛) ↦→ (𝑚𝑛+1, 𝐶𝑛+1) converges to the posterior distribution, and
does so at an algebraic rate. The reader should compare this with Example 4.11
which, using filtering based on 𝐺 rather than 𝐺𝑅, and again in the linear case, also
results in algebraic convergence; furthermore, convergence is only in the image
space under the forward map 𝐿.

To prove convergence to the Dirac distribution we first identify the update equa-
tions for (𝑚𝑛, 𝐶𝑛). Note that the predictive mean𝑚𝑛+1 and covariance𝐶𝑛+1 defined
by (4.30a) trivially satisfy

𝑚𝑛+1 = 𝑚𝑛,

𝐶𝑛+1 = 𝐶𝑛.

To find (𝑚𝑛+1, 𝐶𝑛+1) it is again convenient to derive the formulae using precision
rather than covariance matrices. To this end we view the Gaussian N(𝑚𝑛+1, 𝐶𝑛+1)
as prior distribution for the linear inverse problem defined by (4.30b) with data
realization 𝑦

†
𝑛+1 = Δ𝑡𝑤

†
𝑅

. Note that the likelihood, being linear and Gaussian,
is conjugate to the prior, so that the resulting posterior, which is the filtering
distribution on 𝑢𝑛+1 |𝑌†

𝑛+1, is Gaussian with mean and covariance (𝑚𝑛+1, 𝐶𝑛+1),
which can be found by completing the square:

𝐶−1
𝑛+1 = 𝐶−1

𝑛+1 + Δ𝑡𝐿⊤𝑅Γ−1
𝑅 𝐿𝑅,

𝐶−1
𝑛+1𝑚𝑛+1 = 𝐶−1

𝑛+1𝑚𝑛+1 + Δ𝑡𝐿⊤𝑅Γ−1
𝑅 𝑤

†
𝑅
.
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We therefore find that
𝐶−1
𝑛 = 𝐶−1

0 + 𝑛Δ𝑡𝐿⊤𝑅Γ−1
𝑅 𝐿𝑅 . (4.37)

Recall that the posterior covariance 𝐶post = (𝐿⊤
𝑅

Γ−1
𝑅
𝐿𝑅)−1 from (4.10) is positive

definite. Hence it follows that the covariance converges to zero algebraically fast:
𝐶𝑛 = 𝑂(1/𝑛).

Now note that
𝐶−1
𝑛 𝑚𝑛 = 𝐶−1

0 𝑚0 + 𝑛Δ𝑡𝐿⊤𝑅Γ−1
𝑅 𝑤

†
𝑅
,

so that
𝑚𝑛 =

(
𝐶−1

0 + 𝑛Δ𝑡𝐿⊤𝑅Γ−1
𝑅 𝐿𝑅

)−1(
𝐶−1

0 𝑚0 + 𝑛Δ𝑡𝐿⊤𝑅Γ−1
𝑅 𝑤

†
𝑅

)
.

We deduce that since the posterior mean is given by (4.11),

𝑚𝑛 = 𝐶𝐿⊤𝑅Γ−1
𝑅 𝑤

†
𝑅
+𝑂(1/𝑛) = 𝑚post +𝑂(1/𝑛), (4.38)

again exhibiting algebraic convergence. Combining (4.37) and (4.38) yields the
result.

Exponential convergence. Example 4.15 shows that when 𝛽 = 0, filtering based
on (4.31) leads to convergence to the posterior distribution at an algebraic rate, in
the linear setting, when fixing Δ𝑡 and taking 𝑛→ ∞. We now exhibit, when 𝛽 > 0,
an exponential rate of convergence to a Gaussian with correct posterior mean and
a 𝛽-dependent scaled posterior covariance.

Proposition 4.16. Assume that 𝑢0 is initialized at a Gaussian N(𝑚0, 𝐶0) and
assume also that 𝐶0, Γ𝑅 ≻ 0. Consider the setting where 𝐺𝑅(·) = 𝐿𝑅 · for matrix
𝐿𝑅 ∈ R(𝑑𝑤+𝑑𝑢)×𝑑𝑢 . Now consider the filtering distribution 𝑢𝑛 |𝑌†

𝑛 defined by (4.31)
for 𝛽 > 0, with data 𝑌†

𝑛 defined by 𝑦†𝑛 = Δ𝑡𝑤
†
𝑅

, where 𝑤†
𝑅

is defined in (4.5). Then
the filtering distribution is Gaussian N(𝑚𝑛, 𝐶𝑛) for all 𝑛 ≥ 1. For any fixed Δ𝑡 > 0,
the mean and covariance converge at an exponential rate (1 + Δ𝑡𝛽)−𝑛, as 𝑛 → ∞,
to the limits 𝑚∞ = 𝑚post and

𝐶∞ =
𝛽

1 + 𝛽Δ𝑡 𝐶post,

where (𝑚post, 𝐶post) are the posterior mean (4.11) and covariance (4.10). ^

Remark 4.17. Motivated by this proposition we may use the Gaussian projected
filter (4.32) or the stochastic or deterministic Kalman transport algorithms, (4.34)
and (4.35) respectively, to approximate the filtering distribution implied by (4.31).
In so doing we generate approximate solutions of the Tikhonov regularized optim-
ization problem defined by (4.1). Furthermore, the exact solution is recovered in
the linear Gaussian setting.

Remark 4.18. It is a remarkable fact that the rate of convergence is independent
of the properties of the limiting Gaussian posterior distribution, and in particular of
the conditioning of the posterior covariance. This desirable property is a result of
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the affine invariance of the Gaussian projected filter and ensemble Kalman methods
that we deploy in this subsection. Affine invariance is a subject we will study in
more detail in the context of continuous-time approaches to inversion, developed
in Section 5. In this context we note that Definition 5.11 may be extended to
discrete-time algorithms.

Proof of Proposition 4.16. We first identify the update equations for (𝑚𝑛, 𝐶𝑛).
Note that the predictive mean 𝑚𝑛+1 and covariance 𝐶𝑛+1 defined by (4.31a) satisfy

𝑚𝑛+1 = 𝑚𝑛, (4.39a)

𝐶𝑛+1 = (1 + 𝛽Δ𝑡)𝐶𝑛. (4.39b)

To find (𝑚𝑛+1, 𝐶𝑛+1) it is convenient to derive the formulae using precision rather
than covariance matrices. To this end we view the Gaussian N(𝑚𝑛+1, 𝐶𝑛+1) as
prior distribution for the linear inverse problem defined by (4.31b) conditioned
on specific realization of the data 𝑤†

𝑛+1 = 𝑤
†
𝑅

. Note that the likelihood, since
linear and Gaussian, is conjugate to the prior so that the filtering distribution on
𝑢𝑛+1 |𝑊†

𝑛+1 is Gaussian with mean and covariance (𝑚𝑛+1, 𝐶𝑛+1) which can be found
by completing the square

𝐶−1
𝑛+1 = 𝐶−1

𝑛+1 + Δ𝑡𝐿⊤𝑅Γ−1
𝑅 𝐿𝑅, (4.40a)

𝐶−1
𝑛+1𝑚𝑛+1 = 𝐶−1

𝑛+1𝑚𝑛+1 + Δ𝑡𝐿⊤𝑅Γ−1
𝑅 𝑤

†
𝑅
. (4.40b)

Combining (4.39) and (4.40) shows that (𝑚𝑛, 𝐶𝑛) update according to the for-
mulae

𝐶−1
𝑛+1 =

(
1

1 + 𝛽Δ𝑡

)
𝐶−1
𝑛 + Δ𝑡𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅,

𝐶−1
𝑛+1𝑚𝑛+1 =

(
1

1 + 𝛽Δ𝑡

)
𝐶−1
𝑛 𝑚𝑛 + Δ𝑡𝐿⊤𝑅Γ−1

𝑅 𝑤
†
𝑅
.

We can therefore write

𝐶−1
𝑛 =

(
1

1 + 𝛽Δ𝑡

)𝑛

𝐶−1
0 +

(
𝑛−1∑︁
𝑘=0

(
1

1 + 𝛽Δ𝑡

)𝑘
)
Δ𝑡𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅,

and so

𝐶−1
𝑛 =

(
1

1 + 𝛽Δ𝑡

)𝑛

𝐶−1
0 + 1 + 𝛽Δ𝑡

𝛽

(
1 −
(

1
1 + 𝛽Δ𝑡

)𝑛)
𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅 . (4.41)

Recall the posterior covariance𝐶post = (𝐿⊤
𝑅

Γ−1
𝑅
𝐿𝑅)−1 given in (4.10). It is clear that

the precision converges exponentially fast to𝐶−1
post, scaled by (1 + 𝛽Δ𝑡)/𝛽, and hence

that the covariance converges exponentially fast to the appropriately scaled 𝐶post.
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Similarly we may write the expression for the mean as

𝐶−1
𝑛 𝑚𝑛 =

(
1

1 + 𝛽Δ𝑡

)𝑛

𝐶−1
0 𝑚0 +

1 + 𝛽Δ𝑡
𝛽

(
1 −
(

1
1 + 𝛽Δ𝑡

)𝑛)
𝐿⊤𝑅Γ−1

𝑅 𝑤
†
𝑅
,

so that the exponential convergence of the mean to the steady state 𝑚post given by
(4.11) may be deduced, using the expression (4.41).

Remark 4.19. Recall the Hessian S of Φ𝑅, defined in (4.10). Using the formulae
for the predictive mean and covariance, it is also easy to deduce that the expression
for 𝑚𝑛+1 is given by

𝑚𝑛+1 =

(
1

1 + 𝛽Δ𝑡

)
· 𝑚𝑛 +

(
𝛽Δ𝑡

1 + 𝛽Δ𝑡

)
· S−1𝐿⊤𝑅Γ−1

𝑅 𝑤
†
𝑅
,

and hence

𝑚𝑛+1 = 𝑚𝑛 +
(

𝛽Δ𝑡

1 + 𝛽Δ𝑡

)
· S−1(S𝑚𝑛 + 𝐿⊤𝑅Γ−1

𝑅 𝑤
†
𝑅

)
. (4.42)

Since ∇Φ𝑅(𝑢) = S𝑢 + 𝐿⊤
𝑅

Γ−1
𝑅
𝑤
†
𝑅

and 𝐷2Φ𝑅(𝑢) = S, the iteration (4.42) may be
viewed as a Gauss–Newton scheme for minimizing Φ𝑅.

4.5.3. Algorithms for Bayesian formulation
Again recall that we have introduced the non-standard mean-field dynamical system
(4.31) and shown how the filtering distribution of the dynamical system may be
approximated by the Gaussian projected filter (4.32) and the mean-field ensemble
Kalman filter (4.34). In this subsection we substantiate the statements made about
these algorithms in Remark 4.13 in relation to Bayesian sampling. In particular
we show that they exactly recover the posterior in the linear Gaussian setting by
choosing

𝛽 =
1

1 − Δ𝑡
. (4.43)

The following is a direct corollary of Proposition 4.16. As in Remark 4.18, we note
that the rate of convergence, in this case to the posterior distribution, is universal
across all Gaussian posteriors.

Corollary 4.20. Assume that 𝑢0 is initialized at a Gaussian N(𝑚0, 𝐶0) and assume
also that 𝐶0, Γ𝑅 ≻ 0. Consider the setting where 𝐺𝑅(·) = 𝐿𝑅 · for matrix 𝐿𝑅 ∈
R(𝑑𝑤+𝑑𝑢)×𝑑𝑢 . Now consider the filtering distribution 𝑢𝑛 |𝑌†

𝑛 defined by (4.31) for
𝛽 given by (4.43), with data 𝑌†

𝑛 defined by 𝑦†𝑛 = Δ𝑡𝑤
†
𝑅

, where 𝑤†
𝑅

is defined in
(4.5). Then the filtering distribution is Gaussian N(𝑚𝑛, 𝐶𝑛) for all 𝑛 ≥ 1. For any
fixed Δ𝑡 > 0 the mean and covariance converge at an exponential rate (1 − Δ𝑡)𝑛,
as 𝑛 → ∞, to the limits 𝑚∞ = 𝑚post and 𝐶∞ = 𝐶post, where (𝑚post, 𝐶post) are the
posterior mean (4.11) and covariance (4.10). ^
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Remark 4.21. Motivated by this corollary, in the context of (4.31) we may use the
Gaussian projected filter (4.32) or the stochastic or deterministic Kalman transport
algorithms, (4.34) and (4.35) respectively, to generate approximate solutions of the
Bayesian inverse problem defined by (4.1), in the general nonlinear setting. Of
course, because these algorithms employ Gaussian approximations, this does not
produce the exact filtering distribution. Furthermore, to make resulting algorithms
tractable we will predict in (4.31a) using the covariance 𝐶𝑛 of the Gaussian pro-
jected filter or the Kalman transport algorithm, rather than the covariance under
the true filtering distribution, which is not tractable: see the final paragraph in
Remark 4.12. We note, however, that in the linear Gaussian case all the algorithms
are exact and hence recover the true posterior.

4.6. Ensemble Kalman methods for inversion: examples

In this section we have so far concentrated entirely on mean-field models, leaving
the details of deriving particle approximations to the reader. In this subsection,
however, we make a brief foray into finite particle ensemble approximations of
the mean-field models introduced in our discussion of inverse problems. The
algorithms we employ can be found in Appendix A as Algorithms 3, 4 and 5.

Algorithms 3 and 4 are based on finite particle approximations of the mean-field
model in (4.25). Algorithm 3 is based on iterating until 𝑁 satisfying 𝑁Δ𝑡 = 1
and, at that time-step, aims to approximate the posterior. Algorithm 4 performs the
same iteration but to 𝑁∞ assumed to satisfy 𝑁∞Δ𝑡 ≫ 1 so that it approximately
solves an optimization problem; see the discussion at the start of Section 4.5.1.
Algorithm 5 is based on (4.34) with 𝛽 given by (4.43), and aims to approximate
the posterior by iterating to 𝑁∞ : 𝑁∞Δ𝑡 ≫ 1.

In Example 4.22 we study a one-dimensional nonlinear inverse problem; work-
ing in one dimension enables comparison of the true posterior distribution with
approximations arising from the various ensemble Kalman inversion schemes de-
scribed in preceding subsections. We also demonstrate an optimization approach
to inversion, in the context of Example 4.22. Subsequently, in Example 4.23, we
return to the setting of the Lorenz ’96 dynamical system, now to estimate unknown
parameters rather than the state; our focus is on studying ensemble Kalman meth-
ods from the perspective of the optimization approach to the parameter estimation
problem.

Example 4.22. Recall Example 4.9 concerning the linear Gaussian inverse prob-
lem; there we show that the exact posterior is obtained either by iterating (4.23)
𝑁 times or by evaluating (4.24) at 𝑛 = 𝑁 . Although derived in the context of
the Gaussian projected filter, the example also applies to mean-field ensemble
Kalman methods since they, like the Gaussian projected filter, are exact for linear
Gaussian problems. However, in the nonlinear case this equivalence does not hold
exactly, because of approximations that are made by the Gaussian projected and
ensemble Kalman filtering methods. In this example we study the effect of these
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216 E. Calvello, S. Reich and A. M. Stuart

approximations by examining the behaviour of particle-based ensemble Kalman
methods applied to a nonlinear inverse problem.

We consider the setting of (4.1) with a nonlinear forward map 𝐺 : R→ R, given
by

𝐺(𝑢) =
7

12
𝑢3 − 7

2
𝑢2 + 8𝑢. (4.44)

The observational noise is assumed to be of the form 𝜂 ∼ N(0, 1). Assuming
observation 𝑤† = 2 results in likelihood

1
√

2𝜋
exp
(
−1

2
(𝐺(𝑢) − 2)2

)
. (4.45)

Furthermore, assuming a Gaussian prior of mean−2 and variance 1/2, the posterior
on 𝑢 |𝑤† is proportional to

1
√

2𝜋
exp
(
−1

2
(𝐺(𝑢) − 2)2 − (𝑢 + 2)2

)
. (4.46)

We note that the forward map 𝐺(𝑢) is monotonic and the posterior (4.46) is uni-
modal: in Figure 4.1(a) we display the posterior distribution. We also show the
Gaussian prior and the likelihood (4.45).

Figure 4.1(b) shows the ensemble Kalman inversion iteration (4.25) from Sec-
tion 4.4, which is designed to transport prior to posterior in finite time, fixing 𝑁
iterations and Δ𝑡 so that 𝑁Δ𝑡 = 1; see Algorithm 3. Recall that the iteration exactly
recovers the posterior, in the mean-field limit, when applied to linear Gaussian
inverse problems (Example 4.9), but that here the inverse problem is nonlinear and
non-Gaussian. We employ this algorithm with 𝐽 = 2×103 ensemble members. We
run Algorithm 3 with two choices of 𝑁: 𝑁 = 4 × 103 and hence Δ𝑡 = 2.5 × 10−4,
and with 𝑁 = 1 and hence Δ𝑡 = 1. Figure 4.1(b) shows that the one-step approach,
with 𝑁 = 1, leads to a very poor approximation of the posterior. In contrast, the
scheme with 𝑁 = 4× 103 yields reasonable approximation quality of the posterior;
see Remark 4.6. In this panel we also run Algorithm 4 for the finite number of
iterations 𝑁∞ = 106, with Δ𝑡 = 2.5 × 10−4. The result reflects the theoretical
interpretation: iterating 𝑛 → ∞ leads to solution of the optimization formulation
of ensemble Kalman inversion and, as discussed in Section 4.5, results in conver-
gence to a Dirac centred at the minimizer of the least-squares functional Φ, the
maximum likelihood estimate found by maximizing (4.45); this simply delivers the
point 𝐺−1(2).

Figure 4.1(c) shows the ensemble Kalman inversion iteration (4.34) from Sec-
tion 4.5, namely Algorithm 5. This is designed to approximate the true posterior,
when 1/𝛽 = 1 − Δ𝑡: indeed, Corollary 4.20 shows that in the linear setting the
mean-field model (4.34) converges to the true posterior in limit 𝑛 → ∞, with this
choice of 𝛽. Our numerical results, which are conducted with this choice of 𝛽,
show that use of the Algorithm 5, when applied to the nonlinear inverse problem,
produces an excellent posterior approximation; this demonstrates that the linear
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(a)

(b)

(c)

Figure 4.1. The plots display the results obtained for the inverse problem described
by the one-dimensional nonlinear forward map (4.44). (a) The prior, likelihood
and posterior. (b) Comparison of the true posterior PDF with the approximation
obtained using the finite ensemble Kalman inversion iteration (4.25), as detailed
in Algorithm 3, with Δ𝑡 = 2.5 × 10−4 and Δ𝑡 = 1, iterated to time 𝑛 = 𝑁 where
𝑁Δ𝑡 = 1. Panel (b) also includes results found from applying the optimization
Algorithm 4, iterating over 𝑁∞ = 106 steps with Δ𝑡 = 2.5 × 10−4; in this case, the
ensemble approaches the Dirac measure supported on the minimizer of the unreg-
ularized least-squares loss Φ, given by the peak of the likelihood. (c) The posterior
approximation using the ensemble Kalman inversion iteration with covariance in-
flation as described by the mean-field model (4.34), as detailed in Algorithm 5,
with 𝛽 = 1/(1 − Δ𝑡) for parameter Δ𝑡 = 2.5 × 10−4; the algorithm is iterated over
𝑁∞ = 105 steps. It is clear that this scheme yields the highest-quality posterior
approximation.
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218 E. Calvello, S. Reich and A. M. Stuart

theory is indicative of the behaviour of the algorithm beyond the linear Gaussian
setting.

Example 4.23. As in the examples from Section 2, we again consider the Lorenz
’96 (single-scale) model for 𝑣 ∈ 𝐶(R+,R𝐿) satisfying the equations

¤𝑣ℓ = −𝑣ℓ−1(𝑣ℓ−2 − 𝑣ℓ+1) − 𝑣ℓ + 𝑢 + ℎ𝑣𝑚(𝑣ℓ), ℓ = 1 . . . 𝐿, (4.47a)
𝑣ℓ+𝐿 = 𝑣ℓ , ℓ = 1 . . . 𝐿. (4.47b)

As before, we set 𝐿 = 9, ℎ𝑣 = −0.8 and 𝑢 = 10. We recall that function 𝑚 is shown
in Figure 2.1. In Section 2 we focused on recovering the state 𝑣 from partial and
noisy observations. Here we concentrate on recovering the parameter 𝑢.24

Our objective is to recover parameter 𝑢 from time-averaged data. We assume
that the system is ergodic so that infinite time-averages produce averages over the
invariant measure. Furthermore, we assume that convergence in time, of averages,
is governed by a central limit theorem. We let 𝐺𝑇 : R→ R2 denote the mean and
variance, defined via averaging over time 𝑇 and over the 𝐿 components of 𝑣, of
the state of system (4.47). In principle 𝐺𝑇 depends also on initialization, but this
effect is negligible for 𝑇 large, and zero for 𝑇 = ∞, by ergodicity. In particular,
with system state 𝑣† evolving according to

𝑣
†
𝑛+1 = Ψ(𝑣†𝑛), (4.48)

where Ψ is the solution operator for (4.47) over the observation time interval 𝜏,
with true parameter 𝑢 = 𝑢†, the action of forward operator 𝐺𝑇 on 𝑢 is defined as
follows:

𝐺𝑇 (𝑢) =
(
𝑤1
𝑤2

)
,

with, for 𝑀𝜏 = 𝑇 ,

𝑤1 =
1
𝐿

𝐿∑︁
𝑙=1

�̄�
†
𝑙
, 𝑤2 =

1
𝐿 · 𝑀

𝑀∑︁
𝑛=1

𝐿∑︁
𝑙=1

(
𝑣
†
𝑛;𝑙 − �̄�

†
𝑙

)2
, �̄�

†
𝑙
=

1
𝑀

𝑀∑︁
𝑛=1

𝑣
†
𝑛;𝑙,

where we have used 𝑣†
𝑛;𝑙 to denote the 𝑙th variable in vector 𝑣†𝑛.

We consider finding 𝑢 from an observation 𝑤 ∈ R2 arising from the model

𝑤 = 𝐺∞(𝑢) + 𝛾. (4.49)

In practice the specific realization 𝑤†, from which we invert to find 𝑢, is found by
integrating 𝐺𝑇 to a finite time 𝑇 = 100, not 𝑇 = ∞. Variable 𝛾 ∼ N(0, Γ) accounts
for the resulting central limit theorem correction. To solve the parameter estimation
problem for 𝑢, we use ensemble Kalman methods in Algorithms 3, 4 and 5. We do
not have access to 𝐺∞ and so, instead, the algorithms are implemented by using

24 We have used the notation 𝑢 instead of 𝐹, for the forcing parameter, to align with the notation for
the unknown parameter used throughout the section concerning inverse problems.
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𝐺𝑇 with 𝑇 = 10, initialized after a burn-in time of duration 𝑡∗ = 10. The burn-in
phase itself results from an initial condition chosen at random from a Gaussian
distribution with mean 0 and standard deviation 40. In the experiments shown we
take Γ = 𝜎2𝐼, with 𝜎 = 10−1. All the ensemble Kalman inversion schemes are
initialized from a prior Gaussian of mean 0 and standard deviation 10, and use an
ensemble of size 𝐽 = 30.

In Figure 4.2 we display the ensemble approximations obtained via application
of the EKI methodology for optimization, namely Algorithm 4. In practice, the
scheme is run for a finite number 𝑁∞ of iterations. Indeed, in Figure 4.2(a) the
scheme is applied with Δ𝑡 = 5 × 10−2 and run up to 𝑁∞ = 40 iterations. On the
other hand, in Figure 4.2(b) the scheme is run for 20 iterations with Δ𝑡 = 1. In both
settings ensemble collapse occurs as the number of iterations grow. The ensemble
mean, displayed as the central line in each box plot, converges to a point yielding a
qualitatively good estimate of the true forcing parameter, with an error of𝑂(10−1).

In Figure 4.3 we show an application of Algorithm 3 with Δ𝑡 set to 5 × 10−2,
running for 𝑁 = 20 steps (𝑁Δ𝑡 = 1), and of Algorithm 5 with 1/𝛽 = 1 − Δ𝑡 and
Δ𝑡 = 5 × 10−2 for 𝑁∞ = 40 steps. For linear inverse problems, the output of both
algorithms at these specific steps delivers the posterior distribution exactly in the
mean-field limit, by Example 4.9 and Corollary 4.20. As noted in the previous
paragraph, such a posterior approximation should be interpreted with caution for
this nonlinear inverse problem. However, we show in Figure 4.3 that the ensemble
means accurately predict the true forcing up to an error of 𝑂(10−1) and that,
furthermore, the two ensembles are similar. However, interpreting the posterior
distributions in this case is harder as we do not have access to the true posterior. We
note that in Example 4.22 we were able to demonstrate that Algorithm 5 delivered
a better posterior approximation than Algorithm 3 and it would be interesting to
determine whether such a conclusion holds more generally.

4.7. Bibliographical notes

Sequential Monte Carlo methods may be used to approximately morph one prob-
ability distribution (source) into another (target), using empirical approximation
and a discrete-time homotopy (Del Moral et al. 2006, Chopin and Papaspiliopoulos
2020). In general the methodology does not scale well to high-dimensional prob-
lems (Beskos, Crisan and Jasra 2014). However, some success has been achieved
in this direction (Kantas, Beskos and Jasra 2014), and a basic underlying theory
is described in Beskos, Jasra, Muzaffer and Stuart (2015). Our presentation in
this paper is confined to the setting of ensemble Kalman methods because of their
empirical success and scalability to high dimensions.

The development of ensemble Kalman methods for inverse problems was pion-
eered in the study of reservoir simulation, in the context of learning subsurface
properties from localized flow measurements (Chen and Oliver 2012, Gu and
Oliver 2007, Li and Reynolds 2009, Emerick and Reynolds 2013a,b, Evensen
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(a)

(b)

Figure 4.2. The figure displays box and whisker plots for the ensembles produced
by Algorithm 4 with Δ𝑡 = 5 × 10−2 (a) and Δ𝑡 = 1 (b). The box and whisker plots
represent the ensembles by depicting the ensemble mean, as a line within the shaded
region. Furthermore, the edges of the boxes represent the first and third quartiles,
i.e. the values of ensemble members corresponding to the median of the first half
of the samples, and the median of the second half of the samples, respectively.
Finally, the whiskers mark the furthest samples lying within a distance from the
box of 1.5 times the distance between the first and third quartiles (the interquartile
range). In both cases we note ensemble collapse onto a value close to the truth
underlying the data.

2018). Subsequent work has studied parameter estimation in chaotic dynamical
systems, such as those arising in weather forecasting using ensemble methods for
joint state and parameter estimation (Pulido et al. 2018, Bocquet, Brajard, Carrassi
and Bertino 2020, Gottwald and Reich 2021), and by matching to time-averaged
statistics (Schneider, Lan, Stuart and Teixeira 2017, Cleary et al. 2021, Dunbar,
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Figure 4.3. The figure displays box and whisker plots for the Bayesian posterior
ensemble approximation produced by Algorithm 3 with Δ𝑡 = 5 × 10−2 and Algo-
rithm 5 with Δ𝑡 = 5× 10−2. The box and whisker plots represent the ensembles by
depicting the ensemble mean, as a line within the shaded region. Furthermore, the
edges of the boxes represent the first and third quartiles, i.e. the values of ensemble
members corresponding to the median of the first half of the samples, and the
median of the second half of the samples, respectively. Finally, the whiskers mark
the furthest samples lying within a distance from the box of 1.5 times the distance
between the first and third quartiles (the interquartile range). The posterior mean
in both cases is close to the true value of the parameter underlying the data; the
size of the posterior spread is also similar. Note, however, that in this problem we
do not have a true posterior distribution against which to compare.

Garbuno-Inigo, Schneider and Stuart 2021), motivated by climate modelling. The
chaotic dynamics that underlie weather and climate models lead to complicated
energy landscapes for minimization and sampling (Lea, Allen and Haine 2000).
Huang, Schneider and Stuart (2022b) and Dunbar, Duncan, Stuart and Wolfram
(2022) demonstrate the benefits of using ensemble methods for such problems,
rather than computing exact derivatives: the ensemble approach effectively works
in a smoothed energy landscape.

The idea of transporting prior to posterior, as developed in Section 4.4.1, is
widely used in the statistics literature; see Chopin and Papaspiliopoulos (2020) and
Del Moral et al. (2006) for a unified perspective and for citations to earlier works
which characterize the deformation of one measure to the other either through in-
crementally building up the available data, or through a temperature-like annealing
parameter in the likelihood. In the context of data assimilation, and ensemble Kal-
man methods in particular, these ideas were developed by Li and Reynolds (2009),
Gu and Oliver (2007), Daum et al. (2010), Reich (2011) and Sakov et al. (2012).

Iglesias, Law and Stuart (2013) highlight how the invariant subspace property of
finite ensemble Kalman methods (Anderson 2001) may be viewed, in the context
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of inverse problems, as a form of regularization: the iteration remains in the linear
span of the initial ensemble. Thus it is possible to study maximum likelihood
estimation, regularized by restriction to this subspace. More recent methodology
is developed in the context of optimization in Huang et al. (2022b), although the
methodology therein is not affine-invariant; it is also developed for sampling in
Huang, Huang, Reich and Stuart (2022a), resulting in an affine-invariant meth-
odology. See those papers for details concerning uniqueness of, and exponential
convergence to, steady-state solutions in the linear Gaussian setting. Here we have
adopted the approach of Huang et al. (2022a) to both optimization and sampling,
which yields exponential convergence under both settings, as discussed in Propos-
ition 4.16. A geometric picture of iterative ensemble Kalman methods for inverse
problems has been developed by Qian and Beattie (2024), who consider the funda-
mental observed and unobserved subspaces defined by linear inverse problems and
their interaction with the invariant subspace defined by ensemble Kalman iteration.

The stochastic perturbations utilized in (4.31) are closely related to multiplicative
ensemble inflation methods, as widely used in ensemble Kalman filter implement-
ations (Asch et al. 2016, Evensen et al. 2022). The effects of additive inflation
and variable step-size implementations of ensemble Kalman inversion have been
studied in Chada and Tong (2022) and in Weissmann, Chada, Schillings and Tong
(2022).

The optimization and sampling approaches for inverse problems can in principle
be combined with ideas from stochastic annealing (Kushner and Yin 2003) and
stochastic gradient descent (Goodfellow, Bengio and Courville 2016). Haber et al.
(2018), Kovachki and Stuart (2019) and Pidstrigach and Reich (2023) demonstrate
the use of ensemble Kalman methods for inversion, when combined with stochastic
gradient descent, and mini-batching in particular, as well as the application of
ensemble Kalman methods beyond the setting of the 𝐿2-loss functions Φ and Φ𝑅

considered here.
However, despite the growing use of ensemble Kalman methods to solve inverse

problems, it is important to appreciate that all ensemble Kalman-based methods
invoke approximations which amount to matching only first- and second-order stat-
istics, at some point in the algorithmic development. For this reason the methods
are intuitively only useful as samplers for problems with posterior distribution
close to a Gaussian. This idea is carefully explained in Ernst, Sprungk and Stark-
loff (2015) where the mean-field limit of ensemble Kalman methods for inverse
problems is compared with the desired posterior distribution; as is the case for
state estimation, analysis is required to justify use of ensemble Kalman methods
beyond the linear and Gaussian regime. We also highlight that our analysis in this
paper, which focuses on the mean-field limit, does not capture important aspects
of the performance of ensemble Kalman methods at finite ensemble size, and the
important practical issue of covariance localization; these issues are studied in Al-
Ghattas and Sanz-Alonso (2023). Furthermore, Tong and Morzfeld (2023) study
the relationship between localization, in the solution of inverse problems using
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ensemble Kalman methods, and the subspace property explained in Iglesias et al.
(2013, Theorem 2.1). As an alternative to localization, the concept of dropout
combined with variable step-size has been shown to lead to optimal algorithmic
performance in Liu, Reich and Tong (2025).

The idea of using ensemble methods for performing the optimization step within
variational data assimilation was introduced in Zupanski (2005). The connection
between iterative applications of the ensemble Kalman filter and optimization were
first investigated in Iglesias et al. (2013), and developed to include constraints in
Albers et al. (2019) and Chada, Schillings and Weissmann (2019), and Tikhonov
regularization in Chada, Stuart and Tong (2020). Recall from Section 4.5.2 the
algebraic rates of convergence arising in the basic optimization method arising
from iterating to infinity. This undesirable feature of optimization methods based
on statistical linearization of mean-field gradient descent can be ameliorated to
some extent by the use of adaptive time-steps, connections to the Levenberg–
Marquardt algorithm and the use of stopping criteria; see Iglesias (2015, 2016)
and Iglesias and Yang (2021). Recent work of Parzer and Scherzer (2022) has
developed a systematic theory for early stopping using ensemble Kalman inversion
including incorporation of Nyström methodology. Other interacting particle system
approaches to optimization have been proposed, including feedback particle (Zhang
2013, Zhang, Taghvaei and Mehta 2017), unscented Kalman approaches (Huang
et al. 2022a,b) and consensus-based optimization (Tsianos, Lawlor and Rabbat
2012, Carrillo et al. 2018, Fornasier, Huang, Pareschi and Sünnen 2020, Ha, Jin
and Kim 2021).

Finally we note that Kalman methods have been related to approximate Bayesian
computation (ABC) methodologies, utilizing a linear regression ansatz (Sisson,
Fan and Beaumont 2018, Nott, Marshall and Ngoc 2012). Such methods are in
turn closely related to Bayes linear and best linear unbiased estimators (BLUE)
as discussed in Goldstein and Rougier (2006), Goldstein and Wooff (2007), Lei
and Bickel (2011), Nott et al. (2012), Snyder (2014), Goldstein (2014), Reich and
Cotter (2015) and Latz (2016). BLUE is discussed in more detail in Appendix C.3.

5. Inverse problems: continuous time
In this section we derive continuous-time limits of the ideas developed in the
preceding section for the solution of inverse problems. As a consequence the
ideas may also be viewed as adaptations of Section 3 to the solution of inverse
problems. We start in Section 5.1 by recalling the inverse problem, followed in
Sections 5.2 and 5.3 by discussion of the optimization and Bayesian approaches re-
spectively, focusing on gradient flows; this flow perspective provides a conceptual
basis for thinking about the algorithms for inverse problems that we will sub-
sequently develop. Section 5.4 is devoted to Bayesian probabilistic filtering meth-
ods which solve the inverse problem by morphing the prior into the posterior in finite
time. Section 5.5 discusses filtering methods which work on infinite-time horizons,
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exhibiting exponential convergence to approximate solutions of the optimization
or Bayesian formulations of the problem, from arbitrary starting points. Analog-
ously to Section 4, we demonstrate application of Gaussian projected filtering and
ensemble Kalman methods to solve the filtering problems defined in Sections 5.4
and 5.5; the comments from Remark 4.1 apply here too. We conclude in Section 5.6
with bibliographical notes.

5.1. Set-up

Recall the inverse problem (4.1) of recovering 𝑢 from 𝑤, where

𝑤 = 𝐺(𝑢) + 𝛾,

introduced in full detail in Section 4.1. Under the assumptions laid out in Sec-
tion 4.3, and in particular Gaussianity and independence of unknown parameter
𝑢 and noise 𝜂, and given a specific realization 𝑤† of data 𝑤, we have a posterior
distribution on the random variable 𝑢 |𝑤† which is defined by25

𝜇(d𝑢) =
1
𝒵

exp(−Φ𝑅(𝑢)) d𝑢,

𝒵 =

∫
R𝑑𝑢

exp(−Φ𝑅(𝑢)) d𝑢.

(5.1a)

(5.1b)

Here

Φ(𝑢) =
1
2
|𝑤† − 𝐺(𝑢)|2Γ,

Φ𝑅(𝑢) = Φ(𝑢) + 1
2
|𝑢 − 𝑚0 |2𝐶0

,

(5.2a)

(5.2b)

for prior mean vector vector 𝑚0, prior covariance matrix 𝐶0 ≻ 0 and noise covari-
ance matrix Γ ≻ 0.

Rather than solving the Bayesian inverse problem, which can be prohibitively
expensive, optimization methods may be developed to find a point estimate of 𝑢 |𝑤†

as minimizer of Φ over a compact set, or as minimizer of Φ𝑅 over the whole space
R𝑑𝑢 . The next two sections show, respectively, how we may develop continuous-
time gradient flows which minimize Φ𝑅, or Φ, and gradient flows which find the
posterior distribution 𝜇.

5.2. Optimization formulation: gradient flows

The goal of this subsection is to study gradient flows to minimize an objective
function. For us particular focus is on the choice of Φ or Φ𝑅 as objective, but since
some of the considerations are quite general, we frame aspects of the discussion in
a general setting.

25 The normalization constant 𝒵 is the probability of the observed data under the model, sometimes
called the evidence.
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Deterministic viewpoint. Consider the standard gradient descent, applied to an
energy function Ψ : R𝑑𝑢 → R+, namely

d𝑢
d𝑡

= −∇Ψ(𝑢). (5.3)

Note that this may be found as the continuous-time limit of the discrete-time
gradient descent algorithm (4.6), choosing 𝛼 = Δ𝑡, letting 𝑢(𝑛Δ𝑡) = 𝑢𝑛 and taking
the limit Δ𝑡 → 0.

Along solutions of (5.3),

d
d𝑡
Ψ(𝑢) =

〈
∇Ψ(𝑢),

d𝑢
d𝑡

〉
(5.4a)

= −
����d𝑢d𝑡 ����2. (5.4b)

Equation (5.3) is said to possess a gradient flow structure in parameter space R𝑑𝑢
because the vector field driving the evolution of 𝑢 is tangential to the gradient of
the energy Ψ(𝑢) in the standard Euclidean metric; this is the geometric reason for
the non-increasing property of Ψ(𝑢) along trajectories.

Geometric perspective on the space of probability densities. We now define gradi-
ent flow structure from a probabilistic viewpoint, studying evolution of probability
densities. Again we need both an energy and a metric. To this end we introduce
some notation that will be useful in the probabilistic formulation of (5.3). It will
also be used more generally in subsequent discussion of other gradient flows on the
space of probability density functions.

We denote the manifold of all smooth probability density functions on R𝑑𝑢 by
𝔓+ = 𝔓+(R𝑑𝑢). We may then define the tangent space 𝑇𝜌𝔓+ to 𝔓+, at 𝜌 ∈ 𝔓+, by

𝑇𝜌𝔓+ =

{
𝜎 ∈ 𝐶∞(R𝑑𝑢) :

∫
R𝑑𝑢

𝜎(𝑢) d𝑢 = 0
}
. (5.5)

Given the tangent space 𝑇𝜌𝔓+, we define its dual26

𝑇𝜌𝔓
★
+ =

{
𝜓 ∈ 𝐶∞(R𝑑𝑢) :

∫
R𝑑𝑢

𝜓(𝑢) 𝜌(𝑢) d𝑢 = 0
}
. (5.6)

In this article, for simplicity of exposition, we will define underlying metric
structure via the positive operator M(𝜌) : 𝑇𝜌𝔓+ → 𝑇𝜌𝔓

★
+ . A precise mathematical

treatment requires further assumptions on the considered set 𝔓+. See the biblio-
graphy for relevant literature on this topic. Operator M(𝜌) may be linked to an
underlying Riemannian metric tensor 𝑔𝜌 : 𝑇𝜌𝔓+ × 𝑇𝜌𝔓+ → R; however, since this

26 This informal definition of tangent space, and its dual space, requires careful handling for probab-
ility measures on non-compact manifolds, such asR𝑑𝑢 ; see citations to the literature in Section 5.6.
The dual is also known as the cotangent space.
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metric tensor plays no role in our presentation, we will work directly with M(𝜌),
and with its inverse M(𝜌)−1 : 𝑇𝜌𝔓★

+ → 𝑇𝜌𝔓+. Note that M(𝜌)−1 maps into the
tangent space 𝑇𝜌𝔓+, implying that it maps into functions that integrate to zero over
R𝑑𝑢 ; see (5.5).

Probabilistic viewpoint. We now demonstrate gradient structure inherent in the
probabilistic viewpoint on the ODE (5.3), arising from allowing the initial condition
𝑢(0) to be random. We will show that the Liouville equation governing the evolution
of the probability density function associated with the random variable 𝑢(𝑡) also
has a gradient structure. In so doing we must exhibit an appropriate energy and
metric.

We assume that 𝑢(𝑡) has smooth probability density 𝜌(𝑢, 𝑡) for all 𝑡 ≥ 0. Then 𝜌
satisfies the Liouville equation

𝜕𝑡 𝜌 = ∇ · (𝜌∇Ψ). (5.7)

The energy and metric defining the gradient structure for equation (5.7) are

E(𝜌) B
∫
R𝑑𝑢

Ψ(𝑢)𝜌(𝑢) d𝑢, (5.8a)

M(𝜌)−1𝜓 B −∇ · (𝜌∇𝜓) ∈ 𝑇𝜌𝔓+. (5.8b)

Operator M(𝜌) corresponds to an underlying Wasserstein-2 metric structure.
The standard variational derivative27 of E is given by

𝛿E
𝛿𝜌

= Ψ.

The restriction of this variational derivative to the dual space 𝑇𝜌𝔓★
+ is provided by

𝛿E
𝛿𝜌 |𝑇𝜌𝔓∗

+

= Ψ − E[Ψ] . (5.9)

In the context of the Wasserstein-2 metric structure as presented here it is not
necessary to distinguish between these two formulations of the variational deriv-
ative; however, the second formulation allows for unique solvability of the elliptic
equation required to define M(𝜌). For the Fisher–Rao metric structure considered
later in Section 5.4, the second definition will play a more direct role. Hence we
can rewrite (5.7) as

𝜕𝑡 𝜌 = ∇ ·
(
𝜌∇𝛿E

𝛿𝜌

)
. (5.10)

This may be written abstractly as

𝜕𝑡 𝜌 = −M(𝜌)−1 𝛿E
𝛿𝜌

(𝜌). (5.11)

27 The variational derivative is identified by writing E(𝜌 + 𝜎) − E(𝜌) as a linear operator acting on
𝜎 (plus higher-order terms in 𝜎 for energies E(𝜌) which are not linear in 𝜌).
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From this it follows that
d
d𝑡
E(𝜌) =

〈
𝛿E
𝛿𝜌

(𝜌),
𝜕𝜌

𝜕𝑡

〉
= −

〈
M(𝜌)

𝜕𝜌

𝜕𝑡
,
𝜕𝜌

𝜕𝑡

〉
≤ 0. (5.12)

Hence the energy is decreasing along trajectories and the gradient structure is
apparent.

Remark 5.1. It is interesting to compare the gradient structure (5.12) on 𝔓+
to the gradient flow structure on R𝑑𝑢 defined by (5.4). The state space gradient
flow on R𝑑𝑢 ensures decrease of Ψ(𝑢(𝑡)) along trajectories whilst the probability
space gradient flow on 𝔓+ ensures decrease of the expected value of Ψ(𝑢(𝑡)) across
a distribution of trajectories found from random initialization of the state space
problem.

5.3. Bayesian formulation: gradient flows

In this section we study the Langevin SDE, for standard Brownian motion𝑊 ,

d𝑢 = −∇Φ𝑅(𝑢) d𝑡 +
√

2 d𝑊. (5.13)

This is a noisy version of (5.3) in the case where Ψ = Φ𝑅. It may also be found as
a sample-path instantiation of the continuous-time limit of the MCMC algorithm
(4.13), typically arising when 𝛼 is the standard deviation of the proposal, choosing
𝛼 = Δ𝑡, letting 𝜌(·, 𝑛Δ𝑡) = 𝜌𝑛(·) and sending Δ𝑡 → 0; see Section 5.6 for details.

The probability density function for the SDE (5.13) is governed by the Fokker–
Planck equation

𝜕𝑡 𝜌 = ∇ · (𝜌∇Φ𝑅) + ∇ · (∇𝜌) (5.14a)
= ∇ · (𝜌∇Φ𝑅 + 𝜌∇ ln 𝜌), (5.14b)

This equation has the density of the Bayesian posterior distribution (5.1) as steady
state. This can be seen by noting that the right-hand side is divergence of a quantity
which is zero if

∇(Φ𝑅 + ln 𝜌) = 0.

This quantity can in turn be made zero by choosing

𝜌 ∝ exp(−Φ𝑅),

so that 𝜌 is given by the posterior distribution (5.1). As a consequence of the
fact that the posterior is a steady state of the Fokker–Planck equation (5.14), the
Langevin SDE (5.13) plays an important role in understanding algorithms for
Bayesian inversion.

The machinery we established in the previous subsection, concerning gradient
flows in the space of probability measures, is very powerful and demonstrates
that any evolution equation of type (5.10) with appropriate potential E induces a
gradient flow on 𝔓+ with respect to the Wasserstein-2 metric. The Fokker–Planck
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228 E. Calvello, S. Reich and A. M. Stuart

equation (5.14) associated with the Langevin equation (5.13) may be cast in this
framework by making the choice

E(𝜌) =
∫

(Φ𝑅 + ln 𝜌)𝜌 d𝑢 (5.15)

with variational derivative given by
𝛿E
𝛿𝜌

= Φ𝑅 + ln 𝜌.

Remark 5.2. We observe that, for KL[·∥·] denoting the Kullback–Leibler diver-
gence,

KL[𝜌∥𝜋] =
∫

𝜌 log
(
𝜌

𝜋

)
d𝑢 = E(𝜌) + log𝒵, (5.16)

where 𝜋 is the posterior density associated with posterior measure 𝜇 given by
(4.7)28 and the normalization constant 𝒵 is defined in (5.1b). It is thus possible to
choose the energy to be KL[𝜌∥𝜋], since shifts by a constant in the energy do not
change the evolution equations (5.10) and (5.11).

By the property of a divergence, the global minimizer of E(𝜌) is attained at 𝜌 = 𝜋

and hence solves the Bayesian inverse problem. It is thus of considerable value to
have identified a gradient flow to minimize E(𝜌) since such minimizers solve the
Bayesian inverse problem. Theory concerning equation (5.14) as a gradient flow
is contained in Section 5.6.

In summary, the Fokker–Planck equation may be written in the abstract gradient
form (5.11). We choose

E(𝜌) B E(𝜌) =
∫

(Φ𝑅 + ln 𝜌)𝜌 d𝑢, (5.17a)

M(𝜌)−1𝜓 B −∇ · (𝜌∇𝜓) ∈ 𝑇𝜌𝔓+. (5.17b)

This should be compared with (5.8) with the choice Ψ = Φ𝑅: the metric structure
defined by M is the same, but the energy E(𝜌) has an additional term accounting
for the Brownian motion appearing in (5.13).

5.4. Finite-time algorithms

The idea used in this subsection, to address the solution of inverse problems, is
a continuous-time analogue of Section 4.4. From a sequential formulation of
Bayesian inference we derive a filtering problem whose solution, at a particular
time, gives the desired posterior. Section 5.4.1 is devoted to the formulation,
Section 5.4.2 to the use of Gaussian projected filters and Section 5.4.3 to the use
of ensemble Kalman methods.
28 This notation is used throughout Section 5 and is not to be confused with the notation used for the

joint law of state and data in previous sections.
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Ensemble Kalman methods: A mean-field perspective 229

5.4.1. Formulation
Employing the reparametrization (3.3a) in (4.20) and taking the continuum limit
yields the SDE

d𝑢 = 0,

d𝑧 = 𝐺(𝑢) d𝑡 +
√

Γ d𝐵,

(5.18a)

(5.18b)

with 𝐵 a standard Brownian motion in R𝑑𝑧 . Given a specific realization of the
observation process 𝑧†(·), we define 𝑍†(𝑡) = {𝑧†(𝑠)}0≤𝑠≤𝑡 , and consider the filtering
distribution for the random variable 𝑢(𝑡)|𝑍†(𝑡). However, there is a twist on the
standard filtering setting: we are interested in the case where the data has constant
derivative d𝑧†(𝑡)/d𝑡 = 𝑤†. Since the path 𝑧† has zero quadratic variation the
probability distribution is found by setting 𝑧†(𝑡) = 𝑡𝑤† within the Stratonovich
formulation of the non-local evolution equation for the density. Referring to (3.20),
we see that this yields the following evolution for density 𝜌(𝑢, 𝑡) of 𝑢(𝑡)|𝑍†(𝑡):

𝜕𝑡 𝜌 = ⟨𝐺 − E𝐺, 𝑤†⟩Γ𝜌 −
1
2
{
|𝐺 |2Γ − E|𝐺 |2Γ

}
𝜌. (5.19)

Here E denotes integration with respect to density 𝜌(·, 𝑡) so that the equation is
non-local with respect to variable 𝑢 and nonlinear with respect to density 𝜌. This is
the analogue of the Kushner–Stratonovich equation for the filtering problem defined
by (5.18), since the unconditioned variable 𝑢 has trivial dynamics and since we are
studying the case where the data 𝑧†(𝑡) = 𝑡𝑤† has zero quadratic variation and is in
fact differentiable. We may then show the following.

Theorem 5.3. Consider the dynamical system (5.18), and assume that 𝐶0 ≻ 0,
Γ ≻ 0, 𝑢0 ∼ N(𝑚0, 𝐶0), and that 𝑢0 is independent of Brownian motion 𝐵. Let
𝜌(·, 𝑡) denote the probability density function associated with the random variable
𝑢(𝑡)|𝑍†(𝑡) evolving according to (5.18), with data chosen as 𝑧†(𝑡) = 𝑡𝑤†, for
𝑡 ∈ (0, 1). Then the density 𝜌(·, 𝑡) satisfies (5.19), or equivalently for Φ given
by (4.2a),

𝜕𝑡 𝜌 = −(Φ − EΦ)𝜌. (5.20)

Furthermore, this equation has solution given by the formulae

𝜌(𝑢, 𝑡) =
1

𝒵(𝑡)
exp
(
−𝑡Φ(𝑢)

)
𝜌0(𝑢), (5.21a)

𝒵(𝑡) =
∫
R𝑑𝑢

exp
(
−𝑡Φ(𝑢)

)
𝜌0(𝑢) d𝑢; (5.21b)

in particular, 𝜌(·, 1) is equal to 𝜋, the density of the posterior distribution 𝜇. ^
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230 E. Calvello, S. Reich and A. M. Stuart

Proof. Let 𝜌0 denote the probability density function of the prior N(𝑚0, 𝐶0).
Recall that 𝜇(𝑡) has density given by equation (5.19) with initial condition 𝜌 |𝑡=0 =

𝜌0. Now note that, recalling definition (5.2a) of Φ,

⟨𝐺 − E𝐺, 𝑤†⟩Γ𝜌 −
1
2
{
|𝐺 |2Γ − E|𝐺 |2Γ

}
𝜌 (5.22a)

=

(
⟨𝑤†, 𝐺⟩Γ − 1

2
|𝐺 |2Γ

)
𝜌 − E

(
⟨𝑤†, 𝐺⟩Γ − 1

2
|𝐺 |2Γ

)
𝜌 (5.22b)

= −(Φ − EΦ)𝜌. (5.22c)

This establishes the equivalence of (5.20) with (5.19).
Note now that (5.21b) gives

d𝒵
d𝑡

= −EΦ𝒵,

where expectation is under 𝜌. Hence it follows that differentiating (5.21a) gives
(5.20). Since this is equivalent to (5.19) and since (5.19) characterizes the law of
𝑢(𝑡)|𝑍†(𝑡) when d𝑧†/d𝑡 = 𝑤†, the result is proved.

The theorem establishes that the evolution equation (5.19) can be rewritten in the
form (5.20), from which a gradient structure is apparent. Indeed, equation (5.20)
can be written in the abstract form (5.11) with

E(𝜌) ≔
∫

Φ𝜌 d𝑢, (5.23a)

M(𝜌)−1𝜓 ≔ 𝜌 𝜓 ∈ 𝑇𝜌𝔓+ (5.23b)

for 𝜓 ∈ 𝑇𝜌𝔓∗
+. Note that the metric structure differs from what we have seen in

(5.17). In particular we no longer use the Wasserstein-2 metric: the metric defined
by the choice (5.23b) of M(·) is known as the Fisher–Rao metric. The Fisher–Rao
metric requires a more careful consideration of the variational derivative of E(𝜌)
as provided by (5.9). In particular, using

𝜓 =
𝛿E
𝛿𝜌 |𝑇𝜌𝔓∗

+

= Φ − E[Φ] ∈ 𝑇𝜌𝔓∗
+

in (5.23b) implies that the integral of the right-hand side of (5.23b) over R𝑑𝑢 is
zero so that it is, indeed, an element of the tangent space 𝑇𝜌𝔓+ given by (5.5).

Remark 5.4. The gradient flows defined by (5.8) and (5.17) both arose from
considering the evolution equation for the probability density function associated
with an evolution equation for 𝑢 ∈ R𝑑𝑢 , the state space, namely equations (5.3) and
(5.13) respectively. In contrast, while (5.20) describes the evolution of the density
𝜌(·, 𝑡), we did not derive it directly as the evolution equation for a random variable
𝑢(𝑡) in state space. However, we may seek to find such an evolution. To this end,
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Ensemble Kalman methods: A mean-field perspective 231

we postulate a mean-field differential equation
d𝑢
d𝑡

= 𝑔(𝑢, 𝜌).

Here 𝜌 is the probability density function associated with the random variable 𝑢;
since 𝑢 is governed by a deterministic ordinary differential equation, the randomness
in 𝑢 originates from the initial condition 𝑢(0). We now ask how to choose 𝑔 so that
the evolution equation for the probability density of 𝑢(𝑡), started from a random
initialization, evolves according to (5.20). The evolution of this density will satisfy
the associated nonlinear Liouville equation

𝜕𝑡𝑢 = −∇ · (𝜌𝑔(·, 𝜌)). (5.24)

Equating (5.20) and (5.24), we obtain the condition

∇ · (𝜌𝑔(·, 𝜌)) = (Φ − E(Φ))𝜌 (5.25)

on 𝑔. Whether or not this equation can be solved for 𝑔 depends on properties of 𝜌,
of Φ, and hence 𝐺; furthermore, even if solvable, the solution may not be unique.
We note that, writing 𝑔(𝑢, 𝜌) as the gradient of a 𝜌-dependent potential 𝐸 , so that
𝑔(𝑢, 𝜌) = ∇𝑢𝐸(𝑢, 𝜌) renders (5.25) as a linear divergence form of elliptic equation
for 𝐸 . This elliptic equation is parametrized by probability density function 𝜌 and
should be viewed as holding everywhere on R𝑑𝑢 .

We have sought a state space model for 𝑢, which is an ordinary differential
equation, albeit of mean-field type. It is also possible to seek stochastic evolu-
tion equations, such as birth–death processes or mean-field stochastic differential
equations.

5.4.2. Algorithms: Gaussian projected filter
To further elucidate the structure of Gaussian projected filtering for the inverse
problem, we study its continuous-time formulation from Section 3.4 when applied
to the specific state-observation model (5.18). To this end, first recall the discrete-
time model (4.20), which has continuous-time limit (5.18). Taking the limitΔ𝑡 → 0
in (4.22), the Gaussian projected filter for (4.20), we obtain the following evolution
equations for mean and covariance:

d𝑚
d𝑡

= 𝐶𝑢𝐺Γ−1(𝑤† − E𝐺(𝑢)),

d𝐶
d𝑡

= −𝐶𝑢𝐺Γ−1(𝐶𝑢𝐺)⊤,

𝐶𝑢𝐺 = E((𝑢 − E𝑢) ⊗ (𝐺(𝑢) − E𝐺(𝑢))).

(5.26a)

(5.26b)

(5.26c)

Here all expectations are computed under 𝑢(𝑡) ∼ N(𝑚(𝑡), 𝐶(𝑡)). This is the
continuous-time Gaussian projected filter for the inverse problem (4.1).

As in the discrete-time case, the evolution for the mean promotes a Gaussian
which is compatible with the data, through an innovation term which is weighted
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by covariance information. We now illustrate the filter by considering equations
(5.26) in the setting of linear 𝐺, when they may be solved exactly.

Example 5.5. Consider the setting of Example 4.4 in which 𝐺(·) = 𝐿·. The
Gaussian projected filter (5.26) becomes

d𝑚
d𝑡

= 𝐶𝐿⊤Γ−1(𝑤† − 𝐿𝑚), (5.27a)

d𝐶
d𝑡

= −𝐶𝐿⊤Γ−1𝐿𝐶. (5.27b)

Note that this coincides with the Kalman–Bucy filter (3.30) for the specific filtering
problem defined by (5.18) and with observed data d𝑧†/d𝑡 = 𝑤†.

Now note that (5.19), the Kushner–Stratonovich equation, is solved by the
Kalman–Bucy filter in the linear setting where 𝐺(𝑢) = 𝐿𝑢. It follows that the
solution 𝜌 is given by the Gaussian N(𝑚(𝑡), 𝐶(𝑡)), where 𝑚(𝑡), 𝐶(𝑡) solve the Gaus-
sian projected filter equations (5.27). In particular, the posterior measure 𝜇 is
Gaussian and given by N(𝑚(1), 𝐶(1)). To see this explicitly, note that, from The-
orem 5.3, and in particular equation (5.21), in the linear case𝐺(·) = 𝐿·, the solution
of (5.19) is given by

𝜌(𝑢, 𝑡) ∝ exp
(
− 𝑡

2
|𝑤† − 𝐿𝑢 |2Γ − 1

2
|𝑢 − 𝑚0 |2𝐶0

)
. (5.28)

Completing the square shows that this density corresponds to Gaussian N(𝑚(𝑡),𝐶(𝑡))
with mean and covariance satisfying

𝐶(𝑡)−1𝑚(𝑡) = 𝑡𝐿⊤Γ−1𝑤† + 𝐶−1
0 𝑚0, (5.29a)

𝐶(𝑡)−1 = 𝐶−1
0 + 𝑡𝐿⊤Γ−1𝐿. (5.29b)

Note that since𝐶0 ≻ 0 it follows that𝐶−1
0 ≻ 0, and hence (5.29b) shows that, for all

𝑡 ≥ 0, 𝐶(𝑡)−1 ≻ 0 and hence that 𝐶(𝑡) ≻ 0 for all 𝑡 ≥ 0; hence 𝐶(𝑡) is well-defined
by (5.29b) and 𝑚(𝑡) is well-defined by (5.29a). It simply remains to show that 𝑚(𝑡)
and 𝐶(𝑡) given by these formulae solve (5.27) when 𝑚(0) = 𝑚0 and 𝐶(0) = 𝐶0.

We thus turn our attention to equations (5.27). Note that 𝐶(𝑡) solving (5.27b)
satisfies 𝐶(0) = 𝐶0 ≻ 0. Hence 𝐶(0)−1 ≻ 0. Thus, by continuity, 𝐶(𝑡) remains
invertible for some positive interval of time 𝑡 ∈ [0, 𝜏) and, on this interval, direct
computation with (5.27b) shows that

d𝐶−1

d𝑡
= 𝐿⊤Γ−1𝐿. (5.30)

From this it follows by integration that 𝐶−1(𝑡) ⪰ 𝐶−1
0 ≻ 0 for all 𝑡 and hence that

we may take 𝜏 = ∞. Furthermore, the integration also shows that the solution of
(5.30), solving (5.27b), delivers (5.29b) as desired.
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We then notice that, from (5.27a),

𝐶−1 d𝑚
d𝑡

= 𝐿⊤Γ−1𝑤† − 𝐿⊤Γ−1𝐿𝑚

= 𝐿⊤Γ−1𝑤† − d𝐶−1

d𝑡
𝑚.

It follows that
d
d𝑡

(𝐶−1𝑚) = 𝐿⊤Γ−1𝑤†

and integration, together with use of the initial conditions, shows that (5.27a)
delivers the desired identity (5.29a).

It is also useful to write (5.29) using an explicit formula for 𝐶(𝑡) rather than the
precision 𝐶(𝑡)−1. To this end, fix any 𝑡 > 0 and consider the Gaussian random
variable (𝑢, 𝑤) defined by choosing 𝑢 ∼ N(𝑚0, 𝐶0) and 𝑤 |𝑢 = N(𝐿𝑢, 𝑡−1Γ). Then
the density 𝜌 given in (5.28) is the solution of the Bayesian inverse problem defined
by the distribution of 𝑢 |𝑤. The mean and covariance may be found from (4.12) by
replacing Γ by 𝑡−1Γ to yield

𝑚(𝑡) = 𝑚0 + 𝐶0𝐿
⊤(𝐿𝐶0𝐿

⊤ + 𝑡−1Γ)−1(𝑤† − 𝐿𝑚0), (5.31a)
𝐶(𝑡) = 𝐶0 − 𝐶0𝐿

⊤(𝐿𝐶0𝐿
⊤ + 𝑡−1Γ)−1𝐿𝐶0. (5.31b)

We also observe that the expression (5.31b) for 𝐶(𝑡) may be derived from (5.29b)
by use of the Woodbury matrix identity.

Remark 5.6. We obtained (5.26) as the continuous-time limit of its discrete-time
formulation (4.32). However, the same evolution equations can be derived from
the gradient flow (5.20) through a sequence of approximations. This perspective is
outlined in Appendix E.

5.4.3. Algorithms: ensemble Kalman filter
We now study the inverse problem using Kalman transport from Section 4.4.3,
taking the continuous-time limit. We consider the specific state-observation model
(5.18), and recall the discrete-time model (4.20) which has continuous-time limit
(5.18). Taking the limit Δ𝑡 → 0 in (4.25), the ensemble Kalman filter for (4.20),
we obtain the following evolution equations:

d𝑢 = 𝐶𝑢𝐺Γ−1(𝑤† d𝑡 − d�̂�),

d�̂� = 𝐺(𝑢) d𝑡 +
√

Γ d𝐵,
𝐶𝑢𝐺 = E((𝑢 − E𝑢) ⊗ (𝐺(𝑢) − E𝐺(𝑢))).

(5.32a)

(5.32b)
(5.32c)

Here 𝐵 ∈ R𝑑𝑤 is a standard Brownian motion and expectation is under the law of 𝑢
itself. As in the discrete-time case, the evolution for the state 𝑢 promotes a solution
which is compatible with the data, through an innovation term which is weighted
by covariance information.
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Remark 5.7. To obtain the resulting continuous-time formulation we may also
start from the continuous-time state estimation methodology from Section 3.4 and
apply it to the specific state-observation model (5.18). The SDE (5.32) may then be
seen as a consequence of (3.46) applied to this state-observation model. However,
special care is required in deriving the equation this way since the observations 𝑧†
in Section 3 were assumed to have non-vanishing quadratic variation; in contrast,
in this section we have d𝑧†/d𝑡 = 𝑤†, with 𝑤† constant, and hence zero quadratic
variation.

To obtain further insight into the mean-field dynamical system (5.32), we once
again consider the linear setting.

Example 5.8. Consider the SDE (5.32) in the setting where𝐺(𝑢) = 𝐿𝑢 for matrix
𝐿 ∈ R𝑑𝑤×𝑑𝑢 . Then 𝑢(1) ∼ 𝜇 where 𝜇 is given in Example 4.4. To see this recall
that the Gaussian projected filter is exact in the linear setting, by Example 5.5,
and hence delivers the desired posterior at time 𝑡 = 1, by Theorem 5.3. Thus it
suffices to show that the mean and covariance of 𝑢 from (5.32) satisfy the Gaussian
projected filter in the linear setting, given by (5.27). We first note that

d𝑢 = 𝐶𝐿⊤Γ−1(𝑤† d𝑡 − 𝐿𝑢 d𝑡 −
√

Γ d𝐵), (5.33)

where 𝐶 is the covariance of 𝑢. By the Itô formula, 𝑚 = E𝑢 satisfies (5.27a). It
follows that 𝑒 = 𝑢 − 𝑚 satisfies

d𝑒 = −𝐶𝐿⊤Γ−1𝐿𝑒 d𝑡 − 𝐶𝐿⊤Γ−1/2 d𝐵.

A second use of the Itô formula shows that 𝐶 = E(𝑒 ⊗ 𝑒) satisfies (5.27b). The
desired result is established.

We can also derive continuous limits of deterministic transports. Taking the
Δ𝑡 → 0 limit in (4.27) results in the mean-field ODE formulation

d𝑢
d𝑡

= 𝐶𝑢𝐺Γ−1
(
𝑤† − 1

2
(𝐺(𝑢) + E𝐺(𝑢))

)
,

𝐶𝑢𝐺 = E((𝑢 − E𝑢) ⊗ (𝐺(𝑢) − E𝐺(𝑢))).

(5.34a)

(5.34b)

Again the state evolution has a covariance-weighted forcing term which promotes
evolution towards the data. As before, we may study this formulation in the linear
setting.

Example 5.9. Consider the mean-field model (5.34) in the setting where 𝐺(𝑢) =
𝐿𝑢 for matrix 𝐿 ∈ R𝑑𝑤×𝑑𝑢 . Then 𝑢(1) ∼ 𝜇, where the posterior distribution is given
in Example 4.4. To show this we note that the Gaussian projected filter is exact in
the linear setting, by Example 5.5, and hence delivers the desired posterior at time
𝑡 = 1, by Theorem 5.3. Thus it suffices to show that the mean and covariance of 𝑢
from (5.34) satisfy the Gaussian projected filter in the linear setting; this is given
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by (5.27). We first note that the mean under (5.34) satisfies

d𝑚
d𝑡

= 𝐶𝐿⊤Γ−1(𝑤† − 𝐿𝑚),

which is (5.27a). Using this, it also follows that 𝑒 = 𝑢 − 𝑚 satisfies

d𝑒
d𝑡

= −1
2
𝐶𝐿⊤Γ−1𝐿𝑒,

from which it follows that the variance satisfies (5.27b).

Remark 5.10. Note that the nonlinear Liouville equation associated with the
mean-field model (5.34) has the form

𝜕𝑡 𝜌 = −∇ · (𝜌𝑔KF), (5.35a)

𝑔KF(𝑢, 𝜌) = 𝐶𝑢𝐺Γ−1
(
𝑤† − 1

2
(𝐺(𝑢) + E𝐺(𝑢))

)
. (5.35b)

This evolution equation approximates the evolution of the filtering distribution,
except in the linear Gaussian setting when it is exact. On the other hand, as in
Remark 5.4, we may seek a mean-field differential equation of the form

d𝑢
d𝑡

= 𝑔(𝑢, 𝜌), (5.36)

which exactly replicates the filtering distribution in general. To do this requires
that we choose 𝑔 to solve (5.25):

∇ · (𝜌𝑔(·, 𝜌)) = (Φ − E(Φ))𝜌.

In the linear Gaussian setting we can identify a solution of this equation by asking
that (5.36) replicates (5.34), since we know the latter is exact in the linear and
Gaussian setting.

In order to derive this result, we note that (5.35b) takes the form

𝑔KF(𝑢, 𝜌) = 𝐶𝐿⊤Γ−1
(
𝑤† − 1

2
𝐿(𝑢 + 𝑚)

)
(5.37)

in the linear setting and 𝜌 is Gaussian with mean 𝑚 and covariance 𝐶. Hence the
right-hand side of (5.35a) can now be evaluated explicitly, giving rise to

∇ · (𝜌𝑔KF) = −𝜌(𝑢 − 𝑚)⊤𝐶−1𝐶𝐿⊤Γ−1
(
𝑤† − 1

2
𝐿(𝑢 + 𝑚)

)
+ 𝑐1𝜌

=
1
2
|𝐿𝑢 − 𝑤† |2Γ𝜌 + 𝑐2𝜌

with normalization constants

𝑐1 = −1
2
E((𝑢 − 𝑚)⊤𝐿⊤Γ−1𝐿(𝑢 + 𝑚))
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and

𝑐2 = −1
2
E
(
|𝐿𝑢 − 𝑤† |2Γ

)
.

Hence we have shown that 𝑔KF satisfies (5.25) for Φ(𝑢) = 1
2 |𝐿𝑢 −𝑤

† |2Γ in the linear
Gaussian setting. See Section 5.6 for more details.

5.5. Infinite-time algorithms

We now develop the ideas in Section 4.5 in the continuous-time setting. In particu-
lar we study algorithms posed on the infinite time horizon to solve the optimization
problem of minimizing Φ𝑅 given by (5.2), or to find the Bayesian posterior dis-
tribution given by (5.1). In Section 5.5.1 we consider this infinite time horizon
perspective for the solution of optimization problems associated with the inverse
problem (4.1). Section 5.5.2 considers the same perspective for Bayesian inversion.

5.5.1. Algorithms for optimization formulation
This rather lengthy subsection is broken into paragraphs concerning preconditioned
gradient flow, statistical linearization, gradient descent and statistical lineariza-
tion, algebraic convergence and exponential convergence. The initial development
on preconditioning enables us to introduce affine invariance and the discussion of
statistical linearization enables us to connect preconditioned gradient descent with
ensemble Kalman methods. Then, as in Section 4.5.2, where similar issues are
discussed in discrete time, we initially discuss algorithms with algebraic conver-
gence. We then introduce generalizations which allow us to obtain exponential
convergence.

Preconditioned gradient flow. We start by generalizing the standard gradient des-
cent introduced in Section 5.2. Given objective function Ψ : R𝑑𝑢 → R+ and given
symmetric positive definite preconditioner 𝐵 ∈ R𝑑𝑢×𝑑𝑢 , we introduce the equation

d𝑢
d𝑡

= −𝐵∇Ψ(𝑢). (5.38)

Note that, along solutions of (5.38),

d
d𝑡
Ψ(𝑢) =

〈
∇Ψ(𝑢),

d𝑢
d𝑡

〉
(5.39a)

= −
����d𝑢d𝑡 ����2𝐵. (5.39b)

Equation (5.38) possesses a gradient flow structure in parameter space R𝑑𝑢 with
respect to a Euclidean metric weighted by 𝐵; this weighted metric changes the
underlying geometry of the gradient flow, in comparison to the standard setting of
equation (5.3), but it once again leads to the non-increasing property of Ψ(𝑢) along
trajectories.
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Now consider the affine transformation 𝑢 ↦→ �̃� given by

�̃� = 𝐴𝑢 + 𝑏, (5.40)

where 𝐴 is an invertible matrix and 𝑏 a vector. An important issue in all vector
space optimization problems is the relative scaling of the components of the vector.
A highly desirable feature of an algorithm is that it should be insensitive to such
scaling issues. This can be addressed by looking at differences between (i) the
algorithm for 𝑢 rewritten in terms of �̃� given by (5.40), and (ii) the same algorithm
applied directly to variable �̃� optimizing Ψ̃(�̃�), with the latter defined by

Ψ̃(�̃�) = Ψ(𝐴−1(�̃� − 𝑏)). (5.41)

Definition 5.11. When the two ways (i) and (ii) of using reparametrization (5.40)
lead to the same algorithm, for all choices of 𝐴, 𝑏, we say that the algorithm is
affine-invariant.

Remark 5.12. Affine-invariant algorithms are highly desirable as they are not
sensitive to the scaling of the variables. At the optimum, which is unknown
a priori, this scaling is not known and hence cannot be used to improve algorithms.
Hence algorithms which are blind to such scaling are highly desirable.

Applying the transformation (5.40) to (5.38) leads to
d�̃�
d𝑡

= −𝐴𝐵∇Ψ(𝐴−1(�̃� − 𝑏)), (5.42)

the descent approach underlying algorithm viewed as in (i). In contrast, applying
the same gradient descent to Ψ̃ given by (5.41) leads to the descent approach
underlying algorithms viewed as in (ii):

d�̃�
d𝑡

= −𝐵𝐴−⊤∇Ψ(𝐴−1(�̃� − 𝑏)). (5.43)

The two equations (5.42) and (5.43) only agree if

𝐴𝐵 = 𝐵𝐴−⊤

and such an identity cannot hold for all 𝐴, for a fixed 𝐵. Thus the basic gradient
descent (5.38) is not affine-invariant. However, it is a remarkable fact that, by
generalizing (5.38) to allow for mean-field dependence, we can achieve affine
invariance.

To this end, consider the mean-field generalization of (5.38),
d𝑢
d𝑡

= −𝐵(𝜌)∇Ψ(𝑢), (5.44)

where 𝜌(·, 𝑡) is the probability density function associated with the law of 𝑢,
assuming that 𝑢0 = 𝑢(0) is drawn at random from probability density function 𝜌0(·).
If we assume that 𝐵(·) is positive definite symmetric for all possible input densities,
then arguments similar to those above show that Ψ(𝑢) is non-increasing along
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trajectories of (5.44). Furthermore, similar arguments show that the algorithm is
affine-invariant if, for all invertible 𝐴 ∈ R𝑑𝑢×𝑑𝑢 ,

𝐴𝐵(𝜌) = 𝐵(�̃�)𝐴−⊤,

where �̃� is the density of �̃� related to 𝑢, with density 𝜌, by (5.40). This identity
holds for all invertible 𝐴 ∈ R𝑑𝑢×𝑑𝑢 if 𝐵(·) is chosen to be the covariance associated
with its argument. We have thus discovered the affine-invariant mean-field gradient
descent

d𝑢
d𝑡

= −𝐶∇Ψ(𝑢), (5.45)

where 𝐶 is the covariance operator under the law of 𝑢(𝑡), and 𝑢(0) is chosen at
random from probability measure with density 𝜌0.

Algorithms based on solving (5.45) are not themselves ensemble Kalman meth-
ods, although we have drawn inspiration from the power of mean-field methods to
motivate the approach. In the next paragraph we introduce the idea of statistical
linearization, leading to a variety of ensemble Kalman methods for optimization;
and in the paragraph following it we use this idea to approximate (5.45) by an en-
semble Kalman version of gradient descent which obviates the need for computing
adjoints of the forward model 𝐺(·) in the setting where Ψ(·) = Φ(·) given by (5.2).

Statistical linearization. A basic building block in the Gaussian projected filter and
mean-field ensemble Kalman models for inverse problems that we have presented
in Sections 4.4.2 and 4.4.3, and their continuous-time analogues in Sections 5.4.2
and 5.4.3, is the object

𝐶𝑢𝐺 = E((𝑢 − E𝑢) ⊗ (𝐺(𝑢) − E𝐺(𝑢))), (5.46)

here viewed as evolving in continuous time. Also of interest is the regularized
analogue of 𝐶𝑢𝐺 arising when 𝐺𝑅, as defined in (4.3), is used in place of 𝐺. In
a methodology based on exact properties only for first- and second-order statist-
ics, it is natural that 𝐶𝑢𝐺 should appear when solving the inverse problem: the
correlation between the parameter 𝑢, which we wish to estimate, and 𝐺(𝑢), which
we observe, albeit polluted by additive noise. One way of understanding the role
of 𝐶𝑢𝐺 in algorithms for inversion is through the idea of statistical linearization,
providing a link between ensemble methods and derivatives of the objective func-
tion. The underlying principle is that the differences used in ensemble methods,
and covariances in particular, act as a surrogate for derivatives.

The expectation defining (5.46) is computed, for the algorithms we consider,
under the distribution of a Gaussian (for the Gaussian projected filter) or a more
general distribution (for the mean-field ensemble Kalman model). To get some
insight into the connection between ensemble methods and derivatives, we first
consider the setting where 𝑢 ∼ N(𝑚,𝐶). Note that such 𝑢 can be written as
𝑢 = 𝑚 +

√
𝐶𝜉 where 𝜉 ∼ N(0, 𝐼). With this assumption on 𝑢, (5.46) may be
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reformulated as

𝐶𝑢𝐺 = E
(
(
√
𝐶𝜉) ⊗

(
𝐺(𝑚 +

√
𝐶𝜉) − E𝐺(𝑚 +

√
𝐶𝜉)
))
, 𝜉 ∼ N(0, 𝐼). (5.47)

Using this we obtain the following connection between 𝐶𝑢𝐺 and derivatives of 𝐺.

Lemma 5.13. Assume that the second derivative of 𝐺 is small: there is 𝜖 ≪ 1
such that

sup
𝑢∈R𝑑𝑢

|𝐷2𝐺(𝑢)[𝜁, 𝜁] | ≤ 𝜖 |𝜁 |2.

Then 𝐶𝑢𝐺 given by (5.47) satisfies

𝐶𝑢𝐺 = 𝐶𝐷𝐺(𝑚)⊤ +𝑂(𝜖).

Thus, when 𝐶−1 ≻ 𝜆𝐼, for some 𝜆 > 0 independent of 𝜖 ,

𝐷𝐺(𝑚) = (𝐶𝑢𝐺)⊤𝐶−1 +𝑂(𝜖). (5.48)

^

Proof. Note that

𝐺(𝑚 +
√
𝐶𝜉) = 𝐺(𝑚) + 𝐷𝐺(𝑚)

√
𝐶𝜉 +𝑂(𝜖),

E𝐺(𝑚 +
√
𝐶𝜉) = 𝐺(𝑚) +𝑂(𝜖).

From (5.47),

𝐶𝑢𝐺 = E
(
(
√
𝐶𝜉) ⊗ (𝐷𝐺(𝑚)

√
𝐶𝜉 +𝑂(𝜖))

)
, 𝜉 ∼ N(0, 𝐼),

and the desired result follows.

Remark 5.14. Another perspective on the preceding lemma is via Stein’s identity.
This states that

𝐶𝑢𝐺 = 𝐶(E𝐷𝐺)⊤

for (5.47) when expectation is computed under a Gaussian measure N(𝑚,𝐶). The
identity can be verified via integration by parts. Given the assumption stated in
Lemma 5.13, E𝐷𝐺(𝑢) = 𝐷𝐺(𝑚) + 𝑂(𝜖) and the approximation result (5.48) also
follows.

When 𝐷2𝐺 is indeed small, it is reasonable to use (5.48) as the basis for an
approximation to 𝐷𝐺(·) at points in an 𝑂(1) ball around the mean. We now take
this idea further and consider random variable 𝑢 ∈ R𝑑𝑢 (not necessarily Gaussian)
and compute 𝐶 and 𝐶𝑢𝐺 as covariance of 𝑢 and cross-covariance of 𝑢 with 𝐺(𝑢)
respectively. We refer to use of the approximation

𝐷𝐺(𝑢) ≈ (𝐶𝑢𝐺)⊤𝐶−1, for all 𝑢 ∈ R𝑑𝑢 , (5.49)

as statistical linearization. The approximation can be invoked to replace the
derivative within any standard optimization or sampling algorithm to solve the
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inverse problem (4.1). Doing so results in a mean-field algorithm; that algorithm
in turn can be approximated by particle methods. Statistical linearization allows
the conversion of standard single particle optimization and sampling algorithms
for inverse problems, with dependence on the derivative of the forward model, into
derivative-free interacting particle system optimizers and samplers. An important
application of this methodological approach is in the development of ensemble
Kalman approximations of Gauss–Newton and Levenberg–Marquardt algorithms;
pointers to the literature will be given in Section 5.6. We now turn to the use of
statistical linearization in gradient descent, perhaps the most basic setting in which
it can be used for optimization.

Gradient descent and statistical linearization. We provide further insight into the
statistical linearization approach from the previous subsection by applying it in the
context of gradient descent. Recall Φ and Φ𝑅 defined in (5.2). We consider the
regularized least-squares function so that Ψ(·) = Φ𝑅(·) in (5.3); but similar ideas
may be developed in the unregularized setting where Ψ(·) = Φ(·). Recall that in
the regularized setting

Φ𝑅(𝑢) = Φ(𝑢) + 1
2
|𝑢 − 𝑚0 |2𝐶0

.

Note that

∇Φ(𝑢) = 𝐷𝐺(𝑢)⊤Γ−1(𝐺(𝑢) − 𝑤†), (5.50a)
∇Φ𝑅(𝑢) = 𝐷𝐺(𝑢)⊤Γ−1(𝐺(𝑢) − 𝑤†) − 𝐶−1

0 (𝑚0 − 𝑢). (5.50b)

Thus we obtain, from (5.3),
d𝑢
d𝑡

= −∇Φ𝑅(𝑢) = 𝐷𝐺(𝑢)⊤Γ−1(𝑤† − 𝐺(𝑢)) + 𝐶−1
0 (𝑚0 − 𝑢).

Similarly, the covariance preconditioned gradient flow (5.45) becomes
d𝑢
d𝑡

= −𝐶∇Φ𝑅(𝑢) = 𝐶𝐷𝐺(𝑢)⊤Γ−1(𝑤† − 𝐺(𝑢)) + 𝐶𝐶−1
0 (𝑚0 − 𝑢). (5.51)

We now approximate this equation using statistical linearization.
From (5.49) we deduce the equivalent (assuming 𝐶 is invertible) approximation

𝐶𝐷𝐺(𝑢)⊤ ≈ 𝐶𝑢𝐺 for all 𝑢 ∈ R𝑑𝑢 .

Combining this with (5.50), we obtain

𝐶∇Φ(𝑢) ≈ 𝐶𝑢𝐺Γ−1(𝐺(𝑢) − 𝑤†). (5.52)

Making this approximation in (5.51) gives the following ensemble Kalman approx-
imation of mean-field gradient descent for Φ𝑅:

d𝑢
d𝑡

= 𝐶𝑢𝐺Γ−1(𝑤† − 𝐺(𝑢)) + 𝐶𝐶−1
0 (𝑚0 − 𝑢). (5.53)
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Remark 5.15. It may be verified that the affine invariance of (5.45) is preserved
under the statistical linearization ansatz. To see this, note that if 𝐺(·) = 𝐿·, then
the covariance matrix 𝐶𝑢𝐺 = 𝐶𝐿⊤ so that

𝐶𝑢𝐺Γ−1(𝑤† − 𝐺(𝑢)) = 𝐶𝐿⊤Γ−1(𝑤† − 𝐿𝑢).

From this it follows that, in this linear setting,

𝐶𝑢𝐺Γ−1(𝑤† − 𝐺(𝑢)) = −𝐶∇Φ(𝑢),

Φ(𝑢) =
1
2
|𝐿𝑢 − 𝑤† |2Γ.

Hence (5.32) is also affine-invariant. Similar arguments also show that (5.34) and
(5.53) are affine-invariant. In fact, this property holds for all the ensemble Kalman
approaches to inverse problems developed in the previous section (discrete time)
and the current section (continuous time).

Algebraic convergence. We now observe that statistical linearization is exact for
linear problems, and provide explicit calculations in this linear case. Recall𝐺𝑅, Γ𝑅

defined by (4.3) and assume that Γ𝑅 ≻ 0.

Example 5.16. Statistical linearization is exact in the linear setting: if𝐺(𝑢) = 𝐿𝑢
then 𝐷𝐺(𝑢) = (𝐶𝑢𝐺)⊤𝐶−1. Thus, in the setting of Example 4.4, the preconditioned
gradient flow (5.45) with Ψ = Φ𝑅 reduces to (5.53) with 𝐺(·) = 𝐿·:

d𝑢
d𝑡

= 𝐶𝐿⊤Γ−1(𝑤† − 𝐿𝑢) + 𝐶𝐶−1
0 (𝑚0 − 𝑢). (5.54)

This equation leads to the following closed equations for evolution of the mean and
covariance:

d𝑚
d𝑡

= 𝐶𝐿⊤Γ−1(𝑤† − 𝐿𝑚) + 𝐶𝐶−1
0 (𝑚0 − 𝑚), (5.55a)

d𝐶
d𝑡

= −2𝐶𝐿⊤Γ−1𝐿𝐶 − 𝐶𝐶−1
0 𝐶 = −2𝐶𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅𝐶. (5.55b)

It is readily verified that the precision satisfies equation

d𝐶−1

d𝑡
= 2𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅 (5.56)

and hence the precision grows linearly in time to infinity. As a consequence, the
covariance decays to zero at algebraic rate 𝑂(1/𝑡).

Exponential convergence. To obtain exponential convergence we must overcome
covariance collapse; to this end we study the idea of covariance inflation, introduced
in discrete time in (4.31), in the continuous-time setting. Again recall 𝐺𝑅, Γ𝑅

defined by (4.3) and assume that Γ𝑅 ≻ 0. We then consider the continuous-time
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limit of (4.31) to obtain

d𝑢 =
√︁
𝛽Σ d𝑊,

d𝑧 = 𝐺𝑅(𝑢) d𝑡 +
√︁

Γ𝑅 d𝐵,

(5.57a)

(5.57b)

where 𝑊 and 𝐵 are independent standard Brownian motions on R𝑑𝑢 and 𝑅𝑑𝑤

respectively. To determine Σ set 𝑍†(𝑡) = {𝑧†(𝑠)}𝑠∈[0,𝑇 ] and define Σ = 𝐶, where 𝐶
is the covariance of random variable 𝑢(𝑡)|𝑍†(𝑡). When we apply the SDE (5.57) to
solve the inverse problem, we take 𝑧†(𝑠) ≔ 𝑠𝑤

†
𝑅

for all 𝑠 ≥ 0.

Remark 5.17. As for the discrete-time model (4.31), equation (5.57) defines an
unusual form of mean-field model through dependence on the filtering distribution.
As a consequence, the filtering distribution is determined by a non-standard variant
of the Kushner–Stratonovich equation which takes the form

𝜕𝑡 𝜌 =
1
2
∇ · (∇ · (𝜌C(𝜌))) − 1

2
{
|𝐺𝑅 |2Γ𝑅

− E|𝐺𝑅 |2Γ𝑅

}
𝜌 +

〈
𝐺𝑅 − E𝐺𝑅, 𝑤

†
𝑅

〉
Γ𝑅
𝜌.

This may be derived from (3.26) with 𝑓 ≡ 0, Σ = C(𝜌) (the covariance under 𝜌),
ℎ = 𝐺𝑅 and d𝑧†(𝑡) ≔ 𝑤

†
𝑅

d𝑡. Note that appearance of the covariance matrix C(𝜌)
adds a further non-local nonlinearity which is not present in the density evolution
(5.19) that arises without covariance inflation.

We now derive continuous-time limits of the Gaussian projected filter (4.32) and
the ensemble Kalman filters (4.34) and (4.35), derived in Section 4.5 for solution
of the inverse problem (4.1). Starting with the Gaussian projected filter and taking
the limit Δ𝑡 → 0, we obtain

d𝑚
d𝑡

= 𝐶𝑢𝐺
𝑅 Γ−1

𝑅

(
𝑤
†
𝑅
− E𝐺𝑅(𝑢)

)
,

d𝐶
d𝑡

= 𝛽𝐶 − 𝐶𝑢𝐺
𝑅 Γ−1

𝑅

(
𝐶𝑢𝐺
𝑅

)⊤
,

𝐶𝑢𝐺
𝑅 = E((𝑢 − E𝑢) ⊗ (𝐺𝑅(𝑢) − E𝐺𝑅(𝑢))),

(5.58a)

(5.58b)

(5.58c)

where all expectations are with respect to 𝑢(𝑡) ∼ N(𝑚(𝑡), 𝐶(𝑡)). Using the explicit
form of Φ𝑅, this set of equations may be shown to be equivalent to

d𝑚
d𝑡

= 𝐶𝑢𝐺Γ−1(𝑤† − E𝐺(𝑢)) + 𝐶𝐶−1
0 (𝑚0 − 𝑚), (5.59a)

d𝐶
d𝑡

= 𝛽𝐶 − 𝐶𝑢𝐺Γ−1(𝐶𝑢𝐺)⊤ − 𝐶𝐶−1
0 𝐶. (5.59b)

As in discrete time, we are using the approximation of the covariance of the filtering
distribution implied by the Gaussian projected filter; this is since we do not have
access to the exact covariance.

Example 5.18. To highlight links with preconditioned gradient descent, we now
investigate these equations in the linear Gaussian setting. With 𝐺(·) = 𝐿·, we
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obtain from (5.59) the following equations for the mean and covariance matrix
evolution:

d𝑚
d𝑡

= 𝐶𝐿⊤Γ−1(𝑤† − 𝐿𝑚) + 𝐶𝐶−1
0 (𝑚0 − 𝑚), (5.60a)

d𝐶
d𝑡

= 𝛽𝐶 − 𝐶𝐿⊤Γ−1𝐿𝐶 − 𝐶𝐶−1
0 𝐶 = 𝛽𝐶 − 𝐶𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅𝐶. (5.60b)

These evolution equations for mean and covariance are now compared to the cor-
responding equations derived in Example 5.16, concerning statistical linearization.
Equations (5.55) in that example arise from statistical linearization of precondi-
tioned gradient descent, and exactly recover preconditioned gradient descent in
the linear setting. We note that the evolution equations (5.55a) and (5.60a) for
the mean agree, while the covariance matrices 𝐶 defined by (5.55b) and (5.60b)
undergo different evolutions.

In the proposition which follows, we now show that the different evolution
equation for the covariance (5.60b) leads to exponential convergence; this should
be contrasted with the algebraic convergence resulting from (5.55b).

Proposition 5.19. Assume that 𝑢0 is initialized at a Gaussian N(𝑚0, 𝐶0) and
assume also that 𝐶0, Γ𝑅 ≻ 0. Consider the setting where 𝐺𝑅(·) = 𝐿𝑅 · for matrix
𝐿𝑅 ∈ R(𝑑𝑤+𝑑𝑢)×𝑑𝑢 . Now consider the filtering distribution 𝑢(𝑡)|𝑍†(𝑡) defined by
(5.57) for 𝛽 > 0, with data 𝑍†(𝑡) defined by 𝑧†(𝑠) = 𝑠𝑤†

𝑅
, where 𝑤†

𝑅
is defined in

(4.5). Then the filtering distribution is Gaussian N(𝑚(𝑡), 𝐶(𝑡)) for all 𝑡 ≥ 0. The
mean and covariance converge at an exponential rate exp(−𝛽𝑡), as 𝑡 → ∞, to the
limits 𝑚∞ = 𝑚post and 𝐶∞ = 𝛽𝐶post, where (𝑚post, 𝐶post) are the posterior mean
(4.11) and covariance (4.10). ^

Remark 5.20. It is a remarkable fact that the rate of convergence is independent
of the properties of the limiting Gaussian posterior distribution, and in particular of
the conditioning of the posterior covariance. This property is the continuous-time
analogue of what we observed in Remark 4.18. The desirable universal convergence
rate property is a result of the affine invariance of the Gaussian projected filter and
ensemble Kalman methods studied in this subsection.

Proof of Proposition 5.19. We first note that 𝛽 > 0 implies that equation (5.60b)
for the covariance has two equilibria: an unstable one at 𝐶 = 0 and a stable one
satisfying

𝐶∞ = 𝛽
(
𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅

)−1
= 𝛽𝐶post. (5.61)

The exponential convergence to 𝐶∞ for 𝛽 > 0 can be best seen by considering the
evolution for the precision matrix 𝐶−1:

d𝐶−1

d𝑡
= −𝛽𝐶−1 + 𝐿⊤𝑅Γ−1

𝑅 𝐿𝑅 . (5.62)
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Direct calculation of the time-derivative of 𝐶−1(𝑡)𝑚(𝑡) shows that
d
d𝑡

(𝐶−1𝑚) = −𝛽𝐶−1𝑚 + 𝐿⊤𝑅Γ−1
𝑅 𝑤

†
𝑅
.

Thus𝐶−1(𝑡)𝑚(𝑡) converges exponentially fast to limit 1
𝛽
𝐿⊤
𝑅

Γ−1
𝑅
𝑤
†
𝑅

. Since𝐶(𝑡) itself
converges exponentially fast to 𝛽𝐶post, it follows that 𝑚(𝑡) converges exponentially
fast to posterior mean 𝑚post given by (4.11).

Remark 5.21. For 𝛽 = 0, we find algebraic convergence which we also found
in equation (5.56), from Example 5.16, for the preconditioned gradient descent
formulation. It should be noted that (5.56) contains a pre-factor of two which is
not present in (5.62) so, even when 𝛽 = 0, the evolution for mean and covariance
does not coincide with that arising from preconditioned gradient descent.

We now turn to ensemble Kalman methods, starting with the stochastic version.
We take continuous-time limits in (4.34) to obtain

d𝑢 =
√︁
𝛽𝐶 d𝑊 + 𝐶𝑢𝐺

𝑅 Γ−1
𝑅

(
𝑤
†
𝑅

d𝑡 − d�̂�
)
,

d�̂� = 𝐺𝑅(𝑢) d𝑡 +
√︁

Γ𝑅 d𝐵,

(5.63a)

(5.63b)

where 𝐶𝑢𝐺
𝑅

is computed using (5.58c), and 𝐶 is the regular covariance, both under
the law of 𝑢. As in discrete time, we are using the approximation of the covariance
of the filtering distribution implied by the Gaussian projected filter; this is since we
do not have access to the exact covariance. Here𝑊 and 𝐵 are independent standard
Brownian motions on R𝑑𝑢 and 𝑅𝑑𝑤 respectively. The corresponding deterministic
transport formulation is found by taking the continuous-time limit in (4.35) to
obtain

d𝑢 =
√︁
𝛽𝐶 d𝑊 + 𝐶𝑢𝐺

𝑅 Γ−1
𝑅

(
𝑤
†
𝑅
− 1

2
(𝐺𝑅(𝑢) − E𝐺𝑅(𝑢))

)
d𝑡, (5.64)

where𝑊 is again a standard Brownian motion on R𝑑𝑢 and where 𝐶𝑢𝐺
𝑅

is computed
using (5.58c), and 𝐶 is the regular covariance, both under the law of 𝑢.

Remark 5.22. We note that it is possible to replace (5.57) by the filtering problem
associated with the model

d𝑢 =
1
2
𝛽(𝑢 − E𝑢) d𝑡,

d𝑧 = 𝐺𝑅(𝑢) d𝑡 +
√︁

Γ𝑅 d𝐵.

(5.65a)

(5.65b)

This results in the same Gaussian projected filter and ensemble Kalman methods
as before, in the linear Gaussian setting. We note that using the filtering problem
associated with (5.65) leads to analogous ensemble Kalman methods to (5.64)
or (5.63); these can be obtained by directly replacing the term

√︁
𝛽𝐶 d𝑊 with

1
2 𝛽(𝑢 − E𝑢) d𝑡 in (5.64) and (5.63).
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5.5.2. Algorithms for Bayesian formulation
In Section 4.5.3 we derived Gaussian projected filter and ensemble Kalman methods
that converge exponentially fast to the exact posterior distribution of the inverse
problem (4.1) in the linear, Gaussian setting. This is achieved by choosing 𝛽 =

(1 − Δ𝑡)−1 as stated in (4.43). A similar argument in the continuous-time setting
thus leads to the choice 𝛽 = 1. We have the following corollary of Proposition 5.19.

Corollary 5.23. Assume that 𝑢0 is initialized at a Gaussian N(𝑚0, 𝐶0) and assume
also that 𝐶0, Γ𝑅 ≻ 0. Consider the setting where 𝐺𝑅(·) = 𝐿𝑅 · for matrix 𝐿𝑅 ∈
R(𝑑𝑤+𝑑𝑢)×𝑑𝑢 . Now consider the filtering distribution 𝑢(𝑡)|𝑍†(𝑡) defined by (5.57)
for 𝛽 = 1, with data 𝑍†(𝑡) defined by 𝑧†(𝑠) = 𝑠𝑤

†
𝑅

, where 𝑤†
𝑅

is defined in (4.5).
Then the filtering distribution is Gaussian N(𝑚(𝑡), 𝐶(𝑡)) for all 𝑡 ≥ 0. The mean
and covariance converge at an exponential rate, as 𝑡 → ∞, to the limits 𝑚∞ = 𝑚post
and 𝐶∞ = 𝐶post, where (𝑚post, 𝐶post) are the posterior mean (4.11) and covariance
(4.10). ^

Preconditioned gradient flows. While the above extension to Bayesian inference
problems is straightforward and leads to an exact recovery of the posterior distri-
bution in the linear Gaussian setting, the resulting methods deliver only approxim-
ations in the general nonlinear setting. This, of course, is a theme throughout this
article. In the remainder of this subsection we take a different approach to deriving
algorithms for sampling which are exact in the linear Gaussian setting. We start
by considering preconditioned gradient descent, and its Langevin analogue; we
then note that application of statistical linearization gives approximations of these
evolutions which are exact in the linear Gaussian setting, and hence also exhibit
desirable convergence properties, in the linear Gaussian setting.

First recall the preconditioned gradient descent (5.45) for Ψ = Φ𝑅 resulting in

d𝑢
d𝑡

= −𝐶∇Φ𝑅(𝑢). (5.66)

This methodology for optimization may be extended to a sampling methodology
by considering the preconditioned mean-field Langevin SDE defined by

d𝑢 = −𝐶∇Φ𝑅(𝑢) d𝑡 +
√

2𝐶 d𝑊. (5.67)

Remark 5.24. We note here that it may be verified that (5.67) is invariant under
affine transformations of type (5.40). Thus (5.67) provides an attractive gener-
alization of standard Langevin dynamics (5.13) for sampling from the posterior
distribution, because of the properties of affine-invariant algorithms highlighted in
Remark 5.12. Although the desired posterior distribution is approached only in the
limit 𝑡 → ∞, the fact that the convergence is exponential, with universal rate across
all linear Gaussian inverse problems, makes the approach potentially competitive.
Theory concerning this equation is discussed in Section 5.6.
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Use of the statistical linearization approximation (5.49), which we discuss next,
converts both (5.66) and (5.67) into mean-field ensemble Kalman methods which,
through particle approximations, lead to implementable derivative-free methods.

Inexact gradients. It is possible to apply statistical linearization (5.52) to the pre-
conditioned Langevin equation (5.67), resulting in the evolution equation

d𝑢 = 𝐶𝑢𝐺
𝑅 Γ−1

𝑅

(
𝑤
†
𝑅
− 𝐺𝑅(𝑢)

)
d𝑡 +

√
2𝐶 d𝑊. (5.68)

Here 𝐶𝑢𝐺
𝑅

is computed using (5.58c), and 𝐶 is the regular covariance, both under
the law of 𝑢. Like (5.63) and (5.64), this equation converges exponentially fast
to the posterior distribution in the linear Gaussian case. However, the form of
the mean-field stochastic differential equation is fundamentally different: here the
Brownian noise arises in state spaceR𝑑𝑢 , whereas in the ensemble Kalman methods
it appears in data space R𝑑𝑦 .

Exact gradients. This paragraph concerns analysis of (5.66) and (5.67) when the
exact gradients of Φ, and hence Φ𝑅, are available. We start by considering the
geometric properties of (5.66). We assume that 𝑢(𝑡) has smooth probability density
𝜌(𝑢, 𝑡) for all 𝑡 ≥ 0 and recall that we denote the manifold of all smooth probability
density functions on R𝑑𝑢 by 𝔓+. Then 𝜌 satisfies the Liouville equation

𝜕𝑡 𝜌 = ∇ · (𝜌𝐶∇Φ𝑅). (5.69)

Again the appearance of the covariance matrix𝐶 = C(𝜌) renders (5.69) a nonlinear
and non-local partial differential equation on 𝔓+. We will show that the evolution
of 𝜌 on 𝔓+ has gradient flow structure of the form given in (5.11).

In order to see this gradient structure we need to identify the energy functional
which is being minimized and then introduce a metric structure in which (5.69) is
a gradient flow. In this case we may choose

E(𝜌) B E(𝜌) =
∫

Φ𝑅𝜌 d𝑢, (5.70a)

M(𝜌)−1𝜓 B −∇ · (𝜌C(𝜌)∇𝜓) ∈ 𝑇𝜌𝔓+. (5.70b)

We refer to the Kalman–Wasserstein metric as the metric induced by this metric
tensor, generalizing the Wasserstein-2 metric introduced in Section 5.3. Note that
the variational derivative of E is given by

𝛿E
𝛿𝜌

= Φ𝑅 .

Hence we can rewrite (5.69) as

𝜕𝑡 𝜌 = ∇ ·
(
𝜌C(𝜌)∇𝛿E

𝛿𝜌

)
. (5.71)
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Note that

d
d𝑡
E(𝜌) =

∫
R𝑑𝑢

𝛿E
𝛿𝜌
𝜕𝑡 𝜌 d𝑢

= −
∫
R𝑑𝑢

𝜌

����C(𝜌)1/2∇𝛿E
𝛿𝜌

����2 d𝑢

= −
∫
R𝑑𝑢

〈
∇𝛿E
𝛿𝜌

, C(𝜌)∇𝛿E
𝛿𝜌

〉
𝜌 d𝑢

≤ 0.

It is interesting to compare the gradient structure on 𝔓+ to the gradient flow
structure on R𝑑𝑢 defined by (5.38) with 𝐵 = C(𝜌). The state space gradient flow on
R𝑑𝑢 ensures decrease of Φ𝑅(𝑢(𝑡)) along trajectories, whilst the probability space
gradient flow on 𝔓+ ensures decrease of the expected value of Φ𝑅(𝑢(𝑡)) across
a distribution of trajectories found from random initialization of the state space
problem.

The preceding calculations demonstrate that any evolution equation of type (5.71)
with appropriate energy functional E induces a gradient flow on 𝔓+. In particular,
using the energy functional

E(𝜌) =
∫

(Φ𝑅 + ln 𝜌)𝜌 d𝑢

defined in (5.15), we observe that the associated evolution equation (5.71) becomes

𝜕𝑡 𝜌 = ∇ · (𝜌C(𝜌)∇Φ𝑅) + ∇ · (C(𝜌)∇𝜌). (5.72)

This nonlinear and non-local Fokker–Planck equation governs evolution of the
probability density funtion for the mean-field SDE (5.67). Now recall Remark 5.2,
in which we note that KL[𝜌∥𝜋] and E(𝜌) differ by a constant, and where 𝜋 is the
posterior density associated with posterior measure 𝜇 given by (4.7). Thus the
global minimizer of the gradient flow associated with (5.15) is attained at 𝜌 = 𝜋

and hence solves the Bayesian inverse problem.
Finally, it is also useful to see the nonlinear and non-local Fokker–Planck equation

(5.72) written in the abstract gradient form (5.11). In this case we may choose

E(𝜌) B E(𝜌) =
∫

(Φ𝑅 + ln 𝜌)𝜌 d𝑢, (5.73a)

M(𝜌)−1𝜓 B −∇ · (𝜌C(𝜌)∇𝜓) ∈ 𝑇𝜌𝔓+. (5.73b)

Remark 5.25. The Kalman–Wasserstein gradient flow structure for the Fokker–
Planck equation associated with (5.67) is not maintained under the statistical linear-
ization leading to (5.68). The resulting Fokker–Planck equation implied by (5.68)
is not of gradient descent type in 𝔓+, except in the case where 𝐺(𝑢) is linear.
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5.6. Bibliographical notes

The notion of gradient flow plays a central role in this paper. The subject is
enormous and we cannot do justice to it here. We point the reader to the book
by Hirsch, Smale and Devaney (2013) for the study of gradient flows in Euclidean
space and to Ambrosio, Gigli and Savaré (2008) for gradient flows in metric spaces,
including spaces of probability measures. The paper by Chen et al. (2023) contains
an overview of gradient flows for probability measures, focused on applications to
Bayesian inversion.

Continuous-time limits of ensemble Kalman filters were first derived in Berge-
mann and Reich (2010a) and Bergemann and Reich (2010b) and further explored
in the context of continuous-time transport in Reich (2011). A connection between
the non-stochastic Kalman transport equations (5.34) and preconditioned gradient
descent was first identified in Bergemann and Reich (2010b) for finite ensemble
sizes, and in Reich and Cotter (2015) for the mean-field limit. Pidstrigach and
Reich (2023) have adopted the continuous-time setting. See also Yang, Blom and
Mehta (2014) for related formulations based on the feedback particle filter approach
to continuous-time filtering.

Schillings and Stuart (2017, 2018) studied the use of ensemble Kalman methods
for optimization problems, taking a continuous-time limit, making a connection to
preconditioned gradient descent and exploiting an invariant subspace property (see
e.g. Iglesias et al. 2013, Theorem 2.1) inherent in the basic form of the ensemble
Kalman methodology. This led to work on approximate sampling from the precon-
ditioned Langevin equation in Garbuno-Inigo et al. (2020a,b), Nüsken and Reich
(2019) and Liu, Stuart and Wang (2022); in particular, Nüsken and Reich (2019)
and Garbuno-Inigo et al. (2020b) demonstrated a finite ensemble size correction
to the mean-field limit introduced in Garbuno-Inigo et al. (2020a). Garbuno-Inigo
et al. (2020a) used the non-standard Kalman–Wasserstein metric, first introduced
in Reich and Cotter (2015), to provide a framework to analyse the preconditioned
Langevin equation. It remains open to fully develop the mathematical foundations
of gradient flows using this metric. These papers demonstrate the role played by
the ensemble in preconditioning the dynamics. This makes a link to the important
paper by Goodman and Weare (2010), which introduced the concept of affine-
invariant ensemble samplers, an idea developed further in Leimkuhler, Matthews
and Weare (2018).

Chada, Chen and Sanz-Alonso (2021) review the optimization perspective and
provide a unifying framework, going beyond gradient descent-based methods.
In particular, framing ensemble Kalman-based optimization methods in terms of
statistical linearization, as we do in Section 5.5.1, originates in that paper. Reich
and Weissmann (2021) and Pavliotis, Stuart and Vaes (2022) show how to construct
a derivative-free Langevin sampler using localized ensembles; the use of localized
ensembles to train neural networks may be found in Haber et al. (2018). An
alternative interacting particle system approach to solving inverse problems and
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optimization tasks is the use of consensus-based methods (Tsianos et al. 2012,
Ha et al. 2021, Fornasier, Klock and Riedl 2024, Carrillo et al. 2018, Carrillo,
Hoffmann, Stuart and Vaes 2022, Chen, Jin and Lyu 2022a, Pinnau, Totzeck, Tse
and Martin 2017, Fornasier et al. 2020). Ding et al. (2021) and Ding and Li
(2021a,b) have undertaken a systematic analysis of the link between interacting
particle systems and mean-field systems, mostly focused on the solution of inverse
problems; however, the methods developed are more widely applicable.

Recall that (5.26) is a derivative-free approach to approximately solving the
Bayesian inverse problem by application of the Gaussian projected filter. In Ap-
pendix E we show that these equations may also be derived from the Fisher–Rao
gradient flow (5.20), deriving equations for the mean and covariance evolution
from it, and then by invoking a number of approximations. In Appendix E, as a
step in this derivation, we obtain the equations

d𝑚
d𝑡

= −E(Φ(𝑢)(𝑢 − 𝑚)), (5.74a)

d𝐶
d𝑡

= −E(Φ(𝑢)(𝑢 − 𝑚)(𝑢 − 𝑚)⊤) + 𝐶E(Φ(𝑢)), (5.74b)

which may be viewed as a closed evolution when expectation is computed under the
Gaussian defined by (𝑚,𝐶). These closed equations also define a derivative-free
approach to approximate the Bayesian inverse problem, different from (5.26). It is
natural to ask which of (5.74) and (5.26) is preferable; computational experiments
underpinning the work in Chen et al. (2023) indicate that (5.26) is more robust
in various settings. Discussion of the Fisher–Rao gradient flow projected into the
manifold of Gaussians is contained in Chen et al. (2023).

Theory showing that the Fokker–Planck equation (5.14) arises as a continuous-
time limit of the MCMC method (4.13) was initiated in Gelman, Gilks and
Roberts (1997), for the random walk Metropolis algorithm, and followed up for
the Metropolis-adjusted Langevin equation in Roberts and Rosenthal (1998). See
Roberts and Rosenthal (2001) for an overview of this field. Most of the analysis
is done at the level of weak convergence of sample paths and hence works directly
with (5.13) rather than with its density, which is governed by (5.14).

6. Conclusions and open problems
This paper presents a unifying perspective on the derivation, interpretation and
analysis of ensemble Kalman methods through use of the ideas of mean-field
models, second-order approximate transport and particle approximation. Both
state estimation and parameter estimation (inverse problems) are studied; similar
ideas may be developed for joint parameter-state estimation problems but are not
discussed in this paper. The ideas have been presented in discrete time and,
through specific parametric scalings, continuous-time limits have been identified.
Our unifying approach constitutes a novel presentation of the subject, and creates
a framework for the mathematical development of the subject area.
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Ensemble Kalman methods have been enormously impactful in the geosciences,
where they originated, and are starting to be used in numerous other application
domains. However, if they are to realize their potential for widespread adoption
and application, many research challenges remain. These challenges are both in
mathematical analysis and in the development of methodology. One of the biggest
challenges is the following: some theory, and abundant numerical evidence, show
that ensemble Kalman methods perform well at state estimation and at parameter
estimation. However, there is very little theory, or empirical evidence, which
identifies situations in which the statistical information in the ensemble constitutes
valid approximate Bayesian inference. The recent papers by Carrillo et al. (2024)
and Calvello et al. (2024) make first steps in this direction. In mathematical
analysis a number of other substantial challenges are presented by ensemble Kalman
methods, which we list here.

• For state estimation, determine conditions under which the filtering distri-
bution is well-approximated by mean-field models based on second-order
transport. Find sharp error estimates and appropriate metrics for the analysis.
Furthermore, identify which problems satisfy these conditions.

• For inverse problems, determine conditions under which the optimizer of a (to-
be-identified) loss function is well-approximated by the mean or sample path
of mean-field models based on second-order transport, in both the transport
and iterative approaches to inversion. Find sharp error estimates.

• For inverse problems, determine conditions under which the Bayesian pos-
terior is well-approximated by mean-field models based on second-order
transport, in both the transport and iterative approaches to inversion. Find
sharp error estimates and appropriate metrics for the analysis. Furthermore,
identify which inverse problems satisfy these conditions.

• For all of the preceding three scenarios derive error bounds for particle
approximations of the mean-field models. When low-rank structure is present
in covariances prove that ensemble Kalman methods can correctly identify it,
and exploit the low-rank structure in the analysis of particle approximations.

• In all of the particle methods arising above, compare the cost/error trade-off
with that arising for other methods, to determine when ensemble Kalman
methods are competitive.

• All of the algorithms in this paper are studied in idealized scenarios, in
the absence of widely employed techniques such as covariance inflation and
localization. Developing analyses which account for covariance inflation and
localization will be highly desirable.
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On the methodology side there are also a number of significant challenges, which
we also list here.

• Given the ability to compute an ensemble of evaluations of the combined state-
observation dynamical system, determine the optimal (in terms of cost/error
trade-off) way to combine the ensemble to either estimate the state given an
observation sequence, or the filtering distribution.

• Given the ability to compute an ensemble of evaluations of the forward model,
what is the optimal way to combine them to either estimate the parameter
given an observation, or the posterior distribution, for the corresponding
inverse problem.

• What role might be played by machine learning in addressing the design of
algorithms, and in particular in addressing the preceding questions.

• Develop an overarching interacting particle and mean-field framework that
subsumes ensemble Kalman and alternative particle filters as well as deriva-
tive-free and consensus-based optimization methods, and use the framework
to create new methods.

• Develop principles for the deployment of covariance inflation, and generaliz-
ations of localization, so that the resulting methodology is widely applicable
and does not need application-specific principles to be applied. Different
ideas may be needed in the inverse problem setting.

• Expand the preceding scenarios beyond the additive error models discussed
in the survey, to include classification and other machine learning tasks.
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A. Pseudo-code
In this appendix we provide pseudo-code describing several of the algorithms that
we present and deploy in this paper. Algorithms 1 and 2, 3DVAR and the ensemble
Kalman filter (EnKF) respectively, are applied in the context of the problem of
state estimation for discrete-time dynamical systems presented in Sections 2.2
and 2.6. The scheme 3DVAR is employed in Examples 2.3, 2.5, 2.16 and B.1. The
ensemble Kalman filter is applied in Example 2.16. Ensemble Kalman methods for
inversion, as shown in Algorithms 3, 4 and 5, are presented in Sections 4.4 and 4.5,
and applied within Examples 4.22 and 4.23. We refer to Algorithm 3 as Ensemble
Kalman Inversion (Transport), as it arises from the approach to inversion described
in Section 4.4.3; we refer to Algorithm 4 as Ensemble Kalman Inversion (Iteration
to Infinity), as it arises from the approach to inversion described in Section 4.5;
Algorithm 5 corresponds to an ensemble Kalman inversion method employing
inflation by the covariance computed under the filtering distribution, as outlined in
Section 4.5.3. We refer to Algorithm 5 as Ensemble Kalman Inversion (Inflated
State).

Algorithm 1 3DVAR
Input: Initial 𝑣0 ∈ R𝑑𝑣 and fixed gain matrix 𝐾 ∈ R𝑑𝑣×𝑑𝑦 .
for 𝑛 = 0 to 𝑁 − 1 do

Prediction:
�̂�𝑛+1 = Ψ(𝑣𝑛).

Analysis:
𝑣𝑛+1 = �̂�𝑛+1 + 𝐾

(
𝑦
†
𝑛+1 − ℎ(̂𝑣𝑛+1)

)
.

end for
Output: Estimates {𝑣𝑛}𝑁𝑛=0.
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Algorithm 2 EnKF
Input: Ensemble size 𝐽, initial ensemble {𝑣( 𝑗)

0 }𝐽
𝑗=1.

for 𝑛 = 0 to 𝑁 − 1 do
Prediction: for 𝑗 = 1, . . . , 𝐽 do

�̂�
( 𝑗)
𝑛+1 = Ψ(𝑣( 𝑗)

𝑛 ) + 𝜉( 𝑗)
𝑛 , 𝜉

( 𝑗)
𝑛 ∼ N(0, Σ).

Compute

𝑚𝑛+1 =
1
𝐽

𝐽∑︁
𝑗=1
�̂�

( 𝑗)
𝑛+1, 𝑜𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

ℎ
(
�̂�

( 𝑗)
𝑛+1
)
,

𝐶𝑣ℎ
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

(
�̂�

( 𝑗)
𝑛+1 − 𝑚𝑛+1

)
⊗
(
�̂�

( 𝑗)
𝑛+1 − 𝑜𝑛+1

)
,

𝐶ℎℎ
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

(
�̂�

( 𝑗)
𝑛+1 − 𝑜𝑛+1

)
⊗
(
�̂�

( 𝑗)
𝑛+1 − 𝑜𝑛+1

)
,

𝐾𝑛+1 = 𝐶𝑣ℎ
𝑛+1
(
𝐶ℎℎ
𝑛+1 + Γ

)−1
.

Analysis: for 𝑗 = 1, . . . , 𝐽 do

�̂�
( 𝑗)
𝑛+1 = ℎ

(
�̂�

( 𝑗)
𝑛+1
)
+ 𝜂( 𝑗)

𝑛 , 𝜂
( 𝑗)
𝑛 ∼ N(0, Γ),

𝑣
( 𝑗)
𝑛+1 = �̂�

( 𝑗)
𝑛+1 + 𝐾𝑛+1

(
𝑦

( 𝑗)
𝑛+1 − ℎ

(
�̂�

( 𝑗)
𝑛+1
))
.

end for
Output: Ensembles {𝑣( 𝑗)

𝑛 }𝐽
𝑗=1 for 𝑛 = 0, . . . , 𝑁 .
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Algorithm 3 Ensemble Kalman Inversion (Transport to Finite Time)
Input: Data 𝑤†, 𝑁 and Δ𝑡 such that 𝑁Δ𝑡 = 1, ensemble size 𝐽, initial ensemble
{𝑢( 𝑗)

0 }𝐽
𝑗=1.

for 𝑛 = 0 to 𝑁 − 1 do
Prediction: for 𝑗 = 1, . . . , 𝐽 do

�̂�
( 𝑗)
𝑛+1 = 𝑢

( 𝑗)
𝑛 .

Compute

𝑚𝑛+1 =
1
𝐽

𝐽∑︁
𝑗=1
�̂�

( 𝑗)
𝑛+1, 𝑜𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1
𝐺
(
�̂�

( 𝑗)
𝑛+1
)
,

𝐶𝑢𝐺
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

(
�̂�

( 𝑗)
𝑛+1 − 𝑚𝑛+1

)
⊗
(
𝐺
(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
,

𝐶𝐺𝐺
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

(
𝐺
(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
⊗
(
𝐺
(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
.

Analysis: for 𝑗 = 1, . . . , 𝐽 do

𝑤
( 𝑗)
𝑛+1 = 𝐺

(
�̂�

( 𝑗)
𝑛+1
)
+ 𝜂( 𝑗)

𝑛 , 𝜂
( 𝑗)
𝑛 ∼ N

(
0,

Γ
Δ𝑡

)
,

𝑢
( 𝑗)
𝑛+1 = �̂�

( 𝑗)
𝑛+1 + Δ𝑡𝐶𝑢𝐺

𝑛+1
(
Δ𝑡𝐶𝐺𝐺

𝑛+1 + Γ
)−1(

𝑤† − 𝑤( 𝑗)
𝑛+1
)
.

end for
Output: Ensemble {𝑢( 𝑗)

𝑁
}𝐽
𝑗=1.
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Algorithm 4 Ensemble Kalman Inversion (Iteration to Infinity)
Input: Data 𝑤†, 𝑁∞, Δ𝑡, ensemble size 𝐽, initial ensemble {𝑢( 𝑗)

0 }𝐽
𝑗=1.

while 𝑛 < 𝑁∞ do
Prediction: for 𝑗 = 1, . . . , 𝐽 do

�̂�
( 𝑗)
𝑛+1 = 𝑢

( 𝑗)
𝑛 .

Compute

𝑚𝑛+1 =
1
𝐽

𝐽∑︁
𝑗=1
�̂�

( 𝑗)
𝑛+1, 𝑜𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1
𝐺
(
�̂�

( 𝑗)
𝑛+1
)
,

𝐶𝑢𝐺
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

(
�̂�

( 𝑗)
𝑛+1 − 𝑚𝑛+1

)
⊗
(
𝐺
(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
,

𝐶𝐺𝐺
𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

(
𝐺
(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
⊗
(
𝐺
(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
.

Analysis: for 𝑗 = 1, . . . , 𝐽 do

𝑤
( 𝑗)
𝑛+1 = 𝐺

(
�̂�

( 𝑗)
𝑛+1
)
+ 𝜂( 𝑗)

𝑛 , 𝜂
( 𝑗)
𝑛 ∼ N

(
0,

Γ
Δ𝑡

)
,

𝑢
( 𝑗)
𝑛+1 = �̂�

( 𝑗)
𝑛+1 + Δ𝑡𝐶𝑢𝐺

𝑛+1
(
Δ𝑡𝐶𝐺𝐺

𝑛+1 + Γ
)−1(

𝑤† − 𝑤( 𝑗)
𝑛+1
)
.

end while
Output: Ensemble {𝑢( 𝑗)

𝑁∞
}𝐽
𝑗=1.
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Algorithm 5 Ensemble Kalman Inversion (Inflated State)
Input: Data 𝑤†

𝑅
, 𝑁∞, Δ𝑡, ensemble size 𝐽, initial ensemble {𝑢( 𝑗)

0 }𝐽
𝑗=1.

while 𝑛 < 𝑁∞ do
Prediction: Compute

𝑚𝑛 =
1
𝐽

𝐽∑︁
𝑗=1
𝑢

( 𝑗)
𝑛 , 𝐶𝑛 =

1
𝐽

𝐽∑︁
𝑗=1

(𝑢( 𝑗)
𝑛 − 𝑚𝑛) ⊗ (𝑢( 𝑗)

𝑛 − 𝑚𝑛)

for 𝑗 = 1, . . . , 𝐽 do

�̂�
( 𝑗)
𝑛+1 = 𝑢

( 𝑗)
𝑛 + 𝜉( 𝑗)

𝑛 , 𝜉
( 𝑗)
𝑛 ∼ N

(
0,

Δ𝑡

1 − Δ𝑡
𝐶𝑛

)
.

Compute

𝑚𝑛+1 =
1
𝐽

𝐽∑︁
𝑗=1
�̂�

( 𝑗)
𝑛+1, 𝑜𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1
𝐺𝑅

(
�̂�

( 𝑗)
𝑛+1
)
,

𝐶𝑢𝐺
𝑅,𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

(
�̂�

( 𝑗)
𝑛+1 − 𝑚𝑛+1

)
⊗
(
𝐺𝑅

(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
,

𝐶𝐺𝐺
𝑅,𝑛+1 =

1
𝐽

𝐽∑︁
𝑗=1

(
𝐺𝑅

(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
⊗
(
𝐺𝑅

(
�̂�

( 𝑗)
𝑛+1
)
− 𝑜𝑛+1

)
.

Analysis: for 𝑗 = 1, . . . , 𝐽 do

�̂�
( 𝑗)
𝑛+1 = Δ𝑡𝐺𝑅

(
�̂�

( 𝑗)
𝑛+1
)
+ 𝜂( 𝑗)

𝑛 , 𝜂
( 𝑗)
𝑛 ∼ N(0,Δ𝑡Γ𝑅),

𝑢
( 𝑗)
𝑛+1 = �̂�

( 𝑗)
𝑛+1 + 𝐶

𝑢𝐺
𝑅,𝑛+1

(
Δ𝑡𝐶𝐺𝐺

𝑅,𝑛+1 + Γ𝑅

)−1(
Δ𝑡𝑤

†
𝑅
− �̂�( 𝑗)

𝑛+1
)
.

end while
Output: Ensemble {𝑢( 𝑗)

𝑁∞
}𝐽
𝑗=1.
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B. Lorenz ’96 models
To illustrate the problems of both state estimation and parameter estimation we
use, throughout this paper, variants on the Lorenz ’96 model. In particular, we use
both the Lorenz ’96 multiscale system, introduced in Section B.1, and a single-
scale closure derived from it in the scale-separated case, described in Sections B.2
and 2.7. If we (i) generate data with the single-scale model, and assimilate using
the same model, we are able to test algorithms in their basic (perfect model)
form; on the other hand, if we (ii) generate data with the multiscale model, and
assimilate using the single-scale model, this allows us to study the effect of model
misspecification on data assimilation. Section B.3 contains an example of type (ii),
whilst Examples 2.3, 2.5 and 2.16 are of type (i).

B.1. Lorenz ’96 multiscale model

Let 𝑣 ∈ 𝐶(R+,R𝐿) and 𝑤 ∈ 𝐶(R+,R𝐿×𝐽 ). We write down an ODE for (𝑣, 𝑤)
in which each variable 𝑣ℓ ∈ R is coupled to a subgroup of fast variables 𝑤ℓ =

{𝑤ℓ, 𝑗}𝐽𝑗=1 ∈ R𝐽 ; further (discrete) boundary condition couplings impose period-
icity in 𝐿 and link {𝑤ℓ, 𝑗}𝐽𝑗=1 to {𝑤ℓ+1, 𝑗}𝐽𝑗=1. The particular form of the system
of ODEs is as given in Fatkullin and Vanden-Eijnden (2004). For ℓ = 1 . . . 𝐿 and
𝑗 = 1 . . . 𝐽, the ODEs are

¤𝑣ℓ = 𝑔ℓ(𝑣) + ℎ𝑣𝑤ℓ , 𝑤ℓ =
1
𝐽

𝐽∑︁
𝑗=1
𝑤ℓ, 𝑗 , (B.1a)

¤𝑤ℓ, 𝑗 =
1
𝜖
𝑟 𝑗(𝑣ℓ , 𝑤ℓ), (B.1b)

where

𝑔ℓ(𝑣) ≔ −𝑣ℓ−1(𝑣ℓ−2 − 𝑣ℓ+1) − 𝑣ℓ + 𝐹, (B.2a)
𝑟 𝑗(𝑣ℓ , 𝑤ℓ) ≔ −𝑤ℓ, 𝑗+1(𝑤ℓ, 𝑗+2 − 𝑤ℓ, 𝑗−1) − 𝑤ℓ, 𝑗 + ℎ𝑤𝑣ℓ , (B.2b)

and we impose the boundary conditions

𝑣ℓ+𝐿 = 𝑣ℓ , 𝑤ℓ+𝐿, 𝑗 = 𝑤ℓ, 𝑗 , 𝑤ℓ, 𝑗+𝐽 = 𝑤ℓ+1, 𝑗 . (B.3)

Here 𝜖 > 0 is a scale-separation parameter, ℎ𝑣 , ℎ𝑤 ∈ R govern the couplings
between the fast and slow systems, and 𝐹 > 0 provides a constant forcing.

B.2. Lorenz ’96 single-scale model

Let 𝑣 = {𝑣ℓ}𝐿ℓ=1, 𝑤 = {𝑤ℓ}𝐿ℓ=1 and 𝑤 = {𝑤ℓ}𝐿ℓ=1. Then we may write (B.1) in the
form

¤𝑣 = 𝐺(𝑣) + ℎ𝑣𝑤, (B.4a)

¤𝑤 =
1
𝜖
𝑅(𝑣, 𝑤), (B.4b)
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Figure B.1. Dynamics of a slow variable and an associated fast variable. Here
‘dns’, in blue, labels the slow variable computed by direct numerical simulation;
the related fast variable is shown in grey.

for suitable definitions of 𝐺, 𝑅. If 𝜖 ≪ 1 then the dynamics for the 𝑤 governed
(B.4b) evolve on a much faster time-scale than the dynamics for the 𝑣 governed by
(B.4a). Thus it is a reasonable approximation to think of 𝑣 as frozen in (B.1b). If
we assume that the dynamics of 𝑤 with 𝑣 frozen are ergodic with invariant measure
𝜇𝑣(d𝑤) (a measure in 𝑤, parametrized by 𝑣), then the averaging principle (Vanden-
Eijnden 2003, Abdulle, Weinan, Engquist and Vanden-Eijnden 2012, Pavliotis and
Stuart 2008) suggests that we may make the following approximation of 𝑤:

𝑀(𝑣) ≔
∫

𝑤 𝜇𝑣(d𝑤).

If we also invoke the approximation 𝑀ℓ(𝑣) ≈ 𝑚(𝑣ℓ), which is empirically shown to
be valid for large 𝐽 in Fatkullin and Vanden-Eijnden (2004), then we arrive at the
single-scale Lorenz ’96 model (2.9). This program of analysis for the Lorenz ’96
model, and studies of the validity of the resulting single-scale approximation, was
established in the paper by Fatkullin and Vanden-Eijnden (2004). The function
𝑚(·) is not given explicitly, but may be fitted to data in various different ways, as
explained in Fatkullin and Vanden-Eijnden (2004). Figure 2.1 shows such an 𝑚,
fitted using Gaussian process regression methodology as detailed in Section 4.3 of
Burov, Giannakis, Manohar and Stuart (2021).

B.3. Example

The following example relates to the discussion in Remark 2.4.

Example B.1. Throughout this example we set 𝐿 = 9, 𝐽 = 8, ℎ𝑣 = −0.8, ℎ𝑤 = 1,
𝐹 = 10 and 𝜖 = 2−7. Note that equation (B.1a) has the form of the single-scale
Lorenz model (2.9) for 𝑣 with the function 𝑚(·) replaced by a coupling to the fast
variables 𝑤 governed by (B.1b). In Figure B.1 we display the dynamics of a slow
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(a)

(b)

Figure B.2. (a) Estimates of 𝑣3 in time produced by 3DVAR using 𝜏 = 10−3,
displayed against the true dynamics. (b) Estimates at each unit time obtained using
3DVAR with assimilation at 𝜏 = 100 and 𝜏 = 10−3. Again the acronym ‘dns’ refers
to direct numerical simulation. 3DVAR successfully synchronizes with the direct
numerical simulation at the smaller value of 𝜏 but fails to do so as well when 𝜏 is
larger. It is noteworthy that the synchronization takes place here in the context of
model misspecification: the data is generated by the multiscale model, but 3DVAR
is applied using the single-scale model.

variable and one associated fast variable of the Lorenz ’96 multiscale model (B.1);
at the parameter values chosen the system is chaotic.

We consider observations {𝑦†𝑛}𝑛∈Z+ arising from the model(
𝑣
†
𝑛+1, 𝑤

†
𝑛+1
)
= Ψmult(𝑣†𝑛, 𝑤†

𝑛),

𝑦
†
𝑛+1 = ℎ

(
𝑣
†
𝑛+1
)
,

where Ψmult is the solution operator to the multiscale model (B.1)–(B.3) over the
observation time interval 𝜏. We then take the data from the multiscale model
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and assimilate it into the single-scale model (2.9), recalling the specific function
𝑚 shown in Figure 2.1, and discussion in the preceding subsection concerning
elimination of the fast variables in favour of a simple closure, using the averaging
principle.

We now discuss data assimilation using this multiscale data. As in Example 2.3,
we assume that the observation function is linear: ℎ(𝑣) = 𝐻𝑣 for matrix 𝐻 : R9 →
R6 defined by (2.10). As before, we choose the gain 𝐾 : R6 → R9 to be defined by
(2.12) and employ the 3DVAR algorithm (2.11) with Ψ the solution operator over
time-interval 𝜏 for the single-scale model. Thus model misspecification is present,
because data 𝑌† comes from the multiscale model.

As in Example 2.3 we display the results of 3DVAR on the unobserved component
𝑣3. Figure B.2(a) shows the behaviour of the algorithm for 𝜏 = 10−3. Despite the
fact that the data is generated from the multiscale model, whilst assimilation is
conducted using the single-scale model, 3DVAR produces an accurate estimate of
the true state with, after synchronization, the only discernible errors being slight
under- and overshoots. Figure B.2(b) shows the effect of varying 𝜏, the time
between observations. As in Example 2.3, the assimilation is significantly worse
when 𝜏 is larger.

C. Mean-field maps
In Section C.1 we discuss the existence, form and properties of mean-field maps
which carry out the program of approximate transport described in Section 2.5.4;
these maps require access to simulated data and are hence referred to as stochastic
second-order transport maps. In Section C.2 we discuss the existence, form and
properties of mean-field maps which carry out the program of approximate transport
described in Section 2.5.5; these maps do not require access to simulated noisy data
and are hence referred to as deterministic second-order transport maps. The two
approaches provide fundamental underpinnings of ensemble Kalman methods as
we develop them in this paper, but were not adopted in its historical development.
Section C.3 is devoted to the minimum variance approximation, a way of deriving
the Kalman transport map (2.55), which is part of the historical development of
the subject but does not play a central role in our presentation and analysis of the
subject.

C.1. Mean-field maps: simulated data

We note that the maps of interest in this subsection take Law(̂𝑣𝑛+1, �̂�𝑛+1) into
Law(𝑣𝑛+1). Since the analysis is independent of any specific value of discrete-time
𝑛, we drop the subscript 𝑛+1 throughout the analysis; this streamlines the notation.
Similar considerations apply in Sections C.2 and C.3.

Let (̂𝑣, �̂�) ∼ 𝜋, where

G𝜋 = N
([
𝑚

𝑜

]
,

[
𝐶 𝐶𝑣𝑦

(𝐶𝑣𝑦)⊤ 𝐶𝑦𝑦 ,

])
.
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Define

𝑚 = 𝑚 + 𝐶𝑣𝑦(𝐶𝑦𝑦)−1(𝑦† − 𝑜), (C.1a)

𝐶 = 𝐶 − 𝐶𝑣𝑦(𝐶𝑦𝑦)−1(𝐶𝑣𝑦)⊤. (C.1b)

Note that these are the mean and covariance of the Gaussian random variable �̂�
conditioned on �̂� = 𝑦† under the assumption that (̂𝑣, �̂�) is distributed according to
the Gaussian measure G𝜋; see (2.41). The quantities in the above identities are as
defined in Section 2.3.4, with the caveat that the subscripts 𝑛+1 have been dropped
for clarity of exposition.

Our goal is to identify maps of the form

𝑣 = 𝐴�̂� + 𝐵�̂� + 𝑎, (C.2)

so that if (̂𝑣, �̂�) ∼ 𝜋, then 𝑣 has mean 𝑚 and covariance 𝐶 given by (C.1). We make
the following assumptions on the covariance under G𝜋 and on the matrices 𝐴, 𝐵
and vector 𝑎.

Assumptions C.1. The covariance under G𝜋 is invertible. The matrices 𝐴, 𝐵 and
vector 𝑎 may depend on 𝑦† and measure 𝜋 but not on the random variables (̂𝑣, �̂�);
thus (C.2) takes the explicit form

𝑣 = 𝐴(𝜋, 𝑦†)̂𝑣 + 𝐵(𝜋, 𝑦†)�̂� + 𝑎(𝜋, 𝑦†).

Recall the discussion of pushforward of measures in the introduction to Sec-
tion 2.5. Under Assumptions C.1, pushforward under the map (C.2), when chosen
to match the desired first- and second-order statistics, defines a nonlinear map on
the space of measures, and in particular on 𝜋 itself. In what follows, all expectations
are computed under 𝜋. Since the covariance under G𝜋 is strictly positive definite,
so are the marginal covariances 𝐶 and 𝐶𝑦𝑦 (see Stuart 2010, Lemma 6.21). Thus
we may define the conditional mean and covariance by (C.1), as well as Kalman
gain 𝐾 , and conditional covariance 𝐶, given by

𝐾 = 𝐶𝑣𝑦(𝐶𝑦𝑦)−1, (C.3)

𝐶 = 𝐶𝑦𝑦 − (𝐶𝑣𝑦)⊤(𝐶)−1𝐶𝑣𝑦; (C.4)

we note that the conditional covariances 𝐶 and 𝐶 are also strictly positive definite
(see Stuart 2010, Lemma 6.21). From equations (C.1a) and (C.2), the following is
immediate.

Lemma C.2. Let Assumptions C.1 hold and let (̂𝑣, �̂�) ∼ 𝜋. If 𝑣 given by (C.2)
has mean given by (C.1a), then

𝑎 = (𝐼 − 𝐴)E�̂� + 𝐾𝑦† − (𝐵 + 𝐾)E�̂�. ^

As a consequence it follows that

𝑣 = E�̂� + 𝐴(̂𝑣 − E�̂�) + 𝐵(�̂� − E�̂�) + 𝐾(𝑦† − E�̂�), (C.5)
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and that

E((𝑣 − E𝑣) ⊗ (𝑣 − E𝑣)) = 𝐴𝐶𝐴⊤ + 𝐵𝐶𝑦𝑦𝐵⊤ + 𝐴𝐶𝑣𝑦𝐵⊤ + 𝐵(𝐶𝑣𝑦)⊤𝐴⊤.

Thus, to match the covariance of the conditioned random variable, we obtain

𝐶 = 𝐴𝐶𝐴⊤ + 𝐵𝐶𝑦𝑦𝐵⊤ + 𝐴𝐶𝑣𝑦𝐵⊤ + 𝐵(𝐶𝑣𝑦)⊤𝐴⊤. (C.6)

Theorem C.3. Let Assumptions C.1 hold and let (̂𝑣, �̂�) ∼ 𝜋. If 𝑎 is given by
Lemma C.2, then 𝑣 defined by (C.2) has covariance (C.1b) if and only if real-
valued matrices 𝐴 and 𝐵 are related by the identity

𝐹𝐶−1𝐹⊤ = 𝐶 − 𝐵𝐶𝐵⊤, (C.7)

where
𝐹 = 𝐴𝐶 + 𝐵(𝐶𝑣𝑦)⊤. (C.8)

^

Proof. We complete the square on the right-hand side of (C.6) to obtain

(𝐴𝐶 + 𝐵(𝐶𝑣𝑦)⊤)𝐶−1(𝐴𝐶 + 𝐵(𝐶𝑣𝑦)⊤)⊤ = 𝐶′,

where
𝐶′ = 𝐶 − 𝐵𝐶𝐵⊤.

Rearranging gives the desired result.

Define
B = {𝐵 ∈ R𝑑𝑣×𝑑𝑦 : 𝐶′ ≻ 0},

noting that this set is non-empty and contains an open (and hence uncountable) set
of 𝐵, since 𝐶 ≻ 0. For 𝐵 ∈ B consider the eigenvalue problem

𝐶′𝜑(𝑖) = (𝑠(𝑖))2𝜑(𝑖), ⟨𝜑(𝑖), 𝜑( 𝑗)⟩ = 𝛿𝑖 𝑗 .
Note that this has 𝑑𝑣 real solutions, up to sign changes in the eigenvectors and
assuming the 𝑠(𝑖) to be non-negative. We now seek to express 𝐹 in terms of 𝐵 ∈ B.
Writing the SVD given by 𝐹𝐶−1/2 = 𝑈Ξ𝑉⊤, where 𝑈,𝑉 ∈ R𝑑𝑣×𝑑𝑣 are orthogonal
matrices and Ξ ∈ R𝑑𝑣×𝑑𝑣 is a diagonal matrix, we see from (C.7) that

𝑈Ξ2𝑈⊤ = 𝐶′,

so that𝑈 has columns given by the {𝜑(𝑖)}𝑑𝑣
𝑖=1 and corresponding diagonal entries of

Ξ, ±𝑠(𝑖). We define

𝑈 = (𝜑(1), . . . , 𝜑(𝑑𝑣)), Ξ = diag(±𝑠(1), . . . ,±𝑠(𝑑𝑣)). (C.9)

Corollary C.4. For every 𝐵 ∈ B, the choices of 𝐴 such that the pair (𝐴, 𝐵)
satisfies the criterion of Theorem C.3 are defined as follows. For 𝑈,Ξ as given in
(C.9), set

𝐹 = 𝑈Ξ𝑉⊤𝐶1/2,
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where 𝑉 is an arbitrary orthogonal matrix in R𝑑𝑣×𝑑𝑣 . Then

𝐴 = (𝐹 − 𝐵(𝐶𝑣𝑦)⊤)𝐶−1. ^

Example C.5. Among the uncountably many possible solutions for pairs (𝐴, 𝐵),
we highlight two. The choice 𝐵 = 0 is interesting because it does not require the
data variable �̂� in the definition of 𝑣. The choice 𝐴 = 𝐼 is interesting because it
does not require action of an operator acting on �̂�.

The first, with 𝐵 = 0, allows the choice 𝐹 = 𝐶1/2𝐶1/2 and then 𝐴 = 𝐶1/2𝐶−1/2.
Thus the map (C.5) becomes

𝑣 = E�̂� + 𝐶1/2𝐶−1/2(̂𝑣 − E�̂�) + 𝐶𝑣𝑦(𝐶𝑦𝑦)−1(𝑦† − E�̂�) (C.10)

= 𝑚 + 𝐶1/2𝐶−1/2(̂𝑣 − E�̂�). (C.11)

The second comes from setting 𝐵 = −𝐾 , which leads to the possible choice
𝐹 = 𝐶 and 𝐴 = 𝐼, under which the map (C.5) becomes

𝑣 = �̂� + 𝐶𝑣𝑦(𝐶𝑦𝑦)−1(𝑦† − �̂�).

We refer to this as the Kalman transport solution.

Given the plethora of solutions for matrices (𝐴, 𝐵), all of which effect the desired
measure transport from 𝜋 into the approximation for the conditional, it is natural to
ask how to choose a specific pair (𝐴, 𝐵). One possibility is to use optimal transport.
To this end we define, for positive definite𝑊 ∈ R𝑑𝑣×𝑑𝑣 ,

𝐼𝑊 (𝐴, 𝐵) =
1
2
E⟨(𝑣 − �̂�),𝑊(𝑣 − �̂�)⟩.

Theorem C.6. Let 𝑣 be given by (C.5). Consider the problem of finding min-
imizers of 𝐼𝑊 (𝐴, 𝐵) over pairs (𝐴, 𝐵) satisfying (C.7) and (C.8); we refer to the
resulting map evaluated at such an (𝐴, 𝐵) as an optimal transport in the𝑊-weighted
Euclidean distance. For any positive definite𝑊 , such minimizers satisfy 𝐵 = 0. In
particular, the Kalman transport solution is not an optimal transport solution. ^

Proof. We formulate the optimization problem over the pair (𝐹, 𝐵) since, because
𝐶 is invertible, there is a bijection between (𝐴, 𝐵) and (𝐹, 𝐵). Let : denote the
Frobenius inner product. Then, under constraint (C.8),

𝐼𝑊 (𝐴, 𝐵) = 𝐽𝑊 (𝐹) + const., (C.12a)
𝐽𝑊 (𝐹) = −𝐹 : 𝑊, (C.12b)

where const. denotes a matrix independent of 𝐴, 𝐵, 𝐹 (with exact value changing
from instance to instance). To see this, note that

𝑣 − �̂� = −(̂𝑣 − E�̂�) + 𝐴(̂𝑣 − E�̂�) + 𝐵(�̂� − E�̂�) + 𝐾(𝑦† − E�̂�).

Now, using (C.6),

E((𝑣 − �̂�) ⊗ (𝑣 − �̂�)) = 𝐶 − 𝐶𝐴⊤ − 𝐴𝐶 − 𝐶𝑣𝑦𝐵⊤ − 𝐵(𝐶𝑣𝑦)⊤ + 𝐶 + const.
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Noting that

𝐼𝑊 (𝐴, 𝐵) =
1
2
E((𝑣 − �̂�) ⊗ (𝑣 − �̂�)) : 𝑊,

and that 𝐷 : 𝑊 = 𝐷⊤ : 𝑊 for all 𝐷 since 𝑊 is symmetric, identity (C.12) follows
from (C.8). It then also follows that minimization of 𝐼𝑊 (𝐴, 𝐵) subject to the
constraints given by (C.7) and (C.8) is equivalent to minimization of 𝐽𝑊 (𝐹) subject
to the constraint (C.7).

To effect this latter minimization we introduce the Lagrange multiplier 𝐿 ∈
R𝑑𝑣×𝑑𝑣 , which is symmetric because the constraint is symmetric, and define

𝐽𝑊 (𝐹, 𝐵, 𝐿) = −𝐹 : 𝑊 + 𝐿 : (𝐹𝐶−1𝐹⊤ + 𝐵𝐶𝐵⊤ − 𝐶).

Differentiating with respect to 𝐹, 𝐵 and 𝐿 respectively gives

−𝑊 + 2𝐿𝐹𝐶−1 = 0, (C.13a)

2𝐿𝐵𝐶 = 0, (C.13b)

𝐹𝐶−1𝐹⊤ + 𝐵𝐶𝐵⊤ = 𝐶. (C.13c)

Since 𝐹, 𝑊 and 𝐶 in (C.13a) are all invertible, the Lagrange multiplier 𝐿 is
necessarily invertible. Furthermore, since 𝐶 is invertible because Σ is invertible, it
follows from (C.13b) that 𝐵 = 0 as required.

Example C.7. Define symmetric matrix 𝑃, and from it symmetric 𝐴, by

𝑃 = (𝐶1/2𝐶𝐶1/2)−1/2, 𝐴 = 𝐶1/2𝑃𝐶1/2.

We notice that if 𝐵 = 0, as required for an optimal transport solution, then
with this choice of the pair (𝐴, 𝐵), equation (C.13c) has as a solution 𝐹 = 𝐴𝐶 and
(C.13b) is satisfied. Furthermore, (C.13a) delivers the Lagrange multiplier 𝐿. Note
that the solution is independent of the specific choice of positive definite𝑊 .

C.2. Mean-field maps: no simulated data

Let �̂� ∼ 𝜇 and assume that �̂� = ℎ(̂𝑣) + 𝜂, where 𝜂 ∼ N(0, Γ) is independent of
�̂�. Implicitly we have defined the joint distribution 𝜋 of (̂𝑣, �̂�). We note that then,
expressed in terms of ℎ̂ ≔ ℎ(̂𝑣) and quantities defined in (C.1),

𝐶𝑣ℎ ≔E(̂𝑣 − E�̂�) ⊗ (ℎ̂ − Eℎ̂) = 𝐶𝑣𝑦 ,

𝐶ℎℎ ≔E(ℎ̂ − Eℎ̂) ⊗ (ℎ̂ − Eℎ̂) = 𝐶𝑦𝑦 − Γ.

Thus we may rewrite (C.1) as

𝑚 = 𝑚 + 𝐶𝑣ℎ(𝐶ℎℎ + Γ)−1(𝑦† − Eℎ̂), (C.14a)

𝐶 = 𝐶 − 𝐶𝑣ℎ(𝐶ℎℎ + Γ)−1(𝐶𝑣ℎ)⊤. (C.14b)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000060
Downloaded from https://www.cambridge.org/core. IP address: 10.3.192.216, on 17 Jul 2025 at 12:37:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000060
https://www.cambridge.org/core


Ensemble Kalman methods: A mean-field perspective 265

In so doing we have eliminated reference to �̂� and our goal becomes the identifica-
tion of maps of the form

𝑣 = 𝑅�̂� + 𝑆ℎ̂ + 𝑟, (C.15)

so that if �̂� ∼ 𝜇 then 𝑣 has mean 𝑚 and covariance 𝐶 given by (C.14). We make the
following assumptions on the covariance under G𝜋 and on the matrices 𝑅, 𝑆 and
vector 𝑟 .

Assumptions C.8. The covariance under G𝜋 is invertible. The matrices 𝑅, 𝑆 and
vector 𝑟 may depend on 𝑦† and measure 𝜇 but not on the random variable (̂𝑣, ℎ̂);
thus (C.15) takes the explicit form

𝑣 = 𝑅(𝜋, 𝑦†)̂𝑣 + 𝑆(𝜋, 𝑦†)ℎ̂ + 𝑟(𝜋, 𝑦†).

With these assumptions the pushforward under map (C.2), when constrained to
match the desired first- and second-order statistics, defines a nonlinear map on the
space of measures, and in particular on measure 𝜇. In what follows all expectations
are computed under 𝜇. We note that matrix 𝐶 is invertible and that 𝐾 in (C.3) may
be rewritten as

𝐾 = 𝐶𝑣ℎ(𝐶ℎℎ + Γ)−1.

From equations (C.14a) and (C.15) the following is immediate.

Lemma C.9. Let Assumptions C.8 hold and let �̂� ∼ 𝜇. If 𝑣 given by (C.15) has
mean given by (C.14a), then

𝑟 = (𝐼 − 𝑅)E�̂� + 𝐾𝑦† − (𝑆 + 𝐾)Eℎ̂. ^

As a consequence it follows that

𝑣 = E�̂� + 𝑅(̂𝑣 − E�̂�) + 𝑆(ℎ̂ − Eℎ̂) + 𝐾(𝑦† − Eℎ̂), (C.16)

and that

E((𝑣 − E𝑣) ⊗ (𝑣 − E𝑣)) = 𝑅𝐶𝑅⊤ + 𝑆𝐶ℎℎ𝑆⊤ + 𝑅𝐶𝑣ℎ𝑆⊤ + 𝑆(𝐶𝑣ℎ)⊤𝑅. (C.17)

Thus, to match the covariance of the conditioned random variable, we obtain

𝐶 = 𝑅𝐶𝑅⊤ + 𝑆𝐶ℎℎ𝑆⊤ + 𝑅𝐶𝑣ℎ𝑆⊤ + 𝑆(𝐶𝑣ℎ)⊤𝑅. (C.18)

Define
�̌� = 𝐶ℎℎ − (𝐶𝑣ℎ)⊤(𝐶)−1𝐶𝑣ℎ .

Theorem C.10. Let Assumptions C.8 hold and let �̂� ∼ 𝜇. If 𝑠 is given by
Lemma C.9, then 𝑣 defined by (C.15) has covariance (C.14b) if and only if real-
valued matrices 𝑅 and 𝑆 are related by the identity

𝐸𝐶−1𝐸⊤ = 𝐶 − 𝑆�̌�𝑆⊤,
where

𝐸 = 𝑅𝐶 + 𝑆(𝐶𝑣ℎ)⊤. ^
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Proof. We complete the square on the right-hand side of (C.18) to obtain

(𝑅𝐶 + 𝑆(𝐶𝑣ℎ)⊤)𝐶−1(𝑅𝐶 + 𝑆(𝐶𝑣ℎ)⊤)⊤ + 𝑆�̌�𝑆⊤ = 𝐶.

Rearranging gives the desired result.

Define
S = {𝑆 ∈ R𝑑𝑣×𝑑𝑦 : 𝐶 − 𝑆�̌�𝑆⊤ ≻ 0},

and for 𝑆 ∈ S consider the eigenvalue problem

(𝐶 − 𝑆�̌�𝑆⊤)𝜓(𝑖) = (𝑜(𝑖))2𝜓(𝑖), ⟨𝜓(𝑖), 𝜓( 𝑗)⟩ = 𝛿𝑖 𝑗 ,
noting that this has 𝑑𝑣 real solutions, up to sign changes in the eigenvectors and
assuming the 𝑜(𝑖) to be non-negative. We now seek to express 𝐸 in terms of 𝑆 ∈ S.
Writing the SVD given by 𝐸𝐶−1/2 = 𝑊Ω𝑍⊤, where𝑊, 𝑍 ∈ R𝑑𝑣×𝑑𝑣 are orthogonal
matrices and Ω ∈ R𝑑𝑣×𝑑𝑣 is a diagonal matrix, we see from (C.7) that

𝑊Ω2𝑊⊤ = 𝐶 − 𝑆�̌�𝑆⊤,
so that 𝑊 has columns given by the {𝜓(𝑖)}𝑑𝑣

𝑖=1 and corresponding diagonal entries
of Ω, ±𝑜(𝑖). We define

𝑊 = (𝜓(1), . . . , 𝜓(𝑑𝑣)), Ω = diag(±𝑜(1), . . . ,±𝑜(𝑑𝑣)). (C.19)

Corollary C.11. For every 𝑆 ∈ S , the choices of 𝑅 such that the pair (𝑅, 𝑆)
satisfies the criterion of Theorem C.10 are defined as follows. For 𝑊,Ω as given
in (C.19), set

𝐸 = 𝑊Ω𝑍⊤𝐶1/2,

where 𝑍 is an arbitrary orthogonal matrix in R𝑑𝑣×𝑑𝑣 . Then

𝑅 = (𝐸 − 𝑆(𝐶𝑣ℎ)⊤)𝐶−1. ^

Example C.12. As in Example C.5, we highlight two examples, here correspond-
ing to 𝑆 = 0 and to 𝑅 = 𝐼. The first, with 𝑆 = 0, allows the choice 𝐸 = 𝐶1/2𝐶1/2

and hence 𝑅 = 𝐶1/2𝐶−1/2. We thus obtain (C.10) again.
The second comes from setting 𝑅 = 𝐼. This leads from (C.17) to the following

equation for 𝑆:

𝑆𝐶ℎℎ𝑆⊤ + 𝐶𝑣ℎ𝑆⊤ + 𝑆(𝐶𝑣ℎ)⊤ = −𝐶𝑣ℎ(𝐶ℎℎ + Γ)−1(𝐶𝑣ℎ)⊤.

We seek a solution for 𝑆 in the form

𝑆 = −𝐶𝑣ℎ𝑌−1

and determine 𝑌 . We obtain the equation

𝑌−1𝐶ℎℎ𝑌−𝑇 − 𝑌−𝑇 − 𝑌−1 = −(𝐶ℎℎ + Γ)−1.

Thus, pre-multiplying by 𝑌 and post-multiplying by 𝑌⊤, we obtain

𝑌 (𝐶ℎℎ + Γ)−1𝑌⊤ − 𝑌 − 𝑌⊤ + 𝐶ℎℎ = 0,
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which factorizes to give

(𝑌 (𝐶ℎℎ + Γ)−1 − 𝐼)(𝐶ℎℎ + Γ)(𝑌 (𝐶ℎℎ + Γ)−1 − 𝐼)⊤ = Γ.

Thus, taking the symmetric square root, we have

(𝑌 (𝐶ℎℎ + Γ)−1 − 𝐼)(𝐶ℎℎ + Γ)1/2 = Γ1/2.

Hence
(𝑌 (𝐶ℎℎ + Γ)−1 − 𝐼) = Γ1/2(𝐶ℎℎ + Γ)−1/2.

Rearranging gives

𝑌 (𝐶ℎℎ + Γ)−1 = Γ1/2(𝐶ℎℎ + Γ)−1/2 + (𝐶ℎℎ + Γ)1/2(𝐶ℎℎ + Γ)−1/2.

Thus
𝑌 = (Γ1/2 + (𝐶ℎℎ + Γ)1/2)(𝐶ℎℎ + Γ)1/2.

We obtain 𝑆 = −𝐾 , where

𝐾 = 𝐶𝑣ℎ((𝐶ℎℎ + Γ) + Γ1/2(𝐶ℎℎ + Γ)1/2)−1.

The map (C.16) becomes

𝑣 = �̂� − 𝐾(ℎ̂ − Eℎ̂) + 𝐶𝑣ℎ(𝐶ℎℎ + Γ)−1(𝑦† − Eℎ̂)

= �̂� − 𝐾(ℎ̂ − Eℎ̂) + 𝐾(𝑦† − Eℎ̂)

= 𝑚 + (̂𝑣 − 𝑚) − 𝐾(ℎ̂ − Eℎ̂).

C.3. Minimum variance approximation

In the two preceding subsections we identified an uncountable set of transport
maps that match the second-order statistics of true transport. Among all these, the
Kalman transport (2.55) has a particular appeal because it is constructed around
the Kalman gain familiar from filtering in the linear Gaussian setting. In this
subsection we show how the principle of minimizing the variance within a class of
linear estimators of the state, given observation, leads to this choice of transport
map. We believe that the second-order transport approach, which we highlight in
the main text, provides a more fundamental viewpoint on the mean-field models that
underpin ensemble Kalman methods; however, the minimum variance perspective
is widely adopted in the statistics and geophysics communities (see Section 2.7)
and hence has an important place in the subject of ensemble Kalman methods.

Recall that the Kalman transport approach leads back to the map (2.15c), motiv-
ated by control-theoretic considerations, and identifies a specific choice of Kalman
gain 𝐾𝑛, a choice which depends on the law of the predicted state and data. In
the Gaussian case the Kalman transport map (2.55) exactly generates the desired
transport, a fact that we discuss in Example 2.15. The general form of approxim-
ate stochastic second-order transport maps which we study using the second-order

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000060
Downloaded from https://www.cambridge.org/core. IP address: 10.3.192.216, on 17 Jul 2025 at 12:37:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000060
https://www.cambridge.org/core


268 E. Calvello, S. Reich and A. M. Stuart

transport approach in the main text is (2.50). Our goal here is to motivate a specific
choice of𝑇𝑆 in (2.50c), in particular to derive (2.55c). In this subsection we achieve
this by first defining, and identifying, the best linear unbiased estimator, BLUE for
short. From this we will derive Kalman transport.

Lemma C.13. Assume that Γ ≻ 0. Let all expectations be computed under
Law(̂𝑣𝑛+1, �̂�𝑛+1), and consider 𝑚BL

𝑛+1 in the form

𝑚BL
𝑛+1 = 𝑎′ + 𝐵�̂�𝑛+1.

Define 𝐶𝑛+1, 𝐶
𝑣𝑦

𝑛+1 and 𝐶𝑦𝑦

𝑛+1 by (2.32) and (2.33), and define

I(𝑎′, 𝐵) ≔ E|�̂�𝑛+1 − 𝑚BL
𝑛+1 |

2.

Then 𝑚BL
𝑛+1 is said to be the BLUE of �̂�𝑛+1 given �̂�𝑛+1 if vector 𝑎′ and matrix 𝐵 are

independent of (̂𝑣𝑛+1, �̂�𝑛+1) but may depend on Law(̂𝑣𝑛+1, �̂�𝑛+1), and are chosen to
minimize I(𝑎′, 𝐵). Then

𝑚BL
𝑛+1 = E�̂�𝑛+1 + 𝐶𝑣𝑦

𝑛+1
(
𝐶

𝑦𝑦

𝑛+1
)−1(�̂�𝑛+1 − E�̂�𝑛+1). (C.20)

Furthermore, the estimator (C.20) is unbiased, that is,

E
(
�̂�𝑛+1 − 𝑚BL

𝑛+1
)
= 0,

and its covariance with respect to Law(̂𝑣𝑛+1, �̂�𝑛+1),

𝐶BL
𝑛+1 ≔ E

((
�̂�𝑛+1 − 𝑚BL

𝑛+1
)(
�̂�𝑛+1 − 𝑚BL

𝑛+1
)⊤)

,

is given by

𝐶BL
𝑛+1 = 𝐶𝑛+1 − 𝐶𝑣𝑦

𝑛+1
(
𝐶

𝑦𝑦

𝑛+1
)−1(

𝐶
𝑣𝑦

𝑛+1
)⊤
. (C.21)

^

Proof. Noting that we may, without loss of generality, reparametrize the proposed
form of 𝑚BL

𝑛+1 as
𝑚BL

𝑛+1 = E�̂�𝑛+1 + 𝑎 + 𝐵(�̂�𝑛+1 − E�̂�𝑛+1),

we see that the desired objective to be minimized over vector–matrix pair (𝑎, 𝐵) is

J(𝑎, 𝐵) ≔
1
2
E|�̂�𝑛+1 − E�̂�𝑛+1 − 𝑎 − 𝐵(�̂�𝑛+1 − E�̂�𝑛+1)|2

=
1
2
E|�̂�𝑛+1 − E�̂�𝑛+1 |2 +

1
2
|𝑎 |2

+ 1
2
E|𝐵(�̂�𝑛+1 − E�̂�𝑛+1)|2 − E⟨̂𝑣𝑛+1 − E�̂�𝑛+1, 𝐵(�̂�𝑛+1 − E�̂�𝑛+1)⟩

=
1
2
E|�̂�𝑛+1 − E�̂�𝑛+1 |2 +

1
2
|𝑎 |2 + 1

2
(𝐵𝐵⊤) : 𝐶𝑦𝑦

𝑛+1 − 𝐵 : 𝐶𝑣𝑦

𝑛+1.

Clearly the minimizer with respect to 𝑎 is achieved by setting 𝑎 = 0. Differentiating
with respect to 𝐵, noting that𝐶𝑦𝑦

𝑛+1 is symmetric, shows that 𝐵 = 𝐾𝑛 given by (2.34).
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That the resulting pair is indeed a minimizer, and not another critical point, follows
from the fact that 𝐶𝑦𝑦

𝑛+1 is positive definite; this is implied by the assumption Γ ≻ 0.
Thus we obtain the estimator (C.20). A straightforward calculation shows that the
estimator is unbiased and that its covariance is given by (C.21).

We now connect the BLUE to an approximate (second-order) transport map. To
this end, note that (C.20) may be viewed as mapping �̂�𝑛+1 into 𝑚BL

𝑛+1 = 𝑚BL(�̂�𝑛+1).
With this notation we define 𝑚†

𝑛+1 by

𝑚
†
𝑛+1 = 𝑚BL

(
𝑦
†
𝑛+1
)

(C.22a)

= E�̂�𝑛+1 + 𝐶𝑣𝑦

𝑛+1
(
𝐶

𝑦𝑦

𝑛+1
)−1(

𝑦
†
𝑛+1 − E�̂�𝑛+1

)
. (C.22b)

We may now make the following connection between BLUE and Kalman transport.

Theorem C.14. Let (̂𝑣𝑛+1, �̂�𝑛+1) be distributed according to measure 𝜋𝑛+1. Then
the transport map (2.55c) has the properties

E𝑣𝑛+1 = 𝑚
†
𝑛+1

E
((
𝑣𝑛+1 − 𝑚†

𝑛+1
)(
𝑣𝑛+1 − 𝑚†

𝑛+1
)⊤)

= 𝐶BL
𝑛+1,

where 𝑚†
𝑛+1 and 𝐶BL

𝑛+1 are given by (C.22) and (C.21) respectively. ^

Proof. Note that the transport map (2.55c) can now be reformulated as

𝑣𝑛+1 = �̂�𝑛+1 +
(
𝑚

†
𝑛+1 − 𝑚

BL
𝑛+1
)
.

Thus
𝑣𝑛+1 = 𝑚

†
𝑛+1 + �̂�𝑛+1 − 𝑚BL

𝑛+1.

The desired properties of the mean and covariance follow from Lemma C.13.

Remark C.15. We now have two derivations of the Kalman gain, the approximate
transport derivation from Section 2.5.4, and the minimum variance derivation given
here. We include a third, dimensional, argument that motivates its form. Let
state denote the physical units associated with the state variable and data those
associated with the observation. Then the physical units of the gain matrix 𝐾

should equal state/data. We note that 𝐶𝑦𝑦 has units of data squared whilst the
units of 𝐶𝑣𝑦 are the product of state and data. If we then constrain the gain to
be determined by covariance matrices involving the state and the data, it is natural
to choose it to be formed as 𝐶𝑣𝑦(𝐶𝑦𝑦)−1, where 𝐶𝑦𝑦 is an estimate of covariance
in the data, and 𝐶𝑣𝑦 is an estimate of covariance between state and data. Making a
choice of this type leads to the right units for the gain, since the innovation has units
data, and relies only on use of first- and second-order statistics. This dimensional
argument motivates the form (2.34), as derived in both Sections C.3 and 2.4.
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D. Stochastic calculus considerations
In Section D.1 we demonstrate how to change between Itô and Stratonovich integ-
ration in the Kushner–Stratonovich equation. Section D.2 contains the statement
and proof of a lemma needed in the proof of Theorem 3.10. In Section D.3 we
study the diamond form of stochastic integral discussed in Remark 3.11.

D.1. Derivation of the Kushner–Stratonovich equation

In Section 3, where we derived continuous-time limits from discrete models, we
used the two small parameters 𝛿 and Δ𝑡. The first characterized the data frequency
and the second a time-increment. In this appendix we make the choice 𝛿 = Δ𝑡 and
study the limit Δ𝑡 → 0 to derive continuum models. Studying this limit enables us
to convert between different modes of stochastic integration in an explicit fashion;
this may be helpful to some readers as it avoids the need to invoke abstract results
on covariation. In particular we now restate Lemma 3.3 and then prove it from first
principles.

Lemma D.1. Assume that Γ ≻ 0 and that 𝑧† is given by (3.9). The Itô and
Stratonovich interpretations of the stochastic forcing term in (3.20) are related
through

d𝑟 = ⟨h − Eh, ◦d𝑧†⟩Γ𝑟 −
1
2
{
|h|2Γ − E|h|2Γ

}
𝑟 d𝑡 (D.1a)

= ⟨h − Eh, d𝑧† − Eh d𝑡⟩Γ𝑟. (D.1b)

^

Proof. Consider (D.1a) and the term 𝑟 ⟨h − Eh, ◦d𝑧†⟩Γ in particular. Define the
corresponding Itô and Stratonovich integrals

𝐼 ≔

∫ ⊤

0
𝑟 ⟨h − Eh, d𝑧†⟩Γ, 𝑆 ≔

∫ ⊤

0
𝑟 ⟨h − Eh, ◦d𝑧†⟩Γ.

We aim to write 𝑆 as the sum of 𝐼 and an added correction. Consider the space

X ≔ {𝜚 ∈ 𝐿1(R𝑑𝑣 ;R+) : ∥𝜚∥𝐿1 = 1}
of probability density functions. We first choose an increasing sequence (𝑡 𝑗) 𝑗=1,...,𝑁
with Δ𝑡 ≔ 𝑡 𝑗+1 − 𝑡 𝑗 such that 𝑁Δ𝑡 = 𝑇 . We next define

Δ𝑟𝑡 𝑗 ≔ 𝑟𝑡 𝑗+1 − 𝑟𝑡 𝑗 , Δh𝑡 𝑗 ≔ h𝑡 𝑗+1 − h𝑡 𝑗 , Δ𝑧
†
𝑡 𝑗
≔ 𝑧

†
𝑡 𝑗+1

− 𝑧†𝑡 𝑗 .

Now recall the driving evolution equation (3.9b) for 𝑧†, namely

d𝑧† = h(𝑣†) d𝑡 +
√

Γ d𝐵†. (D.2)

From this, recalling the properties of Brownian motion 𝐵†, we deduce the discret-
ization

Δ𝑧
†
𝑡 𝑗
= h(𝑣†𝑡 𝑗 )Δ𝑡 +

√
ΓΔ𝑡𝜉𝑡 𝑗 +𝑂(Δ𝑡3/2), (D.3)
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where 𝜉𝑡 𝑗 are independent mean-zero normal random variables with variance 𝐼𝑑𝑦
for

each 𝑗 . The fact that this discretization is accurate up to terms of 𝑂(Δ𝑡3/2) follows
from Itô–Taylor expansion (Kloeden and Platen 1991). Recalling the definition of
the Stratonovich stochastic integral as a limit, we consider the following finite sum
approximation of 𝑆:

𝑆Δ𝑡 ≔

𝑁∑︁
𝑗=1

𝑟𝑡 𝑗+1 + 𝑟𝑡 𝑗
2

〈
h −

∫
𝑟𝑡 𝑗+1 + 𝑟𝑡 𝑗

2
h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
; (D.4)

this converges in the 𝐿2
P(Ω;𝐶([0, 𝑇];X )) sense to 𝑆 as Δ𝑡 → 0 (and thus as

𝑁 → ∞). Now expanding the sum in (D.4), we obtain

𝑆Δ𝑡 =

𝑁∑︁
𝑗=1

(
𝑟𝑡 𝑗 +

Δ𝑟𝑡 𝑗

2

)〈
h −

∫ (
𝑟𝑡 𝑗 +

Δ𝑟𝑡 𝑗

2

)
h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ

(D.5a)

=

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗

〈
h −

∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
+ 1

2

𝑁∑︁
𝑗=1

Δ𝑟𝑡 𝑗

〈
h −

∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ

(D.5b)

− 1
2

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗

〈∫
Δ𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
− 1

4

𝑁∑︁
𝑗=1

Δ𝑟𝑡 𝑗

〈∫
Δ𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
. (D.5c)

Now, we note that by discretizing (D.1a) or (D.1b), we can write

Δ𝑟𝑡 𝑗 = 𝑟𝑡 𝑗

〈
h −

∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
+𝑂(Δ𝑡).

By substituting this expression in the expanded sum in (D.5), we notice that the
last term in (D.5c) is of order 𝑂(𝑁Δ𝑡3/2). We can thus write (D.5) as

𝑆Δ𝑡 = 𝐼Δ𝑡 + 𝐽1,Δ𝑡 + 𝐽2,Δ𝑡 +𝑂(𝑁Δ𝑡3/2), (D.6)

where we have defined

𝐼Δ𝑡 ≔

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗

〈
h −

∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
,

𝐽1,Δ𝑡 ≔
1
2

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗

����〈h −
∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ

����2,
𝐽2,Δ𝑡 ≔ −1

2

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗

〈∫
𝑟𝑡 𝑗

〈
h −

∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
.
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The first term in the sum (D.6), 𝐼Δ𝑡 , converges in the 𝐿2
P sense to 𝐼 as Δ𝑡 → 0. Now

considering the term 𝐽1,Δ𝑡 and using the discretization (D.3), we have that

𝐽1,Δ𝑡 =
1
2

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗

����〈h −
∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ

����2
=

1
2

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗Δ𝑡

(
h −

∫
𝑟𝑡 𝑗h d𝑣

)⊤
Γ−1/2𝜉𝑡 𝑗 𝜉

⊤
𝑡 𝑗

Γ−1/2
(

h −
∫
𝑟𝑡 𝑗h d𝑣

)

+
𝑁∑︁
𝑗=1
𝑂(Δ𝑡3/2).

Since
∑𝑁

𝑗=1𝑂(Δ𝑡3/2) = 𝑂(Δ𝑡1/2), taking the Δ𝑡 → 0 limit and using the independ-
ence of the 𝜉𝑡 𝑗 for each 𝑗 , we see that

𝐽1,Δ𝑡 →
1
2

∫ ⊤

0

[
𝑟(h − Eh)⊤Γ−1/2E𝜉𝜉⊤Γ−1/2(h − Eh)

]
d𝑡 =

∫ ⊤

0

𝑟

2
|h − Eh|2Γ d𝑡,

in the 𝐿2
P sense. Similarly for 𝐽2,Δ𝑡 we have that

𝐽2,Δ𝑡 = −1
2

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗

〈∫
𝑟𝑡 𝑗

〈
h −

∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ

= −1
2

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗

∫
𝑟𝑡 𝑗

〈〈
h −

∫
𝑟𝑡 𝑗h d𝑣,Δ𝑧†𝑡 𝑗

〉
Γ
h,Δ𝑧†𝑡 𝑗

〉
Γ

d𝑣

= −1
2

𝑁∑︁
𝑗=1
𝑟𝑡 𝑗Δ𝑡

∫
𝑟𝑡 𝑗h⊤Γ−1/2𝜉𝑡 𝑗 𝜉

⊤
𝑡 𝑗

Γ−1/2
(

h −
∫
𝑟𝑡 𝑗h d𝑣

)
d𝑣

+
𝑁∑︁
𝑗=1
𝑂(Δ𝑡3/2).

Since
∑𝑁

𝑗=1𝑂(Δ𝑡3/2) = 𝑂(Δ𝑡1/2), taking the Δ𝑡 → 0 limit and using the independ-
ence of the 𝜉𝑡 𝑗 for each 𝑗 , we see that, in the 𝐿2

P sense,

𝐽2,Δ𝑡 → −1
2

∫ ⊤

0
𝑟

∫
𝑟h⊤Γ−1/2E(𝜉𝜉⊤)Γ−1/2(h − Eh) d𝑣 d𝑡

= −
∫ ⊤

0

𝑟

2
E|h − Eh|2Γ d𝑡.

Finally, by taking the Δ𝑡 → 0 limit on both sides of (D.6), we conclude that

𝑆 = 𝐼 +
∫ ⊤

0

𝑟

2
|h − Eh|2Γ d𝑡 −

∫ ⊤

0

𝑟

2
E|h − Eh|2Γ d𝑡.
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Hence, by using the above Stratonovich-to-Îto correction in (D.1a), we obtain

d𝑟 = 𝑟 ⟨h − Eh, ◦d𝑧†⟩Γ − 𝑟

2
{
|h|2Γ − E|h|2Γ

}
d𝑡

= 𝑟 ⟨h − Eh, d𝑧†⟩Γ + 𝑟
2
|h − Eh|2Γ d𝑡 − 𝑟

2
E|h − Eh|2Γ d𝑡 − 𝑟

2
{
|h|2Γ − E|h|2Γ

}
d𝑡

= 𝑟 ⟨h − Eh, d𝑧† − Eh d𝑡⟩Γ.

D.2. Lemma for proof of Theorem 3.10

We now establish the following lemma, the conclusions of which are used in the
proof of Theorem 3.10.

Lemma D.2. The probability density for the solution 𝑣 of (3.38), with respect to
randomness induced by the law of �̂� and the initial condition 𝑣(0), with 𝑧† a fixed
data sample path, is given by (3.39). ^

Proof. Recall that in equation (3.38) the evolution of 𝑧† is given by (D.2), with
𝐵† and 𝐵 independent draws from unit Brownian motion in R𝑑𝑦 . Thus

d𝑣 = 𝑎(𝑣; 𝜌) d𝑡 + 𝐾(𝑣; 𝜌)((h(𝑣†) − h(𝑣)) d𝑡 +
√

Γ d𝐵† −
√

Γ d𝐵).

We wish to find the probability density function 𝜌(𝑣, 𝑡) for 𝑣, with respect to
randomness induced by the law of 𝐵 and the initial condition 𝑣(0), but with 𝑣†, 𝐵†

fixed signal and observational noise sample paths. Let 𝜙 : R𝑑𝑣 → R be smooth and
note that the Itô formula shows that

d𝜙(𝑣(𝑡)) = (L𝜙)(𝑣(𝑡)) d𝑡 + ⟨𝐾(𝑣(𝑡); 𝜌(·, 𝑡))
√

Γ(d𝐵† − d𝐵),∇𝜙(𝑣(𝑡))⟩,

where29

L𝜓(𝑣) = ⟨(𝑎(𝑣; 𝜌) + 𝐾(𝑣; 𝜌)(h(𝑣†) − h(𝑣))),∇𝜓⟩ + 𝐾(𝑣; 𝜌)Γ𝐾(𝑣; 𝜌)⊤ : ∇∇𝜓,

and the integrals are to be interpreted in the Itô sense. Note the factor 1 in the second-
order term, arising because of the independent quadratic variation contributions
from both 𝐵 and 𝐵†. Taking expectation E with respect to 𝐵 and initial condition
𝑣(0), with 𝐵† fixed, for 𝑎 and 𝐾 functions of 𝑣 and 𝜌, yields, using again that 𝑧† is
given by (3.9),

dE𝜙(𝑣) = E⟨(𝑎 + 𝐾(h(𝑣†) − h)),∇𝜙⟩d𝑡 + E⟨𝐾
√

Γ d𝐵†,∇𝜙⟩⟩ + E𝐾Γ𝐾⊤ : ∇∇𝜙 d𝑡
= E⟨(𝑎 − 𝐾h),∇𝜙⟩ d𝑡 + E⟨𝐾 d𝑧†,∇𝜙⟩⟩ + E𝐾Γ𝐾⊤ : ∇∇𝜙 d𝑡.

Noting that the expectation operation corresponds to multiplication by 𝜌(𝑣, 𝑡) and
integration over 𝑣 ∈ R𝑑𝑣 , integrating by parts shows that 𝜌 satisfies the desired
equation (3.39), in a weak sense.

29 Here we let L denote the infinitesimal generator of the diffusion process.
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D.3. Diamond integration

In this section we use notation analogous to that established in the proof of
Lemma D.1. Consider equation (3.37), repeated here for convenience:

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + ∇ · (𝐾Γ𝐾⊤) d𝑡 − 𝐾Γ∇ · 𝐾⊤ d𝑡 + 𝐾(d𝑧† − d�̂�),

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵.

(D.7a)

(D.7b)

Our focus here is on the contribution 𝐾(d𝑧† − d�̂�), recalling that 𝑧† is governed by
(D.2). We first choose an increasing sequence (𝑡 𝑗) 𝑗=0,...,𝑁−1 with Δ𝑡 ≔ 𝑡 𝑗+1 − 𝑡 𝑗
such that 𝑁Δ𝑡 = 𝑇 . The Itô integral interpretation of this contribution, on time
interval (0, 𝑇), is as the 𝐿2

P limit of

𝐼Δ𝑡 ≔

𝑁−1∑︁
𝑗=0

𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )
(
Δ𝑧

†
𝑡 𝑗
− Δ�̂�𝑡 𝑗

)
.

We define the Stratonovich integral interpretation as the 𝐿2
P limit of

𝑆Δ𝑡 ≔

𝑁−1∑︁
𝑗=0

𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
;
𝜌𝑡 𝑗+1 + 𝜌𝑡 𝑗

2

)(
Δ𝑧

†
𝑡 𝑗
− Δ�̂�𝑡 𝑗

)
;

as is standard, we use ◦ to denote Stratonovich stochastic integration. Finally we
define the diamond integral interpretation as the 𝐿2

P limit of

𝑅Δ𝑡 ≔

𝑁−1∑︁
𝑗=0

𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
; 𝜌𝑡 𝑗

)(
Δ𝑧

†
𝑡 𝑗
− Δ�̂�𝑡 𝑗

)
.

Note that this is akin to a Stratonovich integral, but only with respect to variation
of 𝐾 with respect to 𝑣, not 𝜌. We use ⋄ to denote this unusual form of stochastic
integration.

Throughout this subsection we move between these three forms of stochastic
integration. To shorten the presentation we will sometimes use the = symbol when
in fact we mean equality up to an additive constant which disappears in the Δ𝑡 → 0
limit. Note that the evolution equation (D.7) for 𝑣 is driven by 𝑧† and �̂�, whereas the
Kushner–Stratonovich equation (3.25) for 𝜌 is driven only by 𝑧†. This difference
will have implications for the calculations that follow, in which we compute inter-
conversions between the different stochastic integrals. The first result highlights an
interesting interpretation of the contribution

𝑎 = ∇ · (𝐾Γ𝐾⊤) − 𝐾Γ∇ · 𝐾⊤

to the drift in (D.7), namely that it is simply the Itô-to-diamond correction, giving
a compact re-interpretation of the mean-field model.

Lemma D.3. Let 𝜌 solve the Kushner–Stratonovich equation (3.25) and let 𝑧† be
given by (3.9). The Itô interpretation of equation (3.37) and its interpretation with
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respect to the ⋄ form of stochastic integration are related through the following
equivalence. The system

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + ∇ · (𝐾Γ𝐾⊤) d𝑡 − 𝐾Γ∇ · 𝐾⊤ d𝑡 + 𝐾(d𝑧† − d�̂�),

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵,

where 𝐾 = 𝐾(𝑣, 𝜌), is equivalent to

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + 𝐾 ⋄ (d𝑧† − d�̂�),

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵. ^

Proof. We first recall the evolution equations for 𝑧† and �̂�:

d𝑧† = h(𝑣†) d𝑡 +
√

Γ d𝐵†,

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵.

Noting that 𝑣 is driven by (𝑧† − �̂�) and that we are inter-converting between Itô and
diamond integration, so that the noisy driving of the 𝜌 equation does not play a
role, we see that it suffices to consider the 𝐿2

P limits of the two quantities

𝐼Δ𝑡 =

𝑁−1∑︁
𝑗=0

𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )
√

2ΓΔ𝑡𝜉𝑡 𝑗 ,

𝑅Δ𝑡 =

𝑁−1∑︁
𝑗=0

𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
; 𝜌𝑡 𝑗

)√
2ΓΔ𝑡𝜉𝑡 𝑗 ,

where the 𝜉𝑡 𝑗 are i.i.d. draws from a unit Gaussian. By adding and subtracting the
Itô contribution, we obtain

𝑅Δ𝑡 =

𝑁−1∑︁
𝑗=0

𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
; 𝜌𝑡 𝑗

)√
2ΓΔ𝑡𝜉𝑡 𝑗

=

𝑁−1∑︁
𝑗=0

𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )
√

2ΓΔ𝑡𝜉𝑡 𝑗 +
𝑁−1∑︁
𝑗=0

(
𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
; 𝜌𝑡 𝑗

)
− 𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )

)√
2ΓΔ𝑡𝜉𝑡 𝑗

= 𝐼Δ𝑡 +
𝑁−1∑︁
𝑗=0

(
1
2
𝐷𝑣𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )(𝑣𝑡 𝑗+1 − 𝑣𝑡 𝑗 ) +𝑂(|𝑣𝑡 𝑗+1 − 𝑣𝑡 𝑗 |2)

)√
2ΓΔ𝑡𝜉𝑡 𝑗 ,

where the last line follows from a first-order Taylor expansion. Using a discretiz-
ation of the evolution for 𝑣, and neglecting the terms that do not contribute to the
quadratic variation when computing the 𝐿2

P limit, we substitute for 𝑣𝑡 𝑗+1 − 𝑣𝑡 𝑗 to
obtain

𝐼Δ𝑡 +
𝑁−1∑︁
𝑗=0

1
2
𝐷𝑣𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )(𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )

√
2ΓΔ𝑡𝜉𝑡 𝑗 )

√
2ΓΔ𝑡𝜉𝑡 𝑗 . (D.8)
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We now consider the correction term resulting from (D.8), which is determined by
expectation of the summand with respect to the random increments 𝜉, scaled by
Δ𝑡−1. Dropping the 𝑣 and 𝜌 dependence of 𝐾 and the 𝑡 𝑗 dependence for notational
convenience, its 𝑘th component is given by30[

E(𝐷𝑣𝐾)(𝐾Γ1/2𝜉)Γ1/2𝜉
]
𝑘
=
[
E(𝜕𝑣𝑖𝐾)

[
𝐾Γ1/2𝜉

]
𝑖
Γ1/2𝜉

]
𝑘

=
[
E(𝜕𝑣𝑖𝐾)(𝐾𝑖𝑙(Γ1/2)𝑙 𝑗𝜉 𝑗)Γ1/2𝜉

]
𝑘

= E(𝐾𝑖𝑙(Γ1/2)𝑙 𝑗𝜉 𝑗)(𝜕𝑣𝑖𝐾)𝑘𝑛(Γ1/2)𝑛𝑚𝜉𝑚
= (𝜕𝑣𝑖𝐾𝑘𝑛)Γ𝑙𝑛𝐾𝑖𝑙 .

But,

(𝜕𝑣𝑖𝐾𝑘𝑛)Γ𝑙𝑛𝐾𝑖𝑙 = 𝜕𝑣𝑖 (𝐾𝑘𝑛Γ𝑙𝑛𝐾𝑖𝑙) − 𝐾𝑘𝑛Γ𝑙𝑛(𝜕𝑣𝑖𝐾𝑖𝑙)
= [∇ · (𝐾Γ𝐾⊤)]𝑘 − [𝐾Γ∇ · (𝐾⊤)]𝑘 .

Recalling that the only contributions in 𝑅Δ𝑡 that do not vanish under the Δ𝑡 → 0
limit are the ones given by (D.8), taking the Δ𝑡 → 0 limit of 𝑅Δ𝑡 yields

𝑅 = 𝐼 +
∫ ⊤

0
(∇ · (𝐾Γ𝐾⊤) − 𝐾Γ∇ · (𝐾⊤)) d𝑡,

where the convergence is in the 𝐿2
P(Ω;𝐶([0, 𝑇];R𝑑𝑣 )) sense; this concludes the

proof.

The preceding lemma relates diamond integration to Itô integration; the follow-
ing lemma relates it to Stratonovich integration.

Lemma D.4. Let 𝜌 solve the Kushner–Stratonovich equation (3.25) and let 𝑧†
be given by (3.9). The interpretation with respect to the ⋄ form of stochastic
integration of equation (3.37) and its Stratonovich interpretation are related through
the following equivalence. The system

d𝑣 = 𝑓 (𝑣) d𝑡 +
√

Σ d𝑊 + 𝐾 ⋄ (d𝑧† − d�̂�),

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵,

where 𝐾 = 𝐾(𝑣, 𝜌), is equivalent to

d𝑣 = 𝑓 (𝑣) d𝑡 + 𝑏 d𝑡 +
√

Σ d𝑊 + 𝐾 ◦ (d𝑧† − d�̂�),

d�̂� = h(𝑣) d𝑡 +
√

Γ d𝐵,

where the term 𝑏 = 𝑏(𝑣, 𝜌) satisfies

𝑏(𝑣, 𝜌) =
𝜌

2
𝐷𝜌𝐾(h − Eh). ^

30 Using Einstein summation convention, as described for example in Gonzalez and Stuart (2008),
so that index repeated twice is summed over.
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Proof. To make the inter-conversion between diamond and Stratonovich integ-
ration we need only consider the quadratic variation contribution induced by 𝑧†,
since the equation for 𝜌 is driven only by 𝑧† and not by �̂�. Recalling (D.2) and its
discrete form (D.3), we see that it suffices to compare the 𝐿2

P limits of

𝑅Δ𝑡 =

𝑁−1∑︁
𝑗=0

𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
; 𝜌𝑡 𝑗

)√
ΓΔ𝑡𝜉†𝑡 𝑗 ,

𝑆Δ𝑡 =

𝑁−1∑︁
𝑗=0

𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
;
𝜌𝑡 𝑗+1 + 𝜌𝑡 𝑗

2

)√
ΓΔ𝑡𝜉†𝑡 𝑗 .

Here 𝜉†𝑡 𝑗 are i.i.d. draws from a unit Gaussian. By adding and subtracting the
diamond contribution, we obtain

𝑆Δ𝑡 =

𝑁−1∑︁
𝑗=0

𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
;
𝜌𝑡 𝑗+1 + 𝜌𝑡 𝑗

2

)√
ΓΔ𝑡𝜉†𝑡 𝑗

= 𝑅Δ𝑡 +
𝑁−1∑︁
𝑗=0

(
𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
;
𝜌𝑡 𝑗+1 + 𝜌𝑡 𝑗

2

)
− 𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
; 𝜌𝑡 𝑗

))√
ΓΔ𝑡𝜉†𝑡 𝑗 .

Thus

𝑆Δ𝑡 − 𝑅Δ𝑡 =
𝑁−1∑︁
𝑗=0

(
1
2
𝐷𝜌𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
; 𝜌𝑡 𝑗

)
(𝜌𝑡 𝑗+1 − 𝜌𝑡 𝑗 ) +𝑂(|𝜌𝑡 𝑗+1 − 𝜌𝑡 𝑗 |2)

)√
ΓΔ𝑡𝜉†𝑡 𝑗 ,

where the last line follows from a first-order Taylor expansion in 𝜌. In the following
we will use a discretization of the Kushner–Stratonovich equation (3.25) given in
Theorem 3.4, and repeated here:

d𝜌 = −∇ · (𝜌 𝑓 ) d𝑡 + 1
2
∇ · (∇ · (𝜌Σ)) d𝑡 + ⟨h − Eh, d𝑧† − Eh d𝑡⟩Γ𝜌. (D.9)

Substituting an increment for 𝜌, in time, and summarizing the terms that do not
contribute to the quadratic variation in the 𝐿2

P limit as 𝑂(Δ𝑡), we obtain

𝑆Δ𝑡 − 𝑅Δ𝑡 =
𝑁−1∑︁
𝑗=0

(
1
2
𝐷𝜌𝐾

(
𝑣𝑡 𝑗+1 + 𝑣𝑡 𝑗

2
; 𝜌𝑡 𝑗

)〈
𝜌𝑡 𝑗Γ−1(h𝑡 𝑗 − Eh𝑡 𝑗 ),

√
ΓΔ𝑡𝜉†𝑡 𝑗

〉
+𝑂(Δ𝑡)

)√
ΓΔ𝑡𝜉†𝑡 𝑗 .

We now perform a first-order Taylor expansion in 𝑣 of 𝐷𝜌𝐾 . Disregarding𝑂(Δ𝑡3/2)
terms which will vanish in the Δ𝑡 → 0 limit, we obtain

𝑆Δ𝑡 = 𝑅Δ𝑡 +
𝑁−1∑︁
𝑗=0

1
2
𝐷𝜌𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )

〈
𝜌𝑡 𝑗Γ−1(h𝑡 𝑗 − Eh𝑡 𝑗 ),

√
ΓΔ𝑡𝜉†𝑡 𝑗

〉√
ΓΔ𝑡𝜉†𝑡 𝑗 . (D.10)
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We now consider the correction term resulting from (D.10), which is determined
by expectation of the summand with respect to the random increments 𝜉†, scaled
by Δ𝑡−1. Indeed, dropping the 𝑣 and 𝜌 dependence of 𝐾 , for each 𝑗 = 0, . . . , 𝑁 −1,
its 𝑙th component is given by31

E

[
1
2
𝐷𝜌𝐾(𝑣𝑡 𝑗 ; 𝜌𝑡 𝑗 )⟨𝜌𝑡 𝑗Γ−1(h𝑡 𝑗 − Eh𝑡 𝑗 ),

√
Γ𝜉†𝑡 𝑗 ⟩

√
Γ𝜉†𝑡 𝑗

]
𝑙

=
1
2
𝜌𝑡 𝑗E

([
Γ−1/2(h𝑡 𝑗 − Eh𝑡 𝑗 )

]
𝑘

[
𝜉
†
𝑡 𝑗

]
𝑘
[𝐷𝜌𝐾]𝑙𝑚 [Γ1/2]𝑚𝑛

[
𝜉
†
𝑡 𝑗

]
𝑛

)
=

1
2
𝜌𝑡 𝑗 [𝐷𝜌𝐾]𝑙𝑚 [h𝑡 𝑗 − Eh𝑡 𝑗 ]𝑚.

Thus, taking the Δ𝑡 → 0 limit of 𝑆Δ𝑡 yields

𝑆 = 𝑅 +
∫ ⊤

0

1
2
𝜌𝐷𝜌𝐾(𝑣; 𝜌)(h − Eh) d𝑡,

where the convergence is in the 𝐿2
P(Ω;𝐶([0, 𝑇];R𝑑𝑣 )) sense; this concludes the

proof.

E. Flows in the Gaussian manifold
Recall that we obtained (5.26) as the continuous-time limit of its discrete-time
formulation (4.32). Here we demonstrate that the same evolution equations can be
derived from the gradient flow (5.20) through a sequence of approximations. To
this end we first define, for any function 𝑔 defined on state space R𝑑𝑢 ,

𝐶𝑔Φ = E(𝑔(𝑢)Φ(𝑢)) − E(𝑔(𝑢))E(Φ(𝑢)).

Now consider random variable 𝑢 with probability density function 𝜌 evolving
according to (5.20). Then

d
d𝑡

(E𝑔(𝑢)) = −𝐶𝑔Φ.

By making linear and quadratic choices for 𝑔, this identity leads to equations (5.74)
for the mean𝑚 and the covariance matrix𝐶 under 𝜌, repeated here for convenience:

d𝑚
d𝑡

= −E(Φ(𝑢)(𝑢 − 𝑚)),

d𝐶
d𝑡

= −E(Φ(𝑢)(𝑢 − 𝑚)(𝑢 − 𝑚)⊤) + 𝐶E(Φ(𝑢)).

These equations do not define, in general, a closed evolution for the pair (𝑚,𝐶)
because, in general, 𝜌 is not Gaussian. In order to find closed evolution equations,

31 Again using Einstein summation convention, but not with respect to index 𝑗 , which simply denotes
a fixed time.
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we take the expectation on the right-hand side not with respect to 𝜌 but with respect
to the Gaussian N(𝑚(𝑡), 𝐶(𝑡)). The resulting closed evolution equation for the pair
(𝑚(𝑡), 𝐶(𝑡)) is different from the continuous-time Gaussian projected filter (5.26).

We now show that the two closed evolution equations (5.74) and (5.26) can be
connected through a sequence of steps involving an integration by parts, which is
exact under conditions regarding the tail behaviour of Φ(𝑢), followed by a number
of approximations.

The integration by parts32 step in (5.74) results in
d𝑚
d𝑡

= −𝐶 E(∇Φ(𝑢)),

d𝐶
d𝑡

= −𝐶 E(𝐷2Φ(𝑢))𝐶.

Now we use the explicit expression (5.2) for Φ(𝑢) in terms of 𝐺(𝑢) to derive
various approximations. First, using this expression, we utilize the Gauss–Newton
approximation of the Hessian 𝐷2Φ(𝑢) to obtain

𝐷2Φ(𝑢) ≈ 𝐷𝐺(𝑢)⊤Γ−1𝐷𝐺(𝑢).

We also replace ∇Φ(𝑢) with its explicit expression, resulting from (5.2), to obtain
the modified evolution equations

d𝑚
d𝑡

= −𝐶 E(𝐷𝐺(𝑢)⊤Γ−1(𝐺(𝑢) − 𝑤†)),

d𝐶
d𝑡

= −𝐶 E(𝐷𝐺(𝑢)⊤Γ−1𝐷𝐺(𝑢))𝐶.

Secondly these equations are further modified by replacing expectations of product
terms by products of expectations to yield

d𝑚
d𝑡

= −𝐶 E(𝐷𝐺(𝑢))⊤Γ−1E(𝐺(𝑢) − 𝑤†),

d𝐶
d𝑡

= −𝐶 E(𝐷𝐺(𝑢))⊤Γ−1E(𝐷𝐺(𝑢))𝐶.

The final step consists in eliminating the Jacobian 𝐷𝐺(𝑢) using

𝐶 E(𝐷𝐺(𝑢))⊤ = 𝐶𝑢𝐺 ,

which is obtained by yet another integration by parts under the Gaussian N(𝑚(𝑡),
𝐶(𝑡)). Thus we have recovered the Gaussian projected filter (5.26).

32 Related to Stein’s identity.
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C. Sampson, A. Carrassi, A. Aydoğdu and C. K. R. T. Jones (2021), Ensemble Kalman
filter for nonconservative moving mesh solvers with a joint physics and mesh location
update, Quart. J. R. Meteorol. Soc. 147, 1539–1561.

D. Sanz-Alonso and A. M. Stuart (2015), Long-time asymptotics of the filtering distribution
for partially observed chaotic dynamical systems, SIAM/ASA J. Uncertain. Quantif. 3,
1200–1220.

D. Sanz-Alonso, A. Stuart and A. Taeb (2023), Inverse Problems and Data Assimilation,
Vol. 107 of LMS Student Texts, Cambridge University Press.
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