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The problems being addressed by today's microscopists and

microanalysts are becoming increasingly complex and data inten-
sive. Thirty five years ago, many of us were challenged by the mere
process of recording a spectral profile and then using the limited
resources we had at hand to analyze the data to obtain quantitative
results. Today, we have within our laptop computers the process-
ing power of yesterday's supercomputers, however, computing
power alone will not be sufficient to solve the next generation of
problems. To truly create a new paradigm of how we work, we have
to consider the nature of each of the resources needed to perform
an experiment, assess their limiting factors and then determine
the mechanism by which we can employ each to its greatest utility.
Finally we need to come up with new ways of combining multiple
resources to change how we perform these tasks.

Taking as a fundamental the premise that we are interested in
extending the range and diversity of problems that we will be dealing
with in the future and not just simply improving the resolution at
which we do any individual measurement, we will be challenged to
consider experiments that previously were considered beyond the
realm of achievability. The obvious questions thus become:
• In what way are our current experiments limited by the way

we work, rather than our instruments?
• How can we push the envelope of technology to permit our

solving new types of problems?
• Where will the breakthroughs in new ways of working be real-

ized?

Given the ever growing tendency to add computational re-
sources to our instruments, it is clear that the next advance will be
directly related to how well we can effectively merge the realms of
computational science and experimental science together. In the
past we have used computers to simply speed up our experiments,
in the last decade we have expanded this role to permit various
degrees of telepresence operation. In the coming decade the key
to changing how we work will be to realize that once an effective
interface of instrumentation and computational tools has been
developed, we must then change the way in which we design and
conduct our experiments. This means not only re-examining how
we do experiments, so that measurements are done not just ef-
ficiently and with a modicum of speed, but more importantly to
redesign these experiments, in such a way so as to maximize the
information measured from the specimen. In this way the data ac-
quired can be "mined" for content after the fact, using tools which
may not reside within the instrument room, but possibly at remote
locations and not just by the instrument operator but potentially
by a colleague at any location.

Table 1. Data Set Size for PRD Experiments
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Fig.l. Position Resolved Diffraction (PRD) experimental
arrangement.
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As example of this new type of experiment, consider the tech-
nique of Position Resolved Diffraction [ 1 ]. Here a focused electron
probe is sequentially positioned in a two-dimensional pattern on
a thin TEM specimen and at each point a complete electron dif-
fraction pattern (EDP) is acquired, stored and ultimately analyzed
(figure 1). In many respects, this is an extension of the original
spectral imaging concept first proposed by Tence in 1995 [2], which
expands the dimensionality of the problem they first addressed of
acquiring individual spectra at each point, to one where we now
want to acquire multi-dimensional data sets at each location. In
the past this type of experiment would have been simply dismissed
as impractical, as it simply puts too great an onus on the operator
conducting the experiment. Consider Table 1, which documents
the data set sizes of these experiments. A minimal effort might
involve a measurement on a 64 x 64 pixel spatial array (X,Y) grid
at each point measuring a diffraction pattern at IK x IK pixels (a
x (3) yielding ~ 4Gbytes of data per measurement, in comparison
a study of a IK x IK spatial array of points produces ~ lTbyte of
data. Both the former and latter of these scenarios is well beyond
the current processing capabilities of any humanly directed process,
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Fig. 2. Linking Grid technologies with user applications for
state-of-the-art Microscopy and Microanalysis.

as well as for most existing desktop DAQ systems present on instru-
ments today. This even neglects the fact that there are fundamental
limitations of popular operating systems, for example, in W2K there
is a maximum size limit for individual files of 2GB, set by the file
system. Fortunately, not all operating systems suffer this problem.

To tackle these types of problems, the clear challenge for the
next generation of experimentalists becomes both demanding
with regard to experiment design, as well as the requirement of
integrating new advances in information technology, networking,
and processing with our methodology in such a way that we can
realistically tackle the next wave of data intensive experiments. To
this end, at ANL we are working with computational scientists to
developing a set of Grid [3-4] enabled tools to facilitate network
coordination of computational resources with the aim of changing
the way experiments are done. The intention is for these new tools
to integrate network aware resources linking: storage, communica-
tion, and control together with computational power to facilitate not
only data acquisition, but also data mining and remote collaboration
to a degree that is unprecedented today. In today's parlance, this is
sometimes called managing workflow [5]. While the early experi-
ences of setting up computationally mediated experiments in the
microscopy and microanalysis environment have been tedious[6],
in the long term it will result in the robust, adaptable, computation-
ally-mediated experimental workflow system that will be needed to
exploit the potentials of future aberration corrected instruments as
embodied in the DoE TEAM project[7]. •
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