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Abstract-This paper describes the calculation of the diffracted intensity for models of powdered 
minerals with lamellar structure, in order to compare experimental and theoretical X-ray diagrams. 
The calculation takes into account at the same time (i) the possibility of coexistence of different kinds 
of layers in the stackings, (ii) the possibility of stacking faults between the layers (translative or rotative 
ones) and (iii) the unavoidable orientation of particles in the powder sample (the method of determina­
tion of the orientation is described). 

INTRODUCTION 

It is known that, to explain several peculiar physical 
or physico-chemical properties of phyllosilicates, it is 
necessary to resolve not only the mean crystalline 
structure of these minerals, but their real structure, 
that is to say the nature and distribution of the struc­
tural defects. Numerous authors have developed the 
theory of X-ray powder diffraction by partially 
ordered layer structures. For the determination of the 
'disorder parameters', two chief methods are used. 
They are based on the analysis of the intensity distri­
bution considered as a continuous function in recipro­
cal space. 

(l) The first method consists in the description of 
the organization of the solid by direct determination 
of P(r), the probability distribution of interatomic dis­
tances in the studied substance. P(r) is the generalized 
form of the Patterson distribution and is obtained 

intensities is compared with the experimental one. 
This method permits one to interpret rather easily 
the observed diffraction, mainly when order remains 
in the structure, in one or two dimensions, as in phyl­
losilicates. Moreover, this method is also applicable 
to powdered minerals. 

In this first part, we intend to show the principle 
of calculation of the intensity diffracted by models 
of a powdered mineral with lamellar structure, by 
using the results of several authors and our own 
recent ones. We shall envision several kinds of struc­
tural defects, and show the effects of a partial orien­
tation of particles in the powder and of the coexis­
tence of layers of different nature inside each stacking. 

GENERAL FEATURES OF THE 

DIFFRACTION 

by Fourier transform of the i(s) intensity distribution. the diffraction phenomenon produced by a stack­
This method, introduced by Zernicke and Prins (1927) ing of M parallel layers is described by the interfer­
is particularly suited for the determination of the ence of the waves diffracted by each one of the layers 
atomic organization in a small range of distances. in the stacking (Hendricks and Teller, 1942; Mering, 
Nevertheless, it is readily applicable only in the case 1949). The amplitude diffracted by one single layer 
of simple structures. Moreover, in this method it is (where the vectors defining the cell are a and b) takes 
critical to take account of the different disturbing non-negligible values only in cylindrical domains, 
functions related to the experimental installation normal to the n plane of the reciprocal lattice (a*, 
(sample shape, instrumental aberrations introduced b*), and passing by the nodes hk of this lattice (Figure 
by the optical system, etc.). Finally, in the case of 1). Along a cylindrical (hk) domain, this amplitUde 
layer silicates which have a pseudo-hexagonal distri- is: 
bution of reflection symmetry, the direct exploitation 
of the diffracted intensity is almost impossible when 
they are microcrystallized, allowing only powder pat-

(1) 

terns to be obtained. where Fh,iZ) is the Fourier transform of the base unit 
(2) The second method is an indirect one which of the structure (or structure factor) at the height Z 

consists in choosing theoretical models for the atomic over the reciprocal plane n, n = la/\ bl is the surface 
organization and calculating the intensities corre- of the cell of the layer. D(u) is the shape transform 
sponding to such models. Then, after introduction of (Fourier transform of the shape function of the layer), 
perturbation functions, the theoretical distribution of u is the vector which fixes, in the n plane, a point 
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Figure 1. Amplitude cylinders of a biperiodic layer. 

of the (hk) cylinder; the origin of u is taken at the 
hk geometrical node. 

If we define ¢(s) as the set of cylindrical domains 
in which the intensity diffracted by a layer is not neg­
ligible, then the intensity diffracted by a stacking of 
M layers is given by: 

M M 

i(s) = I I 
m=l m'= l 

x ¢m(s)¢~, (s)exp[ -2nis.(r", - rm' )]. 

¢m(s) is the Fourier transform of the mth layer in 
the stacking, r m is the vector which fixes the position 
of the mth layer relative to an arbitrary origin 0 (see 
Figure 2), s is the diffusion vector of modulus 
2 sin 8/.1 

For a great number of stackings with the same 
thickness, not interfering between them (case of a 
powder), the mean intensity diffracted by a stacking 
is : 

M M 

l(s) = I I 
m= 1 m'<;: l 

x ¢m(s)¢;!;,(s)exp[ -2nis , (rm - rm,)] (2) 

or 

M M 

l(s) = I I 
m = l tn'= 1 

x F",(s)F!, (s)D",(u)D!,(u)exp[ -2ltis.(r", - r",,)]. (3) 

In the general case, the stackings are constituted by 
different kinds of layers. Then, the structure factors 
F ",(s) are different. 

The expression (3) shows that the diffraction 
phenomenon produced by a stacking can be related 
in a relatively simple way to : the nature of layers 
[by the structure factors F m(s)J, the dimensions of 
layers [by the shape transform Dm(u)], and finally to 
the stacking mode (by the exponential term which 
expresses the interference of waves diffracted by 
layers, and which varies with their relative positions). 

Thus, the determination of the nature and propor­
tion of stacking defects in a microcrystallized lamellar 
mineral consists of three steps: (i) the calculation of 

the intensity l(s) which should be diffracted by a 
model of stacking of layers, (ii) the derivation, from 
I(s), of the intensity I(s) diffracted by a powder, and 
(iii) the comparison of this theoretical intensity with 
the experimental one, 

PRINOPLE OF CALCULATION OF THE 

AVERAGE INTENSITY DIFFRACTED 

BY A STACKING 

Case of a stacking constituted by identical layers 

The simplest hypothesis consists of assuming that 
the phyllosilicate sample is constituted by stackings 
having an average of M identical layers only shifted 
relative to each other. In this case, the structure fac­
tors Fm are identical for aU the layers, and the expres­
sion (2) of the average intensity diffracted by a stack­
ing is simplified to: 

M M 
l (s) = ¢(s)¢*(s) I I 

m= l ", '= 1 

x exp[ - 2nis. (rm - f m,)] = M¢(s)¢*(s)G(s). (4) 

G(s), named 'modulation function', expresses the in­
terference phenomenon between the layers of the 
stacking and takes into account their eventual trans­
lative faults. The expression of the G(s) function has 
been established by Mering (1949) and subsequently 
by the authors (Plan<;on and Tchoubar, 1975), in the 
case where there does not exist any correlation 
between the translations of successive layers (interac­
tion only between first neighbouring layers). So, the 
expression (4) allows the calculation of the intensity 
diffracted by models containing only translative 
stacking faults without correlation between them. 

Case of a stacking constituted by layers ·of different 
nature 

For stacki,ngs constituted either by layers of differ­
ent nature or by identical layers rotated in their plane, 
the development of the expression (2) which allows 
the calculation of the diffracted intensity demands the 
use of matrices (Hendricks and Teller, 1942; Kakinoki 

m' r;, . 

M 
m r;, 

o 

Figure 2. Schematic representation of a stacking contain­
ing M layers. 

https://doi.org/10.1346/CCMN.1977.0250609 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.1977.0250609


432 A. PLAN<;:ON and C. TCHOUBAR 

and Komura, 1952; Plan90n and Tchoubar, 1976). In 
the hypothesis of a no-correlation between the defects, 
the intensity diffracted by a stacking of M layers can 
be written: 

Irs) = M spur Re{ <PPR}, (5) 

where <P, P, R are square matrices of 9 order equal 
to the 9 types of different layers in the stacking, and 
where Re corresponds to the real part of the product 
<PPR. 

In the <P matrix, the mij term (i row, j column) 
is equal to the product (N(s) rPls) of the amplitude 
diffused by a layer of j type by the conjugated ampli­
tude diffused by a layer of i type (obviously 1 :s; i :s; g 
and 1 :s; j :s; g). 

P is a diagonal matrix, whose mii element is equal 
to the proportion of i layers in the stacking. 

R is a matrix equal to (Plan90n and Tchoubar, 
1976) 

R = I + 2Q(I - Q)-l + ~(QM+l - Q)(I _ Q)-2. 
M 

In this expression, I is the unit matrix and Q is a 
matrix which expresses the interferential phenomenon 
between first neighbouring layers. Its mij term is equal 
to 

I p7j exp[2nis. t~J, 
k 

where 2:k is a summation done over the whole set 
of possible translations between an i layer and a j 
first neighbouring layer. 

t~j is one of these translations and p7j its probability. 
If we call cI..;/s) the mij term of the PR matrix, the 

expression (5) of the diffracted intensity becomes: 

9 9 

irs) = M Re I I rPi(S)rPj(S)lXij(S) 
i= 1 j= 1 

or 
9 9 

irs) = M Re I I Fi (s)Fj(s)Di (u)Dj(u)lXij (s), (6) 
i~ 1 jc= 1 

where F;(s) and F/s) are respectively the structure fac­
tors of layers of i and j types. 

lXi}{S) which expresses the interferential phenomenon 
between all the layers of i and} types inside a stacking 
is the analogous for these layers to the G(s) modula­
tion function introduced in the expression (4). 

The relation (6) allows the calculation of the inten­
sity diffracted by any stacking model containing 
simultaneously layers of different nature and transla­
tive or rotative stacking faults (Plan<;on and Tchou­
bar, 1976). 

PRINCIPLE OF CALCULATION OF THE 

INTENSITY DIFFRACTED BY A POWDER 

Numerical integration of Brindley and M ering (1951) 

In order to deduce the intensity diffracted by a 
powder from the intensity diffracted by a stacking, 

z 

n 

Figure 3. Schematic representation of a (hk) cylinder cut 
by an integration sphere with radius 5 = 2 sin 0;; .. 

it is necessary to consider the intersection of the 
Ewald sphere by the cylindrical domains (hk), when 
these turn around the origin of the reciprocal space. 
In fact, several authors (Laue, 1932; Warren, 1941; 
Wilson, 1949a,b; Brindley and Mering, 1951) have 
shown that it amounts to the same thing to keep 
fixed cylinders (hk) and to consider their intersection 
with spheres of center 0' and increasing radius s 
(Figure 3). 

In the simplest case of stackings constituted by 
identical layers, the powder intensity diffracted at the 
20 angle by a (hk) cylinder is proportional to: 

where dA is an element of the surface common to 
the sphere of radius s and to the (hk) cylinder, and 
rp is the angle between s and the n plane, for a 
fixed Z height. 

By using relations (4) and (1), this lhk(s) intensity 
becomes,: 

f dA 
MFhk(Z)Ftk(Z)D(u)D*(u)Ghk(Z) -2' 

4ns 
(7) 

By replacement of vector u by its components X 
and Y, respectively parallel and normal to the vector 
(SO)hb which joins the origin 0' of the reciprocal 
space to the hk geometrical node, Brindley and Mering 
(1951) show that the expression (7) can be written 

(8) 

The integration is done between the two rpmin and 
rpmax angles which correspond to the boundaries of 
the intersection of the radius s with the (hk) cylinder 
(Figure 3). 
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Figure 4. Orientation curves of particles in a powder for 
a well-crystallized kaolinite; curve J, sample prepared by 
freeze-drying of an aqueous suspension; curve 2, sample 
prepared from the same kaolinite, but not freeze-dried; 
dotted line : theoretical value corresponding to a com-

pletely disoriented sample. 

T(X) = SD(X, y) D*(X, Y) dYis, by definition, the 
projection of the transversal section of the (hk) cylin­
drical domain on the direction of the (SO)hk vector. 
This T(X) function expresses the influence of the 
shape and of the size of the diffraction layer on the 
intensity distribution. 

Yet, the expression (8) does not take into account 
two difficulties frequently met, in the study of micro­
crystallized silicates. First of all , those minerals have 
frequently a strong anisotropic shape such as thin pla­
queUes: consequently, a partial orientation of par­
ticles in the powder is practically inevitable. On the 
other hand, the amplitude cylinders corresponding to 
different layers of the same stacking and which inter­
fere between themselves can be in only partial coinci­
dence. This arises because either the layers are not 
of the same nature and have slightly different par­
ameters, or there exist, inside the stacking, some 
rotations of layers such as to cause the amplitude 
cylinders to be not in a strict superposition (this can 
happen, particularly, in smectites). 

Effect of a partial orientation of particles in the powder 

Different authors (Brindley and Kurtossy, 1961; 
Taylor and Norrish, 1966; Lippmann, 1970) have pro­
posed methods of measurement of the orientation in 
a powder. A simple method (de Courville et al., to 
be published) consists in the determination of the 
(1001), area of the 001 reflection when the plane of 
the sample is put in the X-ray beam in a position 

* The details of the method are described in the Ph.D. 
thesis of Plan,>on (1976, Universite d'OrIeans, France) and 
will be published later. 

of symmetrical transmission; then, this area is com­
pared to the (1001)", area measured for the same re­
flection when the plane of the sample occupies diverse 
positions of non symmetrical transmission. After cor­
rection for the absorption and for the modification 
of diffracting volume, it is possible to infer from the 
ratio (1001)", / (1001), a N(rx) function which is a 
measure of the orientation of the particles in the 
powder (rx is the angle of the basal n plane of a par­
ticle with the plane of the sample). For illustration, 
we give in Figure 4 the N(rx) curves determined experi­
mentally for two samples of the same well-crystallized 
kaolinite. The curve 1 corresponds to a powder 
obtained by freeze-drying of a suspension of the 
mineral in water: one observes an almost complete 
disorientation of the particles [the complete disorien­
tation corresponds to N(rx) = 1 (horizontal dotted 
line) for all rx angJes]; the curve 2 corresponds to 
a sample prepared directly from a powder of the same 
kaolinite that was not subjected to freeze-drying. 

The existence of a partial orientation of plaquettes 
in the powder leads to a modification of the expres­
sion (8) given by Brindley and Mering, under the 
form:* 

The N(<p) function, introduced in the expression 
(9) expresses the fact that there exists, in the powder, 
an 'infinity' of particles for which the (hk) cylinder 
is cut at the same Z height by the Ewald sphere 
(Figure 5). These are all the particles whose n plane 
makes the angle qJ with the diffusion vector s (these 
n pJanes are tangent to the cone of s axis and top 
half angle <p) each one making, with the plane of the 
sample, an angle rx included between <p and n - <po 

o· 

Figure 5. Intersection of Ewald sphere by an (hk) cylinder. 
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Figure 6. Effect of the orientation on the 20(/), 13(/) calcu­
lated profiles of a well-crystallized kaolinite. 

For a sample studied by transmission, the N(cp) 
function is inferred from the N(IX) function by: 

"' = 2n 

N(cp) = 1=0 N(IX) dt/! , 

where, for a value of cp, the angle IX is calculated for 
each t/! value by the relation 

cos IX = cos cp cos t/!. 

Figure 6 illustrates the influence of a partial orien­
tation of particles on the powder reflections' profile. 
In this figure, we have shown by a full line the· calcu­
lated profile of the 20(1), 13 (l) reflections of a well­
crystallized kaolinitet in the case of almost complete 
disorientation characterized by curve 1 of Figure 4. 
The dotted line corresponds to the calculated profile 
in the case of a particles' orientation characterized 
by the curve 2 of the same figure. 

Case of stackings constituted by layers of different 
nature showing eventually a partial superposition of 
amplitude cylinders 

We have pointed out above that, when a stacking 
is constituted of layers of different natures, the aver­
age intensity diffracted by a stacking is given by the 
expression (6). In this case, the 1h1Js) intensity dif­
fracted under a 2(J angle by the powder, takes the 
form 

hk(S) ~ 4~S Re Jl Jl J [F"k(Z)]i 

x [Ftk(Z)]Pij(Z)IiAX) dcp (10) 
with 

7;j(X) = J Dj(X, Y)Dj(X, Y) dY. 

Ii/X) is equivalent to the T(X) function of Brindley 
and Mering when all the amplitude cylinders of the 
different layers of i and j nature are in a rigorous 

t The accurate description of this kaolinite will be put 
in part II of this paper. 

superposition. On the contrary, the Iij(X) function 
needs to be calculated separately for each pair of h 
and k indexes when there exists only a partial coinci~ 
dence of the amplitude cylinders (Plan90n et al., 
to be published). 

CONCLUSION 

The principle of calculation presented in this paper, 
based on the hypothesis of an absence of correlation 
between defects, allows the determination of the in­
tensity diffracted by a powder, taking into account 
at the same time the different natures of the layers, 
the stacking faults (translative or rotative ones) and 
the partial orientation of the particles in the powder. 

Nevertheless, we draw attention to two points: 
(1) in order to compare a calculated profile with 

an experimental one, it is necessary that this last one 
should not be deformed by the recording. It is then 
necessary to determine the best experimental condi­
tions (choice of the thickness of the sample, etc.) and 
to use an installation adapted to such a study (dif­
fractometer with monochromator and stepwise 
counter, adjustment of the slits, etc.). 

(2) This method, based on the research of the 
stacking model which leads to a good fit between 
the experimental and theoretical profiles, is really effi­
cient only when the diffraction pattern is not studied 
in a narrow domain. For example, in the case of kao­
linites whose diagrams show some different character­
istics for the hk(l) reflections with k multiple of 3 or 
not a multiple of 3, the method of models can be 
used only if the study includes, beyond the 02(1), 11(1) 
reflections, also the 20(1), 13(1) reflections (that is to 
say that the study must include two sets of zones 
with different characteristics). 

Part II of this work will be an application of part 
I, devoted to the qualitative and quantitative study 
of structural defects in natural kaolinites more or less 
disordered. 
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