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Abstract
In this paper, we study the approximate minimization problem of weighted finite automata (WFAs): to
compute the best possible approximation of a WFA given a bound on the number of states. By refor-
mulating the problem in terms of Hankel matrices, we leverage classical results on the approximation
of Hankel operators, namely the celebrated Adamyan-Arov-Krein (AAK) theory. We solve the optimal
spectral-norm approximate minimization problem for irredundant WFAs with real weights, defined over
a one-letter alphabet. We present a theoretical analysis based on AAK theory and bounds on the quality of
the approximation in the spectral norm and �2 norm. Moreover, we provide a closed-form solution, and
an algorithm, to compute the optimal approximation of a given size in polynomial time.

Keywords: Weighted finite automata; approximate minimization; Hankel matrices; AAK theory

1. Introduction
Weighted finite automata (WFAs) are an expressive class of models representing functions defined
over sequences. The approximate minimization problem is concerned with finding an automaton
that approximates the behavior of a given minimal WFA, while being smaller in size. Clearly,
the two automata compute different languages, so the objective is to minimize the approximation
error (Balle et al., 2015, 2019). Approximate minimization can be particularly useful in the context
of spectral learning algorithms (Bailly et al., 2009; Hsu et al., 2012; Balle et al., 2014a; Hsu et al.,
2012). When applied to a learning task, such algorithms can be viewed as working in two steps.
First, they compute a minimal WFA that explains the training data exactly. Then, they obtain a
model that generalizes to the unseen data by producing a smaller approximation to the minimal
WFA, thus preventing overfitting of the data.

A key point in solving approximation tasks is to choose how to quantify the error. We pro-
pose to rewrite the problem in terms of Hankel matrices, mathematical objects strictly related to
WFAs, and to measure the error in terms of the spectral norm. This allows us to exploit the work
of Adamyan, Arov, and Krein which has come to be known as AAK theory (Adamyan et al., 1971):
a series of results connecting the theory of complex functions to Hankel matrices. The core of this
theory provides us with theoretical guarantees for the exact computation of the spectral norm of
the error and a method to construct the optimal approximation. We show that the spectral norm
of the Hankel matrix of a WFA can be computed accurately in polynomial time (cubic in the
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number of states of the automaton). This is a great advantage compared, for example, to behav-
ioral norms, which are easier to interpret but harder to compute (Balle et al., 2017, 2022). The
spectral norm has another advantage over WFA-specific behavioral metrics. In fact, an important
extension of this work is the application of the method to other classes of models. In the one-letter
case, a similar algorithm can be found to approximate a black-box model over sequential data
using a WFA (Lacroce et al., 2021). With this in mind, we think that it is preferable to consider a
norm defined on the input-output function – or the Hankel matrix – rather than the parameters
of the specific model considered.

We summarize our main contributions:

• We apply AAK theory to the approximate minimization problem of WFAs by establishing a
correspondence between the parameters of a WFA and the coefficients of a complex function
on the unit circle. To the best of our knowledge, this paper represents the first attempt to apply
AAK theory to WFAs.

• We present a theoretical analysis of the optimal spectral-norm approximate minimization
problem of WFAs, based on their connection with finite-rank infinite Hankel matrices. We
provide a closed-form solution for real weighted automata A= 〈α,A, β〉 over a one-letter
alphabet, under the assumption ρ(A)< 1 on the spectral radius. We bound the approxima-
tion error, both in terms of the Hankel matrix (spectral norm) and of the rational function
computed by the WFA (�2 norm).

• We propose a self-contained algorithm that returns the unique optimal spectral-norm
approximation of a given size in polynomial time.

• We tighten the connection,made in (Balle et al. (2019), betweenWFAs and discrete dynamical
systems, by adapting some of the control theory concepts to this setting, for example the all-
pass system (Glover, 1984).

In this paper, we present and expand the results of our previous work (Balle et al., 2021). The
contents of this paper are organized as follows. In Section 2, we define the notation that will be
used throughout the paper and review a series of well-known results from the theory of automata
and from functional analysis. In Section 3, we establish the framework to reformulate the approxi-
mate minimization problem in terms of Hankel operators and AAK theory. Section 4 presents the
theoretical foundation of our contribution and a closed-form solution for our problem. Section 5
shows how to implement the algorithm derived from the solution obtained in the previous sec-
tion, while in Section 6 we provide an example and compute the optimal approximation of a
givenWFA. Section 7 discusses the related work in approximate minimization and control theory.
Finally, in Sections 8 and 9 we highlight possible directions for future work, analyze the limitations
of this approach, and summarize our contribution.

2. Background
In this section, we recall the fundamental definitions and preliminary results that are used
throughout the paper. After defining weighted finite automata and Hankel matrices, we will pro-
vide an overview of AAK theory. We will see in the next section that our objective is to rewrite the
approximate minimization problems as low-rank approximation of a Hankel matrix. In the paper,
We use AAK theory to solve the low-rank approximation problem while preserving the Hankel
property.

2.1 Preliminaries
Wedenote withN,Z,R, andC the set of natural, integers, real and complex numbers, respectively.
We use bold letters for vectors andmatrices; all vectors considered are column vectors. We denote
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with 1 the identity matrix, specifying its dimension only when not clear from the context. We
refer to the i-th row and the j-th column ofM byM(i, : ) andM(:, j). Given a matrixM ∈Rp×q of
rank n, a rank factorization is a factorizationM= PQ, where P ∈Rp×n,Q ∈Rn×q, and rank(M)=
rank(P)= rank(Q)= n. Let M ∈Rp×q of rank n, the compact singular value decomposition SVD
ofM is the factorizationM=UDV�, whereU ∈Rp×n,D ∈Rn×n,V ∈Rq×n are such thatU�U=
V�V= 1, and D is a diagonal matrix. The columns of U and V are called left and right singular
vectors, while the entries ofD are the singular values. TheMoore-Penrose pseudo-inverseM+ ofM
is the unique matrix such that MM+M=M, M+MM+ =M+, with M+M and MM+ Hermitian
(Zhu, 1990). The spectral radius ρ(M) of a matrixM is the largest modulus among its eigenvalues.

A Hilbert space is a complete normed vector space where the norm arises from an inner prod-
uct. A linear operator T : X→ Y between Hilbert spaces is bounded if it has finite operator norm,
that is ‖T‖op = sup‖g‖X≤1 ‖Tg‖Y <∞. We denote by T the (infinite) matrix associated with T by
some (canonical) orthonormal basis on H. An operator is compact if the image of the unit ball in
X is relatively compact. Given Hilbert spaces X, Y and a compact operator T : X→ Y , we denote
its adjoint by T∗. The singular numbers {σn}n≥0 of T are the square roots of the eigenvalues of the
self-adjoint operator T∗T, arranged in decreasing order. A σ -Schmidt pair {ξ , η} for T is a couple
of norm 1 vectors such that: Tξ = ση and T∗η= σ ξ . The Hilbert-Schmidt decomposition pro-
vides a generalization of the compact SVD for the infinite matrix of a compact operator T using
singular numbers and orthonormal Schmidt pairs: Tx=∑n≥0 σn〈x, ξn〉ηk (Zhu, 1990). The spec-
tral norm ‖T‖ of the matrix representing the operator T is the largest singular number of T. Note
that the spectral norm of T corresponds to the operator norm of T.

Let �2 be the Hilbert space of square-summable sequences over �∗, with norm ‖f ‖22 =∑
x∈�∗ |f (x)|2 and inner product 〈f , g〉 =∑x∈�∗ f (x)g(x) for f , g ∈R�

∗ . Let T= {z ∈C : |z| = 1}
be the complex unit circle, D= {z ∈C : |z|< 1} the (open) complex unit disc. Let 1< p<∞,
L p(T) be the space of measurable functions on T for which the p-th power of the absolute value
is Lebesgue integrable. For p=∞, we denote with L∞(T) the space of measurable functions that
are bounded, with norm ‖f ‖∞ = sup{|f (x)| : x ∈T}.

2.2 Hankel matrix and weighted automata
Let � be a fixed finite alphabet and �∗ be the set of all finite strings with symbols in �. We
denote with ε the empty string. Given p, s ∈�∗, we denote with ps the string obtained by their
concatenation. Let f :�∗ →R be a function defined on sequences, we consider the bi-infinite
matrixHf ∈R�∗×�∗ having rows and columns indexed by strings and defined byHf (p, s)= f (ps)
for p, s ∈�∗.

Definition 1. AmatrixH ∈R�∗×�∗ isHankel if for all p, p′, s, s′ ∈�∗ such that ps= p′s′, we have
H(p, s)=H(p′, s′).

Given a Hankel matrix H ∈R�∗×�∗ , there is a unique function f :�∗ →R such that Hf =H.
Intuitively, the Hankel property tells us that each entry of the matrix only depends on the compo-
sition of the coordinates. Since rows and columns are indexed using strings, then the value stored
in each entry only depends on the string obtained by concatenating the coordinates.

Weighted finite automata are a class of models defined over sequential data. A weighted finite
automaton (WFA) of n states over � is a tuple A= 〈α, {Aa}a∈� , β〉, where α, β ∈Rn are the
vector of initial and final weights, respectively, and Aa ∈Rn×n is the matrix containing the tran-
sition weights associated with each symbol a ∈�. Every WFA A with real weights realizes (or
computes) a function fA :�∗ →R, that is given a string x= x1 · · · xt ∈�∗, it returns fA(x)=
α�Ax1 · · ·Axtβ = α�Axβ . A function f :�∗ →R is called rational if there exists a WFA A that
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realizes it. Given f :�∗ →R, we can use the Hankel matrixHf ∈R�∗×�∗ to recover information
about the weighted automaton computing f .

Theorem 2 (Carlyle and Paz (1971); Fliess (1974)). A function f :�∗ →R is realized by a WFA
A if and only if Hf has finite rank. In that case, the rank of Hf corresponds to the minimal number
of states of any automaton realizing f .

Given a WFA A= 〈α, {Aa}a∈� , β〉, the forward matrix of A is the infinite matrix FA ∈R�∗×n
given by FA(p, :)= α�Ap for any p ∈�∗, while the backward matrix of A is BA ∈R�∗×n, given
by BA(s, :)= (Asβ)� for any s ∈�∗. LetHf be the Hankel matrix of f , its forward-backward (FB)
factorization is:Hf = FB�. AWFA with n states is reachable if rank(FA)= n, while it is observable
if rank(BA)= n. A WFA isminimal if it is reachable and observable. If A is minimal, the (unique)
FB factorization is a rank factorization (Balle et al., 2014a).

We recall the definition of the singular value automaton, a canonical form for WFAs (Balle
et al., 2015).

Definition 3. Let f :�∗ →R be a rational function and supposeHf admits an SVD,Hf =UDV�.
A singular value automaton (SVA) for f is the minimal WFA A realizing f such that FA =UD1/2

and BA =VD1/2.

The SVA can be computed with an efficient algorithm relying on the following matrices (Balle
et al., 2019).

Definition 4. Let f :�∗ →R be a rational function,Hf = FB� the FB factorization. If the matrices
P= F�F and Q= B�B are well defined (i.e., the inner products of their columns are finite for any
column), we call P the reachability Gramian and Q the observability Gramian.

If A is in its SVA form, the Gramians associated with its FB factorization satisfy PA =QA =
D, where D is the matrix of singular values of the corresponding Hankel matrix. The Gramians
can alternatively be characterized and computed (Balle et al., 2019)) using fixed point equations,
corresponding to Lyapunov equations when |�| = 1 (Lyapunov, 1950).

Theorem 5. Let |�| = 1,A= 〈α,A, β〉 aWFA with n states and well-defined Gramians P,Q. Then
X= P and Y =Q solve the equations X−AXA� = ββ� and Y −A�YA= αα�.

Finally, we recall the definition of generative probabilistic automata (GPA). A WFA A=
〈α, {Aa}a∈� , β〉 is a GPA if fA(x)≥ 0 for every x and

∑
x∈�∗ fA(x)= 1, that is if fA computes a

probability distribution over�∗. In general, this class of automata can contain pathological exam-
ples having states not connected to any final state. To avoid these cases, we introduce the following
property on the spectral radius of the transition matrix.

Definition 6. Given aWFA A= 〈α, {Aa}a∈� , β〉, let A=∑a∈� Aa. The WFA A is irredundant if
ρ(A)< 1.

2.3 AAK theory
In this section, we introduce the theory of optimal approximation for Hankel operators and com-
plex functions known as AAK theory (Adamyan et al., 1971). A comprehensive presentation of
the concepts recalled in this section can be found in Nikol’Skii (2002); Peller (2012).
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We consider the space of square-integrable complex functions on the unit circle L 2(T). To
avoid any confusion with functions defined over sequences, when dealing with complex function
we make explicit the dependence on the complex variable z= eit . Note that a function φ(z) ∈
L 2(T) can be represented, using the orthonormal basis {zn}n∈Z, by means of its Fourier series:
φ(z)=∑n∈Z φ̂(n)zn, with Fourier coefficients φ̂(n)=

∫
T
φ(z)z̄ndz, n ∈Z. Thus, we can partition

the function space L 2(T) into two subspaces.

Definition 7. The Hardy space H 2 and the negative Hardy space H 2− on T are the subspaces of
L 2(T) defined as:

H 2 = {φ(z) ∈L 2(T) : φ̂(n)= 0, n< 0
}
,

H 2− =
{
φ(z) ∈L 2(T) : φ̂(n)= 0, n≥ 0

}
.

Interestingly, the elements of the Hardy space can be canonically identified with the set of func-
tions analytic in the unit disc D, with the property that the square of their absolute value is
integrable on T (a proof can be found in Nikol’Skii (2002)). Thus, we will make no difference
between these functions in the unit disc and their boundary value on the circle. Moreover, we
remark that the definition of Hardy space can be generalized for any p-th power of the functions’
absolute value, for 0< p≤∞.

We define Hankel operators in the Hardy spaces.

Definition 8. Let φ(z) be a function in the space L 2(T). A Hankel operator is an operator Hφ :
H 2→H 2− defined by Hφ f (z)= P−φf (z), where P− is the orthogonal projection from L 2(T) onto
H 2− . The function φ(z) is called a symbol of the Hankel operator Hφ .

The matrixHφ associated with the Hankel operator Hφ :H 2→H 2− is:

Hφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂(− 1) φ̂(− 2) φ̂(− 3) . . .

φ̂(− 2) φ̂(− 3) φ̂(− 4) . . .

φ̂(− 3) φ̂(− 4) φ̂(− 5) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

Note that this matrix satisfies the Hankel property, as each entry only depends on the composition
of the corresponding coordinates.

Nehari’s theorem (Nehari, 1957), characterizes bounded Hankel operators and their norm.

Theorem 9 (Nehari (1957)). Let φ ∈L 2(T) be a symbol of the Hankel operator on Hardy spaces
Hφ :H 2→H 2−. Then, Hφ is bounded on H 2 if and only if there exists ψ ∈L∞(T) such that
ψ̂(m)= φ̂(m) for all m< 0. If the conditions above are satisfied, then:

‖Hφ‖ = inf
{‖ψ‖∞ : ψ̂(m)= φ̂(m), m< 0

}
. (2)

As a consequence of Theorem 9, if Hφ is a bounded operator, we can consider without loss
of generality φ(z) ∈L∞(T). We remark that a Hankel operator has infinitely many different
symbols, since Hφ =Hφ+ψ for ψ(z) ∈H ∞.
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Definition 10. The complex function φ(z) is rational if φ(z)= p(z)/q(z), with p(z) and q(z) poly-
nomials. The rank of φ(z) is the maximum between the degrees of p(z) and q(z).A rational function
is strictly proper if the degree of p(z) is strictly smaller than that of q(z).

The following result of Kronecker relates finite-rank infinite Hankel matrices to rational functions.

Theorem 11 (Kronecker (1881)). Let Hφ be a bounded Hankel operator with matrix H. Then H
has finite rank if and only if P−φ is a strictly proper rational function. Moreover, the rank of H is
equal to the number of poles (with multiplicities) of P−φ inside the unit disc.

We are ready to state the main result of Adamyan et al. (1971). The theorem shows that for
infinite dimensional Hankel matrices the constraint of preserving the Hankel property does not
affect the achievable approximation error.

Theorem 12 (Adamyan et al. (1971)). Let Hφ be a compact Hankel operator of rank n, matrix
H and singular numbers σ0 ≥ · · · ≥ σn−1 > 0. Then there exists a unique Hankel operator Hg with
matrix G of rank k< n such that:

‖Hφ −Hg‖ = ‖H−G‖ = σk. (3)

We denote with Rk ⊂H ∞− the set of strictly proper rational functions of rank k, and we
consider the set of functions:

H ∞
k =

{
ψ ∈L∞(T) : ∃g ∈Rk, ∃l ∈H ∞, ψ = g + l

}
. (4)

The proof of the AAK theorem is directly connected with the problem of approximating a
bounded function defined on the unit circle. In fact, the theorem can be reformulated in terms
of the symbols associated with the Hankel operators.

Theorem 13 (Adamyan et al. (1971)). Let φ ∈L∞(T). Then there exists a complex function ψ ∈
H ∞

k such that:
‖φ −ψ‖∞ = σk(Hφ). (5)

This theorem provides us with an alternative interpretation of singular numbers, relating them
to the “smoothness” of the corresponding operator (or symbol). The advantage of this second
formulation is that its proof is constructive and tells us how to find the function ψ . We state as a
corollary the critical steps of the proof, that allows us to find the best approximating symbol.

Corollary 14. Let φ and {ξ k, ηk} be a symbol and a σk-Schmidt pair for Hφ . A function ψ ∈
L∞(T) is the best AAK approximation according to Theorem 13, if and only if:

(φ −ψ)ξ+k = σkη−k . (6)
Moreover, the function ψ does not depend on the particular choice of the pair {ξ k, ηk}.

Note that the solutions of Theorem 12 and 13 are strictly related.

Corollary 15. Let ψ ∈H ∞
k , with ψ = l+ g, g ∈Rk, l ∈H ∞. If ψ solves Equation 5, then Hg is

the unique Hankel operator from Theorem 12.

In particular, this means that to find the Hankel operator Hg corresponding to the optimal
approximation, we can first obtain ψ by applying Corollary 14. Then, we can extract the rational
component g of ψ : this will correspond to a symbol forHg .
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3. AAK Theory and Approximate Minimization
Theorem 2 establishes a correspondence between a given minimal WFA A with n states and a
Hankel matrix H of rank n. The relation between rank and number of states is what motivates
our choice to reformulate the approximate minimization problem as low-rank approximation of
the Hankel matrix. The approach that we propose to approximate A is to find the minimal WFA
corresponding to the Hankel matrix that minimizes H optimally in the spectral norm. We recall
the fundamental result of Eckart and Young (1936).

Theorem 16 (Eckart and Young (1936)). Let H be a Hankel matrix corresponding to a compact
Hankel operator of rank n, and σm, with 0≤m< n and σ0 ≥ · · · ≥ σn−1 > 0, its singular numbers.
Then, if R is amatrix of rank k,we have: ‖H−R‖ ≥ σk.The equality is attained whenR corresponds
to the truncated SVD of H.

In the following example, we compute the low-rank approximation of a finite Hankel matrix
using the truncated SVD.

Example 1. We consider the Hankel matrixM ∈R3×3,

M=

⎛⎜⎜⎝
1 2 3

2 3 1

3 1 2

⎞⎟⎟⎠ .

The singular value decomposition of M isM=UDV�, with

U=

⎛⎜⎜⎜⎝
1√
3

√
2
3 0

1√
3
− 1√

6
1√
2

1√
3
− 1√

6
− 1√

2

⎞⎟⎟⎟⎠ , D=

⎛⎜⎜⎜⎝
6 0 0

0
√
3 0

0 0
√
3

⎞⎟⎟⎟⎠ V=

⎛⎜⎜⎜⎝
1√
3
− 1√

2
− 1√

6
1√
3

0
√

2
3

1√
3

1√
2
− 1√

6

⎞⎟⎟⎟⎠ .

The rank 2matrixM obtained by truncating the SVD is not Hankel:

M=

⎛⎜⎜⎜⎝
1 2 3
5
2 2 3

2
5
2 2 3

2

⎞⎟⎟⎟⎠ .

It is easy to see that the low-rank approximation of a Hankel matrix obtained by truncating
its SVD is not in general a Hankel matrix. This is problematic, since the low-rank approximation
needs to be a Hankel matrix in order to correspond to a WFA. On the other hand, we have seen
that, by applying AAK theory, we can find the optimal Hankel matrix minimizing the (Hankel)
matrix of a Hankel operator in the Hardy spaces. Our objective is to find a way to apply AAK the-
ory to solve the approximate minimization problem of WFAs. To do this, we need an appropriate
framework to reformulate this task in terms of Hankel operators and complex functions.

3.1 Defining a Hankel operator: the one-letter assumption
As a first step, we want to understand whether or not a Hankel operator on the Hardy space can
be associated with the Hankel matrix of a weighted automaton. To do so, we compare the Hankel
matrix Hf of a WFA realizing a function f over an alphabet �, to the Hankel matrix Hφ of a
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Hankel operator in the Hardy space:

Hf =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (ε) f (a) f (b) . . .

f (a) f (aa) f (ab) . . .

f (b) f (ba) f (bb) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Hφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂(− 1) φ̂(− 2) φ̂(− 3) . . .

φ̂(− 2) φ̂(− 3) φ̂(− 4) . . .

φ̂(− 3) φ̂(− 4) φ̂(− 5) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

We remark that the columns and rows ofHf are indexed using the letters of the alphabet �:
Hf (p, s)= f (ps) for p, s ∈�,

while in the case ofHφ , the entries are indexed using natural numbers

Hφ(j, k)= φ̂(− j− k− 1) for j, k≥ 0.
If we think of the intuitive definition of the Hankel property presented in the previous section,
we have that it holds in both cases the entries of the matrices only depend on the composition
of the coordinate. Note that “composition” means concatenation of letters in the first case, and
sum of numbers in the second one. One fundamental difference is that adding natural numbers
is a commutative operation, while concatenating letters is not. For example, while for the matrix
corresponding to a Hankel operator in the Hardy space we have:

Hφ(0, 1)= φ̂(− 2)=Hφ(1, 0),
in the case of the WFA’s matrix, this is not true:

Hf (a, b)= f (ab) �= f (ba)=Hf (b, a).
This fact reflects in the much stronger structural property satisfied by Hankel of matrices in the
Hardy spaces, where the Hankel property implies that the anti-diagonals have constant entries.
This property is not reflected by the matrix of an arbitrary WFA, so it is not always possible to
associate a Hankel operator to an automaton over an alphabet of arbitrary size, and AAK theory
cannot be generally applied. The only case in which concatenation of strings is commutative is
when we are restricting our focus on alphabets of one letter. In particular, when |�| = 1, the set of
strings �∗ can be identified with N. Therefore, the function f :�∗ →R recognized by a minimal
WFA can be rewritten as f :N→R, and theHankel matrixHf associated with it can be interpreted
as thematrix of a Hankel operator between sequencesHf : �2→ �2. In this case, the Hankel matrix
is defined byH(i, j)= f (i+ j), for i, j≥ 0:

Hf =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (0) f (1) f (2) . . .

f (1) f (2) f (3) . . .

f (2) f (3) f (4) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the Fourier isomorphism, we can interpret Hf as the matrix Hφ of a Hankel opera-
tor over Hardy spaces, associated with a complex function φ ∈L 2(T). In particular, we can
embed the sequence space �2 into �2(Z) by “duplicating” each vector, that is by associating
μ= (μ0,μ1, . . . ) ∈ �2 toμ(2) = ( . . . ,μ1,μ0,μ1, . . . ) ∈ �2(Z). Then, we can use the Fourier iso-
morphism to map the vector μ(2) ∈ �2(Z) to the complex function space L 2(T). In this way, each

https://doi.org/10.1017/S0960129524000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000276


Mathematical Structures in Computer Science 9

Figure 1. Graphical representation of the generative probabilistic automaton described in Example 2.

vector μ ∈ �2 corresponds to two functions in the Hardy spaces:

μ−(z)=
∞∑
j=0

μjz−j−1 ∈H 2−, (8)

μ+(z)=
∞∑
j=0

μjzj ∈H 2.

Moreover, we can derive the relationship between f and φ:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

fA(0) fA(1) fA(2) . . .

fA(1) fA(2) fA(3) . . .

fA(2) fA(3) fA(4) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂(− 1) φ̂(− 2) φ̂(− 3) . . .

φ̂(− 2) φ̂(− 3) φ̂(− 4) . . .

φ̂(− 3) φ̂(− 4) φ̂(− 5) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

from which we obtain:
f (n)= φ̂(− n− 1). (9)

Since we know how to express the function f with respect to the parameters of the WFA, we
can explicitly compute the rational component of the symbol:

P−φ =
∑
k≥0

f (k)z−k−1 =
∑
k≥0

α�Akβz−k−1 = α�(z1−A)−1β , (10)

where the last equality holds only if ρ(A)< 1.
The correspondence between symbol and function computed by a model allows us to reformu-

late the approximation problem in terms of Hankel operators and functions in the complex space
and to apply AAK theory.

We consider the following example, from Balle et al. (2021).

Example 2. Let |�| = 1,� = {x},we consider theWFAA= 〈α,A, β〉 represented in Figure 1,with:

A=
⎛⎝ 0 1

2

1
2 0

⎞⎠ , α =
⎛⎝ √32

0

⎞⎠ , β =
⎛⎝ √32

0

⎞⎠ ,

Note that A is a generative probabilistic automaton. Indeed, we have that

• fA(x)≥ 0
•
∑

x∈�∗ fA(x)= 1,
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since the rational function realized by the WFA is defined as:

fA(x · · · x)= fA(k)= α�Akβ =
{
0 if k is odd
3
42
−k if k is even

where k corresponds to the string where x is repeated k-times. We remark that A is minimal and
already in its SVA form, with Gramians

P=Q=
⎛⎝ 4

5 0

0 1
5

⎞⎠ . (11)

The corresponding Hankel matrix, with entries defined asH(i, j)= f (i+ j), has rank 2:

H=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

fA(0) fA(1) fA(2) . . .

fA(1) fA(2) fA(3) . . .

fA(2) fA(3) fA(4) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
4 0 3

16 . . .

0 3
16 0 . . .

3
16 0 3

64 . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

Now, we can apply the second interpretation of the Hankel matrix and look at it with respect to the
symbol, using the definitionH(j, k)= φ̂(− j− k− 1).We have:

H=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
4 0 3

16 . . .

0 3
16 0 . . .

3
16 0 3

64 . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̂(− 1) φ̂(− 2) φ̂(− 3) . . .

φ̂(− 2) φ̂(− 3) φ̂(− 4) . . .

φ̂(− 3) φ̂(− 4) φ̂(− 5) . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We can recover the rational component of a symbol, that is the projection of φ on the negative Hardy
space.

P−φ =
∑
n≥0

φ̂(− n− 1)z−n−1 =
∑
n≥0

3
4
4−nz−2n−1 = 3z

4z2 − 1
.

Note that this is a complex rational function having degree 2, and it has two poles inside the unit disc
at z=± 1

2 (as predicted by Theorem 11). It is important to remark that from the Hankel matrix, we
can only recover the negative Fourier coefficients of φ, meaning only the component of the symbol
that belongs to the negative Hardy space.

4. Solving the Approximate Minimization Problem
In this section, we present the theoretical contribution of this paper, a closed-form solution for
the approximate minimization problem.

4.1 Assumptions
We briefly list and analyze the assumptions made to solve the approximate minimization prob-
lem. A class of automata that automatically satisfies the following properties is that of generative
probabilistic automata.
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4.1.1 One-letter alphabet
We tackle the approximate minimization problem in the case of automata with real weights,
defined over a one-letter alphabet. As discussed before, this assumption is needed in order to
apply AAK theory and will hold for the rest of the paper (see Section 3.1 for more details).

4.1.2 SVA form
We assume that the minimal WFA A= 〈α,A, β〉 is in SVA form. This assumption is not neces-
sary, as the SVA can be efficiently computed from a WFA satisfying the set of assumptions stated
above (Balle et al., 2019). Starting from a WFA in SVA form allows us to obtain results that are
representation-independent. Since the alphabet has size one, the Hankel matrix H is symmetric.
Therefore, if we denote with λi the i-th non-zero eigenvalue ofH, and we consider the coordinates
of α and β , we have that αi = sgn (λi)β i, where sgn (λi)= λi/|λi|.

4.1.3 Compactness of the operator
To apply Theorem 12, we need the Hankel operator H to be compact. To ensure that this condi-
tion is satisfied, we study the respective Hankel matrix. In our setting, the Hankel matrix has finite
rank (equal to the number of states of the minimal WFA that we are considering). Moreover, the
singular values can be computed exactly using the Gramianmatrices introduced in Definition 4. A
finite-rank operator is compact if it is bounded. Therefore, we just need to check that the Hankel
operator is bounded. To this extent, Balle et al. (2019) show that it is enough that the WFA being
considered computes a function f ∈ �2. We make the slightly stronger assumption that the transi-
tion matrix A is irredundant, that is that ρ(A)< 1, where ρ is the spectral radius. This condition
directly implies boundness and the existence of the SVA and the Gramianmatrices P andQ, where
P=Q and are diagonal matrices (Balle et al., 2019). Moreover, it allows us to compute a closed
form for the symbol of a WFA, as seen in Equation 10.

4.2 Problem formulation
Let A= 〈α,A, β〉 be a minimal irredundant WFA with n states and real weights, defined over a
one-letter alphabet and represented in its SVA form. Let H be the Hankel matrix of A, we denote
with σi, for 0≤ i< n, the singular numbers. Given a target number of states k< n, we say that a
WFA Âk with k states solves the optimal spectral-norm approximate minimization problem if the
Hankel matrix G of Âk satisfies:

‖H−G‖ = σk(H). (13)

Note that the content of the “optimal spectral-norm approximate minimization” is equivalent
to the problem solved by Theorem 12, with the exception that here we represent the inputs and
outputs of the problem effectively by means of WFAs.

Based on the AAK theory sketched in Section 2.3, we draw the following steps:

1. Compute a symbol for the WFA. Given an irredundant WFA on a one-letter alphabet, we
consider its Hankel matrix H and the function f that it is computing. We use Equation 10 to
associate a complex rational function to the WFA.

2. Compute the optimal symbol ψ(z) using Corollary 14. The main challenge here is to find
a suitable representation for the functions ψ(z) and e(z)= φ(z)−ψ(z). We define them
in terms of two auxiliary WFAs. The key point is to select constraints on their parame-
ters to leverage the properties of weighted automata, while still keeping the formulation
general.
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3. Extracting the rational component by solving for g(z) in Corollary 15. This step is arguably the
most conceptually challenging, as it requires to identify the position of the function’s poles.
In fact, we know from Theorem 11 that g(z) has k poles, all inside the unit disc.

4. Find aWFA representation for g(z). Since in Step 2 we parametrized the functions usingWFAs,
the expression of g(z) directly reveals the WFA Âk.

4.3 Finding the optimal approximation
We analyze each of the steps detailed above.

4.3.1 Finding a symbol for the WFA
Let A= 〈α,A, β〉 be a minimal irredundant WFA with n states, already represented in SVA form.
A realizes a function f :�∗ →R, defined over a one-letter alphabet � = {a}. Let H be its Hankel
matrix, with corresponding bounded Hankel operator H, and singular numbers σi, for 0≤ i< n.

As seen in sub-section 3.1, we can associate a complex function to theWFA. In particular, since
we are assuming that A is irredundant, from Equation 10 we obtain an expression for the rational
component of the symbol:

P−φ = α�(z1−A)−1β . (14)

4.3.2 Finding the optimal symbol
To find the solution to Theorem 12, we need to first derive the function ψ from Theorem 13.
Therefore, the second step to solve the approximate minimization problem is to find a proper
expression for the complex functionsψ and e= φ −ψ described in Theorem 13. Since our objec-
tive is to find the WFA corresponding to the optimal approximation, we focus on representing
these functions using the parameters of two auxiliary WFAs. We consider a WFA Â= 〈̂α, Â, β̂〉
with more than k states, such that the automaton E= 〈αe,Ae, βe〉 computing the difference
between A and Â is minimal, with:

Ae =
⎛⎝A 0

0 Â

⎞⎠ , αe =
⎛⎝ α

−α̂

⎞⎠ , βe =
⎛⎝β

β̂

⎞⎠ . (15)

Now, given C ∈H ∞, we consider the complex functions:

ψ = α̂�(z1− Â)−1β̂ + C
e= φ −ψ = α�e (z1−Ae)−1βe − C.

The idea is that we want to find the parameters of Â that make ψ the solution of Theorem 13.
By definition,ψ is the sum of two components, one that is bounded around the unit circle and one
that has k poles inside the unit disc (where k is the size of the sought approximation). Therefore,
there cannot be poles on the unit circle. By looking at the way we defined the function ψ , we can
see that its poles correspond to the eigenvalues of Â, counted with their multiplicities. Thus, in
order for ψ to be the solution of Theorem 13, 1 cannot be an eigenvalue of Â, and the WFA Â
needs to have at least k states.

As remarked in the previous section, the parameters of the automaton A only encode the
negative Fourier coefficients of the symbol. We add C to the definition of ψ to account for
the H ∞ component when considering the difference φ −ψ . In fact, while this component of
the symbol does not affect the spectral norm, it plays a role in the computation of the L∞-norm
(in Equation 5), so it cannot be entirely dismissed. Nonetheless, we won’t need to find the value
of C, as ultimately we are only interested in the WFA’s parameters.
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Now that we have an expression for ψ and e, we can look back at Theorem 13. From this the-
orem, we know that by definition, σ 1

k e is a unimodular function. This property of e can be used
to derive a set of constraints on the parameters of the WFA E= 〈αe,Ae, βe〉. In particular, it is
possible to use the maximum modulus principle, according to which the maximum modulus of
an holomorphic function is attained on the boundary of the domain. To do so, we leverage a
result from the control theory literature (Chui and Chen, 1997), that can be easily applied to our
setting. In fact, a parallel can be drawn between dynamical systems and automata, by noting that
the impulse response of a discrete time-invariant Single-Input-Single-Output SISO system can be
parametrized as a WFA over a one-letter alphabet. This allows us to apply a theorem from Chui
and Chen (Chui and Chen (1997), Theorem 6.3) to find two matrices, Pe andQe, satisfying prop-
erties similar to those of the Gramians. It is important to notice that, a priori, the controllability
and observability Gramians of Emight not be well defined.

Theorem 17 (Chui and Chen (1997)). Consider the function e= α�e (z1−Ae)−1βe − C and the
corresponding minimal WFA E= 〈αe,Ae, βe〉 associated with it. σ−1k e is unimodular if and only if
there exists a unique pair of symmetric invertible matrices Pe and Qe satisfying:

(1) Pe −AePeA�e = βeβ
�
e

(2) Qe −A�e QeAe = αeα�e
(3) PeQe = σ 2

k 1

We can now derive the parameters of the WFA Â= 〈̂α, Â, β̂〉 that make ψ the solution of
Theorem 13.

Theorem 18. Let A= 〈α,A, β〉 be a minimal WFA with n states in its SVA form, and let φ =
α�(z1−A)−1β be a symbol for its Hankel operator H. Let σk be a singular number of multiplicity
r for H, with:

σ0 ≥ . . . > σk = · · · = σk+r−1 >σk+r ≥ · · · ≥ σn−1 > 0. (16)
We can partition the Gramian matrices P,Q as follows:

P=Q=
⎛⎝� 0

0 σk1r

⎞⎠ , (17)

where � ∈R(n−r)×(n−r) is the diagonal matrix containing the remaining singular numbers, and
partition A, α and β to conform with the Gramians:

A=
⎛⎝A11 A12

A21 A22

⎞⎠ , α=
⎛⎝α1

α2

⎞⎠ , β =
⎛⎝β1

β2

⎞⎠ . (18)

Let R= σ 2
k 1n−r −�2, we denote by (·)+ the Moore-Penrose pseudo-inverse. The function ψ =

α̂�(z1− Â)−1β̂ + C is the best approximation of φ if and only if:

• If α2 �= 0: ⎧⎪⎪⎨⎪⎪⎩
β̂ =−ÂA�21(β�2 )+
α̂= Â�RA12(α�2 )+

Â(A�11 −A�21(β
�
2 )+β�1 )= 1

(19)
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• If α2 = 0: ⎧⎪⎪⎨⎪⎪⎩
β̂ = (1− ÂA�11)(β

�
1 )+

α̂ =−(R− Â�RA11)(α�1 )+

ÂA�21 = 0

(20)

Proof. We prove the first implication of this proof by applying Theorem 17 and by obtaining
from it a set of equations allowing us to derive the parameters of the WFA Â. The other direction
of the theorem can be easily proved by direct computation.

If ψ is the optimal approximation of φ, the function σ−1e= φ −ψ is unimodular and from
Theorem 17 there exist two symmetric nonsingular matrices Pe, Qe satisfying the fixed point
equations:

Pe −AePeA�e = βeβ
�
e (21)

Qe −A�e QeAe = αeα
�
e (22)

and such that PeQe = σ 2
k 1. We can partition Pe and Qe according to the definition of Ae (see

Equation 15):

Pe =
⎛⎝P11 P12
P�12 P22

⎞⎠ , Qe =
⎛⎝Q11 Q12

Q�12 Q22

⎞⎠ .

From Equations 21 and 22, we note that P11 and Q11 correspond to the controllability and
observability Gramians of A:

P11 =Q11 = P=
⎛⎝� 0

0 σk1

⎞⎠ .

Moreover, since PeQe = σ 2
k 1, we get P12Q

�
12 = σ 2

k 1− P2. It follows that P12Q�12 has rank n− r.
Without loss of generality we can set dim Â= j= n− r, and choose an appropriate basis for the

state space such that P12 =
(
1 0
)�

andQ12 =
(
R 0

)�
, with R= σ 2

k 1−�2. Once P12 andQ12 are
fixed, the values of P22 andQ22 are automatically determined. We obtain:

Pe =

⎛⎜⎜⎝
� 0 1

0 σk1 0

1 0 −�R−1

⎞⎟⎟⎠ , Qe =

⎛⎜⎜⎝
� 0 R

0 σk1 0

R 0 −�R

⎞⎟⎟⎠ . (23)

Now that we have an expression for the matrices Pe and Qe of Theorem 17, we can rewrite the
fixed point equations to derive the parameters α̂, Â and β̂ . We obtain the following systems:⎧⎪⎪⎨⎪⎪⎩

P−APA� = ββ�

N−ANÂ� = ββ̂
�

−�R−1 + Â�R−1Â� = β̂β̂
�

⎧⎪⎪⎨⎪⎪⎩
P−A�PA= αα�

M−A�MÂ=−αα̂�

−�R+ Â��RÂ= α̂α̂�
(24)

where N=
⎛⎝1

0

⎞⎠ andM=
⎛⎝R

0

⎞⎠.
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We can rewrite the second equation of each system as follows:⎧⎨⎩1−A11Â� = β1β̂
�

−A21Â� = β2β̂
�

{
R−A�11RÂ=−α1α̂

�

Â�RA12 = α̂α�2
(25)

If α2 �= 0, then also β2 �= 0 (recall that αi = sgn (λi)β i), and we have:⎧⎪⎪⎨⎪⎪⎩
β̂ =−ÂA�21(β�2 )+
α̂= Â�RA12(α�2 )+

Â(A�11 −A�21(β
�
2 )+β�1 )= 1

(26)

with (α�2 )+ = α2
α�2 α2

and (β�2 )+ = β2
β�2 β2

.

If α2 = 0, we have ÂA�21 = 0, in which case we obtain the following set of solutions:⎧⎪⎪⎨⎪⎪⎩
β̂ = (1− ÂA�11)(β

�
1 )+

α̂ =−(R− Â�RA11)(α�1 )+

ÂA�21 = 0

. (27)

This completes the proof of the first implication. The other direction of the proof can be verified
by direct computation by first obtaining the matrices Pe and Qe, and then showing that they are
symmetric, invertible, and satisfy the set of equations of Theorem 17, hence proving that σ−1k e is
unimodular. �

We remark that, when α2 = 0, the solution returned by the algorithm will depend on the size
of the original automaton and the target approximation. Specifically, Â has size (n− r)× (n− r),
while A�21 is (n− r)× r, so the system of equations corresponding to ÂA�21 = 0 is underdeter-
mined if r< n

2 , in which case we obtain the solutions in Equation 20, with Â �= 0. On the other
hand, if r≥ n

2 , that is if the multiplicity of the singular number σk is more than half the size of
the original WFA, the system might not have any solution unless Â= 0 (or unless A21 was zero
to begin with). In this setting, the method proposed returns Â= 0. In the (rare) case in which the
algorithm returns Â= 0, an alternative and preferable approach is to search for an approximation
of size k− 1 or k+ 1. This way, the multiplicity r of the singular number σk is such that r< n

2 , and
the system in Equation 27 is underdetermined.

Theorem 18 provides us with a way to compute the coefficients of the function ψ solving
Theorem 13. It is important to notice that the WFA Ak is not necessarily the best approxima-
tion we are looking for. Intuitively, the problem is that it might be too big, as irredundancy is not
guaranteed by the system of equations (while we know fromAAK theory that the best approxima-
tion corresponds to a bounded operator). Therefore, in these cases we need to “extract” from Ak a
smaller WFA of size k. We do this by extracting the component of the function ψ that belongs to
the negative Hardy space.

4.3.3 Extracting the rational component
The objective of this section is to “isolate” the function g ∈Rk, that is the rational component of
ψ . To do this, we study the position of the poles of ψ . In fact, we know from Theorem 11 that
the poles of a strictly proper rational function lie inside the unit disc. As noted before, the key
to solving our problem is the way we parametrized the functions. We defined ψ so that its poles
correspond to the eigenvalues of Â. Therefore, we study the eigenvalues of Â using the following
auxiliary result from Ostrowski and Schneider (1962). A proof of this theorem can be found in
Wimmer (1973).
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Theorem 19 (Ostrowski and Schneider (1962)). Let |�| = 1, and let P be a solution to the fixed
point equation X−AXA� = ββ� for the WFA A= 〈α,A, β〉. If A is reachable, then:

• The number of eigenvalues λ of A such that |λ|< 1 is equal to the number of positive eigenvalues
of P.

• The number of eigenvalues λ of A such that |λ|> 1 is equal to the number of negative
eigenvalues of P.

After a change of basis (that we detail in Section 5 with the approximation algorithm), we can
rewrite Â in block-diagonal form:

Â=
⎛⎝Â+ 0

0 Â−

⎞⎠ (28)

where the modulus of the eigenvalues of Â+ (resp. Â−) is smaller (resp. greater) than one. We
then apply the same change of coordinates on α̂ and β̂ .

We can finally find the rational component of the function ψ , that is the function g from
Corollary 15 necessary to solve that approximate minimization problem.

Theorem 20. Let Â+ be as in Equation 28, and α̂+, β̂+ obtained applying the same change of basis.
The rational component of ψ is the function g = α̂�+(z1− Â+)−1β̂+.

Proof. Clearlyψ = g + l, with l= α̂�−(z1− Â−)−1β̂−, l ∈H ∞. To conclude the proof we need to
show that g has k poles inside the unit disc, and that therefore it has rank k. We do this by studying
the modulus of the eigenvalues of Â+.

Since E is minimal, Â is reachable by definition, so we can use Theorem 19 and solve the
problem by directly examining the eigenvalues of −�R. From the proof of Theorem 18, we have
−�R=�(�2 − σ 2

k 1), where � is the diagonal matrix having as elements the singular numbers
of H different from σk. It follows that −�R has only k strictly positive eigenvalues, and Â has k
eigenvalues with modulus smaller than 1. Thus, Â+ has k eigenvalues, corresponding to the poles
of g. �

4.3.4 Solving the approximation problem
Now that we have found the rational function g, a symbol for the operator that solves Theorem 12,
we need to find the parameters of Âk, the WFA corresponding to the optimal approximation.
These are directly revealed by the expression of g, due to the function’s parametrization.

Theorem 21. Let A= 〈α,A, β〉 be a minimal WFA with n states over a one-letter alphabet. Let
A be in its SVA form. The optimal spectral-norm approximation of rank k is given by the WFA
Âk = 〈̂α+, Â+, β̂+〉.
Proof. From Corollary 15, we know that g is the rational function associated with the Hankel
matrix of the best approximation. Given the correspondence between the Fourier coefficients of g
and the entries of the matrix, we have:

g = α̂�+(z1− Â+)−1β̂+ =
∑
k≥0

α̂�+Âk+β̂+z−k−1 =
∑
k≥0

f̄ (k)z−k−1 (29)

where f̄ :�∗ →R is the function computed by Âk and α̂+, Â+, β̂+ are the parameters. �
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4.4 Error analysis
Thanks to the use of AAK theory, the method outlined in the previous sections is guaranteed to
return the rank k optimal spectral-norm approximation of aWFA satisfying our assumptions, and
the singular number σk provides the error. As noticed before, since the Hankel matrix has finite
rank and we can derive the Gramian matrices of the WFA, the singular number corresponding to
the error can be computed precisely, even though the Hankel matrix is infinite.

Similarly to the case of SVA truncation (Balle et al., 2019), owing to the ordering of the singu-
lar numbers, the error decreases when k increases, meaning that allowing Âk to have more states
guarantees a better approximation of A. Note that the solution we propose is optimal in the spec-
tral norm, but it might not be the case in other norms. Nonetheless, we have the following bound
between �2 norm and spectral norm.

Theorem22. Let A be aminimalWFA computing f :�∗ →R,withmatrixH. Let Âk be its optimal
spectral-norm approximation, computing g :�∗ →R, with matrix G. Then:

‖f − g‖�2 ≤ ‖H−G‖ = σk. (30)

Proof. Let e0 =
(
1 0 · · ·

)�
, f :�∗ →R, g :�∗ →R with Hankel matricesH and G, respectively.

We have:

‖f − g‖�2 =
( ∞∑
n=0
|fn − gn|2

)1/2

= ‖(H−G)e0‖�2
≤ sup
‖x‖

�2=1
‖(H−G)x‖�2

= ‖H−G‖ = σk
where the second equation follows by definition and by observing that matrix difference is
computed entry-wise. �

5. Algorithm
We now use the results obtained in the previous sections to define Algorithm 1, that we call
AAKapproximation.

The algorithm takes as input a target number of states k< n, a minimal irredundant WFA A n
states and in SVA form, and its Gramian P. We assume α2 �= 0. If α2 = 0, it is enough to substitute
the Steps 4, 5, 6 with the analogues from Equation 20. As mentioned in Section 4.1, the constraints
on theWFAA to be minimal and in SVA form are not essential. In fact, aWFAwith n states can be
minimized in time O(n3) (Berstel and Reutenauer, 2011), and the SVA computed in O(n3) (Balle
et al., 2019). The algorithm applies the results of Theorem 18 in order to derive the parameters
of the optimal WFA. The output of the algorithm is the WFA Âk corresponding to the unique
optimal spectral-norm approximation of A.

5.1 Block diagonalization
The algorithm involves a call to Algorithm 2, BlockDiagonalize. This algorithm corresponds
to the steps necessary to derive the WFA Âk associated with the rational function g. One way to
solve the problem is to compute the Jordan form of the matrix. Unfortunately, this problem is
ill-conditioned, so it is not suitable for our algorithmic purposes. Following the steps of Glover
(1984), we compute the Schur decomposition, that is we find an orthogonal matrix U such that
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Algorithm 1: AAK approximation

input : Aminimal WFA A, with α2 �= 0, n states and in SVA form,

its Gramian P, a target number of states k< n

output: AWFA Âk with k states

1 Let α1, α2, β1, β2,A11,A12,A22,� be the blocks defined in Eq. 17 and 18

2 Let (α�2 )+ = α2
α�2 α2

, (β�2 )+ = β2
β�2 β2

3 Let R= σ 2
k 1−�2

4 Let Â= (A�11 −A�21(β
�
2 )+β

�
1 )−1

5 Let α̂ = Â�RA12(α�2 )+

6 Let β̂ =−ÂA�21(β�2 )+
7 Let Â= 〈̂α, Â, β̂〉
8 Let Âk← BlockDiagonalize(Â)

9 return Âk

the matrix U�ÂU is upper triangular, with the eigenvalues of Â on the diagonal. We obtain:

T=U�ÂU=
⎛⎝Â+ Â12

0 Â−

⎞⎠ (31)

where the eigenvalues are arranged in increasing order of modulus, and the modulus of those in
Â+ (resp. Â−) is smaller (resp. greater) than one. To transform this upper triangular matrix into
a block-diagonal one, we use the following result.

Theorem 23 (Roth (1952)). Let T be the matrix defined in Equation 31. The matrix X is a solution
of the equation Â+X−XÂ− + Â12 = 0 if and only if the matrices

M=
⎛⎝1 X

0 1

⎞⎠ , and M−1 =
⎛⎝1 −X
0 1

⎞⎠ (32)

satisfy:

M−1TM=
⎛⎝Â+ 0

0 Â−

⎞⎠ , (33)

where T is the matrix defined in Equation 31.

Setting �=
(
1k 0

)
we can now derive the rational component of the WFA:

Â+ =�M−1U�ÂUM�� (34)

α̂+ =�M�U�α̂ (35)

β̂+ =�M−1U�β̂ . (36)
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The algorithm BlockDiagonalize corresponds to the implementation of this procedure, and
Step 5 can be performed using the Bartels-Stewart algorithm (Bartels and Stewart, 1972).

Algorithm 2: BlockDiagonalize

input : A WFA Â
output: A WFA Âk wit < 1

1 if dim Â = k then
2 return Âk

3 else
4 Compute the Schur decomposition of Â = UTU�, where |T11| ≤ |T22| ≤ . . .

5 Solve Â11X − XÂ22 + Â12 = 0 for X

6 Let M =

(
1 X
0 1

)
and M−1 =

(
1 −X
0 1

)
7 Let =

(
1k 0

)
8 Let Â+ = M−1U�ÂUM �

9 Let ̂+ = M�U�̂
10 Let ̂

+ = M−1U�̂
11 Let Âk = 〈̂+, Â+, ̂

+〉
12 return Âk

5.2 Computational cost
The running time of BlockDiagonalize with input a WFA Â with (n− r) states is thus in
O((n− r)3), where r is the multiplicity of the singular value considered. The running time of
AAKapproximation for an inputWFA Âwith n states is inO((n− r)3). In particular, it is possible
to analyze the cost associated with each step of the algorithms (Trefethen and Bau III, 1997):

• The product of two n× nmatrices can be computed in time O(n3) using a standard iterative
algorithm.

• The inversion of a n× n matrix can be computed in time O(n3) using Gauss-Jordan
elimination.

• The computation of the Schur decomposition of a n× n matrix can be done with a two-step
algorithm, where each step takes O(n3), using the Hessenberg form of the matrix.

• The Bartels-Stewart algorithm applied to upper triangular matrices to find a matrix of size
m× n takes O(mn2 + nm2).

6. Example
We consider the following weighted finite automaton with three states over a one-letter alphabet,
represented in SVA form:

A=

⎛⎜⎜⎝
0.579 0.461 0.046

−0.461 −0.192 0.225

0.046 −0.225 −0.387

⎞⎟⎟⎠ , α=

⎛⎜⎜⎝
1.650

−0.851
0.038

⎞⎟⎟⎠ , β =

⎛⎜⎜⎝
1.650

0.851

0.038

⎞⎟⎟⎠ ,
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The objective is to find theWFAwith two states solving the approximateminimization problem
optimally.

We first note that A has spectral radius strictly smaller than 1, having eigenvalues:
λ1,2 = 0.0162324± 0.0297233i λ3 = 0.0324648. (37)

Therefore, the assumptions listed Section 4.1 are satisfied, and we can apply Theorem 18.We com-
pute the Gramian matrices and obtain, according to the partition in Equation 17, the following
matrix:

P=Q=

⎛⎜⎜⎝
4.67 0 0

0 1.79 0

0 0 0.12

⎞⎟⎟⎠ ,

so that σ 2
2 = 0.12 and:

� =
⎛⎝4.67 0

0 1.79

⎞⎠ .

We then proceed by partitioning A, α and β and obtain:

A11 =
⎛⎝ 0.579 0.461

−0.461 −0.192

⎞⎠ , A1,2 =
⎛⎝0.046

0.225

⎞⎠ , A�2,1 =
⎛⎝ 0.046

−0.225

⎞⎠ , A22 =−0.387.

α1 =
⎛⎝ 1.650

−0.851

⎞⎠ , β1 =
⎛⎝1.650

0.851

⎞⎠ , α2 = β2 = 0.038.

Since α2 �= 0, we can use Equation 19 to find the coefficients of the auxiliary WFA Â=
〈̂α, Â, β̂〉.

We have: ⎧⎪⎪⎨⎪⎪⎩
β̂ =−ÂA�21(β�2 )+
α̂ = Â�RA12(α�2 )+

Â(A�11 −A�21(β
�
2 )+β�1 )= 1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂ =−Â
(

0.046
−0.225

)
(0.038)−1

α̂ = Â�
⎛⎝(0.12 0

0 0.12

)
−
(
4.67 0
0 1.79

)2
⎞⎠(0.046

0.225

)
(0.038)−1

Â

⎛⎝( 0.579 0.461
−0.461 −0.192

)�
−
(

0.046
−0.225

)
(0.038)−1

(
1.650
0.851

)�⎞⎠= 1

so we get:

Â=
⎛⎝ 0.578 0.178

−1.221 −0.169

⎞⎠ , α̂ =
⎛⎝ 7.105

−1.579

⎞⎠ , β̂ =
⎛⎝0.353

0.474

⎞⎠ .

Now, we want to extract the rational component in order to find the optimal approximation.
To do so, we block-diagonalize the transition matrix Â and look at the modulus of its eigenvalues.
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We have:
λ1,2 = 0.204593± 0.278322i.

As we can see, both eigenvalues have modulus smaller than one. This means that the WFA Â
is exactly the optimal approximation of size two that we are looking for, and there aren’t any
components that need to be discarded. Following the notation introduced in the previous section,
we have: Âk = 〈̂α+, Â+, β̂+〉 = 〈̂α, Â, β̂〉.

7. Related Work
The problem of minimizing automata has been an important subject of research since the 1950s.
There is a remarkable algorithm due to Brzozowski (Brzozowski, 1962, 1964) that reduces a DFA
to a minimal one. However, its worst-case running time is exponential in the number of states.
Despite this shortcoming, this algorithm has seen a resurgence recently, mainly because it can be
generalized to newmodels, such as weighted automata (Droste et al., 2009). This line of algorithms
is based on a new understanding of Brzozowski’s algorithm from the point of view of duality
(Bonchi et al., 2012b;a,2014; Bezhanishvili et al., 2012) and extends readily to other settings. In the
context of quantitative systems, like weighted or probabilistic automata, it becomes meaningful
to investigate different kinds of quantitative approximations and in particular of the approximate
minimization problem. In Balle et al., (2017, 2022), the authors propose a bisimulation pseudo-
metric to express the notion of behavioral proximity between states of WFAs. For example, this
becomes particularly useful when a small perturbation has been applied to the parameters of the
WFAs, and bisimulation alone would fail to capture their proximity. Similarly, in the context of
finding a robust way of approximating dynamical systems despite the high sensitivity to the choice
of parameters, Cardelli et al. (2018) introduce a notion of approximate bisimulation for ordinary
differential equations with polynomial derivatives. Given a model and a parameter ε, they pro-
pose a method to compute an ε bisimulation over the ODEs variables and then perturb minimally
the model to obtain a new one where the ε-bisimulation is an exact one. We remark that in this
case the author generalizes the notion of differential equivalence that, while remaining very close
to the concept of bisimulation defined for automata and dynamical systems, applies to ODE vari-
ables rather than the state space. The study of the approximate minimization problem and of its
applications are fairly recent, and only a few works have been published on the subject. A prob-
lem analogous to approximate minimization is addressed by Kulesza, Jiang, and Singh for the
spectral algorithm. The authors provide a bound on the loss of the learned low-rank model in
terms of the singular values that are discarded during training (Kulesza et al., 2015). In a previous
work, the same group of authors connected spectral learning to the approximation problem of
a small class of Hidden Markov models, bounding the error in terms of the total variation dis-
tance (Kulesza et al., 2014). Still in the context of Hidden Markov models, Kotsalis and Shamma
provide bounds for the model reduction problem using the spectral norm as a measure of the
error (Kotsalis and Shamma, 2015). We remark that the framework of Hidden Markov models is
encompassed by weighted automata (Denis and Esposito, 2008). Balle, Panangaden, and Precup
are the first authors to formalize the approximate minimization problem for WFAs (Balle et al.,
2015, 2019). The technique presented in their paper relies on the construction (and truncation)
of the singular value automaton, a canonical expression for WFAs arising from the singular value
decomposition of the corresponding Hankel matrix. Their method can be viewed as a generaliza-
tion to multi-letter alphabets of the balanced realization approach from control theory (Antoulas,
2005). The authors conclude their analysis by providing bounds on the approximation error in the
�2 norm. The result is supported by strong theoretical guarantees and applies to a large class of
WFAs. This method has later been extended to the setting of weighted tree automata in Balle and
Rabusseau (2020). The main limitation of these approaches based on SVA truncation is that the
approximation obtained is not optimal in any norm. We partially address this point in this work,

https://doi.org/10.1017/S0960129524000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000276


22 C. Lacroce et al.

where we obtain an algorithm for the optimal approximation in the spectral norm for the same
class of WFAs considered by Balle, Panangaden, and Precup, but restricted to a one-letter alpha-
bet. Part of this results were presented in (Balle et al., 2021). In Lacroce et al. (2021), we extend
this results to the more general setting of black-box models trained for language modeling over
one-letter alphabets. In Lacroce et al. (2022); Lacroce (2022), we analyze the problem of extending
the method presented in this paper to the case of multi-letter alphabets.

The control theory community has largely studied approximate minimization in the context
of linear time-invariant systems (Antoulas, 2005). A parallel with these results can be drawn by
noting that the impulse response of a discrete Single-Input-Single-Output SISO system can be
parametrized as a WFA over a one-letter alphabet. Glover (1984) presents a state-space solu-
tion for the case of continuous Multi-Input-Multi-Output MIMO systems. His method led to
a widespread application of these results, thanks to its computational and theoretical simplic-
ity. This stems from the structure of the continuous Lyapunov equations. For discrete systems,
though, the quadratic nature of the Lyapunov equations does not allow for a simple closed-form
formula for the state-space solution (Chui and Chen, 1997). Thus, most of the results for the dis-
crete case work with a suboptimal version of the problem (Ball and Ran, 1987; Al-Hussari et al.,
1993; Ionescu and Oara, 2001). A solution for the SISO case can be found using a polynomial
approach, but it does not provide an explicit representation of the state space nor it generalizes
to the MIMO setting. The first to actually extend Glover results is Gu, who provides an elegant
solution for the MIMO discrete problem (Gu, 2005). Glover and Gu’s solutions rely on building
an all-pass system, equivalent to the WFA E in our case. Part of our contribution is the adaptation
of some of the control theory tools to WFAs.

8. Extensions and Future Work
In this section, we examine possible extensions of our method by relaxing some of the hypothesis.

8.1 Removing the finite-rank assumption
The proof of Theorem 12 is constructive for any compact Hankel operator. In the setting of this
paper, compactness is guaranteed, as the operator corresponding to an irredundantWFA has finite
rank and is bounded. While boundness is necessary for compactness, the finite-rank hypothesis
is not. Therefore, an interesting extension of this work is to investigate other classes of models
by relaxing the finite-rank (or finite state) assumption. An example of models corresponding to
infinite-rankHankelmatrices is recurrent neural networks (RNNs) (Hochreiter and Schmidhuber,
1997). Recently, particular attention has been given to the problem of extracting, from an RNN, a
weighted finite automaton (Ayache et al., 2018; Rabusseau et al., 2019; Weiss et al., 2019; Theertha
Suresh et al., 2021; Okudono et al., 2020; Eyraud and Ayache 2024; Zhang et al., 2021). In this
sense, the knowledge distillation task (Hinton et al., 2015) is very similar to an approximate mini-
mization problem, sinceWFAs are a less expensive alternative to RNNs, while still being expressive
and suited for sequence modeling and prediction (Cortes et al., 2004; Denis and Esposito, 2008).
In Lacroce et al. (2021), we investigated the use of AAK theory on black-box models trained for
language modeling on sequential data. In particular, we showed that compactness is automatically
respected by black boxes for language modeling, and proposed an algorithm for the one-letter
setting, based on AAK theory. This particular extension of the method presented in this paper
constitutes a first fundamental step towards developing provable approximation algorithms for
black-box models.

8.2 Removing the spectral radius assumption
One could consider a WFA over a one-letter alphabet with ρ(A) �= 1, that is not necessarily
irredundant. In this case, the method proposed in the previous sections can be extended and
the quality of the approximation can be estimated, but the result is not optimal in the spectral
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norm. Once again, we draw inspiration from the control theory literature, where some theoret-
ical work has been done to study an analogous approach for continuous time systems and their
approximation error (Glover, 1984).

The key idea is to block-diagonalize A like we did in Section 4.3.3. This way, we obtain two
components, A+ and A−, with the property that ρ < 1 and ρ > 1, respectively. We tackle each
component separately. The case of A+ = 〈α+,A+, β+〉, the component having ρ(A)< 1, can be
dealt with in the way presented in the previous sections. This means that we can find an opti-
mal spectral-norm approximation of the desired size for A+. Then, we can consider the second
component, A− = 〈α−,A−, β−〉. In this case, we apply the transformation

zj−1 �→ z−j for j≥ 1
to the symbol φ′(z) associated to A−. Then, the function

φ′(z−1)=
∑
k≥0

α�−Ak−zkβ− = α�−(1− zA−)−1β−

is well defined, as the series converges for z with small enough modulus. The use of this trans-
formation allows us to obtain a function having poles only inside the unit disc, and to apply
the method presented in this chapter. We remark that in this case, an important choice to make is
the size of the target approximation of A−, as it can influence the quality of the result. Analyzing
the effects of this parameter on the approximation error is an interesting direction for future work,
both on the theoretical and experimental side.

8.3 Removing the one-letter assumption
The most pressing direction for future work is undoubtedly to extend our results to a multi-letter
setting. The work of Adamyan, Arov and Krein provides us with a powerful theory connecting
sequences to the study of complex functions. Unfortunately, this approach cannot be directly gen-
eralized to themulti-letter case, when�∗ is a noncommutative monoid, as it requires to generalize
standard harmonic analysis results to the non-abelian case. A recent line of work in multivari-
able operator theory has been centered around extending results of standard operator theory
to the case of noncommutative operators defined on Fock spaces Frazho (1982); Bunce (1984);
Arias and Popescu (1995); Popescu (1989, 1992, 1993, 1995, 2003, 2006, 2010, 2013); Ball and
Bolotnikov (2021); Jury et al. (2021). In particular, a noncommutative definition of Hankel opera-
tor, and a noncommutative version of the AAK theorem are presented in a recent work of Popescu
Popescu (2003), but its proof is not constructive. Therefore, solving the approximateminimization
problem for multi-letter alphabets using AAK theory comes with two distinct challenges:

• Finding a noncommutative Hankel operator: given a WFA and its Hankel matrix, we need
to find a way to reformulate the approximation problem using multivariable operators. In
particular, we need to find a noncommutative analogue of the Hardy space and of the symbol.

• Making AAK constructive: the proof of the noncommutative version of the AAK theorem does
not provide us with an expression for the optimal approximation. An interesting direction
would be to explore ways to extend the proof to a constructive one.

In Lacroce et al. (2022), we proposed a framework to associate a noncommutative Hankel
operator (defined on a noncommutative version of the Hardy space) and a noncommutative ratio-
nal function to the Hankel matrix computed by a model on sequential data, solving the first
point listed above. In the one-letter case, obtaining the framework allowed us to reformulate
the approximation problem in terms of functional analysis, and to solve it using the construc-
tive proof of AAK theorem. In Lacroce (2022), we tried to address the question of whether or
not the proof of the noncommutative AAK theorem can be made constructive. While we did
not manage to provide a definitive answer, we laid out possible approaches that can be used
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to tackle the problem of making the proof of the noncommutative version of AAK theorem
constructive.

9. Conclusion
In this paper, we applied the AAK theory for Hankel operators and complex functions with the
framework of WFAs in order to construct the optimal approximation to an automaton given a
bound on the size. We propose an algorithm to find the parameters of the best WFA approxima-
tion in the spectral norm and derive bounds on the error. Our method applies to real irredundant
WFAs defined over a one-letter alphabet. These alphabets have proven to be of independent inter-
est when dealing with automata, as in this case the classes of regular and context-free languages
collapse (Pighizzini, 2015).

We think the spectral norm has desirable characteristics, making it a solid candidate for the
approximate minimization task. For example, it can be minimized in polynomial time and a
global minimum for the error can be computed accurately. Moreover, the fact that this norm
is independent on the specific architecture or model considered facilitates future applications
of this method, as it can be used to compare different classes of models. Nonetheless, a limita-
tion of this work is that we do not have a clear picture of how effective it is to use the spectral
norm to evaluate the approximation of WFAs and black boxes. Concretely, we do not know how
the spectral norm performs with respect to behavioral metrics, or other metrics coming from
natural language processing (e.g., word error rate and normalized discounted cumulative gain).
To some extent, this problem is a collateral effect of the size of the alphabet: the compari-
son between spectral norm and other kind of norms is possible only in the multi-letter setting.
Obtaining algorithms for the multi-letter case will thus open the possibility of evaluating the
quality of the spectral norm.

While the one-letter setting is certainly restricted, we believe that this work constitutes a first
fundamental step in the direction of optimal approximation. Furthermore, the use of AAK tech-
niques has proven to be very fruitful in related areas like control theory; we think that automata
theory can also benefit from it. The use of such methods can help deepen the understanding of the
behavior of rational functions. This paper highlights and strengthens the interesting connections
between functional analysis, automata theory, and control theory, unifying tools from different
domains in one formalism.
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