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1.  Introduction
Given a real differentiable function  we say that a point  is a

stationary point of  if .
f x0

f f ′ (x0) = 0
In any standard single-variable calculus class, students learn how to

determine the nature of a stationary point by checking the sign of  in
intervals to the left and to the right of the stationary point. In doing so, they
are performing the first derivative test.

f (x)

Suppose that  is an isolated zero for  (i.e.  is an isolated stationary
point for ). With respect to the sign of , two things can happen near :

x0 f ′ x0
f f x0

(1) either the derivative changes sign at  (from positive to
negative or vice versa), or

x0

(2) the derivative keeps the same sign on both sides of .x0

By the first derivative test, in the first case we have a local extremum (a
local maximum or a local minimum). In the second case we can only
conclude that near  the function is strictly increasing (or decreasing) on
both sides of  and so  is not a local extremum. Unfortunately, however,
it is a common belief among students and also practitioners that this second
case can always be classified as ‘inflection point’, a point at which there is a
change in concavity. The goal of this Article is to point out that this is not
always the case, unless we add more restrictive hypotheses (e.g.  analytic).

x0
x0 x0

f
If we google ‘classification of stationary points’ we stumble upon many

interesting websites that discuss the first derivative test at length. Focusing
just on the second case (derivative with the same sign on both sides of the
isolated stationary point) we read, for example:

• In [1]: Isolated stationary points of a  real-valued function
 are classified into four kinds, by the first derivative

test: [...] a rising point of inflection (or inflexion) is one where the
derivative of the function is positive on both sides of the stationary
point; such a point marks a change in concavity; a falling point of
inflection (or inflexion) is one where the derivative of the function is
negative on both sides of the stationary point; such a point marks a
change in concavity.

C1

f : � → �

• In [2]: from Mathworld–Wolfram Suppose  is continuous at a
stationary point . [...] If  has the same sign on an open interval
extending left from  and on an open interval extending right from

, then  has an inflection point at .

f (x)
x0 f ′ (x)

x0
x0 f (x) x0

In both these websites (and many others in the Google list) it is implied that,
no matter what, the second case can always be classified as ‘inflection
point’. But the truth is that this is too optimistic: stationary points, even
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408 THE MATHEMATICAL GAZETTE

isolated stationary points, can happen to be neither a local extremum nor an
inflection point.

In Section 2 we state some well-known useful facts concerning real
differentiable functions and we introduce the first derivative test, explaining
when it can be applied; that section can be skipped by those who are already
familiar with its main concepts. In Section 3, we list some original examples
of functions with isolated stationary points that are neither local extrema nor
inflection points. We start from a simple and drawable  example and then
move on to more regular  and also  functions.

C1

Ck C∞

2.  Preliminaries
2.1. Shapes of graphs. In this Article we will be dealing with geometric
aspects of real functions, and we will use the terms ‘convex’, ‘concave’,
‘inflection point’. Probably the reader is already familiar with this
terminology. Anyway, for the sake of completeness, let us recall these
classical definitions:
Definition 1 (Convex, concave function): Let  be a real-valued function of a
real variable and let  be an interval contained in the domain of . Then  is
said to be convex on , or concave up, if for every ,  and for

every  we have  and  is said to be

concave on , or concave down, if  is convex. (See [3, def. 16.11.1]).

f
I f f
I a, b ∈ I a < b

x f (x) ≤ f (a) +
f (b) − f (a)

b − a
(x − a) f

I −f
Geometrically,  is convex if the secant that connects the points

 and  of the graph of  is above the graph of ,  is concave
if the secant is below the graph. For example  is convex, while  is
concave.  If  is also differentiable on  then  is convex (concave) on  if,
and only if,  is increasing (decreasing) on  (see [3, prop. 16.11.2]).

f
(a, f (a)) (b, f (b)) f f f

x2 −x2

f I f I
f I

Definition 2 (Inflection point): Let  be a real-valued function of a real
variable, and let  be a point inside its domain. If there exists a
neighbourhood  contained in the domain of  such that  is
convex on  and concave on  (or vice versa) then we
say that  is an inflection point for , or point of inflection, or flex. (See [3,
p. 402], [4, p. 248]).

f
x0

[x0 − δ, x0 + δ] f f
[x − δ, x0] [x0, x0 + δ]

x0 f

In other words, an inflection point is a point at which the concavity of
the function changes direction (from up to down or from down to up).

For simplicity, all the examples that we will provide in this Article will
show some symmetry. It is worth recalling that a real-valued function  of a
real variable is called odd if , while it is called even if

. Examples of the former are the functions , examples of
the latter are the functions  (with ). Odd functions are
symmetric with respect to the origin of the axes, meaning that their graphs
remain unchanged after a rotation of  about the origin. Even functions
are symmetric with respect to the -axis, meaning that their graphs remain

f
f (−x) = −f (x)

f (−x) = f (x) x2k + 1

f (x) = x2k k ∈ �

180°
y
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CLASSIFICATION OF STATIONARY POINTS 409

unchanged after a reflection over the -axis. Clearly, in order to plot an odd
or even function we just need to study the function in the half-plane .
By the very definition of the derivative, we see that if  is differentiable and
odd, then  is even, while if  is differentiable and even, then  is odd.
Differentiating changes the parity of the function. For example the function

 in Section 3 is an odd function (see Figure 2), while its derivative  is
even (see Figure 3).

y
x ≥ 0

f
f ′ f f ′

f 4 f 4′

2.2. Stationary points: Students learn in any calculus course that in order to
study a real function and plot it, the zeros of the first derivative are of
primary importance. That is why they deserve a name on their own:
Definition 3 (Stationary point): Let  be a real-valued function of a real
variable, differentiable on an open interval . A point  is called a
stationary point of  if the first derivative of  vanishes at , i.e. .

f
I x0 ∈ I

f f x0 f ′ (x0) = 0
In more geometric terms, a stationary point of  is a point at which the

tangent to the graph of  at  is horizontal.
f

f (x0, f (x0))

One of the cornerstones of calculus, Rolle's celebrated theorem ([5, thm.
2.3.4]), is actually a theorem on the existence of stationary points. Most of
the readers are no stranger to it, but it might be useful to recall it. Let  be a
continuous function on a proper, closed and bounded interval .
Assume that  is also differentiable on . Rolle's theorem states that if

, i.e. if the line joining the two points  and  on
the graph of  is a horizontal line, then there exists a stationary point inside
the interval, i.e. there is point on the graph of  with a horizontal tangent.
With a simple argument, just applying Rolle's theorem to

 instead of , Rolle's theorem can be extended to the

case , thus obtaining Lagrange's Mean Value Theorem ([5, thm.
2.3.4]). The Mean Value Theorem says that there exists a point
such that , which measures the slope of the tangent to the graph of  at

, is equal to the slope  of the chord joining the two

points  and  on the graph of . Rolle's theorem rests on two
principles: the first is the Extreme Value Theorem ([5, thm. 1.7.6]), that
asserts that a continuous function in a bounded closed interval attains both
its maximum and its minimum in the interval; the second is the reason why
stationary points are so important: when a function is differentiable, a local
(or relative) extremum point (i.e. a local maximum or a local minimum) is a
stationary point ([5, def. 2.3.1, thm. 2.3.2]). The converse of this last fact is
not true in general, but stationary points often indicate a local extremum or a
horizontal-tangent inflection point. An example of the former is the point

 for the function , an example of the latter is the point  for the
function , where the function goes from being concave to being convex .

f
[a, b]

f (a, b)
f (a) = f (b) (a, f (a)) (b, f (b))

f
f

f (x) −
f (b) − f (a)

b − a
f (x)

f (a) ≠ f (b)
c ∈ (a, b)

f ′ (c) f
(c, f (c)) f (b) − f (a)

b − a
(a, f (a)) (b, f (b)) f

x = 0 x2 x = 0
x3
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2.3. Regularity of derivatives and differentiability classes: Many readers are
certainly aware that if a function is differentiable then it is continuous ([5,
thm. 2.2.4]), but its derivative may not be continuous (e.g. the function  of
Sect. 2.4).

φ2

Anyway, the derivative  of a differentiable function  cannot be
discontinuous at will. We refer to [6] for a thorough discussion on this topic.
For our current purposes it suffices to recall that even if we do not assume
that  is continuous,  satisfies a typical property pertaining to continuous
functions: the Intermediate Value Property ([5, thm. 1.7.7]). This result is
called Darboux's theorem ([5, thm. 2.4.6], [6, thm. 2]). Probably it is not
well-known, but its proof just depends on Rolle's theorem, with an argument
that is not much more complicated than the proof of the Mean Value
Theorem from Rolle's. For these reasons it is worth stating and proving it.

f ′ f

f ′ f ′

Theorem (Darboux): Let  be a real-valued function of a real variable,
differentiable on an open interval . Let  and let  be a real
number between  and . Then there exists  such that

.

f
I [a, b] ⊆ I y

f ′ (a) f ′ (b) λ ∈ [a, b]
f ′ (λ) = y

Proof: Consider first the special case . If  the result
follows at once by Rolle's theorem. Suppose next that . The
hypothesis that  implies that there exists  such that

. Moreover, by the Intermediate Value Property for continuous
functions, it follows that there exists  such that , and
hence, by Rolle's theorem, there exists  such that . The
case  is similar: we use instead that . The general
case follows by setting , so that .

y = 0 f (a) = f (b)
f (a) < f (b)

f ′ (a) < 0 c > a
f (c) < f (a)

ξ ∈ (a, b) f (a) = f (ξ)
λ ∈ (a, ξ) f ′ (λ) = 0

f (a) > f (b) f ′ (b) > 0
g (x) = f (x) − yx g′ (x) = f ′ (x) − y

Remark: The shape of the graph of  between  and , in the special case,
resembles a ‘tick’ from a teacher marking a correctly presented solution.
Indeed some teachers call it the ‘tick argument’ so that students can recall
the theorem and its proof.

f a b

In particular Darboux's theorem states that if  then there
necessarily exists a point  such that . More simply:
can change sign only if it passes through 0. We will use this simple
observation later on (see Sect. 2.6).

f ′ (a) f ′ (b) < 0
λ ∈ (a, b) f ′ (λ) = 0 f ′

Of course, in many examples  is a little bit more regular that simply
differentiable, so  is continuous, and Darboux's theorem is equivalent to
the classical Intermediate Value Property.

f
f ′

Actually, functions can be classified according to their regularity
properties, i.e. according to the highest order of derivatives that exist and are
continuous:
Definition 4 (Functions of class ). Let  be a real-valued function of a real
variable defined on an open interval . If  is continuous on , we say that

Ck f
I f I f
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is of class  on . The set of all continuous functions on  is denoted by
. Here  is said to be continuously differentiable on , or of

(differentiability) class , if  is differentiable on  and its first derivative is
continuous on . The set of all such functions is denoted by  and  is
said to be -times continuously differentiable on , or of class , if  is -
times differentiable on , and the  th order derivative is continuous. The set
of all such functions is denoted by  and  is said to be infinitely
differentiable on , or of class , or smooth, if we can compute the
derivatives of  of any order. The set of all such functions is denoted by

. (See [5, def. 2.4.3]).

C0 I I
C0 (I) f I

C1 f I
I C1 (I) f

k I Ck f k
I k

Ck (I) f
I C∞

f
C∞ (I)

We have that . The inclusion is proper; see Sect. 2.4
or Sect. 3 for examples of functions that belong to  but not to

.

Ck (I) ⊂ Ck − 1 (I)
Ck − 1 (�)

Ck (�)

2.4. Non-isolated stationary points: Sometimes stationary points are not
isolated. This is trivially true for constant functions, but we can also produce
non-constant functions with stationary points that are surrounded by
infinitely many other stationary points. There are famous examples that can
be brought (see [7, chap. 3]). The idea is to consider a bounded function,
infinitely oscillating in a finite interval that contains 0 (for example ),
multiplied by monomials of sufficiently high degree (like ) that can make
the function defined and continuous at 0 as well, and also differentiable or
even more regular.

sin 1
x

xk

Let us consider the odd function

φ2 (x) =
⎧

⎩
⎨
⎪
⎪

x2 sin 1
x if x ≠ 0,

0 if x = 0.

Since  is bounded and  then  is continuous at 0. It is also

clearly differentiable everywhere, except at most at 0. If we check the
definition of the derivative as the limit of the difference quotient (see [5, def.
2.2.1] for the definition and [6, ex. 1] or [5, ex. 2.4.4] for the computations)
we see that  is differentiable also at 0 and . So  is a
stationary point,  is continuous and differentiable on all  and its first
derivative is:

sin 1
x lim

x → 0
x2 = 0 φ2

φ2 φ2′ (0) = 0 x = 0
φ2 �

φ2′ (x) =
⎧

⎩
⎨
⎪
⎪

2x sin 1
x − cos 1

x if x ≠ 0,
0 if x = 0.

The function  is plotted in Figure 1. Each local extremum in Figure 1 is a
stationary point, hence 0 is not an isolated stationary point.

φ2
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0.001

−0.04 −0.02

−0.001

0.040.02

y

x

FIGURE 1: Plot of the function φ2 (x)

Although  is differentiable,  is not continuous at 0, in fact
 does not exist. We can produce more regular functions by

increasing the exponent of .

φ2 φ2′
lim
x → 0

cos 1
x

x
Consider the following generalisation of the previous example ;(k ∈ �)

φk (x) =
⎧

⎩
⎨
⎪
⎪

xk sin 1
x if x ≠ 0,

0 if x = 0.

The function  is not continuous at 0,  is continuous but not
differentiable at 0. As we have just discussed,  is differentiable at 0, but
the first derivative is not continuous at 0 (therefore – a fortiori – the first
derivative is not differentiable at 0). By the same token, we can see that  is
differentiable at 0 and the first derivative is continuous at 0, but the first
derivative is still not differentiable at 0.  is twice differentiable at 0, but
the second derivative is not continuous at 0.  is twice differentiable at 0
and the second derivative is continuous at 0, but it is not differentiable, and
so on ... . In all the cases with , 0 is a non-isolated stationary point
(which is actually neither a local extremum nor an inflection point).

φ0 φ1
φ2

φ3

φ4
φ5

k ≥ 2

This discussion on  can be summed up by saying that  and
belong to  but not to , the former because it is not -
differentiable at 0, the latter because, even if it is -differentiable at 0, the
 th order derivative is not continuous at 0 (see [5, p. 65, ex. (4)]).

φk φ2k − 1 φ2k
Ck − 1 (�) Ck (�) k

k
k

We have seen that non-isolated stationary points can occur in
functions (for any ). That is true also for  functions, but in order to
produce an example we need an infinitesimal of higher order with respect to
any monomial . Let us consider

Ck

k C∞

xk

ε (x) =
⎧

⎩
⎨
⎪
⎪

e−1/x2 if x ≠ 0,
0 if x = 0.

We can repeatedly compute the derivatives of  using the usual calculus
rules, except at . For  we can compute the derivatives either by

ε
x = 0 x = 0
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computing limits of difference quotients, or by computing limits for
of the derivatives outside 0 (see [6, thm. 1]). In both cases, since

 for every , we see that  is infinitely differentiable on all  and

the derivatives of any order vanish at 0. We could have used  as well,
but the exponent 2 is more convenient. The function

x → 0

lim
x→ 0

e−1/x2

xk = 0 k ε �

e−1/|x|

γ (x) =
⎧

⎩
⎨
⎪
⎪

e−1/x2 sin 1
x if x ≠ 0,

0 if x = 0,

is an odd function that infinitely oscillates around 0, and so 0 is a non-
isolated stationary point (that is actually neither a local extremum nor an
inflection point).

2.5. Real analytic functions: In our quest for non-isolated stationary points,
clearly we could not have used polynomial functions, since polynomials
have just a finite number of zeros. Actually we could not have used any of
the elementary functions (sums, products, roots and compositions of finitely
many polynomial, rational, trigonometric, hyperbolic, and exponential
functions, including their inverse functions). Let us see why.

Definition 5 (Real analytic function): Let  be a real-valued function of a
real variable, defined on an open interval . Then  is said to be real analytic
on , or of class , if for every  there is an open interval

 in  such that there exists a power series
centred at  which converges to  on . The set of all such
functions is denoted by . ( See [8, def. 4.2.1]).

f
I f

I Cω x0 ∈ I
(x0 − δ, x0 + δ) I ∑+∞

k = 0 ck (x − x0)k

x0 f (x0 − δ, x0 + δ)
Cω (I)

In other words, real analytic functions are the functions that can be locally
expressed as a convergent real power series. By the theory of power series (see
[5, sect. 4.2] and [8, sect. 4.2]), if  is a real analytic function on  thenf I

•  is infinitely differentiable;f
• all the derivatives of  are real analytic;f
• unless , the zeros of  are isolated;f = 0 f
•  is equal to its Taylor series centred at  (for any ), i.e.

 in a neighbourhood of .

f x0 x0 ∈ I

f = ∑
+∞

k = 0

f (k) (x0)
k!

(x − x0)k x0

This last property entails an important consequence: unless  = constant, at
least one derivative  does not vanish at . Examples of real analytic
functions include all the elementary functions. On the contrary, the function
 (and also ) of Sect. 2.4 is not real analytic. In fact, all the derivatives of

vanish at 0, hence its Taylor series at 0 is the null function, that does
not coincide with  on any interval. This means that the inclusion

 is strict.

f
f (k) x0

ε γ ε

ε
Cω (I) ⊂ C∞ (I)

Let  be a real analytic function on .  is real analytic as well, so,
unless  is constant, the zeros of  (i.e. the stationary points) are isolated.

f I f ′
f f ′
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2.6. Isolated stationary points and the first derivative test: From now on we
will consider only isolated stationary points. Let  be a real-valued function
of a real variable, differentiable on an open interval , and let  be an
isolated stationary point for , that is: in a neighbourhood of ,  vanishes
only at .

f
I x0 ∈ I

f x0 f
x0

By Darboux's theorem ,  can change sign only if it passes through 0.
This means that only two things can happen near the isolated stationary
point :

f ′

x0

(1) either the first derivative changes sign at  (from positive to negative or
vice-versa), or

x0

(2) the first derivative keeps the same sign on both sides of .x0

The nature of an isolated stationary point can then be established by
checking the sign of  in a small interval to the left and to the right of the
stationary point. This is the so-called first derivative test (see [4], [5, thm.
2.4.2], [9, thm. 3.1]).

f ′ (x)

The first derivative test (even if not in its uttermost generality, for which
we refer to [9]) can be summed up in this way: if there exists a  such
that  on  and  on  then  is
strictly decreasing on  and strictly increasing on
(see [5, thm. 2.3.7]), therefore  is a local extremum, in particular a local
minimum; if  on  and  on  then
is strictly increasing on  and strictly decreasing on ,
therefore  is a local extremum, in particular a local maximum; if

 on  and  on  then  is strictly
increasing both on the left and on the right of , so  is not a local
extremum; if  on  and  on   then
 is strictly decreasing both on the left and on the right of  and so, as in the

previous case,  is not a local extremum. In other words, if the derivative
changes sign at  then we have a local extremum, otherwise we do not have
a local extremum.

δ > 0
f ′ (x) < 0 (x0 − δ, x0) f ′ (x) > 0 (x0, x0 + δ) f

(x0 − δ, x0) (x0, x0 + δ)
x0

f ′ (x) > 0 (x0 − δ, x0) f ′ (x) < 0 (x0, x0 + δ) f
(x0 − δ, x0) (x0, x0 + δ)

x0
f ′ (x) > 0 (x0 − δ, x0) f ′ (x) > 0 (x0, x0 + δ) f

x0 x0
f ′ (x) < 0 (x0 − δ, x0) f ′ (x) < 0 (x0, x0 + δ)

f x0
x0
x0

Since we need this , the first derivative test can be applied only to
isolated stationary points. As we have seen in the introduction, it is
commonly believed that if the first derivative does not change sign at the
stationary point then the stationary point is a flex. As we will see in the next
section, this is not always the case.

δ > 0

3.  Isolated stationary points that are neither local extrema nor inflection points
We want to find a differentiable function  with an isolated stationary

point at 0 that is neither a local extremum nor an inflection point. That is, we
look for a monotone function such that near 0 the function changes its
concavity infinitely often, i.e. near 0 the function has infinitely many
inflection points (and so the  in the Definition 2.2 cannot be found).

f

δ
The trick is to start with  (the easiest function with an isolated

horizontal-tangent inflection point at 0) and then perturb it slightly by an
x3
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oscillating function (e.g.  of Section 2.4) so that we can produce infinitely
many non-stationary inflection points. Let us consider the odd function

φ4

f 4 (x) =
⎧

⎩
⎨
⎪
⎪

x3 + x4 sin 1
x if x ≠ 0,

0 if x = 0.

Like ,  is continuous and differentiable on all . Its first derivative isφ4 f 4 �

f ′4 (x) =
⎧

⎩
⎨
⎪
⎪

3x2 + 4x3 sin 1
x − x2 cos 1

x if x ≠ 0,
0 if x = 0.

Like ,  is  and twice differentiable everywhere, but the second
derivative is not continuous at 0.

φ4 f 4 C1 (�)

We see that 0 is the only stationary point of ,  is an even function
that is positive everywhere (except at 0) so  is strictly increasing. The
function  is plotted in Figure 2, and its first derivative in Figure 3. We see

f 4 f ′4
f 4

f 4

-0.04 -0.02 0.02 0.04

-0.00002

-0.00004

0.00002

0.00004

FIGURE 2: Plot of the function f 4 (x)

-0.04 -0.02

0.005

0.004

0.003

0.002

0.001

0.02 0.04

y

x

FIGURE 3: Plot of the function f 4′ (x)
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that even if  is positive on both sides of 0,  repeatedly changes its trend:
the upward trends of Figure 3 correspond to intervals in which the function
is convex, the downward trends to intervals in which the function is
concave. So, while approaching 0, the curve changes its concavity infinitely
often. Each local extremum in Figure 3 (except ) corresponds to a
point of inflection in Fig. 2, hence the points of inflection accumulate
around 0. For these reasons 0 is not an inflection point.

f 4 f 4

x = 0

The previous example can be generalised using  of Section 2.4. For
every , , consider the odd function

φ2k
k ∈ � k ≥ 2

f 2k (x) =
⎧

⎩
⎨
⎪
⎪

x2k − 1 + x2k sin 1
x if x ≠ 0,

0 if x = 0,

its first derivative

f ′2k (x) =
⎧

⎩
⎨
⎪
⎪

(2k − 1) x2k − 2 + 2kx2k − 1 sin 1
x − x2k − 2 cos 1

x if x ≠ 0,
0 if x = 0,

and its second derivative

f ′′2k (x) =
⎧

⎩
⎨
⎪
⎪

x2k − 4μ (x) if x ≠ 0,
0 if x = 0,

where 

μ(x) = (2k − 1)(2k − 2)x + 2k (2k − 1)x2 sin
1
x

− (4k − 2)x cos
1
x

− sin
1
x

.

Like  of Section 2.4,  and it is -times differentiable on
, but the  th derivative is not continuous at 0.

φ2k f 2k ∈ C2k − 1 (�) k
� k

We see that  has an isolated stationary point at 0,  is positive
everywhere (except at 0), so  is strictly increasing. Anyhow, 0 is not an
inflection point, since, when approaching 0, the function changes its
concavity infinitely often. This last statement is not obvious, and we need to
justify it. That is why also the second derivative has been reported. Consider
that the second derivative is continuous everywhere (except maybe at 0):
this means that for each point at which the second derivative is positive
there is a neighborhood for which the first derivative is increasing and hence
the function is convex, and for each point at which the second derivative is
negative there is a neighborhood for which the first derivative is decreasing
and hence the function is concave. When  approaches 0 the second
derivative changes sign infinitely often, because the first factor  is
positive, while the second factor has an addend  that repeatedly moves
from −1 to 1, while the other summands tend to 0 when  tends to 0.

f 2k f ′2k
f 2k

x
x2k − 4

sin 1
x

x
For each  we have found examples of  functions with isolated

stationary points that are neither local extrema nor inflection points. It is
possible to find  functions with the same property.

k Ck

C∞

https://doi.org/10.1017/mag.2024.109 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.109


CLASSIFICATION OF STATIONARY POINTS 417

In this regard, consider the odd function

g (x) =

⎧

⎩

⎨
⎪

⎪

⎪

⎪

e−1/x + 1
2e−1/x sin 1

x if x > 0,
0 if x = 0,
−e1/x + 1

2e1/x sin 1
x if x < 0,

its first derivative

g′ (x) =

⎧

⎩

⎨
⎪

⎪

⎪

⎪

1
x2e−1/x (1 + 1

2 sin 1
x − 1

2 cos 1
x) if x > 0,

0 if x = 0,
1
x2e1/x (1 − 1

2 sin 1
x − 1

2 cos 1
x) if x < 0,

and its second derivative

g′′ (x) =

⎧

⎩

⎨
⎪

⎪

⎪

⎪

1
x4e−1/x (1 − cos 1

x + x (−2 − sin 1
x + cos 1

x)) if x > 0,
0 if x = 0,
− 1

x4e−1/x (1 − cos 1
x + x (2 − sin 1

x − cos 1
x)) if x < 0.

Notice that  (see [8, ex. 4.5.4] and Sect. 2.4). Again,  has
an isolated stationary point at 0,  is positive everywhere (except at 0), so
is strictly increasing. Anyway, 0 is not an inflection point, since, when
approaching 0, the function changes its concavity infinitely often. In fact,
consider the points  with . When  is even ,
when  is odd . We conclude as before.

g ∈ C∞ (�) g
g′ g

pn = 1
nπ n ∈ �\ {0} n g″ (pn) < 0

n g″ (pn) > 0

Remark: Let  be a real analytic function on an open interval . Let
be a stationary point for . Then in this case  is actually either a local
extremum or an inflection point, tertium non datur.

f I x0 ∈ I
f x0

In fact the zeros of analytic functions are isolated, and in particular
zeros are isolated for  and . This means that not only  is an isolated
stationary point, but also that in a neighbourhood of ,  vanishes at most
at . If  is not a local extremum then  must change sign at  (and
vanish there), otherwise  would be strictly increasing or decreasing and
would change sign at  as well. Therefore  is an inflection point.

f ′ f ″ x0
x0 f ″

x0 x0 f ″ x0
f ′

x0 x0

In other words, since the second derivative has isolated zeros, then
cannot change its concavity infinitely often.

f

4. Conclusion
In summary, this article is a remainder to students and practitioners that

some care is required when making more general statements about the first
derivative test. The first derivative test is a number line test that can discern
if an isolated stationary point is a local extremum or not, and also the nature
of the local extremum (minimum or maximum), but without other pieces of
information it cannot be used to conclude that an isolated stationary point is
an inflection point.
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In this Article we purposely focused on the first derivative test, but it is
worth mentioning both the famous second derivative test ([3, thm. 16.10.1]
or also [4] for its extended versions) and a higher-order derivative test (see
[4, Conclusion] or [3, thm. 16.10.3]). In particular, the latter classifies any
stationary point as a local minimum or a local maximum or a point of
inflection, provided that a non-zero derivative shows up eventually. It is
not coincidence that for all the examples , , ,  in Sections 2 and 3, the
 th order derivative either does not exist or it vanishes at .

φk γ f 2k g
n x0
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