Kalil Jaouiche

ON THE FECUNDITY OF MATHEMATICS

FROM OMAR KHAYYAM TO G. SACCHERI

As an introduction to the study which is the subject of this arti-
cle, we would like to provide some definitions and make a few
elementary observations, in order to make it possible for the less
informed reader to understand better the origins and the raison
d’étre of the propositions that are under examination.

By principles of mathematics we mean a body of propositions,
which arise in mathematical demonstrations and which serve as
premises for deduction. These principles are not proven.

In so-called classical mathematics, or more precisely, the clas-
sical method of explicating mathematics, which was in current
use up until the end of the nineteenth century, three types of
mathematical principles were distinguished: the definitions, the
axioms and the postulates.

A definition was understood to be a proposition indicating
what a given thing is. Thus, for instance, Euclid defined parallels
as two straight lines which are located on the same plane, and
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which when extended to infinity in both directions do not meet
in either direction. We will simply point out here that a definition
in no way proves the existence of the defined object. Its existence
is either assumed, as in the case of the point and the line, or
demonstrated through the geometric construction of the defined
object. Thus, in proposition XXI of Book I of the Elements,
Euclid proves that parallels exist by demonstrating that one may
draw through a point situated outside a straight line another
straight line that does not cut the first.

An axiom was understood to be a proposition “evident in it-
self.” For example: the whole is greater than any of its parts. An
axiom, understood in this way, is not provable. The unverifiabi-
lity of the axiom derives from its very definition. One cannot
prove what is evident in itself and constitutes in a way a truth of
reason. But it must be pointed out in this regard that the concept
of “evidence” is extremely relative. Thus the proposition, which
we have just made, was considered as being evident, up until the
time when Galileo demonstrated that there were certain objects—
later called infinite sets—of which a part was as great as the
whole.

A postulate was understood to be a proposition, the truth of
which was not evident and which the reader was required to
accept. For instance, Euclid included among the postulates of
his geometry the proposition affirming that a straight line could
be drawn between one point and another.

One may see from this example that, contrary to the axiom,
the object of the postulate is not a truth evident in itself. It may
be challenged without touching upon the basic principles of rea-
son. Its apparent evidence—it may, in fact, appear “evident” to
certain people that a straight line may always be drawn between
two points—arises from the fact that it generally refers to some
operation which experience could confirm. But this type of
empirical evidence is not a criterion of truth for a mathemati-
cian. Only a demonstration that transforms this empirical expe-
rience into rational evidence permits us to assert the truth of a
proposition.

Why then were postulates not proven? The classical an-
swer to this question was that postulates were not provable, and
many philosophical theories have been put forward in order to
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explain this characteristic. In fact, postulates are simply autono-
mous. This meams that, given a particular body of postulates,
accepted as forming the base of a given geometry, these postulates
cannot be deduced one from the other. They are undemonstrable
in this sense, that they cannot be proved with the aid of the
only other accepted postulates and theorems which are derived
from them.

But a doubt may always persist as to the knowledge of whe-
ther one of the postulates belonging to the body of given postu-
lates may not rightly be deduced from the others. This doubt may
lead the geometrician to attempt to prove this postulate—that
is, to deduce it from the other postulates and theorems which
depend on them—in order to assure himself of its autonomy.

But there is another reason that may lead the mathematician to
attempt to prove a postulate. We have said that the predication
of a postulate was generally related to certain operations, or
more precisely to geometrical constructions, which could be con-
firmed by experience. When these operations are considered “sim-
ple” within common experience, this simplicity can endow them
with an apparent evidence, and the possibility of these operations
could be reasonably assumed without proof. This is the case, for
example, for the postulate related to the possibility of connecting
two points by a straight line. But when these operations are
more complex, the mathematician then may be tempted legitima-
tely to prove their possibility. This is the case of the postulate
which serves as the point of departure for this study.

*

It is known that non-Euclidian geometries were the result, in the
nineteenth century, of the various and vain attempts made since
the first century before our age to prove Euclid’s fifth postulate.
One of the last of these, in fact the most important, was the on¢
made by G. Saccheri in 1733. This attempt, which introduced
a number of non-Euclidian theorems, marks the end of what we
call the pre-history of non-Euclidian geometries. We also know
that Beltrami proved, in 1877, that the postulate was not prova-
ble, thus rendering final homage to Euclid’s brilliant insight. This
postulate, known to all secondary school students, is generally
formulated in the following way: through a point located outside
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a straight line one may draw, within the plane formed by
this straight line and this point, one and only one parallel line to
the straight line. But this formulation of the postulate is not the
one given by Euclid, and we cannot understand the pre-history
of non-Euclidian geometries unless Euclid’s own formulation is
adopted: “...if a straight line falling on two straight lines make
the interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that side
on which the angles are less than the two right angles.” !

It is precisely this formulation that geometricians have made
futile efforts to prove throughout the pre-history of non-Eucli-
dian geometries. But during the most important phase of this
period, which began in the tenth century and ended with Saccheri,
the leading geometricians who endeavored to prove the fifth pos-
tulate, in the form we have just quoted, used for this purpose
a quadrilateral known as “Saccheri’s quadrilateral.” Wrongly at-
tributed to the latter, it owes its origin, in fact, to the Egyptian
mathematician ibn El-Haitham (965-1039), who was the first to
make use of it in his proof of the fifth postulate.? Omar Khayyam
inherited it and used it in four theorems, which we find again
in almost identical form with Saccheri.

The object of this discussion is to show that the first three
propositions of Saccheri are similar and, in some points, identical
with the four theorems proved seven centuries earlier by
Omar Khayyam. It is enough to keep in mind that Saccheri was
the great forerunner of non-Euclidian geometries, and that the
theorems to which we refer constituted the point of departure for
his geometry, in order to indicate the interest this study has for
the history of mathematics.

We should point out here that, to our knowledge, the only
comparative study which has been made on this subject is an
article by D. E. Smith.? But the latter did not make use of
Khayyam’s manuscript for the purpose of his article, nor, it seems,

' Heath, The Thirteen Books of Euclid’s Elements, 2nd. edition, Dover Pub-
lications Inc., New York, Vol. I, p. 155.

* Juschkewitsch, Geschichte der Mathematik im Mittelalter, Pfalz-Verlag, Ba-
sel, 1964, pp. 280-283.

* “Euclid, Khayyam and Saccheri,” in Scripta Mathematica, Vol. 11, No. 1,
January 1935, pp. 5-10.
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of Saccheri’s work. His study, which, except for one variation,
faithfully reproduces the two first propositions of our two authors,
gives only some elements of Khayyam’s third proposition, and
does not refer to the fourth at all. However, the most important
propositions for this comparison are precisely the third and fourth
propositions of Khayyam, as well as Saccheri’s third.

We have divided our study into three parts. In the first, we
give the reader a brief introduction to Omar Khayyam and Sac-
cheri. In the second, the most important part, we give a compa-
rative description of their respective demonstrations. Finally, in
the third, we pose the problem which such a strange coincidence
raises for the historian of science.

Omar Khayyam, or, more precisely, Ali Al-Fath Omar ibn
Ibtahim Al-Khayyami is unquestionably the most unrecognized
mathematician in history. The famous author of the Rubaiyat
has left to the public, even the cultivated public, only the recol-
lection of a disillusioned poet, who drowned his bitterness with
drink and women. But Khayyam wrote verses only for diversion;
primarily an astronomer, a geometrician and algebraist, he was, in
fact, the greatest mathematician of the Middle Ages.

He was born in about 1045 in Naishapour, in the Khorassan,
in Persia, and he died there in about 1125. Thanks to his fellow-
student and friend, Nizam Al-Moulk, he became vizir of the kings
Seldjoukid Alp the Lion and of Malik Chah, and received a pen-
sion which made it possible for him to devote himself to mathe-
matical and astronomical research. He revised the Persian ca-
lendar on the order of Malik Chah, making it more precise than
the Julian calendar, but less precise than the Gregorian. As an
algebraist he established a systematic classification of equations
from the first to the third degree; he provided the geometrical so-
lutions of third-degree equations and pointed out the difficulty,
later solved by Cardan, of the algebraic solutions of these same
equations.

But it is his work as a geometrician that interests us here. In
his small treatise* entitled Theses on the information of the prob-

* Bibliothéque Nationale, Fonds Arabe, Ms. No. 4946, folio 38 sqq.; Library
of the University of Leyden, Ms. No. 967. This manuscript has been published
by Dr. Erani, Teheran, 1936.
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lematical postulates of Euclid’s book, in three parts, he subjects
some of the basic concepts of Euclidian geometry to philosophi-
cal and mathematical criticism. In the first part he attempts, by
making use of the quadrilateral of Ibn El-Haitham, to establish
a theory of parallels which would be independent of the fifth
postulate. He then gives what he considers to be a proof of the
latter. It is the first, second, third and fourth propositions of this
part, as well as the ideas contained in the third proposition,
which we shall meet in Saccheri; and which we will discuss
further on. The work was completed toward the end of the first
half of December, 1077.

Saccheri, a Jesuit, was an Italian mathematician. He was born
in 1677 and died in August, 1733, one month after the publica-
tion, in Milan, of his work entitled Euclides ab omni naevo vindi-
catus (Euclid cleaned of any stain).’ In the first part of this
book, Saccheri endeavors to prove, through ingenious reasoning,
Euclid’s fifth postulate. In doing so, he establishes for the first
time a sequence of theorems which in principle should lead to a
proof of the postulate, but which constitute, in reality, a genuine
non-Euclidian geometry. (He proves, for instance, that, by em-
ploying certain hypotheses, the sum of the angles of a triangle
may be greater than two right angles). It is the first three propo-
sitions of this part that reiterate Khayyam’s four first proposition.

Before giving a comparative illustration of Khayyam’s and Sac-
cheri’s propositions, we would like to point out that the compo-
sition of the two works mentioned above is identical. Both are
divided into three parts, dealing respectively with the same
subjects. The first is devoted to the theory of parallels and to
the proof of the fifth postulate; the second to the theory of pro-
portional magnitudes; and the third to that of compounded ratios.

In view of situating Khayyam and Saccheri better within the pre-
history of non-Euclidian geometries, the most important period of
which starts with the use of Ibn El-Haitham’s quadrilateral, we
will give a schematic table of the leading geometricians of this
period. The reader will thus be able to see at a glance the “élan
vital” of non-Euclidian geometries.

* For the exposition of Saccheri’s propositions we have used the English trans-
lation by Halsted in the American Mathematical Monthly, 1894, Vol. I-V,

38

https://doi.org/10.1177/039219216701505706 Published online by Cambridge University Press


https://doi.org/10.1177/039219216701505706

Ibn El-Haftham

(965-1039)

Omar Al'Khayyam ———— Vitale ———— Saccheri
(1045-1125) (1633-1711) (1677-1733)

N. Al-Dine Al-Toussi Gauss

(1201-1274) Bolyai
Lobatschewsky

J. Wallis i
(1616-1703) Riemann

We will now pass on to a comparative study of Khayyam’s
and Saccheri’s propositions. To make this study more clear, so
that the similarity of these propositions will immediately emerge,
we have set them forth in two columns under the headings of
the respective two authors.

KHAYYAM SACCHERI
PROPOSITION I PROPOSITION I
D [od c D
[¢]

B A A B
Hypotheses: Hypotheses:
Quadrilateral ABCD Quadrilateral ABCD
AC perpendicular to AB AC = BD
BD perpendicular to AB 2_’15
AC = BD -

Conclusion: Conclusion:
N\ FAN N\ /\
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Proof:

AC is parallel to BD
(Eucl. 1, 28).¢
We join CB and AD.
We consider the triangles
ACB and ABD:
AC = BD,
1/‘1\B is common to both
A = B =1 right angle.
Hence:
AD = CB,
and the homologous angles are
equal.

Thus:
Fay 7\
OAB = OBA.

In the triangle OAB:
OB = OA.

Therefore:
OC = 0D
But in the triangle DOC:
Pas Ve
OCD =0DC.
Therefore:

™

N
ACD = BDC.

PROPOSITION II
[*]

o) A

Proof:

We join CB and AD.
We consider the triangles:
ACB and ABD

Then (Eucl. 1, 4):
AD = CB

We take the triangles ABC and
BDC;

Then (Eucl. 1, 8):
/N ey
ACD = BDC.

PROPOSITION II

G 2}

M

® In the demonstrations that follow, we refer to the propositions of Euclid’s
Elements, placing in parentheses the abbreviation Eucl. followed by the number
of the book in Roman numerals, and the proposition number in Arabic numerals.
For the sake of clarity, we have presented Khayyam’s and Saccheri’s demon-
strations in modern form, whereas in their own works they are given in a lite-

ral form,
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Hypotheses:

Same hypotheses as in Proposi-
tion I, to which the following
are added:

BO = 0A

OR 1 AB

Conclusions:

CR =RD
OR L CD

Proof:

We join DO and OC. We have:
AC = BD
AO = OB
/N

N

A = B =1 right angle.

Hence:
DO = OcC,
and
Fay N
AOC = BOD
N\ /N

Then DOR = ROC.

We take the triangles DOR and
ROC:

DO = OC,
OR is common to both,
N aS
DOR = ROC.
These triangles are then equal,

and it follows that:
DR = RC;
A N

DRO = CRO = 1 right angle.

Hypotbheses:

Same hypotheses as in Proposi-
tion I, to which the following
are added:

AM = MB,
CH = HD.
Conclusions:

CHM=DHM=1 right angle.
AMH=BMH=1 right angle.

Proof:
We join AH, BH, CM, DM.
We have:
AN
A =B
A ™\
C = D (Proposition I)

We take the triangles CAM and
DBM

Then by (Eucl. I, 4) and taking
into account the equality of the
sides:

CM = DM.

We take the triangles CHM
and DHM as well as the triangles
AMH and BMH.

Then (Eucl. 1, 8):

/N Fas

CHM = DHM == 1 right angle;
/N N\

AMH = BMH =1 right angle.
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PROPOSITION III

K

T H

o = Cc
S E \M [¢] L AN
Hpypotbheses:

Same hypotheses as in Proposi-
tion I, to which the following

are added:
/N N\
C=D

OR 1 to AB (therefore also to
CD by virtue of Proposition II)
We produce OR so that:

OR = RK
HKT 1 OK

Conclusion:

4 N

C =D =1 right angle.

Proof:

(Inasmuch as we find in Saccheri,
in his Proposition III, only the
main idea, which regulates the
demonsttation of Proposition
III of Khayyam, and considering
its lenght, we vill only summa-
rize it.)

First Khayyam proves that AC
and BC produced HKT in H and
T. He then shows, on the basis of
the properties of triangles, that
the angles H and T are equal,
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that CH = DT and that HK =
= KT.

He then begins the proof of
Proposition III, that is:
N \

C=D= 1 right angle. For
that purpose he divides his proof
into three parts:

A A
a) if C =D < 1 right angle,
then

N A
HCR > ACR

Folding the half-plane DH on
the half-plane CB, he shows that:

HT = NS> AB

and concludes that AC and BD
depart from the upper level of
the half-plane determined by AB.

If the entite figure is turned
over around AB, then AC and BD
depart from the other side of
the half-plane,

“There would then be two
straight lines cutting a straight
line at right angles, and whose
distance would then increase on
both sides of this straight line,
which is impossible...”

PN ey
b) if C = D > 1 straight line.

An identical but inverted de-
monstration: The straight lines
will approach each other from
both sides of AB, which is im-
possible.

¢) Therefore:

AN N

C = D =1 right angle.
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PROPOSITION 1V
o
o /

Cc B

Hypotbeses:

Quadrilateral ABCD,
A =B =C =D = 1right angle.

Conclusions:

CD = AB

Proof:

If AB = CD

We assume DC > AB
Take OC = AB. Join AO.
'I'hen

BAO COA (Proposition 111)
But:
N
BAO </\ 1 right angle,
and COA>1 right angle (an-

gle exterior to the triangle OAD
which alread;r\ has a right angle).

Therefore COA, which is greater
than a right angle, would be
A

equal to BAO, which is smaller
than a right angle: which is im-
possible.

94

PROPOSITION III

1
v 3]

A

Hypotheses:

Quadrilateral ABCD,
AC = BD,
AC and BD 1 to AB

Concluszons
a) If C D =1 right angle,
CD = AB
\ N
b) If C=D>1 right angle,
CD < AB
N\ N\
¢) If C=D<1 right angle,
CD > AB.
Proof:
First part:
Y ™\

C = D =1 right angle.
If AB = CD
We assume DC > AB
Take DK = AB. Join AK
Then

BAK DKA (Proposition 1).
But:
”N
BAK <1 right angle.
N\

and DAK > 1 right angle (angle
exterior to the triangle ACK,
N\

whose angle DCA is a right
angle),

It is also demonstrated that:
AB > DC,

which is impossible.

https://doi.org/10.1177/039219216701505706 Published online by Cambridge University Press


https://doi.org/10.1177/039219216701505706

Therefore: Therefore:
DC = AB. DC = AB.

Second part.

IS 7N

C = D > 1 right angle.
If we join the centers M and
H of AB and CD,

we have:

AM 1 MH
CH L MH
C == 1 right angle.

Therefore (Proposition 1):
CH = AM

But the segment CH is not great-
er than the segment AM. In
fact, let us assume that this is
so and take:

HK = AM
Then (Proposition 1):

Fay N
MAK = AKH.
But this is impossible, because:

N
MAK <1 right angle,
and (Eucl. 1, 16):
\

N

HKA > ACD > 1 right angle.

Therefore:

CH < AM

and
CD < AB

Third part.

\ ™\

C = D <1 right angle.

Saccheri proves, through reason-
ing analogous to that of the

Second part, that:
CD > AB.
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We would like to point out, with regard to the first proposi-
tion, the evident equivalence of the hypotheses and the simila-
rity of the proof. The only difference which exists between the
two propositions is the qualification of the angles at the
base A and B. They are right angles for Khayyam and
equal for Saccheri. In this sense it may be said that the latter’s
proposition is more general than Khayyam’s. But, just as the
right-angled base is an unnecessary restriction in Khayyam’s first
proposition, Saccheri’s generalization does not add anything new.
Moreover, we will see that in the proposition in which it is
essential that the angles at the base be right angles, Saccheri in-
troduces right angles. The first propositions of the two authors
are therefore identical.

The same is the case for both second propositions.

So far as the third and fourth propositions of Khayyam on the
one hand, and the third proposition of Saccheri on the other, are
concerned, the similarity between the two authors is less appar-
ent, but it is no less profound. If Khayyam’s third proposition
does not correspond exactly to one of Saccheri’s propositions, still
the central idea upon which it is based is an integral part of Sac-
cheri’s proposition III. Let us point out first of all that the three
cases distinguished in this proposition—which were to become
famous under the name of “Saccheri’s three hypotheses,” and
which were to correspond to three different geometries’—are
those that Khayyam distinguished in the three parts of his proof.
Moreover, the essential relations, established by Saccheri in his
third proposition between the sides of the quadrilateral and the
obtuse and acute angles, are the same as those which Khayyam
established in his proof of his third proposition. There is a dif-
ference, it is true. It is not the opposite side CD which in Khay-
yam is greater or smaller than the base, but the straight line
TH. But the essential relationship between the sides and the
angles is identical with both authors.

The brilliant idea of Saccheri, which opened the way to non-
Euclidian geometries, consisted precisely here, in having made use

" The hypothesis of the right angle cotresponds to Euclidian geometry, that
of the acute angle to the geometry of Lobatshewski and Bolyai, and of the obtuse
angle to the geometry of Riemann.
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of these relationships in order to establish his proposition III,
which is nothing else than a generalization of Khayyam’s pro-
position IV, In fact, in the latter the Persian geometrician proves
that if the quadrilateral is a rectangle, the opposite sides are
equal. The Italian geometrician also proves this property in the
first part of his proposition III and, keeping the right angles
adjacent at the base,—which Khayyam had done in his three
first propositions, as we have indicated above—he considers the
cases in which the two angles adjacent to the opposite side are
obtuse or acute. He then concludes that in the first case this side
is smaller than the base and, in the second case, greater. The
first part of Saccheri’s proposition III and his proof are iden-
tical with Khayyam’s proposition IV and its demonstration. But
the two other parts of Saccheri’s proposition III, which genera-
lize the property established in the first part, do not seem to have
homologies with Khayyam. But, in fact, they take ug again the rela-
tionships established by the latter in his proposition III and the
process of the proof which is used is basically the same—
with one variation—as that for the first part, that is, the same
used by Khayyam in the proof of his proposition IV. In fact, so
far as the relationships between the sides and the angles are con-
cerned, we have already pointed out above that they had been
established by Khayyam in his proposition III. With regard to
the demonstrations of the second and third parts, Saccheri intro-
duces a variant, which changes nothing in the process of proving
the first part. The construction of the bisector MH has the effect
only of limiting the proof to the left half of the diagram, thus
permitting the use in the proof of but one angle at the vertex, the
angle C. Except for this difference, it is the same proof as that of
Khayyam.

Nonetheless, despite the similarities, the two authors diverged
fundamentally in the goals which they proposed and, conse-
quently, in the means they used to attain them. Khayyam hoped
to substitute for proposition 29 of Book I of Euclid’s Elements
a body of theorems which would make it possible for him to estab-
lish a theory of parallels in which the fifth postulate would not
intervene. In the eighth and last proposition of the first part of his
work, he accomplishes the traditional task of “proving” his theory,
but by making use implicitly of another postulate which is equi-
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valent to the fifth postulate. Saccheri’s goal was to prove the
postulate. And curiously enough, the one whose aim was to do
without it, remained dependent upon it—since he substituted
another for it which is its equivalent,—and the one who intended
to prove it went beyond it and opened the way to a new geo-
metry.

This may be explained by the fact that the difference in the
aims pursued involved a difference in method, and it was the
method which gave Saccheri’s geometry a fecundity which Khay-
yam’s geometry did not have. In aiming to establish a theory of pa-
rallels that would be compatible with Euclidian geometry but
independent of the postulate, Khayyam immediately tried to
prove the impossibility of the obtuse and acute angles. For this
purpose he used a construction which has no equivalent in
Saccheri, and which permitted him to deduce from the hypothesis
of the obtuse and acute angles the impossibility of the relation-
ships between the sides. Saccheri, intending to prove the validity
of the fifth postulate, took recourse to a method which is a
“subtle elaboration of the reductio ad absurdum.”® 11 Euclid’s
postulate is true, the angles at the vertices of the quadrilateral can
be neither obtuse nor acute; they can only be right angles. Saccheri
assumed that they are either obtuse or acute, and deduced
from these hypothesis a sequence of propositions which had to
lead him to the establishment of properties that are in contradic-
tion with other properties of Euclidian space. In fact, it was
through logical and philosophical, rather than geometrical, argu-
ments that he concluded, in his proposition X1V, the impossibility
of the obtuse angle, and, in proposition XXXI1I, the impossibility
of the acute angle. But, meanwhile, the propositions that he
deduced from the hypothesis of the obtuse angle and from the
hypothesis of the acute angle, and which had to lead to a contra-
diction with other geometrical properties, are in fact perfectly
compatible with each other and constitute genuine non-Euclidian
propositions. Saccheri’s attempt to prove Euclid’s postulate by a
reductio ad absurdum failed, but “the method was to overturn the
aim of its promoter: the hypothesis, which cannot be proved to

* Brunschvicg, Les Etapes de la philosophie mathématique, P.UF., 1947,

p. 315.
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be contradictory, is worthy of being retained, as much as Euclid’s
thesis.”

Mention should be made of the problem posed by these simi-
larities between Khayyam’s four first propositions and Saccheri’s
three first propositions. In the article by Smith, quoted eatlier, the
author affirms without hesitation: “That this is the case is not
very important since Saccheri was familiar with the work of John
Wallis, and the latter mentions Nassir ad Dine at Toussi in his
work. But Nassir ad Dine distinctly states that (this lemma) is due
to Omar Khayyam, and from the text it seems clear that the
latter was his inspirer.” Smith then believes he is entitled
to speak of “the influence of Omar Khayyam on the work
of Saccheri.” Both the explanation, advanced by Smith, as well
as his affirmation of the influence exerted by Omar Khayyam do
not seem to us to be sufficiently well founded. Saccheri, who, we
stress, never referred to Khayyam anywhere in his work, certainly
was acquainted with Wallis’ De postulato quinto, since he quotes
the English author and criticizes his principles of demonstration.”
In the same passage Saccheri also criticizes the principles of de-
monstration of Nassir ad Dine at Toussi, reported by Wallis in
his work. But the passages on Toussi’s proof, given by Wallis,"
contain absolutely no mention of Omar Khayyam.

In his small treatise devoted to the discussion of the fifth pos-
tulate at Toussi quotes Khayyam’s discussion almost in its enti-
rety. But there is no mention of Khayyam in the passages quoted
by Wallis. It is therefore not from Wallis’ work that Saccheri
could have known Khayyam.

We must, however, specify here that, among similar proposi-
tions established by Khayyam and Saccheri, an important relation-
ship does exist, which Saccheri could have discovered through
Toussi’s text, quoted by Wallis: this is the relationship between
the sides and the angles. The latter was established by Tousst,
who was evidently inspired by Khayyam’s proposition IIT and
by a lemma which Toussi gives further on in his treatise. But

° Ibid, p. 318.

¥ Lib. I, prop. XXI, schol. III.

" Wallis, Opera Math., Vol. 11, pp. 669-673, Oxford, 1963.

* Bibliothéque Nationale, Fonds Arabe, Ms. No. 2467, fol. 73-89.
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Saccheri’s demonstration and his diagtam are certainly those of
Khayyam’s proposition IV.

Toussi’s text, as quoted by Wallis, is hence incapable of ex-
plaining the similarities that exist between Khayyam and Sac-
cheri. These similarities are much to numerous and relate to too
precise points to be attributed merely to coincidence.

Did Saccheri inherit—through Clavius, whom he quotes in
scholium II of proposition XXI—a tradition which goes back to
Khayyam, passing through Gerson’s commentaries?” The affilia-
tion seems to us to be too indirect and would require, in order
to be established, a detailed study of texts of both authors.

Another hypothesis, a more pertinent one, is suggested by cer-
tain indications, which Wallis himself gives on the subject of the
sources from which he drew his information about Arab mathe-
maticians. Before presenting Toussi’s proof, Wallis informs
us that he had come to know it thanks to “the assistance
of the illustrious Edward Pocock... a professor highly skilled in
oriental languages and patticularly in Arabic.”” In the paragraph
that {follows the presentation of Toussi’s proof, Wallis tells
us that, again thanks to Pocock, he had become acquainted
with two other Arab manuscripts, whose authors he does not
mention. He then makes a brief criticism of these two manu-
scripts, quoting a postulate which is the one Khayyam used in
his demonstrations. Would one of these manuscripts then have
been Khayyam’s, and could it be through a translation by Pocock,
if the latter made one, that Saccherl could have become acquainted
with the Persian mathematician? This is only an hypothesis, but
it seems to us that the solution to this problem lies in this di-
rection.

3 Juschkewitsch, op. cit., p. 393.
" Wallis, op. cit., p. 669,
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