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The objective of the present study was to investigate the postprandial metabolism of two starches with contrasting rates of hydrolysis in vitro. Characterized

using the Englyst method of in vitro starch classification, C*Set 06 598 contained predominantly rapidly digestible starch and C*Gel 04 201 contained pre-

dominantly slowly digestible starch. Each test starch, naturally enriched with 13C, was fed to ten healthy female volunteers as part of a moderate fat test meal

(containing 75 g test starch and 21 g fat), in a double-blind randomized crossover design. The metabolic response to each starch was measured after an

overnight fast, in an acute 6 h study, before and after 14 d of daily consumption of 75 g test starch. During each acute study, blood samples were taken

at 15min intervals for the first 2 h and at 30min intervals for the remaining 4 h. Breath 13CO2 enrichment was measured at the same time points and indirect

calorimetry was performed for 20min every 40min immediately before and throughout the study. Significantly more rapid, greater changes in postprandial

plasma glucose, NEFA and serum insulin concentrations were observed after consumption of the rapidly digestible starch. Breath 13CO2 output over the first

3–4 h rose rapidly then began to decline following consumption of the rapidly digestible starch, but plateaued for the slowly digestible starch. The 14 d

adaptation period did not affect any of the glycaemic or lipaemic variables but there was a reduction in postprandial plasminogen activator inhibitor-1 con-

centrations. These data confirm that starches characterized as predominantly rapidly digestible versus slowly digestible by the Englyst procedure provoke

distinctly different patterns of metabolism postprandially.

Starch digestion: Glycaemia: Insulinaemia: Haemostasis

The joint FAO/WHO (1998) committee recommended consump-

tion of a diet containing at least 55% of total energy from carbo-

hydrates, to maintain health and prevent disease. Variation in the

source of carbohydrate was also advised, in acknowledgement of

the diverse metabolic responses to different food carbohydrates.

One of the most important metabolic responses is the rate and

extent of glucose absorption and subsequent insulin secretion.

When a normal concentration of insulin in blood produces a

less than normal biological response, the individual is termed

‘insulin resistant’ (Wallace & Matthews, 2002). This sub-optimal

state predisposes individuals to the complex metabolic abnormal-

ities implicated in the aetiology of cancer (Argiles & Lopez-

Soriano, 2001; Yoshikawa et al. 2001), ageing (Facchini et al.

2000), CVD and diabetes (Reaven, 1995). As the amount, rate

and extent of carbohydrate digestion are key determinants of

postprandial glucose and insulin response (Wolever, 2000),

modulation of carbohydrate digestion patterns could provide

many health benefits. However, predicting the glycaemic response

to a carbohydrate has proved difficult. Unlike dietary fats, which

are categorized in food composition tables to identify key

characteristics, e.g. saturated and unsaturated, and family, e.g.

n-6 and n-3, at best food tables provide data on total starch.

Glycaemic predictions therefore rely upon a combination of in

vitro procedures which classify starches according to their rate

of hydrolysis (Englyst et al. 1992, 1996, 1999, 2000; Champ,

1999), or in vivo measurements of glycaemic index (GI) (Jenkins

et al. 1981, 2002; Bornet et al. 1989; Wolever, 2000) and studies

using stable isotope-labelled carbohydrates (Normand et al. 1992;

Vonk et al. 2000).

Given the advances in understanding the roles of food starches

in health, there is a need to categorize starches according to their

rate and extent of small intestinal digestion. Consumption of

slowly digestible starches could assist the prevention and manage-

ment of insulin resistance and diabetes, thus potentially alleviat-

ing the increasing burden of the associated non-communicable

diseases. The aim of the present study was to investigate two

commercially available contrasting waxy maize food starches,

naturally enriched with 13C, with differing rates of in vitro

hydrolysis. The effects of each starch on postprandial glycaemia,

insulinaemia, lipaemia and haemostasis were assessed in healthy
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pre-menopausal women. Potential adaptations to starch exposure

were also investigated by making these measurements before

and after 14 d of daily test starch consumption.

Experimental methods

Subjects

The experimental protocol for the present study was approved by

the joint ethics committees of Newcastle and North Tyneside

Health Authorities. Each subject gave their informed, written con-

sent to participate. All studies were conducted in the Wellcome

Research Laboratories, University of Newcastle, Royal Victoria

Infirmary, Newcastle upon Tyne, UK.

Ten healthy pre-menopausal women, aged 20–37 years, were

recruited from the student and staff population of the University

of Newcastle upon Tyne. All volunteers had a BMI between 20

and 29 kg/m2 and were not pregnant, lactating, a smoker, or

taking medication known to alter insulin sensitivity, carbohydrate

or lipid metabolism, and were not following a diet for medical

reasons. Fasting blood cholesterol, glucose and insulin concen-

trations were within the normal range for each participating

volunteer.

The experimental starches and test meal

The experimental starches were C*Set 06598, a rapidly digestible

pregelatinized thinned waxy maize starch (coded starch A) and

C*Gel 04201, a slowly digestible native waxy maize starch

(coded starch B) and were provided by Cerestar (Vilvoorde, Bel-

gium). The starches were selected following in vitro digestion of a

range of commercially available food starches, using the protocol

described by Englyst et al. (2000), to identify starches with con-

trasting contents of slowly and rapidly digestible starch. The test

starches were supplied pre-weighed, packaged and coded by Cer-

estar, to ensure ‘blinding’ of the research team. ‘Milkshake’ test

meals containing 75 g of either test starch (allocated to each vol-

unteer using a random numbers table), 250 g skimmed milk, 40 g

double cream, 7 g cocoa powder, 2·6 g artificial sweetener (Tesco

own brand) and 100 g chilled water were prepared immediately

before consumption by the volunteers. This provided a palatable

starch meal with a moderate fat content of 21 g known to rep-

resent a standard meal, without flattening the postprandial glycae-

mic response (based on work by Normand et al. 2001).

The experimental protocol

Each volunteer participated in two experimental periods, in a ran-

domized, double-blind, crossover design. During each experimen-

tal period, volunteers attended two acute studies. The first study

examined the effect of test starch consumption against a back-

ground of the subjects’ habitual diet. The second, identical

acute study was carried out at the end of a 14 d ‘adaptation’

period, during which the volunteers were asked to replace regu-

larly consumed dietary starch with 75 g of the test starch on a

daily basis. All volunteers received advice and guidance on the

most appropriate methods of incorporating the test starches into

their diets. The first experimental period was followed by a

2-week ‘washout’ period, before the second experimental period

with the second test starch was carried out. This allowed

1 month to elapse between the beginning of the first and second

experimental periods, thus allowing the investigation of responses

to each starch to occur as close as possible to a fixed point in the

volunteers’ menstrual cycles. The experimental protocol is sum-

marized in Fig. 1.

For the 24 h prior to each acute study day, each volunteer was

advised to avoid alcohol, strenuous exercise and 13C-containing

foods. A standard 13C-free evening meal was provided and con-

sumed before 21.00 hours after which the volunteers fasted over-

night. This meal consisted of ‘Three cheese and broccoli bake’

(450 g), baked potato (180 g), lettuce (150 g), strawberries

(100 g) and grapes (100 g). For each acute study day, subjects

were admitted at 08.00 hours and an intravenous cannula was

inserted into the antecubital vein for collection of baseline fasting

and postprandial blood samples. The test meal was consumed

within 10min and postprandial blood and breath samples were

collected every 15min for the first 2 h and every 30min for the

remaining 4 h. Indirect calorimetry measurements were made

using a Deltatrac Indirect Calorimeter (Datex Instrumentarium

Corporation, Helsinki, Finland) for 20min at 40min intervals,

from 20min before consumption of the test meal to the end of

the study. Throughout the study the volunteers rested in bed

and were allowed unlimited access to drinking water.

Habitual and test starch dietary intake of subjects and

anthropometric measurements

The volunteers’ food intake was estimated from 7 d food records

collected before the study commenced, to assess baseline (habitual)

food intake, and during each period of test starch ‘adaptation’, to

Fig. 1. Experimental protocol summary. I In the 24 h prior to each study, strenuous activity, alcohol consumption and 13C-rich foods were avoided; the evening

prior to each study the standardized meal was consumed and each volunteer was asked to fast from 9.00 hours (still water available ad libitum). PABA, p-amino-

benzoic acid; WHR, waist:hip ratio.
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determine to what extent the habitual diet was altered by the sup-

plemental test starch. Food portion sizes were quantified using the

aid of a photographic atlas (Nelson et al. 1997) and face-to-face

interviewswith the subjects upon completion of the record. Nutrient

intakes were calculated from food records using WinDiets

Nutritional Analysis Software Suite (Robert Gordon University,

Aberdeen). The food records were validated by comparing esti-

mated food N intake with 24 h urinary N excretion. Completeness

of the urine collection was assessed through recovery of a 240mg

oral dose of p-amino-benzoic acid in urine (Bingham and Cum-

mings, 1983, 1985). Weight, height and waist–hip circumference

measurements were taken at the start of each acute study day for

each volunteer.

Analytical methods

Plasma glucose, NEFA and serum insulin concentrations were

determined using standard enzymic procedures as described pre-

viously (Daly et al. 1998, 2000). The fasting and 6 h postprandial

blood haemostasis markers were assayed as follows: (1) plasma

plasminogen activator inhibitor-1 (PAI-1) was analysed using an

ELISA kit from Technoclone (Dorking, surrey; Art.-Nr.12 075);

(2) plasma fibrinogen analysis was carried out on an automated

coagulation analyzer (COAG-A-MATE MTX II; Biomerieux,

Durham NC, USA) using MDA Fibriquick (Biomerieux). Whole

blood cholesterol was determined using an enzymatic hydrolysis

and oxidation performed on an Olympus automated chemistry ana-

lyser (Middlesex, UK; model AU640). Enrichment of 13CO2 in

breath and enrichment of 13C in the test starches were determined

by isotope ratio MS using an ANCA 20:20 mass spectrometer

(Europa Scientific, Crewe, UK).

Calculations and statistical analyses

Area under the curve (AUC) and area over the curve (AOC) were

calculated using the standard trapezoid procedure. The rate of

excretion of 13C as 13CO2 in breath was calculated as the product

of 13CO2 enrichment (percentage of atoms above background)

and CO2 production (determined by indirect calorimetry at each

time-point during the experimental period) as described pre-

viously (Daly et al. 2000; Seal et al. 2003). The cumulative

output of 13C over the 360min experimental period was calcu-

lated from the incremental AUC for 13CO2 output and expressed

as a percentage of the original 13C dose above background for

each individual.

All data were analysed statistically using the ANOVA general

linear model and MINITAB (Coventry, UK) release 13. Of the ten

volunteers recruited, all ten successfully completed both study

days for starch B, but due to cannulation problems, one of the vol-

unteers was unable to complete the studies for starch A.

Results

In vitro starch hydrolysis

The release of glucose following hydrolysis by the Englyst et al.

(2000), method of starch classification for the two test starches, is

illustrated in Fig. 2. Starch A contained 95·5% rapidly digestible

starch and 0·0% slowly digestible starch, compared with starch B,

which contained only 46·8% rapidly digestible starch and 45·5%

slowly digestible starch. As a result starch A was rapidly

hydrolysed, with glucose release reaching a plateau quickly after

just 10min, compared with starch B, which was slowly hydrolysed,

reaching a plateau after 70min. The resistant starch content for both

starches was low, at 5·2% for starch A and 7·7% for starch B.

Subject characterization

Each volunteer recruited was young, relatively lean and healthy

(Table 1). Habitual daily energy and nutrient intakes (Table 2)

show that, on average, 30% of dietary energy was derived from

fat, which more than meets the Department of Health (1991) rec-

ommendations. In addition, carbohydrates provided on average

approximately 50% of dietary energy. Whilst these values dif-

fered significantly (P,0·05) between individual volunteers, no

variation occurred between the three periods of dietary recording.

Starch intake as a percentage of total energy was significantly

higher during both 14 d periods of test starch consumption,

when compared with baseline. Starch intake as a percentage of

total carbohydrate was greater during the 14 d periods of test

starch consumption, but this was significant only for test starch B.

Nutrient intake data were verified by the comparison of urinary

N output with N intakes from analysis of the food diaries, which

showed a mean ratio of 0·84 across all three periods. The comple-

teness of the 24 h urine collections were verified by p-amino-ben-

zoic acid recoveries which averaged 98·9% (Table 2).

Test starch adaptation period (14 d)

With the exception of the postprandial PAI-1 concentrations

(discussed later), there were no significant (P,0·05) effects

following the 14 d consumption of either test starch.

Glucose and insulin concentrations

Fasting glucose and insulin concentrations, averaged across the four

study days, were 4·97 (pooled SEM 0·09) mmol/l and 5·1 (pooled

SEM 0·11) mu/l, respectively. There were marked differences in

the postprandial plasma glucose and serum insulin profiles, between

test starches (Figs 3 and 4; Table 3). Following consumption of the

rapidly digestible starchA, concentrations of both glucose and insu-

lin rose more rapidly and to higher peaks than after consumption of

Fig. 2. Cumulative appearance of glucose during in vitro hydrolysis of the

test starches (B C*Set 06598 coded starch A; O C*Gel 04 201 coded starch

B) selected for in vivo analysis. The digestion conditions were those

described by Englyst et al. (2000).
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the slowly digestible starch B. The AUC insulin to glucose ratios

demonstrated that during the first 120min of each acute study,

starch A evoked a significantly higher insulin response, when com-

pared with the insulin response required for the same quantity of

plasma glucose with starch B.
13C metabolism. Breath 13CO2 output (Fig. 5) was determined

as a measure of glucose absorption and oxidation following con-

sumption of the test starches which were naturally enriched with
13C. 13CO2 output was consistently higher following consumption

of starch A during the first 240min, after which output began to

decline, in contrast with starch B where 13CO2 output rose to a

plateau at 270min and remained stable until the end of the

study at 360min. The peak 13CO2 output values achieved for

each starch were also significantly different (P¼0·004)

(Table 4), with starch A reaching a peak of 0·0139mg 13C/min

(averaged across both study days), compared with starch B

which reached a peak of just 0·0105mg 13C/min (average

across both study days). Analysis of 13C recovery showed that

significantly more labelled carbon was recovered as 13CO2 fol-

lowing consumption of starch A, when compared with starch B,

after both 120 and 360min of the study (P¼0·003 and

P¼0·016, respectively).

Plasma NEFA and cholesterol

After the initial 15min, plasma NEFA concentrations (Fig. 6) fell

rapidly after consumption of both test starches. Although lower

troughs were reached after consumption of starch A, compared

with starch B, the net changes from baseline were not statistically

significant. NEFA concentrations remained well below fasting

values until 180min after the test meals, for both starches,

before rising slowly to baseline concentrations for starch B, and

rising rapidly to well above fasting concentrations for starch

A. These patterns of change were also reflected in the highly sig-

nificant (P,0.001) differences in time spent below fasting con-

centrations and AOC between T0 and T120 (Table 5).

Fasting (T0) and end of study (T360) serum cholesterol data are

shown in Table 6. Neither test starch had a significant effect on

total cholesterol concentrations at either time-point. In addition,

HDL:LDL ratio was also unaffected by the treatments.

Haemostasis factors

Plasma concentrations of fibrinogen and PAI-1 were analysed

before (T0) and at the end (T360) of each acute study (Table 6).

Fibrinogen concentrations were not affected by the consumption

of either test starch and remained within a physiologically normal

range throughout each acute study. For PAI-1, whilst there was no

significant difference in circulating concentrations following con-

sumption of either test starches, the 14 d period of exposure to the

test starches reduced significantly postprandial PAI-1 concen-

trations (Table 6). In the initial acute studies, the T360 PAI-1

values were more than double baseline values for both starches A

and B. However, after 14 d consumption of either test starch,

whilst there was no difference in the baseline fasting (T0) values,

the increase in PAI-1 concentrations at T360 were significantly

blunted (by approximately 70%) for each treatment.

Discussion

The results of epidemiological and experimental studies suggest

that the rate and extent of dietary starch digestion can affect a

range of physiological indices and modulate the risk of several

common non-communicable diseases, in particular those related

to insulin resistance (FAO/WHO, 1998; Mathers & Daly, 1998,

2001). In the present study two starches with contrasting digestion

patterns were used to assess (1) whether the Englyst et al. (2000)

method of classifying rapidly and slowly digestible starches

reflects glycaemic responses in vivo; (2) differences in glycaemic,

insulinaemic, lipaemic and haemostasic responses to a test

meal; and (3) whether the metabolic consequences of starch

Table 1. Anthropometric characteristics and baseline fasting

blood measurement for the ten female volunteers

Measurement Mean SE

Age 28·0 1·70

Waist:hip ratio 0·78 0·104

BMI 22·9 0·70

Activity level (h/week)* 13·5 6·52

Fasting serum cholesterol (mmol/l) 4·57 0·145

Fasting plasma triacylglycerols (mmol/l) 0·73 0·085

Fasting plasma glucose (mmol/l) 4·97 0·071

*Activity levels were calculated after each volunteer was asked how

many hours a week were spent doing mild, moderate and vigorous

activities.

Table 2. Energy and nutrient intakes at baseline and during each of the starch supplementation periods*

Baseline diet (n 10)

Starch A – 14 d diet (n

9)

Starch B – 14 d diet

(n 10)

Mean SE Mean SE Mean SE

P for inter-subject

variation

P inter-record

variation

Total energy (kJ/d) 9018a 1568 10 346a 2173 9427a 1923 0·031 0·14

Fat as % of total energy 30·7a 6·8 29·0a 4·3 28·7 6·3 ,0·001 0·36

Protein as % of total energy 13·5a 3·4 11·3a 4·2 12·5a 4·4 0·23 0·45

Total carbohydrate as % of total energy 47·1a 9·5 52·5a 8·6 50·4a 9·8 0·013 0·20

Starch as % of total energy 22·4a 4·9 29·4b 6·6 28·6b 4·2 0·19 0·008

Starch as % of total carbohydrate 48·5a 11·0 56·0a 8·6 58·6b 11·6 0·007 0·018

Recovery of p-amino-benzoic acid (%) 92·6a 8·2 102·7a 21·7 101·6a 17·9 0·96 0·40

Urinary N/N intake 0·93a 0·13 0·73a 0·19 0·85a 0·23 0·75 0·12

a,b Mean values within a row with unlike superscript letters were significantly different (P,0·05).

*For details of procedures, see p. 949.
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consumption are modulated after a 14 d period of exposure to the

test starches.

To date, probably the most widely utilized method of predicting

glycaemic responses to starchy foods is the GI, and a list of GI for a

range of different foods was compiled by Foster-Powell & Brand-

Miller (1995). However, this methodology requires the use of

human volunteers and concerns have been raised over the applica-

bility of the GI approach to complex meals (Flint et al. 2004) and

different population groups. The usefulness of in vitro approaches

to predict in vivo glycaemia remains unclear. Holm & Bjorck

(1992) have described procedures for characterizing starch diges-

tion in vtiro andmade comparisonswith in vivometabolic responses

whilst Englyst et al. (1992, 2000) provide an in vitro method for

quantifying the rapidly digestible, slowly digestible and resistant

starch fractions of starchy foods. Englyst et al. (1999) also suggested

that rapidly available glucose, determined from the hydrolysis

protocol, provides a good indicator of glycaemic response in vivo.

The results from the present study demonstrate that the in vitro

data are able to predict the glycaemic response to each test starch

in the healthy female volunteers investigated. This is illustrated

by a comparison of 120min AUC ratios for starch A–starch B for

glucose released following in vitro hydrolysis (1·17:1), with that

for the plasma glucose response over the same time period (1·14:1).

As reported in a previous study from our group (Seal et al.

2003), starches with different rates of digestion in vitro evoke sig-

nificantly different glycaemic and insulinaemic responses. This is

further confirmed in the present study with the rapidly digestible

starch A, resulting in more pronounced rises and falls in plasma

glucose and in serum insulin concentrations, compared with the

slower, more sustained responses to the slowly digestible starch

B. The differences between the two test starches during the first

120min were, however, more exaggerated for the plasma glucose

response, when compared with the insulin response. This

enhanced insulin response was not reported in the Seal et al.

(2003) study, however the test meals in that study contained no

fat. It is possible that the insulin results reported here may have

been affected by the co-ingestion of fat, which has been shown

to stimulate early insulin secretion (Collier et al. 1984, 1988).
13CO2 output in breathwas used as an index of postprandial starch

hydrolysis and subsequent glucose absorption and oxidation,

although absorbed glucose which is not stored and not oxidized

within the time-frame of the study is not measured by this approach.

This analysiswas possible as both test starches derive fromnaturally

enriched maize (corn), which accumulates excess 13C during CO2

fixation in the C4 photosynthetic pathway (Taiz & Zieger, 1991).

In agreement with the postprandial glycaemia data, the rate of
13CO2 output and 13C recovery for starch A were significantly

higher than for starch B. The present data are in accord with the

observations of Normand et al. (1992) and Seal et al. (2003), in

showing that glucose absorption and oxidation continued long

after blood glucose concentrations had fallen back to fasting con-

centrations (for starch A) and approaching fasting concentrations

for starch B. It has been suggested that the observed pattern of
13CO2 output is closely related to the pattern of glucose uptake

from the gut, after the initial delay resulting from the postprandial

surge of insulin, and the switch in overall metabolic oxidation

from fat to glucose (Seal et al. 2003). The data from the present

study, along with others (Achour et al. 1997; Daly et al. 2000;

Vonk et al. 2000; Seal et al. 2003), demonstrate the utility of this
13C-based approach in investigating the metabolic effects of

starches with differing digestion patterns.

In accordance with findings from previous reports (Frayn,

1998; Normand et al. 2001; Seal et al. 2003), the postprandial

changes in NEFA concentrations from the present study corre-

lated inversely with the insulin responses to each test starch.

The resulting slower, more sustained level of circulating NEFA

in response to the slowly digestible starch B, without the rapid

rise in NEFA seen towards the end of the postprandial period fol-

lowing consumption of the rapidly digested starch A, could prove

beneficial in lowering circulating NEFA concentrations.

It is documented that insulin resistance and the resulting

elevation in NEFA can alter cholesterol concentrations by

increasing production of triacylglycerol-enriched VLDL particles

and reducing lipoprotein lipase activity (Abate, 2000). Based on

previous studies (Itoh et al. 1999; Jarvi et al. 1999), it was

hypothesized that the slowly digestible starch B would reduce

cholesterol concentrations when compared with the rapidly diges-

tible starch A. However, the results from the present study show

Fig. 3. Change from baseline in plasma glucose concentrations after con-

sumption of the rapidly digestible starch A (B and A, n 9) and slowly digesti-

ble starch B (O and K, n 10) in the acute study (—) and following the 14 d

period of exposure to the test starches (- - -). Values are means with

their standard errors depicted by vertical bars. For details of procedures,

see p. 949.

Fig. 4. Change from baseline in serum insulin concentration after consump-

tion of rapidly digestible starch A (B and A, n 9) and slowly digestible starch

B (O and K, n 10) in the acute study (—) and following the 14 d period of

exposure to the test starches (- - -). Values are means with their standard

errors depicted by vertical bars. For details of procedures, see p. 949.
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that there were no differences between two test starches in either

total cholesterol concentrations or HDL:LDL ratio, both during

acute starch administration and following 14 d adaptation to

the test starches. The present finding may suggest that the

young, relatively lean female participants had good insulin

sensitivity.

Raised concentrations of fibrinogen and PAI-1 have been

linked mechanistically with insulinaemia and CHD development

(Bastard et al. 2000; Raynaud et al. 2000; Kohler, 2002).

Although Rauramaa et al. (1994) demonstrated a strong inverse

correlation between starch intake and fibrinogen levels in older

men, neither test starch altered fibrinogen concentrations in the

healthy female volunteers that participated in the present study.

This result is perhaps unsurprising, since Raynaud et al. (2000)

reported a highly significant correlation between fibrinogen and

insulin sensitivity, and the volunteers in the present study may

have been relatively insulin-sensitive. Further investigation in

insulin-resistant and/or diabetic individuals is warranted.

When PAI-1 concentrations are raised, fibrinolytic activity is

depressed and there is a subsequent increase in the risk of throm-

bosis. In the present study, PAI-1 concentrations in the initial

acute study for both test starches more than doubled over the post-

prandial period, when compared with baseline concentrations.

Carroll & Schade (2003) also reported a postprandial rise in

PAI-1, which tripled from baseline concentrations to 4 h after a

high-fat (70 g) meal served to type 2 diabetic participants. The

higher fat content of the Carroll study meal may explain the

more pronounced rise in postprandial PAI-1 concentrations. How-

ever, this theory is contradicted by Sanders et al. (2004), who

reported a postprandial decrease in PAI-1 concentrations, irre-

spective of the fat content of the test meal consumed by the

non-diabetic, male participants. One possible explanation of

Table 4. 13C recovery in breath carbon dioxide of subjects following consumption of the test starch meal*

Starch A Starch B Significance of effects (P )

Response Study 1 Study 2 Study 1 Study 2 Pooled SEM Starch A v. B Study 1 v. 2

(Starch A v. B) £

(Study 1 v. 2)

Peak 13C value (mg above background) 0·0138 0·0140 0·0124 0·0087 0·00 030 0·004 0·14 0·11
13C recovery after 120 min (%) 10·0 11·5 7·4 6·9 0·36 0·003 0·65 0·34
13C recovery after 360 min (%) 54·1 56·2 48·2 42·6 4·83 0·016 0·63 0·31

*Study 1 is the initial acute study; study 2 is the second acute study following the 14 d test starch supplementation period. For details of procedures, see p. 949.

Table 3. Derived parameters of plasma glucose and insulin responses for subjects following consumption of the test starches*

Starch A Starch B Significance of effects (P )

Response Study 1 Study 2 Study 1 Study 2 Pooled SEM Starch A v. B Study 1 v. 2

(Starch A v. B) £

(Study 1 v. 2)

Glucose peak value – T0 (mmol/l) 2·43 2·50 1·40 1·52 0·175 ,0·001 0·58 0·89

Insulin peak value – T0 (m/l) 60·6 68·5 57·0 56·9 4·60 0·11 0·40 0·38

AUC insulin (m/l) to glucose

(mmol/l) ratio from T0 to T120

7·08 7·99 6·13 6·90 0·439 0·029 0·06 0·88

AUC, area under the curve.

*Study 1 is the initial acute study; study 2 is the second acute study following the 14 d test starch supplementation period. For details of procedures, see p. 000.

Fig. 5. Change from baseline in breath 13C output after consumption of

rapidly digestible starch A (B and A, n 9) and slowly digestible starch B

(O and K, n 10) in the acute study (—) and following the 14 d period of adap-

tation (- - -). Values are means with their standard errors depicted by vertical

bars. For details of procedures, see p. 949.

Fig. 6. Change from baseline in plasma NEFA concentrations after consump-

tion of rapidly digestible starch A (B and A, n 9) and slowly digestible starch

B (O and K, n 10) in the acute study (—) and following the 14 d period of

adaptation (- - -). Values are means with their standard errors depicted by

vertical bars. For details of procedures, see p. 949.
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these contrasting findings is physical activity levels, which

are known to correlate inversely with PAI-1 concentrations

(Rankinen et al. 1995; Ivey et al. 2003). The participants of

both the present and the Carroll study were rested in hospital

throughout the postprandial sampling period, whilst the partici-

pants in the study by Sanders et al. (2004) were permitted to

return to home or work between sampling. It is therefore likely

that the activity levels were higher in the Sanders study, which

may have reduced the postprandial PAI-1 concentrations.

A novel observation, previously unreported, is the significant

blunting of the observed postprandial rise in PAI-1 concentrations

after 14 d of regular test starch consumption, irrespective of the

test starch consumed. The design of the present study makes it

impossible to determine whether it was increased starch consump-

tion and/or the compensatory decrease in other dietary carbo-

hydrates per se which reduced postprandial PAI-1 concentrations,

and the observation warrants further investigation.

During the present study, each metabolic parameter was exam-

ined before and after a 14 d period of daily test starch consumption,

to establish whether habituation to the test starch influenced the

metabolic outcomes. However, PAI-1 concentration was the only

variable influenced by the regular test starch consumption. Since

intestinal and pancreatic enzyme activities are known to respond

to changes in dietary composition, it was hypothesized that meta-

bolic ‘adaptation’ may result in a significant difference in the sub-

sequent glycaemic and insulinaemic responses to each of the test

starches. Previous studies have indeed suggested that increased

starch intake over time stimulates specific amylase activity (Cor-

ring, 1980; Flores et al. 1988) and increases the rate of intestinal glu-

cose transport (Ferraris et al. 2001). The results from the present

study, however, suggest that after the daily consumption of 75 g

of either test starch over 14 d, neither fasting nor postprandial gly-

caemia, insulinaemia, NEFA, cholesterol or fibrinogen were altered

significantly.

In conclusion, the results from the present study show that

starches with contrasting hydrolysis characteristics in vitro have

correspondingly different postprandial glycaemic and insulinae-

mic responses in healthy young female volunteers. The present

findings suggest that consumption of slowly digestible starches

could improve glycaemic control and lower postprandial NEFA

concentrations, which could contribute to prevention and treat-

ment of diabetes and complications of the metabolic syndrome.

An increase in starch consumption per se may also reduce post-

prandial PAI-1 concentrations, thus reducing a potential risk

factor implicated in the metabolic syndrome.
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