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Abstract In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in
dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex
Lie algebra f4. Cartan’s formula is written in the standard Cartesian coordinates in R'®. In the present
paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution
D whose symbol algebra n(D) is constant and 2-step graded, n(D) =n_2@®n_j.

The formula is given in terms of a solution to a certain system of linear algebraic equations determined
by two representations (p,n_1) and (7,n_2) of a Lie algebra ngo contained in the Oth order Tanaka
prolongation ng of n(D).

Numerous examples are provided, with particular emphasis put on the distributions with symmetries
being real forms of simple exceptional Lie algebras f4 and eg.
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1. Introduction: the notion of a contactification

A contact structure (M,D) on a (2n+ 1) dimensional real manifold M is usually defined
in terms of a 1-form A on M such that

AAAAAA---AAAAXA#O
_—
n times
at each point « € M. Given such a 1-form, the contact structure (M,D) on M is the rank
s = 2n vector distribution

D={XeTMst X_1A=0}

Note that any A = a), with a being a nonvanishing function on M, defines the same
contact structure (M,D). We also note that given a contact structure (M,D), we
additionally have a family of 2-forms on M

W =aw+pAX, with w=d)\,

where a # 0 is a function, and p is a 1-form on M. This, in particular, means that given
a contact structure (M,D), we have a rank s = 2n (bracket generating) distribution D,
and a line of a closed 2-form w in the distribution D, with

do=0 & wAWA---AwF#D0.
—_—

n times

This can be compared with the notion of a symplectic structure (N,[w]) on a s = 2n
dimensional real manifold N. Such a structure is defined in terms of a line w’ = hw of a
nowhere vanishing 2-form w on N, such that

do=0 & wAWA---AwF#D0.
~—_—

n times

Here, contrary to the contact case, we have a line of a closed 2-form w in the tangent
space TN rather than in the proper vector subbundle D C TN.
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By the Poincaré lemma, locally, in an open set O C N, the form w defines a 1-form A on
N such dA = w. Therefore, given a symplectic structure (N, [w]), we can locally contactify
it by considering a (2n+ 1) dimensional manifold

U=Rx05 0,
with a 1-form
A=du+7*(A)

on U; here, the real variable v is a coordinate along the R factor in Y = R x O. As a
result, the structure (M, D) = (U, ker(X)) is a contact structure, called a contact structure
associated with the symplectic structure (N,[w]).

We introduce the notion of a contactification as a generalisation of the above
considerations.
Definition 1.1. Let N be an s-dimensional manifold and let dD* := Span(w!,w?,...,w")
be a rank r subbundle of /\2 N. Consider an (s+7)-dimensional fiber bundle F — M 5 N
over N. Let (X1,Xo,..., ) be a coframe of vertical vectors in M. In particular, we have
7 (X;) =0 for all i = 1,2,.

Let us assume that on M there exist r one-forms M\, i = 1,2,...,r, such that
det(X;_1 M) #0 on M, and that d\i = Zr_lai (W) D05 1A )\j for all i = 1,2,.
with some 1-forms p’; and some functions a’; on M satisfying det(a’;) # 0. Consider the
corresponding rank s distribution D={TM > X | X1 A'=0,i=1,2,...7} on M.

Then the pair (M,D) is called a contactification of the pair (N,dD™).

Definition 1.2. A real Lie algebra g spanned over R by the vector fields Y on M of the
contactification (M,D) satisfying

Ly NAMNA- AN =0, Vi=12...r (1.1)

is called the Lie algebra of infinitesimal symmetries of the contactification (M,D). By
definition, it is the same as the Lie algebra of infinitesimal symmetries of the distribution
D on M. The vector fields Y on (M, D) satisfying (1.1) are called infinitesimal symmetries
of (M,D), or of D, for short.

Below, we give a nontrivial example of the notions included in Definitions 1.1 and 1.2.

Example 1.3. Consider N = R® with Cartebian coordinates (z!,2%,23 24,25 25 27, 2%)

and a space dD+ = Span(w!,w?,w?,ww®wbw’) € A°N, which is spanned by the
following seven 2-forms on N:

w! =dat Ada® + da® Ada® +da Ada” +dat Ada®

w? = —dzt Ada® 4+ da? Ada® + dad AdaS — dat Ada”

w3 = —dat Adz” — dz? Ada® + da® Ada® 4 dat Ade®
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wh =dz! Ada? 4+ dad Adat +da® Ada® + dab Ada”
WS = —dat AdaS +da? Ada” —da® Ade® + dat Ada®
w8 =da! Adat 4+ dz? Ade® — dz® Ada” + dab Ada®
W' =dzt Adx? —da® Ada? +da® Ada® 4+ da” Ada®.

As the bundle N, take M =R” x R® — N with coordinates (x!,...,2% 2°...,21%), and take
seven 1-forms

A =da? 4+ 2tda® + 22d2® + 23d2” + 2*da®
A2 =dz!0 — 2tda® 4+ 22da® 4 23da’ — 2da”
A =da!t —2tda” — 22dab + 23da® + 2% da’
M =da'? 4 2lde? + 23dat + 2°da® + 25da”)
AN =dz!? —2tdab 4+ 2?de” — 23da® + 2 da®
A = dz 4 2tdat 4+ 22da® — 25da” + 25da®
AN =da!® + 2tde® — 2%dat + 2°dab + 27da8.

This defines a rank 8 distribution D={TM > X | X 1\ =0,i=1,2,...7} on M. The pair
(M,D)is a contactification of (N,dD*) since X; = diys, det(X; A7) =1, and d\' = w’
for all i =1,...,7. In particular, in this example, the rank 8 distribution D gives a 2-step
filtration D_1 C D_g =TM, where D_1 =D and D_5=[D_1,D_1] =TM.

This example is essentially taken from Elie Cartan’s PhD thesis [8] — actually its German
version. We took it as our example inspired by the following quote from Sigurdur Helgason
[13]:

Cartan represented [the simple exceptional Lie group] F4 (...) by the Pfaffian system in R® (...). Similar
results for E¢ in R, E7 in R?7 and Eg in R?° are indicated in [8]. Unfortunately, detailed proofs of
these remarkable representations of the exceptional groups do not seem to be available.

The 15-dimensional contactification (M, D) from our Example 1.3 is obtained in terms
of the seven 1-forms A!, which are equivalent to the seven forms from the Cartan
Pfaffian system in dimension 15 mentioned by Helgason. In particular, it follows that
the distribution structure (M,D) has the simple exceptional Lie group Fy, actually its
real form Fr in the terminology of [11], as a group of authomorphism.

In this paper, we will explain how one gets this realisation of the exceptional Lie group
F,, a realisation of its real form Fj, and realisations of the two (out of 5) real forms Ej
and Fry of the complex simple exceptional Lie group Eg. For this explanation, we need
some preparations consisting of recalling few notions associated with vector distributions
on manifolds and spinorial representations of the orthogonal groups in space of real
spinors.

Finally, we note that our approach in this paper is purely utilitarian. We answer
the question: How to get the explicit formulas in Cartesian coordinates for Pfaffian
forms(AY,...,\"), which have simple Lie algebras as symmetries? One can study more
general problems related to this on purely Lie theoretical ground. For example, one can
ask when a 2-step graded nilpotent Lie algebra n. =n_5@n_; has a given Lie algebra

https://doi.org/10.1017/51474748024000173 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748024000173

Exceptional Geometries )

Ngo as a part of its Lie algebra ng of derivations preserving the strata, or a question as to
when the Tanaka prolongation of such n_ with ngg C ng is finite, or simple. This is beyond
the scope of our paper. A reader interested in such problems may consult, for example,
[3, 4, 16]. We also mention that since in this paper we only consider distributions D with
2-step filtrations D =D_1 C D_o =TM and without any additional geometric structure
intentionally imposed on D, the realisations of the real forms of the exceptional simple
Lie group G will not appear. These can be found, for example, in [1, 6, 10, 17].

2. Magical equation for a contactification

The purpose of this section is to prove the following crucial lemma about a certain
algebraic equation, which we call a magical equation. It is the boxed equation (2.1) below.

Lemma 2.1. Let (ngo,[,-]o) be a finite dimensional Lie algebra, and let p:ngg hom End(S)
be its finite dimensional representation in a real vector space S of dimension s. In addition,
let R be an r-dimensional real vector space, and 7 : ngo — End(R), be a linear map. Finally,
let w be a linear map w: \°S — R, or what is the same, let w € Hom(A>S,R).

Suppose now that the triple (p,w,T) satisfies the following equation:

w(p(A)X,Y) +w(X,p(A)Y) =7(A)w(X,Y), (2.1)

for all A€ ngy and all XY € S. Then we have the following:
(1) The map T satisfies
(7([4,Blo) = [7(A),7(B)]gnd(r) Jw = 0 VA, B € ngy.
(2) If the map T :ngp — End(R) is a representation of ngg, that is, if
7([4,Blo) = [7(A),7(B)]End(r),
then the real vector space go := R® S ®ngg is a graded Lie algebra
go =n_oBn_1 Sngo,
with the graded components
no=R n_1=5withngastheO grade,

and with the Lie bracket [-,-] given by

(a) if X,Y €ngo, then [X,Y] = [X,Y]o,

(b) if A€ ngy, X €n_q, then [A,X]=p(A)X,

(c) if A€ngy, X €n_y, then [A,X]=7(A)X,

(d) [nor,n_o] =[n_2n_o]={0},

(e) and, if X, Y €n_q, then [X,Y]=w(X,Y).
(3) Moreover, in the case (2), the Lie subalgebra

n_=n_osdn_y
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of go is a 2-step graded Lie algebra, and the algebra ngy is a Lie subalgebra of the
Lie algebra

ng = {Der(n.) > Ds.t. Dn; Cnjforj=-1,-2}
of all derivations of n_ preserving its strata n_1 and n_s.

Remark 2.2. Note that, in the respective bases {f,};—; in S and {e;};_; in R, the
equation (2.1) is

P(A)au wiau +p(A)%, wimx = T(A)ij wi/w (2.2)

for all A €ngp, all i =1,2,...,r and all y,v =1,2,...,s. On this basis, the condition (1) is
(7([A,Blo) — [r(A),7(B)|gnar) ) j W = 0
foralli=1,2,...,r,u,v =1,2,...5, and A, B € ngyp.

Proof of the lemma. The proof of part (1) is a pure calculation using the equation
(2.1). We first rewrite it in the shorthand notation as

p(A)w+wp(A)T =1(A)w, VA Eng.
Then we have
7([A Blo)w = p([A, Blo)w +wp([A, Blo)"
p(A)p(B)w — p(B)p(A)w +wp(B)" p(A)" —wp(A)" p(B)"
(4)

)

p(4) (r(B)w —wp(B)T) = p(B) (7(A)w —wp(A)")

T<B>w—p<B>w)p<A>T—(T<A>w—p<A>w)p<B>T

= p(A) (r(B)w) = p(B) (r(A)w ) + (1(B)w) p(4)" — (r(A)w) p(B)"

= (A7 (B)w — 7(B)wp(A)T ~ (7(B)r(A)w—7(A)wp(B)T )
+7(B)wp(A)T —r(A)wp(B)T = r(A)r(B)w —T(B)r(A)w

([T(AvT(B)]End(R))

which proves part (1).
The proof of parts (2) and (3) is as follows:

We need to check the Jacobi identity for the bracket [-,-].
We first consider the representation

+

/

oc=7®p of ng in n.=n_oPn_q,
defined by
o(A)Y BX) = 7(A)Y ®p(A)X, YAEngp X €n_1,Y €n_s.

We then prove that the representation o is a strata preserving derivation in n_. This is
implied by the definitions (a)—(e) of the bracket, and the fundamental equation (2.1) as
follows:
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The strata preserving property of o, o(n_;) C n_;, i = 1,2, is obvious by the definitions
of p and 7. However, we need to check that o is a derivation — that is, that

o(A)X,Y] = [o(A)X,Y]+[X,0(A)Y] (2.3)

for all A € ngg and for all X,Y € n_. Because of the strata preserving property of o, which
we have just established, and because of the point (d) of the definition of the bracket, the
equation (2.3) is satisfied when both X and Y are in n_s, or when X isinn_; and Y is
n_s. The only thing to be checked is if (2.3) is also valid when both X and Y belong to
n_1. But this just follows directly from (2.1) since if X,Y € n_y, then
o(A)X)Y]=0(A)w(X,Y) =7(A)w(X,Y) =
WP A)X.Y) + (X p(AY) = [p(A)X, Y] 4 [X.p(A4)Y] =
[O’(A)X,Y} + [XJT(A)Y], VA € nyg.
Now we return to checking the Jacobi identity for the bracket [-,-] in go:
On elements of the form A, B € ngg, Z € n_, by (b)-(c), we have

[A,B).2]+ (12,4} B+ [[B, 21,4) = (o(|4,B]) ~ [+(4),0(B)]) Z,

which vanishes due to the representation property of o. However, on elements A € ngg
and Z1,7Z> € n_, we have

([A, Z1], Z2] + [[Z2,Al, Z1] + [[Z1, Z2), A] = [0(A) Z1, Zo) + [Z1,0(A) Z2] — 0 (A) [ Z1, 22,

which is again zero, on the ground of the derivation property 2.3 of . Obviously, the
bracket satisfies the Jacobi identity when it is restricted to ngo; it is the Lie bracket [-,-],
of the Lie algebra ngg. Finally, property (2) implies that [[Z1,Z2],Z3] =0 for all Z1,Z5,Z3
in n_; hence, the Jacobi identity is trivially satisfied for [-,-], when it is restricted ton_.. O

In the following, we will use the map w € Hom(/\2 S, R) satisfying the magical equation
(2.1) to construct contactifications with nontrivial symmetry algebras g. The setting will
include Cartan’s contactification with symmetry F, mentioned in the Helgason’s quote.
For this, however, we need few preparations.

3. Two-step filtered manifolds

A 2-step filtered structure on an (s+r)-dimensional manifold M is a pair (M,D), in which
D is a vector distribution of rank s on M, such that it is bracket generating in the quickest
possible way. This means that its derived distribution D_o := [D_1,D_4], with D_; =D,
is such that

D_o=TM.
It provides the simplest nontrivial filtration
TM=D_2>D_;
of the tangent bundle TM.
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A (local) authomorphism of a 2-step filtered manifold (M, D) is a (local) diffeomorphism
¢: M — M such that ¢, D C D. Since authomorphisms can be composed and have inverses,
they form a group G of (local) authomorphisms of (M,D), also called a group of (local)
symmetries of D. Infinitesimally, the Lie group of authomorphisms defines the Lie algebra
aut(D) of symmetries, which is the real span of all vector fields X on M such that
[X,)Y]CDforalY eD.

Among all the 2-step filtered manifolds (M, D) particularly simple are those which can
be realised on a group manifold of a 2-step nilpotent Lie group. These are related to the
notion of the nilpotent approzimation of a pair (M, D). This is defined as follows:

At every point x € M equipped with a 2-step filtration D_s D D_1, we have well-defined
vector spaces n_1(z) =D_1(x) and n_z(x) =D_s(x)/D—_1(x), which define a vector space

n(z) =n_o(z)dn_q(z).

This vector space is naturally a Lie algebra, with a Lie bracket induced form the Lie
bracket of vector fields in TM. Due to the 2-step property of the filtration defined by D,
this Lie algebra is 2-step nilpotent,

oa(@)na(@)] =no(z) & [noa(z)n ()] = {0}

This 2-step nilpotent Lie algebra is a local invariant of the structure (M,D), and it is
called a nilpotent approxzimation of the structure (M,D) at x € M.

This enables for defining a class of particularly simple examples of 2-step filtered
structures:

Consider a 2-step nilpotent Lie algebra n=n_s®n_1, and let M be a Lie group, whose
Lie algebra is n. The Lie algebra ny; of left invariant vector fields on M is isomorphic
to n and mirrors its gradation, ny; = nps_o @ nps_q. Now, taking all linear combinations
with smooth functions coefficients of all vector fields from the graded component n; _;
of nys, one defines a vector distribution D = Spang(yp(na) on M. The so constructed
filtered structure (M,D) is obviously 2-step graded and is the simplest filtered structure
with nilpotent approximation being equal to n everywhere. We call this (M,D) structure
the flat model for all the 2-step filtered structures having the same constant nilpotent
approximation n.

It is remarkable that the largest possible symmetry of all 2-step filtered structures
(M, D) is precisely the symmetry of the flat model. As such, it is algebraically determined
by the nilpotent approximation n. This is the result of Noboru Tanaka [18]. To describe
it, we recall the notion of Tanaka prolongation.

Definition 3.1. The Tanaka prolongation of a 2-step nilpotent Lie algebra n is a graded
Lie algebra g(n) given by a direct sum

gm)=n@nedn @---®n; d- -, (3.1)
with

n, = {@nkﬂ- @n; 3 Ast. A[X)Y] = [AX,Y]+ [X,AY]} (3.2)
§<0
for each k > 0.
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Furthermore, for each j > 0, the Lie algebra
gi(n)=n®ngdn &---dn,
is called the Tanaka prolongations of n up to j** order.

Setting [4,X] = AX for all A € n; with k >0 and for all X € n makes the condition
in (3.2) into the Jacobi identity. Moreover, if A € ng and B € ny, k,l > 0, then their
commutator [A,B] € ni4; is defined on elements X € n inductively, according to the
Jacobi identity. By this, we mean that it should satisfy

[A,B]X =[A,BX] - [B,AX],
which is sufficient enough to define [4, B].

Remark 3.2. Note, in particular, that ng is the Lie algebra of all derivations of n
preserving the two strata n_; and n_s of the direct sum n=n_s®n_y:

ng = {Der(n) 5 Ds.t. Dnj Cnjforj=—1,-2}.

Although the Tanaka prolongation of a nilpotent Lie algebra n is in general infinite, in
this paper, we will be interested in situations when the Tanaka prolongation

g=g(n)
of the 2-step nilpotent part
n=n_osdn_
is finite and symmetric, in the sense
gn)=n_o®n_; dnydny Dny,
with
dim(n_;) =dim(ng), k=12

Such situations are possible, and in them the so defined Lie algebra g(n) is simple. In such
a case, the Tanaka prolongation g(n) is graded, and the subalgebra

p=npdn; Ony
in such g(n) is parabolic. Moreover, the Lie algebra
Popp =N_2Bn_1Bng

is also a parabolic subalgebra of this simple g(n). It is isomorphic to p, p > popp.
Regardless of whether g(n) is finite or not, we have the following general theorem, which
is a specialisation of a remarkable theorem by Noboru Tanaka [18]:

Theorem 3.3. Consider 2-step filtered structures (M,D), with distributions D having
the same constant nilpotent approximation n. Then
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e The most symmetric of all of these distribution structures is the flat model (M,D),
with M being a nilpotent Lie group associated of the nilpotent approximation
algebra n, and with D being the first component D~' of the natural filtration on
M associated to the 2-step grading in n.

e The Lie algebra of authomorphism aut(D) of the flat model structure is isomorphic
to the Tanaka prolongation g(n) of the nilpotent approzimation n, aut(D) =~ g(n).

Remark 3.4. This theorem is of fundamental importance for explanation of the Cartan’s
result about a realisation of Fy in R'®. As we will see, Cartan’s R'% is actually a domain
of a chart (U,p) on a certain 2-step nilpotent Lie group M, with a 2-step nilpotent Lie
algebra n, and the equivalent description of Fy in terms of a symmetry group of the
contactification (M,D) from our Example 1.3 is valid because this contactification is just
the flat model for the 2-step filtration (M,D) with the nilpotent approximation n.

Using the information about the Tanaka prolongation of a nilpotent Lie algebra n, we
can enlarge our Lemma 2.1 by changing its point (3) into the following more complete
form:

Lemma 3.5. With all the assumptions of Lemma 2.1, and with points (1) and (2) as in
Lemma 2.1, its point (3) is equivalent to the following:

(3) Moreover, in the case (2), the Lie subalgebra
n.=n_os®dn_y
of
go=n_o@n_1;Dngg

s a 2-step graded nilpotent Lie algebra, and the algebra ngg is a Lie subalgebra of the
Tanaka prolongation up to 0" order go(n_.) of the Lie algebran. =n_,®n_q.

Remark 3.6. The term ‘... nyg is a Lie subalgebra of the Tanaka prolongation up to 0"
order go(n.) of the Lie algebra n. =n_s@®n_;.." in the above lemma means that ngp,
although nontrivial, is in general only a subalgebra of the

ng = {Der(n.) 2 Ds.t. Dn; Cn,forj=—1,-2}, noo S no,

which is the full 0 graded component of the Tanaka prolongation of n_. So for applications,
it is reasonable to choose ngy as large as possible.

4. Construction of contactifications with nice symmetries

Consider a Lie algebra (ngp,[-,-]o) and its two real representations (p,S), (7,R), in the
respective real s- and r-dimensional vector spaces S and R. Let S =R?®, R=R", and let
{fu}j=1 and {e;}]_; be respective bases in § and in R. Let {f#};_; be a basis in the
vector space S dual to the basis {f.};_1, fu— f* =4,". To be in a situation of Lemma
2.1, we also assume that we have the homomorphism w € Hom(A*S,R) satisfying the
magical equation (2.1).
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Then the map w is
w= 3w e;@fAFY,
and it defines the coefficients wi,“,, i=1,...,r, p,v=12,...s, which satisfy wim, = —wiw.
Now, consider an s-dimensional manifold, which is an open set N of R*, N C R*, with
coordinates (2);,_;. Then we have r two-forms (w’)j_; on N, defined by

w' = %wzwdx“ Adz”.

This produces an (N,dD+) structure on N, with
dD* = Spang (w',...,w").

We contactify it. For this, we take a local M = R" x N, with coordinates (ui,x“){:lzzl,
and define the ‘contact forms’ on M by

A= du! —l—wim,x“dx”.
Because of Lemmas 2.1 and 3.5, the distribution D on M defined by this contactification
as in Definition 1.1 equips M with a 2-step filtered structure having D_; = D. This has

rank s. Now using Lemmas 2.1 and 3.5, and Tanaka’s Theorem 3.3, we get the following
corollary.

Corollary 4.1. Let M =R" xR® and let
N = du! +wiw,x"dx”, i=1,...7,

with w being a solution of the magical equation 2.1 such that Im(w) = R. Consider the
distribution structure (M, D) with a rank r distribution

D={TM>X,st. X 1\ =0,i=1,...,r}

on M. Then the Lie algebra of authomorphism aut(D) of (M,D) is isomorphic to the
Tanaka prolongation of the 2-step nilpotent Lie algebra n. = R® S defined in point (3)
of Lemma 2.1 or 3.5. The Lie algebra go = R® S G ngg is nontrivially contained in the
Tanaka prolongation up to the 0" order go(n.) of n_, with {0} # ngy C ng, and as such
is a subalgebra of the algebra of aut(D).

5. Majorana spinor representations of so(p,q)

In this section, we will explain how to construct the real spin representations of the
Lie algebras so(p,q), in cases when p=n, g=n—1, or p=q¢=n, n=12,...n. We
will also give a construction of these representations for so(0,n). We emphasise that we
are only interested in real spin representations. They share a general name of Majorana
representations. Our presentation of this material is adapted from [19].

We will need Pauli matrices

0 1 . 0 -1 1 0
ogc—(l O)’ e——wy—<1 0), az—(O _1> (5.1)
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and the 2 x 2 identity matrix

We have the following identities:

o2=02=-=1
(5.3)
Og€ = —€0y =0, 0,0;=—040,=—€ €E0;=—0,€=0.

Now we quote [19]:

With this notation, restricting to low dimensions p+ q = 4,5,6 and 7, the real representations of
the Clifford algebra C€(0,p+ q) are all in dimension s = 8, and are generated by the p+ ¢ matrices
P1,---3P(p+q) Siven by:

p1=0:Q®1IQe€
P2 =0-Q€eQ0y
pP3=0:Q€eRQ0;
pa=0,QeRI (5.4)
Ps =0z R0z Q€
pP6 =0 Q0 Q€
pr=eRIRI.
The eight matrices 0, =0, ®pu, p=1,...,7and s =e®IRI® I, give the real representation of C£(0,8)

in S =R, Dropping the first factor in p1,p2,p3 one obtains the matrices generating a representation of
C£(0,3) in S =R*, etc.

Majorana representations of so(n — 1,n) in dimension s = 2"~! are called Pauli
representations, and Majorana representations of so(n,n) in dimension s =2" are called
Dirac representations.

To construct them, we need generalisations of the Pauli ¢ matrices and Dirac v
matrices. The construction of those is inductive.

It starts with p+ ¢ =1 with one matrix o; = 1, and for every n = 1,2,..., it alternates
between p+ ¢ = 2n —1 of Pauli matrices o,, p=1,...,2n—1, and p+ ¢ = 2n of Dirac
matrices y,, p=1,...,2n.

Again quoting Trautman [19] we have the following;:

(1) In dimension p+¢ =1, put o1 = 1.

(2) Given 2"~! x 2"~ matrices 0, p=1,...,2n—1, define

Yo = <O CE)“) forp=1,...,2n—1,

Op

(0 T
Yon = I 0 )

where I is the identity 277! x 2"~ matrix.

and
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3) Given 2" x 2" matrices v, u=1,...,2n, define o, =, for p=1,...,2n and g9, 41 =
Vs K w="Yu H +
Y1---Yon, so that for n >0,
o (I 0
2n+1 — 0 —I .

In every dimension p+¢q=2n—1, n > 1, the Pauli matrices o, p=1,...,2n —1 satisfy

0,00+ 0,0, =2gu (I®--R1),
[ S

n—1 times

where the (2n—1) x (2n — 1) symmetric matrix (g,.) is diagonal and has the following
diagonal elements:

(gu) =diag(l,—1,...,—1,1).
—_————

(2n—1) times

Likewise, in every dimension p+ ¢ = 2n, n > 1, the Dirac matrices v, u = 1,...,2n satisfy

7u7u+’yu7u:2guu (I®®1)7
—_———

n times

where the (2n) x (2n) symmetric matrix (g, ) is diagonal and has the following diagonal

elements:
(g) = diag (1, —1,...,1,—1).
—_—
2n times
Therefore, for each n=1,2,..., the set {0, ,2];11 of Pauli matrices generates the elements

of a real 2"~ !-dimensional representation of the Clifford algebra Cf(n —1,n), and the set
{’yu}f];l of Dirac matrices generates the elements of a real 2"-dimensional representation
of the Clifford algebra C{(n,n).

Then, in turn, these real Clifford algebras representations can be further used to define
the real spin representations of the Lie algebras so(p+ ¢,0), so(n —1,n) and so(n,n) as
follows. One obtains all the generators of the spin representation of so(g) by spanning it
by all the elements of the form

Lpupy, with 1 < p<v < (p+gq), in the case of so(p+¢,0), p+q = 3,5,6,7;
%Hﬁy, with 1 < pu < v <8, in the case of s0(8,0);

50u0y, with 1 <p <v < (p+q) =2n—1, in the case of so(n—1,n);
29w, with 1 < p < v < (p+4q) = 2n, in the case of s0(n,n).

e o o o
=

For further details, consult [19].
We will use all this information in next sections when we create examples.
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6. Application: Obtaining the flat model for (3,6) distributions

Let (p,S) be the defining representation of s0(3) in S = R3. It can be generated by

00 -1 0 10 00 0
p(A)=10 0 0 |, p(A2)=|-1 0 0f, p(4)=(0 0 —1).  (6.1)
10 0 0 0 0 01 0

And let (7,R) be an equivalent 3-dimensional representation of s0(3) given by

0 0 -1 0 -1 0 0 0 O
T(Al) =0 O 0 s T(AQ) = 1 0 0 5 T(Al) =10 0 1]. (62)
1 0 0 0 0 0 0 -1 0

We claim that for these two representations of s0(3), in the standard bases in S = R3,
R =R3, the magical equation (2.2) has the following solution:

00 0 00 -1 0 -1 0
why=100 -1}, «*u=(00 0], «*.,=[1 0 0
01 0 10 0 0 0 0

Now using this solution (p,7,w) of the magical equation (2.1), we use the Corollary 4.1
with A\* = du® + W’ wxtdx” and obtain the following theorem.

Theorem 6.1. Let M = R® with coordinates (u',u?u xt,2% 23) and consider three 1-
forms

A =du! +22d2?

A = du® 4 z'da?

A3 = du® 4 xlda?
on M. Then the rank 3 distribution D on M defined by D = {TR® > X | X 1 \* =0,
i = 1,2,3} has its Lie algebra of infinitesimal symmetries autD isomorphic to the
Tanaka prolongation of n. = R® S, where (p,S =R3) and (1,R =R3) are the respective
representations (6.1), (6.2) of ngg = 50(3).

The symmetry algebra aut(D) is isomorphic to the simple graded Lie algebra s0(4,3),

aut(D) = s0(4,3),
with the following gradation:
aut(D) =n_o®n_; Bngdny Sny,
withn_o=R,n_1=29,
no = gl(3,R) D ngg

ny = 5%, ng = R*, which is inherited from the distribution structure (M,D). The duality
signs * at R* and S* above are with respect to the Killing form in so(4,3).

The contactification (M,D) is locally a flat model for the parabolic geometry of type
(Spin(4,3),P) related to the following crossed Satake diagram: o—o==s.
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Proof. Proof is by calculating the Tanaka prolongation of n. = R® S, which is gl(3,R),
naturally graded by the Tanaka prolongation algebraic procedure precisely as aut(D) in
the statement of the theorem. O

7. Application: Obtaining Biquard’s 7-dimensional flat quaternionic contact
manifold via contactification using spin representations of s0(1,2) and
50(3,0)

According to Trautman’s procedure, [19] there is a real representation of C£(0,3) in R*.
There also is an analogous representation of C¢(1,2). Both of them are generated by the

o matrices
0O -1 0 O 00 0 -—e 0 0 - O
1 0 0 O 0 0 — O 0 O 0 =
=10 0o 0o —1]” 2 lo1 0o o 7|1 0o o of
0O 0 1 0 1 0 O 0 0O -1 0 0
where
e=1 for C¥0,3),
and

e=—1 for C{(2,1).

1

One can check that these matrices' satisfy the (representation of) Clifford algebra

relations:
0u0y,+ 0,0, =29, (I ®I)

with all g,,, being zero, except gi11 = —1, ga2 = g3z = —¢.
This leads to the following spinorial representation p of 50(0,3) or so(1,2):

p(Ar) = =303, p(Az) =302, p(As)=—3e01. (7.1)

Here, (A1, Az, A3) constitutes a basis for s0(0,3) when ¢ =1 and for s0(2,1) when e = —1.
This can be extended to the representation of

noo = R@ s0 (152, 522)
in S = R* by setting the value of p on the generator A4 = 1Id as
p(As) = 3(I®1). (7:2)
For this representation of R@so(lgs,%), the magical equation (2.1) has a following
solution:

In Trautman’s quote in the previous section, these matrices where denoted by p1, p2, p3, and
they were only explicitly given for £ = 1.
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0 0 1 0 00 0 -1
) 0 00 -1 ) 00 -1 0
Ww=l_100 of “Y“"Tlo1 0o ol

0 10 0 10 0 0
0 - 0 0
e 000
w=lo 0 0 —1)
0 0 1 0

with
0 0 0 0 0 —¢ 0 — 0

T(Al)—() 0 6,7'(A2)— 0 0 0 ,T(Ag)—E 0 0
0 -1 0 10 0 0 0

(7.3)
10 0
rA)=1(0 1 0
00 1

This in particular gives the vectorial representation 7 of

Ngo = R@SO(lgs, S;FE)

in R =R3.

Now, by using this solution for (p,w,7) and applying our Corollary 4.1, we have an
(s = 4)-dimensional manifold N =R*, equipped with r = 3 two-forms w’ = %wwdx“ Adz?,
i = 1,2,3, which contactifies to an (s+r) = 7-dimensional manifold M = R” having a
distribution structure (M,D) defined as an annihilator of the r = 3 one-forms A\? = du’ +
wiu,,x“dx”, i =1,2,3. We have the following theorem.

Theorem 7.1. Let M =R" with coordinates (ut,u?u? xt 22 23 2%), and consider three
1-forms M 22,03 on M given by

A =dut + 2tde® — 22da?,

A2 =du? — ztda? — 2%da3, with e==l1.

A2 =du® — exldz? — 23da?,

The rank 4 distribution D on M defined as D={TR" > X | X M =X 1 X2 =X_1)\* =
0} has its Lie algebra of infinitesimal authomorphism aut(D) isomorphic to the Tanaka
prolongation of n. = R® S, where (p,S = R*) is the spinorial representation (7.1)-(7.2)
of ngo = R@so(155,582), and (1,R = R?) is the vectorial representation (7.3) of no.

2 0 2
The symmetry algebra aut(D) is isomorphic to the simple Lie algebra sp(lgs, ";S),

aut(D) = sp (152, 242),

20 2

having the following natural gradation:

aut(D) =n_sBn_1 SngPdng Hng,
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with n_o9= R, n_= S,
noznoo@ﬁﬂ( ,%) =

1—¢
2
R@SO(IEE, 5;6) @50(1;5’535)7

ny = 5%, ng = R*, which is inherited from the distribution structure (M,D). The duality
signs x at R* and S* above are with respect to the Killing form in 5p(12;8,%).
The contactification (M,D) is locally a flat model for the parabolic geometry of type

(Sp(%,%),P) related to the following crossed satake diagrams:

(1) e—e==e in the case of e =1, and
(2) o—e==0 in the case of e = —1.
Remark 7.2. When ¢ =1, the flat parabolic geometry described in the above theorem

is the lowest dimensional example of the quaternionic contact geometry considered by
Biquard [5] (see also [12]).

8. Application: Obtaining the exceptionals from contactifications of spin
representations; the f; case

We will now explain the Cartan realisation of the simple exceptional Lie algebra f4 in
dimension R'® mentioned in the introduction.

The Satake diagrams for the real forms of the complex simple exceptional Lie algebra
fa are as follows:

oo, oo, o—o==0——0.

The first diagram corresponds to the compact real form of f4 and is not interesting for
us.? The other two diagrams are interesting:

(1) The last, o—o==0—0, corresponds to the split real form f;, and

(2) the middle one, e—e==s—0, denoted by f;; in [11], is also interesting, since similarly
to fr, it defines a parabolic geometry in dimension 15.

Crossing the last node on the right in the diagrams for f; or f;;, as in o—o==0—s or
oo we see that in both algebras there exist parabolic subalgebras p; or pry,
respectively, of dimension 37, dim(p;) = dim(p;;) = 37. In both respective cases, these
choices of parabolics define similar gradations in the corresponding real forms f;, f;r, of
the simple exceptional Lie fy4:

fA=n_24Bn_14®n0aDBNaPngs for A=11I,
with

N_A=n_o94P®n_14 for A=1I1II,

2For the compact realisation, see, for example, [2].
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being 2-step nilpotent and having grading components n_o4 and n_;4 of respective
dimension 74 =7 and s4 = 8§,

ra=dim(n_g4) =17, sa=dim(n_14)=8 for A=11II.
The Lie algebra ng4 in the Tanaka prolongation of n_4 up to 0" order is

(1) nogy =R@s0(4,3) in the case of f;, and
(2) norr =R®s50(0,7) in the case of fr;.

Thus, from the analysis performed here, we see that there exist two different 2-step
filtered structures (M;,D;) and (M;;,Dyr), both in dimension 15, with the respective
Fr-symmetric, or Frr-symmetric flat models, realised on M = Fy/Pr or My = Frr/Pry.
Here, F; and Fy; denote the real Lie groups whose Lie algebras are f; and f;7, respectively.
Similarly, Py and Py are parabolic subgroups of respective F; and Frj, whose Lie algebras
are pr and prr. Recalling that each of the real groups SO(4,3) and SO(0,7) has two real
irreducible representations p in dimension s =8 and 7 in dimension r =7, with the
8-dimensional representation p being the spin representation of either SO(4,3) or
SO(0,7), we can now give the explicit realisations of the Fs-symmetric structures
(MA,DA) for A= I,II.

8.1. Cartan’s realisation of §;

The plan is to start with the Lie algebra ngy = R ®s0(4,3), as in the crossed Satake
diagram o—o==0—-e of f;, and its two representations:

e a representaion (p,S =R¥), corresponding to the spin representation of SO(4,3)
in (s = 8)-dimensional space n_; =S of real Pauli spinors, and

e a representation (7,R = R7), corresponding to the vectorial representation of
SO(4,3) in (r = 7)-dimensional space n_y = R of vectors in R(*3),

Having these two representations of nog = R@®s0(4,3) in the same basis, we will then solve
the equations (2.1) for the map w € Hom( /\2 S,R), which will give us the commutators
between elements in n_;. This via Corollary 4.1 will provide the explicit realisation of the
15-dimensional contactification (M,D) with the exception of simple Lie algebra Fy as its
Symmetry.

Actually, the passage from p to 7 in the above plan is a bit tricky, since we need to
have these representations expressed in the same basis. To handle this obstacle, we will
start with the spin representation p in the space of Pauli spinors S, and then we will use
the fact that the skew representation p A p in the space of the bispinors /\2 S decomposes
as

/\25:/\21@/\7>

where A, is the 21-dimensional adjoint representation of SO(4,3) and A, is its 7-
dimensional vectorial representation 7. In this way, we will have the two representations
(p,S) and (1,R= A\;), expressed in the same basis { A7} of R®&SO(4,3), and we will apply
the Corollary 4.1 to get the desired Fr-symmetric contactification in dimension 15. On
doing this, we will use notation from Section 5.

https://doi.org/10.1017/51474748024000173 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748024000173

Exceptional Geometries 19

According to [19], the real 8-dimensional representation of the Clifford algebra C£(4,3)
is generated by the seven §-dimensional Pauli matrices:
01 =0, R0, Q0
09 =0, R0, Q€

03=0,R0, 0,

o4 =0,Rex1
05 =0, R0, 1
og=€eRIRI
or=0,I®1.

Using the identities (5.3), especially the one saying that €2 = —1I, one easily finds that the
seven Pauli matrices o;, i = 1,2,...,7, satisfy the Clifford algebra identity

0,0 +0;0; = 2g;; (I@I@I), 1,5 =1,2,...,7,

with the coefficients g;; forming a diagonal 7 x 7 matrix

(gij) - diag(l, —1,1,-1.1, —1,1)

of signature (4,3). Thus, the 8-dimensional Pauli matrices o;, i = 1,...,7 generate the
Clifford algebra C¢(4,3), and in turn, by the general theory, as described in Section 5,
they define the spin representation p of s0(4,3) in an 8-dimensional real vector space
S =8 of Pauli(-Majorana) spinors.

8.1.1. The spinorial representation of s0(4,3). To be more explicit, let (i,5) be
such that 1 <7< j <7, and let I be a function

I(i.§) =1+i+3(j—3)j (8.1)

on such pairs. Note that the function I is a bijection between the 21 pairs (4,7) and the
set of 21 natural numbers I = 1,2,...,21. Consider the twenty-one 8 x 8 real matrices
o;0; with 1 <i < j <7, and a basis {A;}?L, in the Lie algebra s0(4,3). Then the spin
representation p of s0(4,3) is given by

p(Arij)) = 30i0; with 1<i<j<7.

Explicitly, we have

p(Al):%‘[@I@Jm p(Ag):§I®€®6, p(A15):%0z®0—z®Iv

p(A2) = %I@I@e, p(Ag) = %I@e@oz, p(Ap) = %e@am Q0

p(As) =210 IR0, p(A1g) =2I®0, @1, p(A17) = 2e®@0, ®e,

p(Ag) = %I®I®0w7 p(An) = %%@%@Um p(Aig) = %e®0$®02, (8.2)
P(A5)2%1®0z®6, P(A12)=%0z®0z®€7 P(A19)=%€®€®L

p(Ag) =31®0.®0.,  p(A13)=3%0.Q0,®0.,  p(Axn)=1c®0.®1,

p(A7) =1I®e® 0y, p(An) =30.Q€e®1, p(An) =210, RI®1.
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The spin representation p of Vo5 =R @ s0(4,3) needs one generator more. Let us call it
p(Azz). We have

p(Ap)=3I®I®1.
We determine the structure constants ¢ ;; of R@s0(4,3) in the basis A; from

[p(A1), p(As)] = Ky p(Ak). (8.3)

8.1.2. Obtaining the vectorial representation of s0(4,3). Now, we take the space
2 . . .
A\ S and consider the skew symmetric representation

/gzp/\p

in it. We will write it in the standard basis f,, p=1,...,8 in S =R®. We have p(A;)f, =

p1”ufv. Now, the components of the 28-dimensional representation p= pA\p1 are
P ap = pr'ad”s+08"apr’s — pr’ad"s — 6 aprs,
and we have
(;J(Aj)w)“” _ Bz“vwwaﬁ, VB — qplaBl.
The Casimir operator for this representation is
C = 10K" p(Ar)p(Ay),

where K717 is the inverse of the Killing form matrix Kj; = e e 5p in the basis Aj.
Since for the Killing form to be nondegenerate we must restrict to the semisimple part
of R®so0(4,3), here the indices I,J,K,L,M =1,2...,21, and as always are summed over
the repeated indices. One can check that in this basis of s0(4,3), the Killing form matrix
is diagonal and reads

(Kiy)= 10diag<1, 111, - 1,1, - 1,1, — 1,11, = 1,1, = 1,1, = 1,1, — 1,1, f1,1).

The Casimir C defines the decomposition of the 28-dimensional reducible representation

a

P = p1 N\ p1 onto

/\25:/\21@/\7»

where the 7-dimensional irreducible representation space A, is the eigenspace of the
Casimir operator consisting of eigen-bispinors with eigenvalue equal to 6,

C(A;) =6A,.
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Explicitly, in the same basis Ay, I =1,2,...,21 as before, this 7-dimensional representation
(1,R = \,) of the s0(4,3) Lie algebra is given by

7(A1) = Eg6 — Eao,
7(Az) = 4(Eas — Esy + Eas — Esy + Esg — Egs + Es¢ — Egs),
7(As) = 3 (E2s+ Es2 4+ Eos + Esa + Esg + Ees + Esg + Ees),
7(A4) = (B2 + Es2 — Eas — Esy — E3s — Eg3 + Esg + Egs),
7(As) = (B2 — E32 — Ea5 + Esy — Esg + Eg3 + Es6 — Egs),
7(Ag) = E33 — Ess,
7(A7) = 3(E12 — E21 — Er6 + Eg1 — Ear + E7g + Egr — Eg),
7(As) = 3(—E12 — Eo1 — Evg — Eg1 — Eor — Ery — Eg7 — Erg),
7(Ag) = 1 (E13 — E31 4 E1s — Es1 — Esr + Ers — Es7 + Ers),
7(A1o) = 5(E13 + Es1 — E1s — Esy + Esr + Ers — Esy — Ers),
7(A11) = (= E12 — E21 + Ei6 + E61 + Eor + E7a — Eg7r — Exe), (8.4)
7(A12) = $(E12 — Es1 + Erg — Eg1 4 Ear — Eny + Ee7 — Erg), '
7(A13) = 2 (—E13 — E31 — E1s — Es1 4 Esr + Ers + Es7 + Ers),
7(A14) = 3(=FE13+ Es1 + E1s — Esy — Esr + Ers + Esp — Exys),
7(A15) = B — Err,
7(A16) = 3(2E24 — 42 + E46 — 2Eg4),
7(A17) = 2(2E24 + Es2 + E6 + 2E¢a4),
7(A1s) = 5(2E34 — Eys — Ey5 +2E5y),
7(A1g) = 5(—2F34 — Ey3 + Ess + 2Es4),
7(A2) = 2(—2F14 + Eq1 + Esgr — 2E74),
7(A21) = (2E14+ Eq1 — Eq7 — 2Eny),
7(Ag2) = E11 + Eog + E33+ Eyq + Es5 + Ege + Err,
where E;j, 4,5 = 1,2,...,7 denote 7 X 7 matrices with zeroes everywhere except the value

1 in the entry (4,j) seating at the crossing of the ith row and the jth column.
One can check that

[T(A7), 7(A))] = %15 7(Ak),

with the same structure constants as in (8.3).

8.1.3. A contactification with f; symmetry. So now we are in the situation of
having two representations (p,S) and (7,R = /\;) od ngo = R®s0(4,3), and we can try
to solve the equation (2.1) for the map w € Hom(A?S,R). Of course, if we started with
some arbitrary p and 7, this equation would not have solutions other than 0, but here
we expect to have solution since we know it from the Cartan’s PhD thesis [8] and the
announcement in Helgason’s paper [13]. And indeed, there is a solution for a nonzero w,
which when written in the basis {f,} in S and {e;} in R is such that it gives the seven
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2-forms w' = 1w’ dz" Adz¥, i=1,...,7, in N =R8 given by

w! =dat Adz? — dz" Ada?,

w? =dz? Ada? — dab Adab,

w3 =dat Adzt —da® AdaB,

wt=1 (dz' Ada® — dz® Adz® — da® Ada® +dz* Ada"), (8.5)

w? =dz? Ada® —dab Ada”,

w8 =dat Ada® —da® AdaT,

W' =da® Adz? — da® AdaS.
These, via the contactification and the theory summarised in Corollary 4.1, lead to the
following theorem.

Theorem 8.1. Let M = RS with coordinates (u',...,u",z%,...,2%), and consider seven
1-forms Ni,...,\" on M given by

M =dut +2tda? —27da®,

A2 = du? +22dz? — 25da8,

2\ = du® + 2tda* — 25da®,

M =du* + % (xlda:G —22da® — 23da® —|—as4dx7),

A0 = du® +22da® — 25da7,

A = du® + 2tda® — 25da”,

N =du” 4 23dz? — 25da.
The rank 8 distribution D on M defined as D= {TR® > X | X A\l =... = X\ =
0} has its Lie algebra of infinitesimal authomorphism aut(D) isomorphic to the Tanaka
prolongation of n. = R® S, where (p,S = R8) is the spinorial representation (8.2) of
noo = Rds0(4,3) and (1,R=R") is the vectorial representation (8.4) of noo.

The symmetry algebra aut(D) is isomorphic to the simple Lie algebra fr,

aut(D) = f,
having the following natural gradation:
aut(D) =n_o®n_; Hnydny Dng,
withn_o=R,n_1=25,
ng =ngyg = RPso(4,3),

ny = S*, ng = R*, which is inherited from the distribution structure (M,D). The duality
signs * at R* and S* above are with respect to the Killing form in fr.

The contactification (M,D) is locally a flat model for the parabolic geometry of type
(Fr, Pr) related to the following crossed Satake diagram o—o==o—s of fr.

Remark 8.2. Please note that this is an example of an application of the magical
equation (2.1) in which the starting algebra ngy was big enough, so that its Tanaka
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prolongation ng counterpart is precisely equal to ngg. This was actually expected from
the construction based on the crossed Satake diagram, o—o==o—e, which shows that ng
of this parabolic geometry is precisely our ngg = R@®s0(4,3).

Remark 8.3. One sees that the distribution D in R with §; symmetry presented
in Theorem 8.1 looks different that the distribution from our Example 1.3. It follows,
however, that both these distributions are locally equivalent, and both have the same
simple exceptional Lie algebra f; as an algebra of their authomorphisms.

8.1.4. Contactification for f;: more algebra about s0(4,3). In our construction
of the §f; symmetric distribution D in Theorem 8.1, the crucial role was played by the
7-dimensional span of 2-forms w’, i = 1,2,...,7. If we were given these seven 2-forms, we
would produce the f; symmetric distribution D by the procedure of contactification.

It turns out that in S = R®, there is a particular 4-form?

D= %Q)ngdm“ Adz” Adx” Adx?
that is R@®so(4,3) invariant
P1%u®avpo + 1% ®Puaps + 1% pPuvac + P1%0 Puvpa = S1®pwpo-
It may be represented by
o= hijwi /\wj,

where w? are given by (8.5) and

0O 0 000 0 1
0 0 000 -1 0
0 0 001 0 O
(hij) =310 0 010 0 0],
0 0 100 0 O
0 -1 0 00 0 O
1 0 00 0 0 O
or in words®: hij, 4,3, =1,2,...,7, are all zero except hi7 = h71 = —hog = —hez = h3s =

hs3 = hyq = 1.
The form @ in full beauty reads
20 = 2 (do’ Ade® Ade® Ada? + do® Ada® AdaT Ada® ) -
dzt Adz? Ada® Ada® +dat Ada® AdaS Ada®— (8.6)
de' Adz* Adz® Ade” — dz? Adz® Ada® Ada®+
dz? Ada* Adz® Ada” —da® Adaz* Ada” Ada®.

3Compare this and other 4-forms appearing in the sequel with forms introduced in [7].
4Note that since (hij) is a symmetric matrix of signature (4,3), this fact alone shows that the

span of seven 2-forms w® is a 7-dimensional representation space of SO(4,3). Actually, this
fact easily leads to the construction of the double cover Zz — Spin(4,3) — SO(4,3).
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Remark 8.4. It is remarkable that this 4-form alone encaptures all the features of the
fr symmetric contactification we discussed in the entire Section 8.1. By this, we mean
following:

(1) Consider N = R® with coordinates (z#), p=1,2,...,8 and the 4-form
D= %fbwpodx“ Adz¥ Adx? Adx?
given by (8.6).
(2) Consider an equation
Aa,uq)owpa + Aavq)u(xpa + Aapq)ul/oza + Aaaq),uupa = Sq);wpo
for the real 7 x 7 matrix A = (A*,).
(3) For simplicity, solve it in two steps:

e First with S = 0. You obtain 21-dimensional solution space, which will be the
spin representation p of s0(4,3). It is given p(A) = A.

e Then prove that the only solution with S # 0 corresponds to S =4, and that,
modulo the addition of linear combinations of solutions with S =0, it is given
by A =Idgxs. Extend your possible As with S =0 to As including A = Idgxs.

(4) In this way, you will show that the stabiliser in gl(8R) of the 4-form & is the Lie

algebra R@®s0(4,3) in the spin representation p of Pauli spinors; p(A) = A.

(5) Then search for a 7-dimensional space of 2-forms spanned say by the 2-forms w’ =

%wiwdx“ Adz satisfying

[ 7 a 7 I j
A% Way + A% Whia = 85w

for all As from the spin representation p(A) = A of R®s0(4,3). Here, s*; are auxiliary
constants®.

(6) This space is uniquely defined by these equations, and after solving them, you will
get 7 linearly independent 2-forms (w?,...,w") in N = RS,

(7) Contactifying the resulting structure (N7Span(w1, .. 7o.)7)), as we did, for example,
in Theorem 8.1, you will get f; symmetric distribution D in R” — (M = R15) —
(N =R?).

8.2. Realisation of f;;

It seems that Cartan was only interested in the explicit realisation of f;. The realisation of
frr can be obtained in the same spirit as we have described in Section 8.1. Here, without
much of the explanations since they parallel Section 8.1, we only display the main steps
leading to this realisation.

We start with the representation of the Clifford algebra C£(0,7) generated by the seven
p-matrices from (5.4). They satisfy

®Note, however, that although you look for w’ uv With some constants s*;, these constants have
geometric meaning: comparing with our magical equation (2.2), we see that the 7 x 7 matrices
(s";) constitute matrices of the defining representation 7 of R@so0(4,3).
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pipj Fpipi = —20;;18xs, 4,j=1,...,7.
They induce the 8-dimensional representation
p:R@s0(0,7) — End(S)

of ngo = R@®50(0,7) in the space S = R? of real Pauli spinors, generated by the 22 real
8 x 8 matrices:

p(Ariij) = 3pipj, 1<i<j<T,
p(Ag) = 3(I®I®1T),

with the index I = I(i,5) given by (8.1) and with I,0,,€,0, given by (5.1)—(5.2). Explicitly,
in terms of matrices I,0.,€,0, the generators of this spinorial representation of s0(0,7)

are
p(Al):f%I(X)e@UZ, p(As):%G(X)JZ@Jz, ,O(A15):*%I®G®I,
,O(AQ):%I®6®UI, p(Ag):f;e@)az@az, p(AlG):f%crz(@I@e,
p(As) = —3101®e, p(Aw) = —31®0, ¢ p(Ar7) = —50, ®e@ 0y,
p(Ag) = —1e®e®e, p(An) =1e®o.®1, p(Ais) = —30, Re®0,, (8.7)
p(As) = 301 @0y, p(A12) = —3€®0, @0, p(Ag) = 3001,
p(AG) = %6@[@0’2, P(A13) = %€®UI X O, p<A20) = %Uz R0y e,
P(A7)=%6®01®L P(A14)=%I®Ux®€7 p(A21) =350.®0.®e€

We also write down the corresponding generators of the vectorial representation T,
which is the 7-dimensional irreducible component /\, of the representation p A p, which

decomposes as \>S = N1 ® ;. These generators read

T(Ay) = E31 — En3, T(Ag) = E37 — Er3, 7(A15) = Ers — Esy,
7(Ag) = E13 — Eoy, T(Ag) = Erg — Eoy, 7(A16) = E1qa — Ey1,
T(A3) = E3p — Ea3, 7(A10) = Er¢ — Egr, T(A17) = B34 — Ey3,
7(A4) = Eg1 — Exs, T(A11) = E51 — Eys, T(A18) = Es2 — Eay, (8.8)
T(A5) = F36 — Eg3, T(Alz) = F53 — E3s, T(Alg) = FE46 — Eg4,
7(Ag) = Eg2 — Eag, T(A13) = Ez5 — Esg, T(Agg) = Eyr — Ery,
7(A7) = Ev7 — Eqy, 7(A14) = Egs — Esg, T(A21) = Es4 — Eys,

where E;; are 7 x 7 matrices with all zero entries, except at the ith-jth entry, where 1
resides.

We are again in a position ready for application of our Lemma 2.1. Given the
representations (p,S =R®) and (1,R = /\;) of 0(0,7), we solve the magical equation (2.1)

for w= %wiwei ® f* A f¥. In this way, we obtain the seven 2-forms w! = —%wiwdx“ Adz”
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on N =R®, with coordinates (x*)%_,, which read as follows:

wl = —dzt Adz? —dz® Adz? +da® Ada® +da” Adad,
w? =dat Ada?® —dz? Adat — da® Ada” +dab Adad,

w? = —dz! Ada?* —dz? Ada® 4+ da® Ada® +dab Ada”,

wh=da' Ada® +da? Ada® +da® Ada” +dat Ada®, (8.9)
WS = —da! Ada® +dz? Ada® 4+ da® Ada® —dat Ada”,

Wb =dat Ada” +dz? Ada® — da® Adz® — dz?t Ada,

W' =dzt Ada® —da? Ada” +dad Ada® — dat Ade®.

These, via the contactification, lead to the following theorem.

Theorem 8.5. Let M = R with coordinates (u',...,u”,z',....28), and consider seven
1-forms X\',..., AT on M given by

A =du! —2tde? — 23dat + 25daS + 27 daS,

A = du? + 2tda?® — 22da? — 2°da” + 25daB,

2N = du® — ztda? — 2%da® + 2°da® + 25da”,

A = dut + 21 de® + 22daS + 23de” + 24dad,

N = du® — 21da® + 22da® + 23da® — 24da”,

N = du® + 21da” + 22da® — 23da® — 24dab,

N =du” +2tda® — 2%da” + 23da® — 2idad.
The rank 8 distribution D on M defined as D ={TR¥ > X | X A =... = X 1 \" =0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka
prolongation of n. = R® S, where (p,S = R®) is the spinorial representation (8.7) of
noo = R®50(0,7), and (1,R =R") is the vectorial representation (8.8) of ngo.

The symmetry algebra aut(D) is isomorphic to the simple Lie algebra iy,

aut(D) = iy,
having the following natural gradation
aut(D) =n_os®n_; Bngdny Gny,
withn_os=R,n_1=25,
ny = ngo = R®s0(0,7),

N = 5%, ng = R*, which is inherited from the distribution structure (M,D). The duality
signs * at R* and S* above are with respect to the Killing form in ;.

The contactification (M,D) is locally a flat model for the parabolic geometry of type
(Fr1,Prp) related to the following crossed Satake diagram e—e==s—a of f;.

Remark 8.6. In this way, we realised the real form f;; of the simple exceptional complex
Lie algebra §4 in M = R!® as a symmetry algebra of the Pfaffian system (A!,...,\7). This
realisation does not appear in Cartan’s theses.
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Remark 8.7. Our present case of f;; also admits description in terms of a certain R @
50(0,7) invariant 4-form ® in S = R®, analogous to the 4-form @ introduced in Section
8.1.4, when we discussed f;. Skipping the details, we only mention that now ® may be
represented by

P = hijw’ Aw?,

where w? are given by (8.9) and

-1 0 0 0 0 0 0
0O -1 0 0 0 0 0
0O 0 -1 0 0 0 0
(hij)={0 0o 0o -1 0 o0 o0
0 0 0 0 -1 0 0
0O 0 0 0 0 -1 0
o 0 0 0 0 0 -1

Explicitly, the form ® reads

—%q) =da! Adz? Ada® Adat —dat Ada® Ada® AdaS—
det Adz? Adz" Ada® —dat Ada® Ada® Ada"+
daz' Ada® AdazS Ada® — dat Ada? Ada® Ada®—
de! Ada* AdzS Ada” —da® Ada® Ada® Ada®— (8.10)
daz? Ada® AdzS Adz” 4+ da® Ada? Adz® Ade"—
da? Ada? AdaS Ada® — da® Ada? Ada® Adab—
dz® Ada* Ada” Ada® +da® Ada® Ada” Ada®.

This 4-form alone encaptures all the features of the f;; symmetric contactification we
discussed in the entire Section 8.2. In particular, analogous statements as in Remark 8.4,
with now s0(4,3) replaced by s0(0,7), apply to the present 4-form ®.

9. Spinorial representations in dimension 8

Dimension eight is quite exceptional, as, for example, 8 is the highest possible dimension
for the existence of Euclidean Hurwitz algebras, gifting us with the algebra of octonions.
From the perspective of our paper, which meanders through the realm of simple Lie
algebras, eight is very special: among all the complex simple Lie algebras, the Dynkin
diagram of 04 = s0(8,C) which is defined in dimension eight, is the most symmetric:

~.

Visibly it has a threefold symmetry Ss.
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The Lie algebra s0(8,C) has six real forms. These are: 0(8,0), s0(7,1), 50(6,2), s0*(8),
50(5,3) and so(4,4), with the following respective Satake diagrams:

A SlEe Cle Gl Glie NG

We see that among these Satake diagrams, the only ones that share the S5 symmetry of
the Dynkin diagram of the complex algebra 94 are those of the compact real form s0(8,0)
and of the split real form so(4,4).

This S3 symmetry of these two diagrams indicates that the lowest dimensional real
representations of s0(4,4) and s0(8,0) may have additional features when compared with
spinorial representations of other so(p,q)s. In particular, for both s0(4,4) and s0(8,0), we
have the following:

e Their Dirac representation (p,S) in the real vector space S = R!6 is reducible over
R and is split into two real Weyl representations (p4,51) and (p—,S_) in the
respective vector spaces of Weyl spinors S; = R® and S_ = R®, which have the
same real dimension eight,

p=p+®p- in S=S5,.05_, dimgrSL=S~.

The real Weyl representations (p+,S1) are faithful, irreducible and nonequivalent.
The defining representations (7,R) of so(4,4) and s0(8,0), as the algebra of
endomorphisms in the space R = R® of vectors preserving the bilinear form of
respective signatures (4,4) and (8,0) has the same dimension eight as the two
Weyl representations (p4,S54).

The real defining representations (7, R) are #rreducible for both so(4,4) and s0(8,0).
All three real 8-dimensional irreducible representations (p4,51), (p—,5-) and
(1,R) of, respectively, both s0(4,4) and s0(8,0) are pairwise nonequivalent.

Thus, the Lie algebras s0(4,4) and s0(8,0) have three real, irreducible and nonequivalent
representations (py,p_,7) in the vector space R® of the defining dimension p+ ¢ = 8. For
all so(p,q) Lie algebras, this is the only dimension p+ ¢ that such situation with the
irreducible representations occurs.

Below, we provide the explicit description of the triality representations (p4,p—,T)
separately for s0(4,4) and so(8,0).

9.1. Triality representations of so0(4,4)

We recall from Section 5 that the Lie algebra so(4,4) admits a representation p in the
16-dimensional real vector space S = R6 of Dirac spinors. This is obtained by using the
Dirac v matrices generating the representation of the Clifford algebra C¢(4,4). In terms
of the 2-dimensional Pauli matrices (0,,€,0,,1), these look as follows:
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NM=0;80,80,Q0,
V2 =080, K0, K€
V3=0,Q0,80, 0,
V4=0, R0, QeRT

9.1)
5 :Ux®az®az®j
Y6 =0, R€eRIRT
Y7 :0x®0-z®l®[
w=ec@l@I@].
They satisfy the Dirac identity

with
(9ij) = diag(1, — 1,1, = 1,1, - 1,1, — 1).
The 28 generators of s0(4,4) in the Majorana-Dirac spinor representation p in the space
of Dirac spinors S = R!% are given by
p(Ar ) =37, 1<i<j<8,

where we again have used the function I =1(i,5) defined in (8.1). Note that since now i < j
can run from 1 to 8, the function has a range from 1 to 28. We add to these generators
the scaling generator, p(Asg),

p(Asg) =LII®I®I.

This extends the Dirac representation p of the Lie algebra s0(4,4) to the representation
of the homothety Lie algebra co(4,4) = R@so(4,4).
In terms of the 2-dimensional Pauli matrices, these generators look like

p(A)=3I®I®I®o., p(A15)=2I®0.®0,R1,
p(As)=1IcIloe p(Ass) = 2 ®e® 0o, R0y,

p(A3) =31RI®IR0,, p(Ar7) = 1I®e®0, ®e¢,

p(Aq) = %I®I®0Z®U$, p(Ag) = %I®e®0Z®az,

p(As) =3101R0,®¢ p(Arg) = 51 @e®ex,

p(A) =3IRI®0.®0., p(Ax)=1IRe0.®1,

p(A7) = 2IRIReR 0y, p(An)=1I®o, @RI, 9.3)
p(Ag) = %I®I®e®e, p(Ag) = %Jz@)crz@mc@mm7 ’
p(Ao) =310 I®eR 0, p(Az3) = 30.®0, Q0. Ve,
p(A1) = 310100, @1,  p(Agw)=350.Q0, R0, X0,

P(A11) = 3I®0. R0, 04, p(Ass)=350.Q0,Qe®1,

p(A1) =51®0. 00, @€, p(Ay) =350.00, 00,1,

p(A13) =31®0. R0, 0., p(Ay)=30.0eR1Q1,

p(A1) =1I®0.®e® 1, p(Ass) =10.®0.0I®]I.
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Looking at the first factor in all of these generators, we observe that it is either I or o,
(i.e., it is diagonal). This means that this 16-dimensional representation of R & s0(4,4) is
reducible. It splits onto two real 8-dimensional Weyl representations

p=p+®p- in S=5;6S5_, dimprSy =38

in the spaces S1 of (Majorana)-Weyl spinors.
On generators of 50(4,4), these two 8-dimensional representations pL are given by

pr(A))=32I®I®0,, p=(A1s) =30.®0.®1,

pr(As) =LI®I®e, p+(Asg) = 2e®@0, @0y,

p+(A3) =LiI®lI®o,, pt (A1) = 3e®@0, ®e,

p(As) =31®0.®0,,  pi(Ais) = 36R0, D0,

p+(As) =L1I®0,. ®e, pt(Arg) = 2e®@e®1,

p+(Ag) =1I®0.®0., pt(Ag) = 3e®0.®1,

p+(A7) =LI®e®o0y,, pt(Ag) =30, RI®1, (9.4)
p:I:(AS) = %I®€®67 p:t(A22) = :t%az Q0y 0y, -
p+(Ag) =31 Qe®0., pi(Agz) = +50,®0, D,

pi(AIO) = %I®Uw ®I; Pi(A24) = :l:%o-w R0z D0z,

p+(A11) = 50,00, @04, pi(Asps)=*30,Re®],
,O:I:(A12):%Uz®o'ac®€a p:t(A26)::|:%U:c®0z®Iv
pzl:(Al?)):%Uz@O—r@a_za Pﬂ:(A27)::|:%E®I®L
p:l:(Al4):%Uz®€®Ia p:t(A28)::t%0z®I®I

We extend them to R@so0(4,4) by adding
pi(A2g) = %I@I@I

It follows that the Weyl representations (p,S5+) of s0(4,4) are irreducible and nonequiv-
alent.

They can be used to find yet another real 8-dimensional representation of so(4,4). For
this, one considers the tensor product representation

P+ p—.
This 64-dimensional real representation of s0(4,4) is reducible. It decomposes as
Ppr®p_=a®d7 in S S_=TssDR, with dimg(R)=38, dimg(Tss) = 56,

having irreducible components (a,T5s) and (7,R) of respective dimensions 56 and 8.
Explicitly, on generators of R@s0(4,4), the 8-dimensional representation 7 reads

7(A1) = Ess — Ea2,
7(Az) = §(E2s — Es2 + Eas — Esa + Ess — Egs + Ese — Egs),
T7(A3) = %(Ezs + E32+ E25 + Es2 + Es¢ + Egs + Ese + Ees),
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7(A4) = %(EQS + E32 — E2s — Es2 — E36 — Eos + Ese + Ees),
7(A45) = %(E23 — Es5 — Ea5 + Es2 — Es6 + Egs + Es¢ — Ees),
7(Ag) = E33 — Es5,

T(A7) = %(Em — E21 — E16+ E¢1 — Ea7 + E72 + E¢7 — Erg),
7(As) = %(—Em — E91 — Ev6 — E¢1 — E27 — E72 — Eg7 — E6),
7(Ag) = %(E13 — Es31+ E15 — Es1 — Es7 + E7s — Es7+ Exs),
7(A10) = 3 (F1s + Es1 — E1s — Es1 + Esr + Ers — Es7 — Exs),
T(An1) = %(*Elz — E21+ E16+ E¢1 + Ea7r + E72 — Eg7 — Erng),
7(A12) = %(EIQ — E21+ E16 — E¢1 + Eo7 — E72 + Eg7 — Erng),
7(A13) = %(—Em — FE31 — E15 — Es1+ Es7+ E7s + Es7 + Ers),
7(A14) = %(—Ew + Es1+ Ei5 — Es1 — Esr+ E7s+ Es7 — E7s),
7(A15) = E11 — Enr,

7(A16) = 3(F24 — Eaz + E2s — FEs2 + Ess — Eea — Egs + Ess), 9.5)
7(A17) = %(E24 + E42 + E2s + Ego + Es6 + Ega + Ees + Ese), '
7(A18) = 5 (B34 — Eaz + Ess — Ess — Eas + Esa + Ess — Egs),
7(A10) = 3 (—Fs34 — Eus — E3gs — Ess + Eas + Esa + Ess + Ess),
7(A20) = 3 (—F1a+ Ea1 — E1s + Es1 + Ear — Era — Ers + Esr),
7(A21) = %(EM + Ea1+ E1s + Es1 — Ea7 — E7a — E7s — Egr),
7(A22) = %(—Em — E42+ Ezs + Esa + Es6 + Esa — Ess — Esg),
T(A23) = %(—E24 + FE4o+ E2s — Ego + Ea6 — E¢a + Fss — Ese),
7(A24) = %(—E34 — E43+ Esgs + Ess — E45 — Es4 + Ess + Ess),
7(As2s) = %(E34 — E43— E3g+ Ess + E45 — Es4 + Esg — Egs),
7(Ag) = %(E14 + E41 — E1s — Eg1 + Ea7 + E74 — E7s — Egr),
T(A27) = %(*Elzl + Eu41 + E1s — Es1 — Bar + E7a — E7s + Esr),
7(A2s) = —E44 + Egs,

7(A29) = F11+ Ea2 + Es3+ Eaa + Ess + Ee6 + E77 + Ess,

where Ejj, 4,7 = 1,2,...,8 denote 8 x 8 matrices with zeroes everywhere except the value
1 in the entry (4,j) seating at the crossing of the ith row and the jth column.

The three real, irreducible, pairwise nonequivalent representations (p4,p—,7) of s0(4,4),
given by the formulas (9.4) and (9.5), constitute the set of the triality representations for
s0(4,4).

9.2. Triality representations of s0(8,0)

To get the real representation (p,S) of s0(8,0) in the space S = R!® of Dirac spinors, we
need the real Dirac v matrices satisfying the Dirac identity (9.2), but now with

gij = 0ij,

where d;; is the Kronecker delta in 8 dimensions.
Thus, we need to modify the Dirac matrices «y; from (9.1) to have the proper signature
of the metric. This is done in two steps [19]. First, one puts the imaginary unit ¢ in front
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of some of the Dirac matrices 7; generating the Clifford algebra C¢(4,4) to get the proper
signature of (g;;). Although this produces few complex generators, in step two, one uses
them with the others and modifies them in an algorithmic fashion so that they become
all real and still satisfy the Dirac identity with the proper signature of (g;;). Explicitly,
it is done as follows:

By placing the imaginary unit ¢ in front of 3, 74, 6 and s in (9.1), we obtain 8
matrices

;5/2]'_1 =725-1, :YQJ = i’y2ja .7: 17273747

with ~;, 4,1,...,8, in (9.1). These constitute generators of the complex 16-dimensional
representation of the Clifford algebra C¢(8,0). We will also need the representation of this
Clifford algebra, which is complex conjugate of 4. This is generated by

52]'71 = ’Vijlv §2j = _’72]'7 ] = 1727374'
The Clifford algebra representations generated by the Dirac matrices ¥ and 7 are real
equivalent — that is, there exists a real 16 x 16 matrix B such that
BYy=%;B, Vi=1,...,8.
It can be chosen so that
B? =1d,
where [d=TQIQIRI.
Explicitly,
B=0,Re®0,Re.
Using this matrix, we define a new set of eight v matrices® by
v = (iB+1d)4; iB+1d)~%,  Vi=1,...,8.
One can check that these 8 matrices are all real and that they satisfy the desired Dirac
identity:
v +7% =20,;,(IQI®IRI), t,j=1,...,8.

Explicitly, we have

Y1 = 0 R0, R0, 0,

Yo=—€R0,ReRT

Y3 = O R0, Q0,0

Y4 = €ERT, Vo€

5 =000, K0, ®I

Y6 =—€RIRT, Ve

4 :0z®o—z®l®[

V8 =0, RVERQ 0, KeE.

5The ~v-matrices used below should be considered as new symbols and should not be confused
with the s0(4,4) v-matrices in formulas defining 4-matrices at the beginning of this section.
One should forget about the definition of 4s in the formula below.
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The 28 generators of 50(8,0) in the Majorana-Dirac spinor representation p in the space
of Dirac spinors S = R!6 are given by

p(Ari ) =37, 1<i<j<s,

where again we have used the function I = I(4,5) defined in (8.1). Note that since now
1 < j can run from 1 to 8, the function has a range from 1 to 28. We add to this the
scaling generator, p(Aag), extending the Lie algebra so(4,4) to coa(4,4), given by

p(Asg) =LIRI®I®I.

In terms of the 2-dimensional Pauli matrices, these generators look like

p(A1)=—10.Qe®0.®0,, p(A15) =—30.00, Q1 R,
p(A2) =21 I®I®e, p(Ag) =2I®e® 0, @0y,
p(Ag):%oZ@)e@aZ@oz, p(A17):%aZ®I®e®I,
p(Ay) =30.®exI®0,, p(Ais) =2IRe®0, R0,
P(A5):_%I®I®Uz®€, P(A19)=—%0z®1®0x®6,
p(Ag) =—Lo.@ec®@I®0,,  p(Ay)=3iIRer0.®I,
p(A7) =2IRI®eR 0y, p(Ag) =30.®0. R0, ®e,
_ 1 (9.6)

p(Ag) =—20.®e®0, @1, p(An)=iI800.®eRo0.,
p(Ag) =3IRI®eRo0., p(Ags) = —30. R0, @0, Xe,
p(A10)=%UZ®e®e®e, p(Azs) = —31Q®0.QeR 0y,
p(AH):—%aZ@)ax@e@az, p(Ags)z—%aZ@)ax@e@L
p(Alg):fél(X)JZ@O}c@E, p(AgG):%I(XJUZ@I@e,
p(A13) = 30. 00, ®€@0y,  p(Azr) =—30.0ex1R]1,
p(A1s) =—3I®0.@e®1, p(Agg)=—2IR0, R0, Xe.

Similarly, as in the case of s0(4,4), this 16-dimensional representation of R ®so0(4,4) is
reducible, again due to the appearance of I and o, only as the first factors in the above
formulas. It splits onto two real 8-dimensional Weyl representations

p=p+@p- in S=5,05_, dimgSy=3S8.
On generators of s0(8,0), these two 8-dimensional representations p., are given by

p(A1) = F3€00. 004, pi(Ais) =TF30, 01,
p+(A2) =3I @I ®e, p+(A1g) = 2e®0, ®oy,
pt(As) =+ie®o.®0., pir(dir)=EiI®ex ],
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p(Ag) =t3e®1®0,,  pr(Ais) = 3€R0, @0,
p+(As) = —31®0. ¢, p+(A1g) = F3l @0, ®e,
pt(Ag) = Fie®I®oy,, pt(Ag) = 2e®@0,®1,
p:t(A7):%I®€®J:m p:t(A21)::l:%0z®0—z®€;
p+(Ag) = F3e00, @1,  pi(Axn)=30.Qe0,,
p+(Ag) = %I@e@az, px(Agz) = $%UI R0y QE, (9.7)
p+(A1g) = £3e@e®e, pt(Agy) = —30. RER 0y,
p+(A1) =F30,Qe®0., pi(dos) =F50, €1,
pr(Arp) =—30.®0, @€, pi(Az)=30.R1¢,
pr(Aiz) =110, ®e®@0,, pi(dor)=FiexIRI,
p:t(A14):7%UZ Re® 1, Pi(Azs): %0m®gz®€~

We extend them em to R@®s0(8,0) by adding
pt(Agg) =3IRI®I.

It follows that the Weyl representations (p+,54) of s0(4,4) are irreducible and nonequiv-
alent.

We use them to find the defining representation (7,R) of s0(8,0) in the vector space
R = R® of vectors. We again consider the tensor product representation p, ® p_. It
decomposes as

P+ ®p_=a®d7T in S S_=TssPR, with dimg(R)=38, dimg(Tss) = 56,

having irreducible components (a,T5s) and (7,R) of respective dimensions 56 and 8.
Explicitly, on generators A; of R@®s0(8,0), the 8-dimensional representation 7 reads

7(A1) = Ess — Ess, 7(Ag) = E35 — Es3, 7(A15) = Es2 — Eas, 7(A22) = Egs — Ess,
7(A2) = Ers — Esr, 7(Ag) = E75 — Es7, 7(A16) = F1s — Es1, 7(A23) = FE36 — Egs,
T(As) = E37 — Ers, T(A10) = Es4 — Ess, T(A17) = E31 — E13, 7(A24) = Er¢ — Egr,
7(A4) = Esq — Eus, 7(A11) = Eog — Ega, 7(A18) = Er1 — Enr, 7(A2s5) = E¢a — Eus,
7(As) = E43 — E34, 7(A12) = E32 — Eas, 7(A19) = F1a — Ea1, 7(A26) = Es6 — Egs,
T(A¢) = Ear — Ena, 7(A13) = E72 — Ear, T(A20) = Es1 — E1s, 7(A27) = E26 — Fea,
7(A7) = Ess — Ess, 7(A14) = Eos — Eyo, 7(A21) = E21 — Ena, 7(A28) = E16 — Es1,
(9.8)

where E;j;, 4,5 = 1,2,...,8 denote 8 x 8 matrices with zeroes everywhere except the value
1 in the entry (4,j) seating at the crossing of the ith row and the jth column.

The three real, irreducible, pairwise nonequivalent representations (p4,p—,7) of 50(8,0)
given by the formulas (9.7) and (9.8) constitute the set of the triality representations for
50(8,0).

10. Application: 2-step graded realisations of real forms of the exceptional
Lie algebra ¢q

The simple exceptional complex Lie algebra eg has the following noncompact real forms:

(1) ey, with Satake diagram O—O—I—o—o,
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(2) err, with Satake diagram ™>2—7-7 |

(3) errr, with Satake diagram ™7 | and

(4) ery, with Satake diagram o—.—I—.—o

Elie Cartan in his theses [8, 9] mentioned realisation of the real form ¢; in N =R, In the
modern language, Cartan’s realisation is such that e; is the algebra of authomorphisms of
the flat model of a parabolic geometry of type (Er,P), where the choice of parabolic
subgroup in the real form FE; of the exceptional Lie group Eg is indicated by the

following decoration of the Satake diagram for e;: . The structure on the 16-
dimensional manifold N = E;/P, whose symmetry is Ey, is a Majorana-Weyl RSpin(5,5)
structure (i.e., the reduction of the structure group of the tangent bundle TN to the
RSpin(5,5) C GL(16,R) in the irreducible 16-dimensional representation of Majorana-
Weyl spinors [19]). This geometry, as 1-step graded, is quite different from 2-step graded
geometries considered in our paper. We also mention that if we wanted to have a realisation
of, say ey or ey, in the spirit of Cartan’s realisation of ¢; (i.e., if we crossed one lateral
node in the Satake diagram of e;; or e;rr), we would be forced to cross the complex

NS SN S

conjugated lateral root, resulting in the Satake diagrams ™~2—""-7 or ™~ |
which would give realisations of the respective e;; and ey in dimension twenty four. This
we did in [14], providing realisations of e¢;; and e;r; as Lie algebras of CR-authomorphisms
of certain 24-dimensional CR manifolds of CR dimension 16, and CR (real) codimension
8. The important point of these realisations of these two real forms of ¢g was that these
geometries were 2-step graded, as in the case of Cartan’s realisation of f;, and they could
have been also thought as realisations in terms of the symmetry algebras of the structure
(M,D), where M is a certain 24-dimensional real manifold and D is a real rank 16-
distribution on M with [D,D] = TM. Thus, these two geometries described by us in [14]
are 2-step graded geometries of distributions — very much like Cartan’s realisation of f;.

In this section, we give the remaining similar realisations of the yet untreated cases of
err and errr-

10.1. Realisations of ¢; and ¢;y: generalities

To get realisations of ¢; and eyy in dimension 24, we decorate the Satake diagrams of

these two Lie algebras as follows: @—o—i—o—@ and ®—0—I—0—® These choices of a

parabolic subalgebra in the respective ¢; and eyy produces the following gradation in
these algebras:

eA=Noa®n 1 4aBnoaBniaP®ngy for A=11V,
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with
Na=noa®dnqa for A=I1IV,

being 2-step nilpotent and having grading components n_s4 and n_;4 of respective
dimension 74 = 8 and s4 = 16,

ra=dim(n.ga) =38, sa=dim(n.14)=16 for A=I1]IV.
The Lie algebra ng4 in the Tanaka prolongation of n_4 up to 0" order is

(1) nor =2R@s0(4,4) =R@co(4,4) in the case of es, and
(2) nory =2R@®50(8,0) = R@co(8,0) in the case of ery.

The last two statements, (1) and (2), get clear when one looks at the Satake diagrams we
have just decorated. If we strip off the crossed nodes from these diagrams, we get :

and ~—<, clearly the simple part of ng4s above.

Because of the grading property [n;4,n;4] C ;1 jy4 in the Lie algebras ey, restricting
to subalgebras n_,4, we see that we have representations (pa,n-14) and (74,n.24) given
by the adjoint action of co(4,4) or co(8,0) which naturally seat in nga, respectively.

There is no surprise that the representations (pa,n-14) are the Dirac spinor repre-
sentations (9.3) and (9.6) of the respective co(4,4) and c¢0(8,0) parts of ngas in the 16-
dimensional real vector spaces n_14. As such, these representations are reducible, and
they split each nga, A= I,IV onto two irreducible representations (pa+,n-144) in real
8-dimensional spaces n_j 44+ of Weyl spinors. This shows that the 2-step nilpotent Lie
algebra n_4 is, for each A = 1,1V, a natural representation space for the action of the
three triality representations (p4,p—,7). We have

NAg=NoaPN 14 =

Noga@n a4 On1a-,

and the 8-dimensional real irreducible representations (74,04 +,p4—) of co(4,4) or ¢o(8,0)
acting in the respective n_g4, n-144 and n_y4_.
We summarise the considerations from this section in the following theorem,

Theorem 10.1. (Natural realisation of the triality representations)
(1) The so(4,4) triality: The real form e; of the simple exceptional Lie algebra eg, when

graded according to the following decoration of its Satake diagram ®—O—I—O—®,
has the n_ part as a real 24-dimensional vector space, naturally split onto the three
real 8-dimensional components n_o, n_14 andn_j_,

n=no®n 14 dn_1_.
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This decomposition is s0(4,4) invariant and consists of components n_o, n_14 and
n_1_, on which the triality representation

TOpLDp_

of s0(4,4) acts irreducibly.
(2) The s0(8,0) triality: Likewise, the real form ery of the simple exceptional Lie
algebra eg, when graded according to the following decoration of its Satake diagram

, has the n_ part as a real 24-dimensional vector space, naturally split
onto the three real 8-dimensional components n_o, n_14 and n_q_,

n=noGn 1. En_y_.

This decomposition is $0(8,0) invariant and consists of components n_o, n_14 and
n_1_, on which the triality representation

TDP Dp-
of 50(8,0) acts irreducibly.

10.2. An explicit realisation of ¢; in dimension 24

Taking as (p,S) the Dirac spinors representation (9.3) of co(4,4) in dimension 16, and
as (7,R) the vectorial representation (9.5) of co(4,4) in dimension 8, we again are in the
situation of a missing w € Hom(A?$,R) from the triple (p,7,w) described by the magical
equation (2.1). Solving this equation for w, we obtain w’,,, i =1,...,8, p,v =1,...,16,
which leads to the eight 2-forms w’ = w*,, dz* Adz” on a 16-dimensional manifold N =
R16, which read

—

= —dz' Ad2' +dz? Ada® +d2” Adz'® — daB Ada!®

w
w? = —da? Adz'? + dzt Ada!® + dz® Adat —daB Adat

W = —dzt Adz'? +da* Ada® + da® Adat® — da® Adat?

wt= —dz® Adz® +dzb Ada® + dz” Adat? — da® Adat!

WS = —dz? Adet +da® Ada!® +d2® Adet® —dz” Adat (10.1)
W8 = —dzt Ada!t +dad Ada® + da® Ade?® — da” Adat?

w'= —dz® Adz? +dzt Adatt +dad Adat — dab Adat3

W8 = —dat Adz™ +da? Ada® +da® Adet —dat AdaS.

The manifold N = R'® with these 2-forms, after contactification, gives the following
Theorem.
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Theorem 10.2. Let M = R?* with coordinates (u',...,ud,x!,...,219), and consider eight
I-forms A',... . A% on M given by

M =du! — 212t + 22da® 4+ 27d2 ' — 28dat®

A2 = du? — 22d2'? + 2*d2!® + 25d 26 — 28dat?

A3 = du® — r'da'? + 2*da® 4+ 25d2'0 — 28da!?

M =dut — 25d2'0 + 2%d2® 4+ 27d2'? — 28dat!

N = du® — 22da! + 23d2zt® + 25dat® — 27dat

M = dul — pldatt + 23da® 4+ 25da!® — 27d2??

N =du’ —23d2'? + 2tde!! + 2P datt — 25da’?

A8 = dub® — ztdat + 22de®® + 23da!S — 24dats.
The rank 16 distribution D on M defined as D={TR?* 3 X | XA\l =-..= X A8 =0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka
prolongation of n. = R® S, where (p,S = R1Y) is the Dirac spinors representation (9.5)

of ngo = co(4,4), and (1,R =R8) is the vectorial representation (9.5) of ngo.
The symmetry algebra aut(D) is isomorphic to the simple exceptional Lie algebra ey,

aut(D) = ey,
having the following natural gradation
aut(D) =n_o®n_; ®nydny Ong,
withn_og=R, n_1=5=5,65_,
ng =R @ co(4,4) D ngo,

ny = 5%, no = R*, and with the spaces S+ being the carrier spaces for the Weyl spinors
representations py of co(4,4). The gradation in e; is inherited from the distribution
structure (M, D). The duality signs x at R* and S* above are with respect to the Killing
form in eg.

The contactification (M,D) is locally the flat model for the parabolic geometry of type

(Er, Pr) related to the following crossed Satake diagram: ®—O—I—o—®

Remark 10.3. Also the ¢ case, considered in this section, admits a description in terms
of an R®s0(4,4) invariant 4-form ® in S = R®. Now ® may be represented by

¢ = hijwi /\wj,
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where w' are given by (10.1) and

O O O OO

o
O OO = OO OO

— O O O o o oo

—

>

S

SN—

|

N
O = O O O O o O
O O O O OO O
O O O OO O o
O O O O O oo

O O O O oo

o

Explicitly, the form ® reads

¢ =2dz' Adz? Ada' Ada'? —2dzt Ada® AdatO Adat?+
2dzt Adzt Adat Adaztt +2dat Ada® AdztO Adett—
dat AdzS Adz® Adztt —dat AdaS Adzt0 Adat®—
dae' Adz® Adz Adat® +dat AdzS Ada'? Ada!®—
2dzt Adz” Adat? Adat® +2dat Ada® Adatt Adatt+
2dz? Adad Adz® Ade'? —2dz? Adzt Ada® Adatt—
da? Ada® Adz® Adzt —dz? Ada® Adat® Adat3+
dz? Ada® Adztt Adat® —da? Ada® Adat2 AdatP+
2d2? Adz® Adz? Adz'® +2d2? Ada” Adat? AdatP—
2dz® Adz® Adz't Ada'? +2da® Adat Ada® Ada'0—
2dz® Ada® Adzt® Adazt® +2da® AdaS Ada® AdetS+
2dz® Adx” Adzt? Adzt® —dad Ada® Ada® Adatt+
ded Ada® AdztO Ada'? —da® Ada® Ada!t Ada!—
da® Ada® Adz'? Adat® +2dzt Ada® Adet0 Adatt—
2d2* Adzb Adz® Ada'® 4 dat Ada” Ada® Adatt—
det Adz" AdztP Ada!® —da? Adz” Ada't AdatC—
de* Adz” Adz'? Adat® +2dat Ada® Adatt Ada S+
2d2® Adzb Adz® Adzt® —2d2® Ade” Adat AdztC+
2dz® Ada® Adat Adazt® +2d2® Adax” AdatB AdetC—
2dz® Adz® Adat3 Adat® +2dz7 Ada® Adatd Adat?.

(10.2)

This 4-form is such that its stabiliser in gl(16,R) is ng = R co(4,4). When restricted to
ngp = co(4,4) this stabiliser is given precisely in the Mayorana Dirac spinor representation

p=ps+&p-

as in (9.3)—(9.4).
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10.3. An explicit realisation of ¢;y in dimension 24

Similarly, as in the previous section, we take as (p,S) the Dirac spinors representation
(9.6) of co(8.0) in dimension 16, and as (7, R) the vectorial representation (9.8) of co(8,0)
in dimension 8, and we search for w € Hom(A” S, R), solving the magical equation (2.1).

We obtain wim,, i=1,...,8, pv=1,...,16, which provides us with the eight 2-forms
W= %wiwdm“ Adz” on a 16-dimensional manifold N = R'®, which read

wh =da' Ada® +dz? Ade'? +da Ada!! +dat Adat?—
da® Adat® —da® Ada' —da” Ade?® — da® Adat®

w? = —da' Az +dz? Ada® + da® Adet? —dat Adatt -
dzd Ada + da® Ada'® +da” Ada'S — da® Ade?®

w3 = —dzt Ade?t —dz? Adat? + dad Ada® + dat Adet0+
da® Ada'® +da® Ada'® —da” Ade!® — da® Adat?

wht= —dazt Ade? +dz? Adatt —dad Adat® 4+ dat Ada®+
dz® Adzt® —dab® Ada!® +dz” Adzt — da® Ade??

W’ =dzt Ada® +da? Ada' — da® Adat® — da? Adato (10.3)
da® Ada® +dzb Adat® —da” Adatt — da® Adat?
w8 =dzt Adat® —da? Ade'® —da® AdatS +dat Adatt—
da® Adz'? +da® Ada® +dz” Ada!? — da® Adat!
W' =dzt Adat® —da? Adat® 4 dad Adat — dat Adat
da® Ada'! = da® Adz'? +da” Ada® — da® Ada'”
w8 = —dat Ade?® —dz? Ada!® —dad Ada' —dat Adat3—
da® Ada'? —da® Adatt —da” Adet® — da® Ada®.
Contactifying, we have the following theorem:
Theorem 10.4. Let M = R?* with coordinates (u',...,ud,x',...,219), and consider eight

1-forms A',... . A% on M given by
M =dut + 21d2® + 22da' + 23dat + 2tdet? — 2Pdat® — 2dat — 27de!® — 28dat
A2 = du? — 2'dzt® + 22d2® 4+ 23de? — 2tdatt — 2Pdet? 4 20datd + 27 dxt — 28dat®
A3 =du® — ztdat — 2%de!? + 23da® + 21de!0 + 2P da® 4+ 25d2t0 — 27de!® — 28dat?
M =dut —21d2'? + 2%de!! — 23da' 4+ 21da® + 2°dat® — 25dat + 27 dat — 28dat
N =du® +2tde®® + 22de™ — 23de?® — 24det® + 2°da® + 20dzt — 2T dztt — 28dat?
N0 = dub 4+ ztdat — 2%de!® — 23da' 4 21dat® — 2°da'® + 25da® + 27 da!? — 28dat!
N =du” 4+ 21da’® — 22det® + 23datd — 2tdat + 2Pdatt — 28dat? 4 27da® — 28dat®

A8 = dud® — 2'dat® — 22d2"® — 23da™ — 24da’? — 2°da!? — 28datt — 27dr'0 — 28da®.

The rank 16 distribution D on M defined as D={TR* > X | X Al =--. = X 1 \¥ =0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka
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prolongation of n. = R® S, where (p,S = R1Y) is the Dirac spinors representation (9.3)
of ngo = ¢0(8,0), and (7,R=R¥) is the vectorial representation (9.5) of noo.
The symmetry algebra aut(D) is isomorphic to the simple exceptional Lie algebra ey,

aut(D) = egy,
having the following natural gradation:
aut(D)=n_os®n_; ®nydny ng,
withn_o=R,n_1=5=5,&5_,
ny =R co(8,0) D ngo,

n; = 5%, ng = R*, and with the spaces Sy being the Carrier spaces for the Weyl spinors
representations py of co(8,0). The gradation in e;y is inherited from the distribution
structure (M,D). The duality signs * at R* and S* above are with respect to the Killing
form in epy .

The contactification (M,D) is locally the flat model for the parabolic geometry of type

(Erv,Pry) related to the following crossed Satake diagram:

Remark 10.5. Again, we have a description of the relevant representations in terms of
an R@ co(8,0) invariant 4-form ® in S = R6. Now ® may be represented by

¢ = hijwi /\OJj,

where w’ are given by (10.3) and

SO OO = O OO
O OO OO OO
OO OO OO O
O = O OO O o O
— O O O O o oo

OO O OO O+ O
OO OO O H OO

—~
>
<
~—
|
SO OO OO o

0

This 4-form is such that its stabiliser in gl(16,R) is ng = R co(8,0). When restricted to
ngo = c0(8,0), this stabiliser is given precisely in the Mayorana Dirac spinor representation

p=p+®p-
as in (9.6)—(9.7).
11. Application: one more realisation of ¢s and a realisation of bg
Between the 24-dimensional realisations of ¢s mentioned in this paper, and Cartan’s

16-dimensional realisation of eg associated with the grading O—O—I—o—@:, there are 21-
dimensional realisations of this algebra eg associated with the following Dynkin diagram
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crossing: o—o—I—o—o These define contact eg geometries and are described in [11] p.
425-426.

11.1. Realisation of ¢; in dimension 25

Here, we will briefly discuss yet another realisation, now in dimension 25, corresponding

to the following Dynkin diagram crossing: o—o—I—@»—o of eg. This is, for example,
mentioned in [15]. Looking at the Satake diagrams of real forms of ¢s, we see that this
realisation is only possible for the real form e;.

So we again use our Corollary 4.1 with now ngy = sl(2,R) @ sl(5,R) and with
representations (p,S) and (7, R), as indicated in [15] Section 5.3, S = R2®@ AR5, R=
N RZ AR5,

To be more explicit, we obtain this representations as follows:

e We start with the defining representations 75 of s[(2,R) in R? and 75 of s[(5,R) in
R5, and we define the representation

p=12®(tsA75) of sl(2R)@sl(5R) in S=R22A’R®>=R%.
The representation (p,S) is an irreducible real 20-dimensional representation of
ngp = 5l(2,R) & s((5,R).
e Then we decompose the 190-dimensional representation p A p onto the irreducibles:
pAP=a®T®B in  Njg@RS N5,

with (a, /\5,) being 50-dimensional, (7, R) being 5-dimensional and (3, A ;55) being
135-dimensional.

e We take the 20-dimensional representation (p,S) and the 5-dimensional represen-
tation (7,R) of ngg = sl(2,R) @sl(5,R) as above, and we apply our Corollary 4.1.

We obtain the following theorem.

Theorem 11.1. Let M = R?® with coordinates (u',... ,u’ z%,...,2%°), and consider five
1-forms A',... . X5 on M given by

A = du! — 23d220 4 25dat — 264218 — 28426 4+ 29dxt — 210,13

A2 =du? — 22d2®° + 24d2!® — 282" — 27d2t 4 29datt — 210dat?

)\3 — du3 _x1d$20 +$L’4d.’1718 _ $5d.'1,'17 _ (L‘7d.’IJ15 +$8d$14 _ mlodmll

M= dut — 2tdat® + 22d2!® — 23da'” — 27dat? + 28dat? — 20%dat!

N =du® — 2ldzt 4+ 22da!® — 23da — 2tdat® 4 25dat? — 28datt.
The rank 20 distribution D on M defined as D= {TR¥® 3 X | X 1\ =--. = X 1A% =0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka
prolongation of n. = R® S, where (p,S = R?%) is the 20-dimensional irreducible rep-
resentation of ngg = sl(2,R) @ sl(5R), and (1,R =R5) is the 5-dimensional irreducible
subrepresentation T € (p A p) of ngo.
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The symmetry algebra aut(D) is isomorphic to the simple exceptional Lie algebra ey,
aut(D) = ey,
having the following natural gradation:
aut(D) =n_os®n_1 &ngdny Dny,
withn_s=R,n_1 =25,
no =R®sl(2,R) ®sl(5,R) D ngo,

ny = S*, ng = R*. The gradation in ey is inherited from the distribution structure (M,D).
The duality signs *x at R* and S* above are with respect to the Killing form in ej.
The contactification (M,D) is locally the flat model for the parabolic geometry of type

(E1,Pr.) related to the following crossed Satake diagram:

11.2. A realisation of 50(7,6) in dimension 21

We know from[11] that the crossed Satake diagram o—o—I—o—o corresponds to the
es-symmetric contact geometry in dimension 21. It corresponds to the grading

e =n_odn_1Bnygdn; Bny,

with dim(ny;) =20, dim(nys) =1 and ng = gl(6,R).

Interestingly, dimension n = 78 is the dimension not only of the exceptional simple Lie
algebra eg, but also for the simple Lie algebras bg and c¢g. For example, if we take the
crossed Satake diagram o—o—o—o—o==s, we describe the following gradation

50(7,6) =n_o®n_ GngOny Ony,

with dim(ny;) =6, dim(nye) =15 and ng = gl(6,R), in the simple Lie algebra so(7,6).
Here, taking (p,S) as the defining representation p(A) = A of GL(6,R) in S = RS, taking
the representation (7,R) to be 7=pApin R= /\2 RS =R, and applying our Corollary
4.1, we get the following theorem.”

Theorem 11.2. Let M = R2! with coordinates (u',...,u'® x',...,2%), and consider fifteen
I-forms AL,...,\% on M given by

A @) — g, 10 9) —xidmj,
with
I(i,j)=1+i+3(j—3)j, 1<i<j<6.

The rank 6 distribution D on M defined as D={TR*' 5 X | X JA\! =... = X 1 \1® =0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka
prolongation of n_ = R® S, where (p,S =R) is the 6-dimensional defining representation

"We invoke it, just to show that we do not only use spin representations in this paper.
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of no = gl(6,R), and (r,R = \°RS) is the 15-dimensional irreducible subrepresentation
T=pAp of ngg.

The symmetry algebra aut(D) is isomorphic to the simple exceptional Lie algebra
50(7,6),

aut(D) = 50(7,6),
having the following natural gradation:
aut(D) =n_os®n_; DngSny D ng,
withn_o=R, n_1=25,
ng = gl(6,R) = noo,

ny = S*, ng = R*. The gradation in s0(7,6) is inherited from the distribution structure
(M,D). The duality signs * at R* and S* above are with respect to the Killing form in
50(7,6).

The contactification (M,D) is locally the flat model for the parabolic geometry of type
(s0(7,6),P) related to the following crossed Satake diagram: o—o—o—o—o=rs.

Competing interests. The authors have no competing interest to declare.

References

[1] I. ANDERSON, Z. NIE AND P. NUROWSKI (2015) Non-rigid parabolic geometries of Monge
type. Adv. Math. 277, 24-55. DOI: https://doi.org/10.1016/j.aim.2015.01.021.

[2] A. MICHAEL AND J. BERNDT (2003) Projective planes, Severi varieties and spheres. In
Surveys in Differential Geometry. Vol. VIII. 1-27.

[3] DV. ALEKSEEVSKY AND V. CORTES (1997) Classification of N-(super)-extended Poincaré
algebras and bilinear invariants of the spinor representation of Spin(p, q). Comm. Math.
Phys. 183(3), 477-510.

[4] A. ALTOMANI AND A. SANTI (2014) Tanaka structures modeled on extended Poincaré
algebras. Indiana Univ. Math. J. 63(1), 91-117.

[5] O. BIQUARD, Quaternionic contact structures. In Quaternionic Structures in
Mathematics and Physics. 23-30. DOI: 10.1142/9789812810038.0003, available at
https://www.worldscientific.com/doi/pdf/10.1142/9789812810038-0003.

[6] O. BIQUARD (2015) From G2 geometry to quaternionic Kahler metrics. J. Geom. Phys.
91, 101-107.

[7] RB. BROWN AND A. GRAY (1972) Riemannian manifolds with holonomy group Spin(9).
In Differential Geometry; in Honor of Kentaro Yano. 41-59.

[8] E. CARTAN (1893) Uber die einfachen Transformationsgruppen. Ber. Verh. k. Sachs. Ges.
d. Wiss. Leipzig, 395-420.

[9] E. CARTAN (1894) Sur la structure des grupes de transformations finis et continus. Oeuvres
1, 137-287.

[10] E. CARTAN (1910) Les systemes de Pfaff & cinq variables et les équations aux dérivées
partielles du second ordre. Ann. Sci. Ec. Norm. Supér. 27, 109-192.

[11] A. Cap anD J. SLOVAK (2009) Parabolic Geometries. 1. Mathematical Surveys and
Monographs. Vol. 154. Providence, RI : American Mathematical Society. MR2532439

https://doi.org/10.1017/51474748024000173 Published online by Cambridge University Press


https://doi.org/10.1016/j.aim.2015.01.021
https://www.worldscientific.com/doi/pdf/10.1142/9789812810038_0003
https://doi.org/10.1017/S1474748024000173

[12]

Exceptional Geometries 45

D. DUCHEMIN (2006) Quaternionic contact structures in dimension 7. Ann. Inst. Fourier
56(4), 851-885 (eng).

S. HELGASON (1977) Invariant differential equations on homogeneous manifolds. BAMS
83, 751-756.

CD. HiLL, J. MERKER, Z. NIE AND P. NUROWSKI (2023) Accidental CR structures. arXiv
preprint 2302.03119. Available at https://arxiv.org/abs/2302.03119.

W. KRASKIEWICZ AND J. WEYMAN (2012) Geometry of orbit closures for the represen-
tations associated to gradings of Lie algebras of types E6, F4 and G2. arXiv preprint
1201.1102. Available at https://arxiv.org/abs/1201.1102.

MG. MoLiNa, B. KRUGLIKOV, I. MARKINA AND A. VASIL'EV (2018) Rigidity of 2-step
Carnot groups. J. Geom. Anal. 28, 1477-1501.

P. NUROWSKI (2005) Differential equations and conformal structures. J. Geom. Phys. 55,
19-49. DOL: https://doi.org/10.1016/j.geomphys.2004.11.006.

N. TANAKA (1970) On differential systems, graded Lie algebras and pseudogroups. Kyoto
J. Math. 10, 1-82.

A. TRAUTMAN (2006) Clifford algebras and their representations. In GL. NABER, ST.
Tsou AND JP. FRANGOISE (eds), Encyclopedia of Mathematical Physics. Vol. 1. Oxford:
Elsevier. http://trautman.fuw.edu.pl.

https://doi.org/10.1017/51474748024000173 Published online by Cambridge University Press


https://arxiv.org/abs/2302.03119
https://arxiv.org/abs/1201.1102
https://doi.org/10.1016/j.geomphys.2004.11.006
http://trautman.fuw.edu.pl
https://doi.org/10.1017/S1474748024000173

	1 Introduction: the notion of a contactification
	2 Magical equation for a contactification
	3 Two-step filtered manifolds
	4 Construction of contactifications with nice symmetries
	5 Majorana spinor representations of so(p,q)
	6 Application: Obtaining the flat model for (3,6) distributions
	7 Application: Obtaining Biquard's 7-dimensional flat quaternionic contact manifold via contactification using spin representations of so(1,2) and so(3,0)
	8 Application: Obtaining the exceptionals from contactifications of spin representations; the f4 case
	8.1 Cartan's realisation of fI
	8.1.1 The spinorial representation of so(4,3)
	8.1.2 Obtaining the vectorial representation of so(4,3)
	8.1.3 A contactification with fI symmetry
	8.1.4 Contactification for fI: more algebra about so(4,3)

	8.2 Realisation of fII

	9 Spinorial representations in dimension 8
	9.1 Triality representations of so(4,4)
	9.2 Triality representations of so(8,0)

	10 Application: 2-step graded realisations of real forms of the exceptional Lie algebra e6
	10.1 Realisations of eI and eIV: generalities
	10.2 An explicit realisation of eI in dimension 24
	10.3 An explicit realisation of eIV in dimension 24

	11 Application: one more realisation of e6 and a realisation of b6
	11.1 Realisation of eI in dimension 25
	11.2 A realisation of so(7,6) in dimension 21


