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Abstract. In one-dimensional Diophantine approximation, the Diophantine properties of
a real number are characterized by its partial quotients, especially the growth of its
large partial quotients. Notably, Kleinbock and Wadleigh [Proc. Amer. Math. Soc. 146(5)
(2018), 1833–1844] made a seminal contribution by linking the improvability of Dirichlet’s
theorem to the growth of the product of consecutive partial quotients. In this paper, we
extend the concept of Dirichlet non-improvable sets within the framework of shrinking
target problems. Specifically, consider the dynamical system ([0, 1), T ) of continued
fractions. Let {zn}n≥1 be a sequence of real numbers in [0, 1] and let B > 1. We determine
the Hausdorff dimension of the following set: {x ∈ [0, 1) : |T nx − zn||T n+1x − T zn| <

B−n infinitely often}.
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1. Introduction
The central question in Diophantine approximation is: how well can a given real number
be approximated by rational numbers? In one-dimensional settings, the continued fraction
serves as an important tool for this purpose, providing an algorithmic solution for finding
the best rational approximation of a given real number. The continued fraction can be
computed by the Gauss transformation T : [0, 1) → [0, 1) defined as

T (0) = 0, T (x) = 1/x − �1/x� if x ∈ (0, 1),

where �1/x� is the integer part of 1/x. For x ∈ (0, 1), put a1(x) = �1/x� and an+1(x) =
�1/T n(x)� = a1(T

n(x)) for n ≥ 1. Then, x ∈ (0, 1) can be written as the continued
fraction expansion

x = 1

a1(x) + 1
a2(x)+···

=: [a1(x), a2(x), . . .], (1.1)
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2 Q. Xiao

where a1(x), a2(x), . . . are positive integers, and called the partial quotients of x. Let x =
[a1(x), a2(x), . . .] be its continued fraction expansion and the truncation pn(x)/qn(x) =
[a1(x), a2(x), . . . , an(x)] be its nth convergent. The continued fraction expansion of a
real number is widely recognized for its significant role in studying one-dimensional
homogeneous Diophantine approximation. This can be inferred from the following two
fundamental results.

THEOREM 1.1. We have two results:
(1) the optimal rational approximation of the convergent

min
1≤q≤qn(x),p∈Z

∣∣∣∣x − p

q

∣∣∣∣ =
∣∣∣∣x − pn(x)

qn(x)

∣∣∣∣, min
1≤q<qn(x)

‖qx‖ = ‖qn−1(x)x‖,

where ‖ · ‖ denotes the distance to the nearest integer;
(2) Legendre’s theorem∣∣∣∣x − p

q

∣∣∣∣ <
1

2q2 	⇒ p

q
= pn(x)

qn(x)
for some n ≥ 1.

Building upon these two results, the Diophantine properties of a real number are largely
characterized by its partial quotients, especially the growth of its large partial quotients
within the consideration of the current paper.

The metrical theory of continued fractions, which concerns the size (in terms of
measure or Hausdorff dimension, etc.) of the sets obeying some restrictions on their partial
quotients, is an important subject in studying continued fractions. One focus is the study
of the following sets:

Em(B) := {x ∈ [0, 1) : an(x)an+1(x) · · · an+m−1(x) ≥ Bn i.o.},
where m ∈ N, B > 1 and ‘i.o.’ stands for ‘infinitely often’. It is worth noting that the sets
E1(B) and E2(B) are related to homogeneous Diophantine approximation and Dirichlet
non-improvable numbers (see [18, Lemma 2.2]), respectively. The Hausdorff dimension
of Em(B) is completely given in the following result.

THEOREM 1.2. ([26] and [13, Theorem 1.7]) We have

dimHEm(B) = inf{s : P(T , −fm(s) log B − s log |T ′|) ≤ 0},
where dimH denotes the Hausdorff dimension, P(T , ·) is a pressure function defined in
§2.2 and fm(s) is given by the following iterative formulae:

f1(s) = s, fk+1(s) = sfk(s)

1 − s + fk(s)
, k ≥ 1.

There are many studies on Hausdorff dimensions of the sets related to Em(B), for
example [2, 3, 8, 13–15, 22, 23, 26].

Since the partial quotients can be obtained through Gauss map, the theory also has close
connections with dynamical systems and ergodic theory. Note that

an(x) = a1(T
n−1x) =

⌊
1

T n−1x

⌋
∈

[
1

2T n−1x
,

1
T n−1x

]
,
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and so

an(x) ≥ Bn 	⇒ T n−1x ≤ B−n and T n−1x ≤ B−n 	⇒ an(x) ≥ Bn/2. (1.2)

In other words, the nth partial quotient being sufficiently large corresponds to T n−1x being
sufficiently close to 0. From this simple observation, Li et al [21] came to the following
generalization of E1(B):

E1({zn}n≥1, B) := {x ∈ [0, 1] : |T nx − zn| ≤ B−n i.o.},
where {zn}n≥1 is a sequence of real numbers in [0, 1]. They further showed that the
Hausdorff dimension of this set is the same as that of E1(B). It is not difficult to deduce
from equation (1.2) that E1({zn}n≥1, B) almost returns to E1(B) if zn ≡ 0 for all n ≥ 1.
The study of the metrical property of E1({zn}n≥1, B) is also referred to as a shrinking
target problem, which is initially introduced by Hill and Velani [11], and has recently
gained much attention. See [1, 4, 6, 12, 19, 22] and references therein.

Following this kind of philosophy and starting from yet another observation,

an(x)an+1(x) ≥ Bn 	⇒ T n−1x · T nx ≤ B−n

and

T n−1x · T nx ≤ B−n 	⇒ an(x)an+1(x) ≥ Bn/4,

we introduce the following generalization of E2(B):

E2({zn}n≥1, B) := {x ∈ [0, 1) : |T nx − zn||T n+1x − T zn| < B−n i.o.}
with {zn}n≥1 and B > 1 given above. The Hausdorff dimension of the set E2({zn}n≥1, B)

is completely determined in the current work. For each n ≥ 1, let us define three quantities
as follows:

sn,1 = inf
{
s ∈ [0, 1] :

∑
a1,...,an∈N

1

qn(a1, . . . , an)2sBns2 ≤ 1
}

,

sn,2 = inf
{
s ∈ [0, 1] :

∑
a1,...,an∈N

a1(zn)
1−s

qn(a1, . . . , an)2sBns
≤ 1

}
,

sn,3 = inf
{
s ∈ [0, 1] :

∑
a1,...,an∈N

1
qn(a1, . . . , an)2sa1(zn)sBns/2 ≤ 1

}
.

(1.3)

We adopt the convention that a1(0) = +∞, in this case, set sn,2 = 1 and sn,3 = 0. The nth
pre-dimensional number is defined by

sn =
{

sn,1 if sn,1 ≤ sn,2,

max{sn,2, sn,3} if sn,1 > sn,2.
(1.4)

THEOREM 1.3. We have

dimHE2({zn}n≥1, B) = lim sup
n→∞

sn := s∗.
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Remark 1.4. We consider the approximation of |T nx − zn||T n+1x − T zn| instead of
|T nx − zn||T n+1x − yn| for the following reasons. The latter focuses on the interaction
between the approximation of T nx to zn and that of T n+1x to yn. Assume for the
moment that T nx and T n+1x are sufficiently close to zn and yn, respectively. Then,
most prefixes of the continued fraction expansions of T nx and zn are the same. The
same applies to T n+1x and yn. These imply that yn is sufficiently close to T zn, and so
is |T nx − zn||T n+1x − T zn| to |T nx − zn||T n+1x − yn|. Therefore, our setting is not as
restrictive as it may seem.

Remark 1.5. The Hausdorff dimension of E2({zn}n≥1, B) depends on the location of zn,
more precisely, on a1(zn), which does not happen with E1({zn}n≥1, B). Let us illustrate
it with two simple examples. If zn ≡ 0 for all n ≥ 1, then E2({zn}n≥1, B) almost reduces
to E2(B). This motivates the definition of sn,1. If zn ≡ [1, 1, . . .] for all n ≥ 1, then by a
simple fact from the theory of continued fraction,

|T nx − zn| is small enough

	⇒ |T nx − zn| = |T n+1x − T zn|, up to a multiplicative constant.

Therefore, up to a multiplicative constant,

|T nx − zn||T n+1x − T zn| < B−n 	⇒ |T nx − zn| < B−n/2.

This motivates the definition of sn,3. As for sn,2, it can be interpreted as follows: as zn

varies from 1 to 0, the optimal cover of E2({zn}n≥1, B) changes, leading to the definition
of sn,2.

The structure of this paper is as follows. In §2, we recall several notions and elementary
properties of continued fractions. We prove the upper bound and lower bound of Hausdorff
dimension of the set E2({zn}n≥1, B) in §3 and §4, respectively.

2. Preliminaries
In this section, we recall some basic properties of continued fractions and pressure
functions, as well as establishing some basic facts. Throughout, for two variables f and g,
the notation f � g means that f ≤ cg for some unspecified constant c, and the notation
f � g means that f � g and g � f . For a set A, |A| stands for the diameter of A. We use
L to represent the Lebesgue measure.

2.1. Continued fraction. It is well known that if x ∈ (0, 1) is a rational number, the
expansion of x is finite; if x ∈ (0, 1) is an irrational number, the expansion of x is
infinite. A finite truncation on the expansion of x gives rational fraction pn(x)/qn(x) :=
[a1(x), a2(x), . . . , an(x)], which is called the nth convergents of x. With the conventions

p−1 = 1, q−1 = 0, p0 = 0 and q0 = 1,

the sequence pn = pn(x) and qn = qn(x) can be given by the following recursive relations:

pn+1 = an+1(x)pn + pn−1, qn+1 = an+1(x)qn + qn−1. (2.1)
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Clearly, qn(x) is determined by a1(x), . . . , an(x). So we may write qn(a1(x), . . . , an(x)).
When no confusion is likely to arise, we write an and qn, respectively, in place of an(x)

and qn(x) for simplicity.
For an integer vector (a1, a2, . . . , an) ∈ Nn with n ≥ 1, denote

In(a1, a2, . . . , an) := {x ∈ [0, 1) : a1(x) = a1, a2(x) = a2, . . . , an(x) = an} (2.2)

for the corresponding nth level cylinder, that is, the set of all real numbers in [0, 1) whose
continued fraction expansions begin with (a1, . . . , an).

We will frequently use the following well-known properties of continued fraction
expansion. They are explained in the standard texts [16, 17].

PROPOSITION 2.1. For any positive integers a1, . . . , an, let pn = pn(a1, . . . , an) and
qn = qn(a1, . . . , an) be defined recursively by equation (2.1).
(1) We have qn ≥ 2(n−1)/2 and

n∏
i=1

ai ≤ qn ≤
n∏

i=1

(ai + 1) ≤
n∏

i=1

2ai . (2.3)

(2) It holds that

qn ≤ (an + 1)qn−1, 1 ≤ qn+k(a1, . . . , an, . . . , an+k)

qn(a1, . . . , an)qk(an+1, . . . , an+k)
≤ 2,

ak + 1
2

≤ qn(a1, . . . , an)

qn−1(a1, . . . , ak−1, ak+1, . . . , an)
≤ ak + 1.

(3) We have

In(a1, . . . , an) =
{

[pn/qn, (pn + pn−1)/(qn + qn−1)) if n is even,

((pn + pn−1)/(qn + qn−1), pn/qn] if n is odd.

The length of In(a1, . . . , an) is given by

1
2q2

n

≤ |In(a1, . . . , an)| = 1
qn(qn + qn−1)

≤ 1
q2
n

. (2.4)

The next proposition describes the positions of cylinders In+1 of level n + 1 inside the
nth level cylinder In.

PROPOSITION 2.2. Let In = In(a1, . . . , an) be an nth level cylinder, which is parti-
tioned into sub-cylinders {In+1(a1, . . . , an, an+1) : an+1 ∈ N}. When n is odd, these
sub-cylinders are positioned from left to right, as an+1 increases from 1 to ∞; when n
is even, they are positioned from right to left.

2.2. Pressure function. Pressure function is an appropriate tool in dealing with dimen-
sion problems in infinite conformal iterated function systems. We recall that the pressure
function with a continuous potential can be approximated by the pressure functions
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restricted to the sub-systems in continued fractions. For more information on pressure
functions, we refer the readers to [9, 24, 25].

Let A be a finite or infinite subset of N, and define

XA = {x ∈ [0, 1) : an(x) ∈ A for all n ≥ 1}.

Then, with the Gauss map T restricted to it, XA forms a dynamical system. The pressure
function restricted to this sub-system (XA, T ) with potential φ : [0, 1) → R is defined as

PA(T , φ) = lim
n→∞

1
n

log
∑

(a1,...,an)∈An

sup
x∈XA

eSnφ([a1,...,an+x]), (2.5)

where Snφ(x) denotes the ergodic sum φ(x) + · · · + φ(T n−1x). When A = N, we write
P(T , φ) for PN(T , φ).

The nth variation Varn(φ) of φ is defined as

Varn(φ) := sup{|φ(x) − φ(y)| : In(x) = In(y)}.

The existence of the limit in equation (2.5) is due to the following result.

PROPOSITION 2.3. [21, 24] Let φ : [0, 1) → R be a real function with Var1(φ) < ∞ and
Varn(φ) → 0 as n → ∞. Then, the limit defining PA(T , φ) in equation (2.5) exists and
the value of PA(T , φ) remains the same even without taking the supremum over x ∈ XA in
equation (2.5).

The following proposition states a continuity of the pressure function when the
continued fraction system ([0, 1), T ) is approximated by its sub-systems (XA, T ).

PROPOSITION 2.4. [9, Proposition 2] Let φ : [0, 1) → R be a real function with
Var1(φ) < ∞ and Varn(φ) → 0 as n → ∞. We have

P(T , φ) = PN(T , φ) = sup{PA(T , φ) : A is a finite subset of N}. (2.6)

The potential functions related to the dimension of E2({zn}n≥1, B) will be taken as the
following forms:
(1) φ1(x) = −s log |T ′(x)| − s2 log B corresponding to the pre-dimensional number

sn,1 (see equation (4.5));
(2) φ2(x) = −s log |T ′(x)| − s log B + (1 − s)α for some α > 0 corresponding to the

pre-dimensional number sn,2 (see equation (4.22));
(3) φ3(x) = −s log |T ′(x)| − (s/2) log B − sβ for some β ≥ 0 corresponding to the

pre-dimensional number sn,3 (see equation (4.31)).

2.3. Basic facts. Some lemmas will be established in this subsection for future use. The
first one involves a summation that naturally appearing in the proof of the upper bound of
E2({zn}n≥1, B).
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LEMMA 2.5. For any a ∈ N+ and t > 1/2, the following holds:

∑
b∈N+\{a}

at

bt |a − b|t � a1−t . (2.7)

Proof. We are going to decompose {b ∈ N : b �= a} appearing in the left summation into
four blocks, and in each block using a particular estimate. Write

{b ∈ N : b �= a} = A + B + C + D,

where

A = {b ∈ N : 1 ≤ b ≤ a/2}, B = {b ∈ N : a/2 ≤ b < a},
C = {b ∈ N : a < b ≤ 2a}, D = {b ∈ N : b > 2a}.

For the block A, since 1 ≤ b ≤ a/2 for any b ∈ A, one has a/2 ≤ |a − b| < a. Thus,

∑
b∈A

at

bt |a − b|t �
∑
b∈A

1
bt

�
∫ a/2

1

1
xt

dx � a1−t .

For the block B, using a/2 ≤ b < a and both a and b are integers, we have

∑
b∈B

at

bt |a − b|t �
∑
b∈B

1
|a − b|t =

∑
1≤c≤a/2

1
ct

� a1−t .

The estimation for the block C is similar to B, we omit the details.
For the block D, since b > 2a for any b ∈ D, it follows that b/2 ≤ |a − b| < b. So, by

the condition t > 1/2,

∑
b∈D

at

bt |a − b|t � at ·
∑
b∈D

1
b2t

� at ·
∫ ∞

2a

1
x2t

dx � a1−t .

Combine the above four estimations and the proof is completed.

Next, we explore some properties of the pre-dimension numbers sn,i and their relation-
ship to a1(zn). Recall the definitions of sn,i in equation (1.3).

LEMMA 2.6. Let n ∈ N and f (s) = ∑
a1,...,an∈N qn(a1, . . . , an)

−2s . We have

f (s) < ∞ ⇐⇒ s > 1/2.

Moreover, f (s) is continuous on s > 1/2 and goes to infinity as s ↓ 1/2. Consequently:
(1) sn,i > 1/2 for i = 1, 2, 3;
(2) sn,1 satisfies ∑

a1,...,an∈N

1

qn(a1, . . . , an)
2sn,1B

ns2
n,1

= 1.

Similar arguments apply to sn,2 and sn,3, with the summations being replaced in the
obvious way according to their definitions.
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Proof. The proofs follow the ideas in [26, Lemma 2.6] and [9, Lemma 3.2].
By Proposition 2.1(1), for any s > 0,

f (s) =
∑

a1,...,an∈N
qn(a1, . . . , an)

−2s �
∑

a1,...,an∈N

n∏
i=1

a−2s
i =

( ∑
a∈N

a−2s

)n

�
( ∫ ∞

1
x−2s dx

)n

= (1 − 2s)−n, (2.8)

which clearly implies the first point of the lemma.
By Hölder inequality, log f (s) is convex on s > 1/2. Hence, log f (s) is continuous on

s > 1/2, so is f (s). By equation (2.8), it is easily seen that f (s) goes to infinity as s ↓ 1/2.
Items (1) and (2) follow from the continuity of f (s) and the definitions of sn,i (i =

1, 2, 3) directly.

LEMMA 2.7. Let sn,i be as in equation (1.3), i = 1, 2, 3. The following statements hold:
(1) if sn,1 ≤ sn,2, then a1(zn) ≥ Bnsn,1;
(2) if sn,1 > sn,2, then a1(zn) < Bnsn,2 ;
(3) if sn,2 < sn,3, then a1(zn) < Bnsn,3/2;
(4) if sn,2 ≥ sn,3, then a1(zn) ≥ Bnsn,2/2.

Proof. (1) Since sn,1 ≤ sn,2, by Lemma 2.6(2) and the definitions of sn,1 and sn,2,

∑
a1,...,an∈N

1

qn(a1, . . . , an)
2sn,1B

ns2
n,1

= 1 ≤
∑

a1,...,an∈N

a1(zn)
1−sn,1

qn(a1, . . . , an)
2sn,1Bnsn,1

,

which is equivalent to

a1(zn) ≥ Bnsn,1 .

The proofs of the items (2)–(4) follow the same lines as item (1).

3. Upper bound of dimHE2({zn}n≥1, B)

In the remainder of this paper, to simplify the notation, sequences of natural numbers will
be denoted by letters in boldface: a, b, . . ..

Let

Fn :=
⋃

a∈Nn

{x ∈ In(a) : |T nx − zn||T n+1x − T zn| < B−n}.

It follows that

E2({zn}n≥1, B) =
∞⋂

N=1

∞⋃
n=N

Fn.

Our next objective is to find a suitable cover of Fn for n ≥ 1, which depends on the
values of a1(zn). The following identity will be crucial for this purpose. Note that for any
x = [a1(x), . . . , an(x), . . .],

T nx = [an+1(x), . . .] = 1
an+1(x) + T n+1x

.
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Then, it follows that for zn �= 0,

|T nx − zn| =
∣∣∣∣ 1
an+1(x) + T n+1x

− 1
a1(zn) + T zn

∣∣∣∣
=

∣∣∣∣ (a1(zn) − an+1(x)) + (T zn − T n+1x)

(an+1(x) + T n+1x)(a1(zn) + T zn)

∣∣∣∣. (3.1)

The proof of the upper bound relies on investigating the finer structure of Fn, which will
be divided into two cases presented in the following two subsections, respectively.

Let s > lim supn→∞ sn, where sn is given in equation (1.4). Then, there exists an ε > 0
for which

s − ε > sn for all large n. (3.2)

3.1. Optimal cover of Fn when n is large enough and sn,1 ≤ sn,2. Suppose that n is large
enough so that equation (3.2) is satisfied. Since sn,1 ≤ sn,2, we have

sn = sn,1 < s − ε (3.3)

with s and ε given in equation (3.2), and by Lemma 2.7

a1(zn) ≥ Bnsn,1 .

Now, consider the intersection of Fn with (n + 1)th level cylinders. For any (a, an+1) ∈
Nn+1 with a ∈ Nn and an+1 ≤ Bnsn,1/2, let

Jn+1(a, an+1) := Fn ∩ In+1(a, an+1).

Let x ∈ In+1(a, an+1). Then, we have an+1(x) = an+1, and so |an+1(x) − a1(zn)| ≥
Bnsn,1/2, which is much larger than |T zn − T n+1x|. Applying the identity (3.1) and using
0 ≤ T n+1x, T zn ≤ 1, we get

|a1(zn) − an+1|
8a1(zn)an+1

≤ |T nx − zn| ≤ 2|a1(zn) − an+1|
a1(zn)an+1

. (3.4)

If x also belongs to Jn+1(a, an+1), then it satisfies the above inequality and |T nx −
zn||T n+1x − T zn| ≤ B−n. Thus,

|T n+1x − T zn| ≤ 8a1(zn)an+1

|a1(zn) − an+1|Bn
,

which implies that

Jn+1(a, an+1) ⊂
{
x ∈ In+1(a, an+1) : |T n+1x − T zn| ≤ 8a1(zn)an+1

|a1(zn) − an+1|Bn

}

=
{
x ∈ In+1(a, an+1) : T n+1x ∈ B

(
T zn,

8a1(zn)an+1

|a1(zn) − an+1|Bn

)}
.

Since for any x ∈ In+1(a, an+1),

qn+1(a, an+1)
2 ≤ (T n+1)′(x) ≤ 2qn+1(a, an+1)

2, (3.5)
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it follows that

|Jn+1(a, an+1)| ≤ 16a1(zn)an+1

qn+1(a, an+1)2|a1(zn) − an+1|Bn

≤ 16a1(zn)

qn(a)2an+1|a1(zn) − an+1|Bn
. (3.6)

We take this opportunity to infer that Jn+1(a, an+1) contains an interval of length
comparable to equation (3.6), which will be needed in the subsequent proof of the lower
bound of dimHE2({zn}n≥1, B). Note that equation (3.4) holds for any x ∈ In+1(a, an+1).
If x further satisfies

|T n+1x − T zn| ≤ a1(zn)an+1

2|a1(zn) − an+1|Bn
,

then by the second inequality in equation (3.4), one has |T nx − zn||T n+1x − T zn| ≤ B−n,
which implies

Jn+1(a, an+1) ⊃
{
x ∈ In+1(a, an+1) : T n+1x ∈ B

(
T zn,

a1(zn)an+1

2|a1(zn) − an+1|Bn

)}
.

By equation (3.5), Jn+1(a, an+1) contains an interval with length greater than

a1(zn)an+1

4qn+1(a, an+1)2|a1(zn) − an+1|Bn
≥ a1(zn)

16qn(a)2an+1|a1(zn) − an+1|Bn
. (3.7)

Note that Fn can be covered by the union of the interval
⋃

an+1>B
nsn,1/2 In+1(a, an+1)

and the sets Jn+1(a, an+1) with an+1 ≤ Bnsn,1/2. Therefore, by the previous discussion,
the s-volume of optimal cover of Fn can be estimated as follows:∑

a∈Nn

(
1

qn(a)2s(Bnsn,1/2)s
+

∑
an+1≤B

nsn,1/2

16sa1(zn)
s

qn(a)2sas
n+1|a1(zn) − an+1|sBns

)

=
∑
a∈Nn

(
1

qn(a)2s(Bnsn,1/2)s
+ 16s

qn(a)2sBns
·

∑
an+1≤B

nsn,1/2

a1(zn)
s

as
n+1|a1(zn) − an+1|s

)

�
∑
a∈Nn

(
B−nssn,1

qn(a)2s
+ Bnsn,1(1−s)−ns

qn(a)2s

)
�

∑
a∈Nn

B−nssn,1

qn(a)2s
,

where we use the main ideas of the proof of Lemma 2.5 with t = s > sn,1 + ε > 1/2 (by
Lemma 2.6(1)), a = a1(zn) and b = an+1 for the inner-most summation in the second
formula. By the definition of sn,1 and the fact that s > sn,1 + ε, we see that

∑
a∈Nn

B−nssn,1

qn(a)2s
≤ 2−nδ1 (3.8)

for some δ1 > 0 depending on s only.

3.2. Optimal cover of Fn when n is large enough and sn,1 > sn,2. Suppose that n is large
enough so that equation (3.2) is satisfied. Since sn,1 > sn,2, we have

sn = max{sn,2, sn,3} < s − ε (3.9)
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with s and ε given in equation (3.2), and by Lemma 2.7,

a1(zn) < Bnsn,2 .

Following the same notation in the last section, still let Jn+1(a, an+1) := Fn ∩
In+1(a, an+1) with (a, an+1) ∈ Nn+1. Let x ∈ In+1(a, an+1), and so an+1(x) = an+1.
The discussion is split into three subcases.

Subcase (1A): |a1(zn) − an+1| > 1. Since |T zn − T n+1x| < 1, applying the identity (3.1),
we can get

|a1(zn) − an+1|
8a1(zn)an+1

≤ |T nx − zn| ≤ 2|a1(zn) − an+1|
a1(zn)an+1

.

Since x ∈ In+1(a, an+1) is arbitrary, by the same reason as equations (3.6) and (3.7), we
get that Jn+1(a, an+1) is contained in an interval with length at most

16a1(zn)

qn(a)2an+1|a1(zn) − an+1|Bn
(3.10)

and contains an interval with length at least

a1(zn)

16qn(a)2an+1|a1(zn) − an+1|Bn
. (3.11)

Subcase (1B): |a1(zn) − an+1| = 1. Applying the identity (3.1) again, we obtain

|T nx − zn| =
∣∣∣∣ 1 − (T zn − T n+1x)

(an+1 + T n+1x)(a1(zn) + T zn)

∣∣∣∣ ≥ |1 − (T zn − T n+1x)|
4a1(zn)an+1

.

Denote

J
(1)
n+1(a, an+1) := {x ∈ In+1(a, an+1) : |T n+1x − T zn| ≤ 8a1(zn)an+1B

−n}
and

J
(2)
n+1(a, an+1) := {x ∈ In+1(a, an+1) : |T n+1x − T zn| ≥ 1 − 8a1(zn)an+1B

−n}.
If 8a1(zn)an+1B

−n ≥ 1/2, then the union of the above two sets is In+1(a, an+1), which
can obviously cover Jn+1(a, an+1).

Now suppose that 8a1(zn)an+1B
−n < 1/2. Let y /∈ J

(1)
n+1(a, an+1) ∪ J

(2)
n+1(a, an+1).

There are two cases, one is 1/2 ≤ |T n+1y − T zn| < 1 − 8a1(zn)an+1B
−n, and the other

is 8a1(zn)an+1B
−n < |T n+1y − T zn| < 1/2. For the first case,

|T ny − zn||T n+1y − T zn| ≥ |1 − (T zn − T n+1y)|
4a1(zn)an+1

· |T n+1y − T zn|

>
8a1(zn)an+1B

−n

4a1(zn)an+1
· 1

2
= B−n.

By employing the same strategy on the other case, one has for y /∈ J
(1)
n+1(a, an+1) ∪

J
(2)
n+1(a, an+1),

|T ny − zn||T n+1y − T zn| > B−n,
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which implies that y /∈ Jn+1(a, an+1). Summarizing,

Jn+1(a, an+1) ⊂ J
(1)
n+1(a, an+1) ∪ J

(2)
n+1(a, an+1),

and therefore by the same reason as equation (3.6), Jn+1(a, an+1) can be covered by two
intervals whose length is at most

16a1(zn)B
−n

qn(a)2an+1|a1(zn) − an+1| . (3.12)

Subcase (1C): a1(zn) = an+1. Using the identity (3.1), one has

|T n+1x − T zn|2
4a1(zn)2 ≤ |T nx − zn||T n+1x − T zn| ≤ |T n+1x − T zn|2

a1(zn)2 .

Clearly, the following holds:

{x ∈ In+1(a, an+1) : |T n+1x − T zn| ≤ a1(zn)B
−n/2}

⊂ Jn+1(a, an+1)

⊂ {x ∈ In+1(a, an+1) : |T n+1x − T zn| ≤ 2a1(zn)B
−n/2}.

This together with equation (3.5) gives

|Jn+1(a, an+1)| ≤ 2a1(zn)B
−n/2

qn+1(a, a1(zn))2 ≤ 2B−n/2

qn(a)2a1(zn)
(3.13)

and Jn+1(a, an+1) contains an interval with length greater than

a1(zn)B
−n/2

qn+1(a, a1(zn))2 ≥ B−n/2

4qn(a)2a1(zn)
. (3.14)

Combining the estimations (3.10), (3.12) and (3.13), the s-volume of optimal cover of
Fn can be estimated as follows:

�
∑
a∈Nn

( ∑
an+1 �=a1(zn)

a1(zn)
sB−ns

qn(a)2sas
n+1|a1(zn) − an+1|s + B−ns/2

qn(a)2sa1(zn)s

)

�
∑
a∈Nn

(
a1(zn)

1−sB−ns

qn(a)2s
+ B−ns/2

qn(a)2sa1(zn)s

)
,

where we have used Lemma 2.5 with t = s > max{sn,2, sn,3} + ε > 1/2 (by Lemma
2.6(1)), a = a1(zn) and b = an+1 for the inner-most summation. By the definitions of sn,2

and sn,3 and s > max{sn,2, sn,3} + ε (see equation (3.9)), we have

∑
a∈Nn

(
a1(zn)

1−sB−ns

qn(a)2s
+ B−ns/2

qn(a)2sa1(zn)s

)
≤ 2−nδ2 (3.15)

for some δ2 > 0 depending on s only.

3.3. Completing the proof of the upper bound of dimHE2({zn}n≥1, B). By the previous
two subsections, we see that for given s > lim supn→∞ sn, by equations (3.8) and (3.15),
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there exists a cover of Fn for which the corresponding s-volume

� 2−n min{δ1,δ2},

where δ1 > 0 and δ2 > 0 are respectively given in (3.8) and (3.15) and depend on s only.
Note that for any N ∈ N,

E2({zn}n≥1, B) ⊂
⋃
n=N

Fn.

By the definition of Hausdorff measure, one has

Hs(E2({zn}n≥1, B)) � lim
N→∞

∞∑
n=N

2−n min{δ1,δ2} = 0,

which implies that dimHE2({zn}n≥1, B) ≤ s. By the arbitrariness of s (> lim supn→∞ sn),
we have

dimHE2({zn}n≥1, B) ≤ lim sup
n→∞

sn,

which is what we want.

4. Lower bound of dimHE2({zn}n≥1, B)

Before proving the lower bound, we list some definitions and auxiliary results which will
be used later.

For any set E ⊂ R, its s-dimensional Hausdorff content is given by

Hs∞(E) := inf
{ ∞∑

i=1

|Bi |s : E ⊂
∞⋃
i=1

Bi where Bi are open balls
}

.

With this definition, the lower bound of the Hausdorff dimension of a limsup set can
be estimated by verifying some Hausdorff content bounds. The following lemma is a
variant version of Falconer’s sets of large intersection condition. For the details, see [10,
Corollary 2.6].

LEMMA 4.1. Let {Bk}k≥1 be a sequence of balls in [0, 1] that satisfies L(lim supk→∞ Bk)

= L([0, 1]) = 1. Let {En}n≥1 be a sequence of open sets in [0, 1] and E =
lim supn→∞ En. Let s > 0. If for any 0 < t < s, there exists a constant ct such that

lim sup
n→∞

Ht∞(En ∩ Bk) ≥ ct |Bk| (4.1)

holds for all Bk , then dimHE ≥ s.

Remark 4.2. In fact, limsup set satisfying equation (4.1) has the so-called large intersection
property (see [7] or [10]), which means that the intersection of the sets with countably
many similar copies of itself still has Hausdorff dimension at least s. In particular, the
Hausdorff dimension of such limsup set is at least s. This property is beyond the subject of
this paper, so we will not go into detail.

The Hausdorff content of a Borel set is typically estimated by putting measures or mass
distributions on it, following the mass distribution described below.
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PROPOSITION 4.3. (Mass distribution principle [5, Lemma 1.2.8]) Let E be a Borel subset
of R. If E supports a strictly positive Borel measure μ that satisfies

μ(B(x, r)) ≤ crs

for some constant 0 < c < ∞ and for every ball B(x, r), then Hs∞(E) ≥ μ(E)/c.

Since
∞⋂

n=1

⋃
u∈Nn

In(u) = [0, 1] \ Q,

the sequence of balls demanded in Lemma 4.1 can be taken as the set of all cylinders. We
will show that for any 0 < t < s∗ (recall that s∗ = lim supn→∞ sn), there exists a constant
ct depending on t such that for any k ≥ 1, and an arbitrary kth level cylinder Ik(u) with
u ∈ Nk ,

lim sup
n→∞

Ht∞(Fn ∩ Ik(u)) ≥ ct |Ik(u)|, (4.2)

where recall that

Fn =
⋃

a∈Nn

{x ∈ In(a) : |T nx − zn||T n+1x − T zn| ≤ B−n}.

In view of mass distribution principle, to establish equation (4.2), we will construct a
measure μ supported on Fn ∩ Ik(u) and then estimate the μ-measure of arbitrary balls.
Here and hereafter, u and t will be fixed. The proof is divided into three cases according
to how s∗ is attained, presented section by section.

4.1. Case I: s∗ = lim supn→∞ sn is obtained along a subsequence of {sn,1}n≥1. Note
that t < s∗. There exist infinitely many n such that

sn = sn,1 > t . (4.3)

For such n, by the definition of sn,

sn,1 ≤ sn,2,

which by Lemma 2.7(1) gives

a1(zn) ≥ Bnsn,1 . (4.4)

Following the same argument as [26, Lemma 2.4] with some obvious modification, we
have

s∗ = lim
n satisfies equation (4.3)

n→∞
sn,1 = inf{s > 0 : P(T , −s log |T ′| − s2 log B) ≤ 0}. (4.5)

Fix an ε < s∗ − t . By Proposition 2.4 and Lemma 2.6(2), there exist integers � >

max{logB 4/ε, 2t/ε + 1} and M > 0 such that the unique positive number s = s(�, M)
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satisfying the equation

∑
a∈{1,...,M}�

1

q�(a)2sB�s2 = 1 (4.6)

is greater than t + ε. It should be emphasized that � > max{logB 4/ε, 2t/ε + 1} implies
that

B�ε ≥ 4 (4.7)

and that for any a ∈ N�,

q�(a)−2s ≤ q�(a)−2(t+ε) ≤ q�(a)−2t2−(�−1)ε ≤ q�(a)−2t2−2t . (4.8)

Choose n ∈ N so that n − k ≥ �kt/ε and equation (4.3) is satisfied, and write n − k =
m� + �0, where 0 ≤ �0 < �. By the choice of n, one has m ≥ kt/ε.

From now on, let �, M and n be fixed. Let 1�0 be the word consisting only of 1 and of
length �0. Let ũ = (u, 1�0) ∈ Nk+�0 and consider the following auxiliary set defined by
(n + 1)th level cylinders:

{In+1(ũ, a1, . . . , am, b) : ai ∈ {1, . . . , M}�, 1 ≤ i ≤ m,

Bnt ≤ b ≤ 2Bnt and b is even}. (4.9)

The additional requirement here, that b be even, is that any two cylinders in the above
set are well separated (see Lemma 4.4 below). By equation (3.7), there is an interval,
denoted by I1(ũ, a1, . . . , am, b) (given that there are three cases (§4.1–§4.3) to consider,
each requiring the construction of subsets and measures, we will use subscripts 1, 2, 3 or
superscripts (1), (2), (3) to distinguish and avoid burdening of notation, where there is no
risk of ambiguity) such that

I1(ũ, a1, . . . , am, b) ⊂ Fn ∩ In+1(ũ, a1, . . . , am, b). (4.10)

It is easy to see that I1(ũ, a1, . . . , am, b) ⊂ Fn ∩ Ik+�0(ũ) ⊂ Fn ∩ Ik(u). Moreover, the
length of this interval can be estimated as

|I1(ũ, a1, . . . , am, b)| ≥ a1(zn)

16qn(ũ, a1, . . . , am)2b|a1(zn) − b|Bn

≥ 1
16qn(ũ, a1, . . . , am)2bBn

≥ 1
32qn(ũ, a1, . . . , am)2Bn(1+t)

, (4.11)

where we use a1(zn) ≥ Bnsn,1 > BntBnε ≥ 4Bnt (see equations (4.4) and (4.7)) and b ≤
2Bnt in the second and third inequalities. In what follows, we call I1(ũ, a1, . . . , am, b)

in Fn ∩ Ik+�0(ũ) as fundamental interval, and the cylinders In+1(ũ, a1, . . . , am, b) and
Ik+�0+p�(ũ, a1, . . . , ap) with 0 ≤ p ≤ m as basic cylinders.
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Define a probability measure μ1 supported on Fn ∩ Ik+�0(ũ) ⊂ Fn ∩ Ik(u) as follows:

μ1 =
∑

a1∈{1,...,M}�
· · ·

∑
am∈{1,...,M}�

∑
Bnt ≤b≤2Bnt

b is even

( m∏
i=1

1

q�(ai )2sB�s2

)
· 2
Bnt

· L(1)
a1,...,am,b,

(4.12)

where

L(1)
a1,...,am,b := L|I1(ũ,a1,...,am,b)

L(I1(ũ, a1, . . . , am, b))

denotes the normalized Lebesgue measure on the fundamental interval I1(ũ, a1, . . . ,
am, b). Roughly speaking, we assign each word (a1, . . . , am, b) a different weight: the
weights corresponding to ai and b are respectively

1

q�(ai )2sB�s2 and
2

Bnt
.

The definition of s (see equation (4.6)) ensures that μ1 is a probability measure.
The next two lemmas describe the gap between fundamental intervals defined in

equation (4.10) and their μ1-measures, respectively.

LEMMA 4.4. Let I1 = I1(ũ, a1, . . . , am, b) and I ′
1 = I1(ũ, a′

1, . . . , a′
m, b′) be two

fundamental intervals defined in equation (4.10). Then, the following statements hold.
(1) If (a1, . . . , ap−1) = (a′

1, . . . , a′
p−1) but ap �= a′

p for some 1 ≤ p ≤ m, then

dist(I1, I ′
1) ≥ |Ik+�0+p�(ũ, a1, . . . , ap)|

2(M + 2)4 .

(2) If (a1, . . . , am) = (a′
1, . . . , a′

m) but b �= b′, then

dist(I1, I ′
1) ≥ |In+1(ũ, a1, . . . , am, b)|

32
.

Proof. (1) Bear in mind that I1 and I ′
1 are two fundamental intervals contained in the

(n + 1)th level cylinders In+1(ũ, a1, . . . , am, b) and In+1(ũ, a′
1, . . . , a′

m, b′), respec-
tively. For further discussion, we write (a1, . . . , am, b) = (c1, c2, . . . , cm�, cm�+1) and
(a′

1, . . . , a′
m, b′) = (c′

1, c′
2, . . . , c′

m�, c′
m�+1) for the moment. Assume that 1 ≤ i ≤ m� +

1 is the smallest integer such that ci �= c′
i . By the assumption in item (1), we have

(p − 1)� < i ≤ p� ≤ m�. Therefore, the distance between I1 and I ′
1 is majorized by

dist(Ik+�0+i+1(ũ, c1, . . . , ci−1, ci , ci+1), Ik+�0+i+1(ũ, c1, . . . , ci−1, c′
i , c′

i+1)). (4.13)

Now, we consider two cases.
Case 1: 1 ≤ i < m�. Since i < m�, we have ci+1, c′

i+1 ≤ M . By the distribution
of cylinders (see Proposition 2.2), either Ik+�0+i+1(ũ, c1, . . . , ci−1, ci , M + 1) or
Ik+�0+i+1(ũ, c1, . . . , ci−1, c′

i , M + 1) lies between two cylinders listed in equation (4.13).
Without loss of generality, assume that this is satisfied by the former one. Then, by equation
(4.13) and using Proposition 2.1(2) repeatedly, we have
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dist(I1, I2) ≥ |Ik+�0+i+1(ũ, c1, . . . , ci−1, ci , M + 1)|
≥ 1

2qk+�0+i+1(ũ, c1, . . . , ci−1, ci , M + 1)2

≥ 1
2(M + 2)2(ci + 1)2qk+�0+i−1(ũ, c1, . . . , ci−1)2

≥ |Ik+�0+i−1(ũ, c1, . . . , ci−1)|
2(M + 2)4

≥ |Ik+�0+p�(ũ, a1, . . . , ap)|
2(M + 2)4 (4.14)

as desired.
Case 2: i = m�. In this case, ci+1 = b and c′

i+1 = b′. By the distribution of
cylinders (see Proposition 2.2), we see that either In+1(ũ, c1, . . . , cm�−1, cm�, 1) or
In+1(ũ, c1, . . . , cm�−1, c′

m�, 1) lies between two cylinders listed in equation (4.13). By
the same reason as equation (4.14), we can obtain the same conclusion.

(2) Without loss of generality, assume that b < b′. Note that by equation (4.9), both
b and b′ are even. Then, for any b′′ with b < b′′ < b′, the (n + 1)th level cylinder
In+1(ũ, a1, . . . , am, b′′) lies between I1 and I ′

1. This means the distance between I1 and
I ′

1 is at least
|In+1(ũ, a1, . . . , am, b′′)| ≥ 1

2qn+1(ũ, a1, . . . , am, b′′)2

≥ 1
2 · 42qn(ũ, a1, . . . , am)2B2nt

≥ 1
2 · 42qn(ũ, a1, . . . , am)2b2

≥ 1
32

|In+1(ũ, a1, . . . , am, b)|,
where we use Bnt ≤ b′′, b ≤ 2Bnt in the second and third inequalities.

LEMMA 4.5. Let μ1 be as in equation (4.12). Then, the following statements hold.
(1) For any (ũ, a1, . . . , ap) with 0 ≤ p ≤ m,

μ1(Ik+�0+p�(ũ, a1, . . . , ap)) ≤ qk+�0+p�(ũ, a1, . . . , ap)−2t

|Ik+�0(ũ)|t .

(2) For any (ũ, a1, . . . , am, b),

μ1(I1(ũ, a1, . . . , am, b)) ≤ 64|I1(ũ, a1, . . . , am, b)|t
|Ik+�0(ũ)|t .

Proof. (1) The conclusion is clear if p = 0. Now suppose that p �= 0. By the definition of
μ1, one has

μ1(Ik+�0+p�(ũ, a1, . . . , ap))

=
p∏

i=1

1

q�(ai )2sB�s2 ≤
p∏

i=1

1
q�(ai )2s

equation (4.8)≤
p∏

i=1

1
(2q�(ai ))2t
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≤ 1
22t qp�(a1, . . . , ap)2t

= qk+�0(ũ)2t

qk+�0(ũ)2t
· 1

22t qp�(a1, . . . , ap)2t

≤ qk+�0(ũ)2t

qk+�0+p�(ũ, a1, . . . , ap)2t

≤ qk+�0+p�(ũ, a1, . . . , ap)−2t

|Ik+�0(ũ)|t . (4.15)

(2) Recall that n = k + �0 + m�. It should be noticed that equation (4.15) is actually an
upper bound of

∏p

i=1 q�(ai )
−2s . In the spirit of equation (4.15), by the definition of μ1,

μ1(I1(ũ, a1, . . . , am, b)) =
( m∏

i=1

1

q�(ai )2sB�s2

)
· 2
Bnt

≤ qk+�0+m�(ũ, a1, . . . , am)−2t

|Ik+�0(ũ)|t · 1

Bm�s2 · 2
Bnt

.

Since m ≥ kt/ε (which follows from the choice of n), one has

m�s2 ≥ m�(t + ε)2 ≥ m�t2 + 2m�tε ≥ m�t2 + 2�kt2

≥ m�t2 + (� + k)t2 ≥ nt2. (4.16)

Therefore,

μ1(I1(ũ, a1, . . . , am, b)) ≤ qk+�0+m�(ũ, a1, . . . , am)−2t

|Ik+�0(ũ)|t · 1

Bnt2 · 2
Bnt

= 1
|Ik+�0(ũ)|t · 2

qn(ũ, a1, . . . , am)2tBnt(1+t)
(4.17)

equation (4.11)≤ 64|I1(ũ, a1, . . . , am, b)|t
|Ik+�0(ũ)|t .

LEMMA 4.6. Let μ1 be as in equation (4.12). For any r > 0 and x ∈ [0, 1], we have

μ1(B(x, r)) ≤ 16(M + 2)4(M + 1)2�rt

|Ik+�0(ũ)|t .

Proof. Without loss of generality, assume that x ∈ I1(ũ, a1, . . . , am, b). Obviously, if
r ≥ |Ik+�0(ũ)|, then

μ1(B(x, r)) = 1 ≤ rt

|Ik+�0(ũ)|t .

Hence, it is sufficient to focus on the case r < |Ik+�0(ũ)|. Lemma 4.4 suggests that we
need to consider three cases.

Case 1: r ≤ |In+1(ũ, a1, . . . , am, b)|/32. By Lemma 4.4, we see that the distance
between I1(ũ, a1, . . . , am, b) and other fundamental intervals contained in Fn ∩ Ik+�0(ũ)

is at least r. So B(x, r) only intersects the fundamental interval I1(ũ, a1, . . . , am, b) to
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which x belongs. It follows that

μ1(B(x, r)) =
( m∏

i=1

1

q�(ai )2sB�s2

)
· 2
Bnt

· L(1)
a1,...,am,b(B(x, r))

= μ1(I1(ũ, a1, . . . , am, b)) · L(1)
a1,...,am,b(B(x, r)).

Since

L(1)
a1,...,am,b(B(x, r)) ≤ min

{
1,

2r

|I1(ũ, a1, . . . , am, b)|
}

≤ 2rt

|I1(ũ, a1, . . . , am, b)|t ,

where the last inequality follows from min{a, c} ≤ atc1−t for any t ∈ [0, 1]. By
Lemma 4.5(2), we have

μ1(B(x, r)) ≤ 64|I1(ũ, a1, . . . , am, b)|t
|Ik+�0(ũ)|t · 2rt

|I1(ũ, a1, . . . , am, b)|t

= 128rt

|Ik+�0(ũ)|t .

Case 2: |In+1(ũ, a1, . . . , am, b)|/32 < r ≤ |In(ũ, a1, . . . , am)|/(2(M + 2)4). In this
case, the ball B(x, r) intersects exactly the nth level basic cylinder In(ũ, a1, . . . , am), but
may intersect multiple (n + 1)th level basic cylinders inside it. Therefore, by the definition
of μ1 and equation (4.17),

μ1(B(x, r)) ≤ #�1(x) · max
Bnt ≤b≤2Bnt

b is even

μ1(I1(ũ, a1, . . . , am, b))

≤ #�1(x) · 1
|Ik+�0(ũ)|t · 2

qn(ũ, a1, . . . , am)2tBnt(1+t)
, (4.18)

where

�1(x) = {Bnt ≤ b ≤ 2Bnt : b is even and In+1(ũ, a1, . . . , am, b) ∩ B(x, r) �= ∅}.
To get the best upper bound for μ1(B(x, r)), we need to use two methods to bound #�1(x)

from above. First, there are at most Bnt/2 choices for b and so

#�1(x) ≤ Bnt/2. (4.19)

On the other hand, each (n + 1)th level basic cylinder In+1(ũ, a1, . . . , am, b) is of
length at least

2−1qn+1(ũ, a1, . . . , am, b)−2 ≥ 32−1qn(ũ, a1, . . . , am)−2B−2nt ,

which means that

#�1(x) ≤ 2r · 32qn(ũ, a1, . . . , am)2B2nt .

This together with equation (4.19) gives

#�1(x) ≤ min{Bnt/2, 2r · 32qn(ũ, a1, . . . , am)2B2nt }
≤ 64Bnt(1−t) · (r · qn(ũ, a1, . . . , am)2B2nt )t

= 64Bnt(1+t) · rt · qn(ũ, a1, . . . , am)2t .
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Substituting this upper bound for #�1(x) into equation (4.18), we get

μ1(B(x, r)) ≤ 64Bnt(1+t) · rt · qn(ũ, a1, . . . , am)2t · 1
|Ik+�0(ũ)|t

· 2
qn(ũ, a1, . . . , am)2tBnt(1+t)

= 128
rt

|Ik+�0(ũ)|t .

Case 3: |Ik+�0+(p+1)�(ũ, a1, . . . , ap+1)|/(2(M + 2)4) ≤ r < |Ik+�0+p�(ũ, a1, . . . ,
ap)|/(2(M + 2)4) for some 1 ≤ p ≤ m − 1. In this case, the ball B(x, r) only intersects
one (k + �0 + p�)th level basic cylinder, that is, Ik+�0+p�(ũ, a1, . . . , ap). Hence, by
Lemma 4.5(1), we get

μ1(B(x, r)) ≤ μ1(Ik+�0+p�(ũ, a1, . . . , ap))

≤ qk+�0+p�(ũ, a1, . . . , ap)−2t

|Ik+�0(ũ)|t

= qk+�0+p�(ũ, a1, . . . , ap)−2t

|Ik+�0(ũ)|t · q�(ap+1)
−2t

q�(ap+1)−2t

≤ 4qk+�0+(p+1)�(ũ, a1, . . . , ap+1)
−2t

|Ik+�0(ũ)|t · (M + 1)2�

≤ 16(M + 2)4(M + 1)2�rt

|Ik+�0(ũ)|t .

Combining the estimation given in Cases 1–3, we arrive at the conclusion.

Completing the proof of Theorem 1.3. Recall that ũ = (u, 1�0) ∈ Nk+�0 . By Proposition
2.1(1), a simple calculation shows that

|Ik+�0(ũ)|t
|Ik(u)|t ≥ qk+�0(ũ)−2t

22t · qk(u)−2t
≥ 1

24t · q�0(1�0)2t
≥ 1

24t · 2t�0
≥ 1

2�+4 .

Therefore, for any u ∈ Nk , by Lemma 4.6 and mass distribution principle, we have

Ht∞(Fn ∩ Ik(u)) ≥ Ht∞(Fn ∩ Ik+�0(ũ))

≥ 1
16(M + 2)4(M + 1)2�

|Ik+�0(ũ)|tμ1(Fn ∩ Ik+�0(ũ))

≥ 1
2�+8(M + 2)4(M + 1)2�

|Ik(u)|t

≥ 1
2�+8(M + 2)4(M + 1)2�

|Ik(u)|,

where the last inequality follows from t < s∗ ≤ 1. Since � and M depend on t only, and
since the above Hausdorff content bound holds for infinitely many n ∈ N, by Lemma 4.1,
we have

dimHE2({zn}n≥1, B) ≥ s∗.
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4.2. Case II: s∗ = lim supn→∞ sn is obtained along a subsequence of {sn,2}n≥1. In this
case, there exist infinitely many n such that

sn = sn,2 > t . (4.20)

For such n, by the definition of sn,

sn,1 > sn,2 ≥ sn,3,

which by Lemma 2.7(2) and (4) gives

Bnsn,2/2 ≤ a1(zn) < Bnsn,2 . (4.21)

By taking a subsequence, assume that integers satisfying equation (4.20) will ensure the
existence of the following limit:

(s∗ log B)/2 ≤ lim
n satisfies equation (4.20)

n→∞

log a1(zn)

n
=: α ≤ s∗ log B.

Recall the definition of sn,2 and using the continuity of pressure functions, the above
discussion gives

s∗ = inf{s ∈ [0, 1] : P(T , −s log |T ′| − s log B + (1 − s)α) ≤ 0}. (4.22)

Since most of the arguments in this subsection are quite identical to the last subsection,
we will follow the same notation when there is no risk of ambiguity. In addition, to keep
the paper of a manageable length, some proofs will not be detailed here if they are similar
to those in §4.1. Instead, we will present only the main ideas.

Fix an ε < s∗ − t . By Proposition 2.4, there exist integers � ≥ 2t/ε + 1 and M such
that the unique positive number s = s(�, M) satisfying the equation

∑
a∈{1,...,M}�

eα�(1−s)

q�(a)2sB�s
= 1 (4.23)

is greater than t + ε.
Choose a large integer n ∈ N so that equation (4.20) is satisfied and

n − k ≥ �, en(α−ε) ≤ a1(zn) ≤ en(α+ε). (4.24)

Write n − k = m� + �0, where 0 ≤ �0 < �.
Analogously, let ũ = (u, 1�0) ∈ Nk+�0 and consider the following set defined by (n +

1)th level cylinders:

{In+1(ũ, a1, . . . , am, c) : ai ∈ {1, . . . , M}�, 1 ≤ i ≤ m,

2e(α+ε)n ≤ c ≤ 3e(α+ε)n and c is even}.
Similar to §4.1, we restrict c to be even for the only reason that any two cylinders in
the above set are well separated (see Lemma 4.7 below). By equation (3.11), there is an
interval, denoted by I2(ũ, a1, . . . , am, c) such that

I2(ũ, a1, . . . , am, c) ⊂ Fn ∩ In+1(ũ, a1, . . . , am, c). (4.25)
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Moreover, the length of this interval can be estimated as

|I2(ũ, a1, . . . , am, c)| ≥ a1(zn)

16qn(ũ, a1, . . . , am)2c|a1(zn) − c|Bn

≥ 1
16 · 3e2nεqn(ũ, a1, . . . , am)2cBn

, (4.26)

where the last inequality follows from c ≤ 3e(α+ε)n and en(α−ε) ≤ a1(zn) ≤ en(α+ε) (see
equation (4.24)).

Define a probability measure μ2 supported on Fn ∩ Ik+�0(ũ) ⊂ Fn ∩ Ik(u) as follows:

μ2 =
∑

a1∈{1,...,M}�
· · ·

∑
am∈{1,...,M}�

∑
2en(α+ε)≤c≤3en(α+ε)

c is even

( m∏
i=1

e�α(1−s)

q�(ai )2sB�s

)
· 2
en(α+ε)

·L(2)
a1,...,am,c,

where

L(2)
a1,...,am,c := L|I2(ũ,a1,...,am,c)

L(I2(ũ, a1, . . . , am, c))
.

The next two lemmas describe the gap between fundamental intervals defined in
equation (4.25) and their μ2-measures, respectively. The first one follows the same lines as
the proof of Lemma 4.4.

LEMMA 4.7. Let I2 = I2(ũ, a1, . . . , am, c) and I ′
2 = I2(ũ, a′

1, . . . , a′
m, c′) be two

intervals defined in equation (4.25). Then, the following statements hold:
(1) if (a1, . . . , ap−1) = (a′

1, . . . , a′
p−1) but ap �= a′

p for some 1 ≤ p ≤ m, then

dist(I2, I ′
2) ≥ |Ik+�0+p�(ũ, a1, . . . , ap)|

2(M + 2)4 ;

(2) if (a1, . . . , am) = (a′
1, . . . , a′

m) but c �= c′, then

dist(I2, I ′
2) ≥ 1

18
|In+1(ũ, a1, . . . , am, c)|.

Instead of giving a complete proof of the following lemma, we merely point out which
changes have to be made.

LEMMA 4.8.
(1) For any (ũ, a1, . . . , ap) with 0 ≤ p ≤ m,

μ2(Ik+�0+p�(ũ, a1, . . . , ap)) � qk+�0+p�(ũ, a1, . . . , ap)−2t

|Ik+�0(ũ)|t .

(2) For any (ũ, a1, . . . , am, c),

μ2(I2(ũ, a1, . . . , am, c)) � |I2(ũ, a1, . . . , am, c)|t
|Ik+�0(ũ)|t .
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Sketch proof. (1) Note that

μ2(Ik+�0+p�(ũ, a1, . . . , ap)) =
p∏

i=1

e�α(1−s)

q�(ai )2sB�s
.

By equations (4.21) and (4.24),

enα ≤ enεa1(zn) ≤ enεBnsn,2 ≤ enεBn(s+O(ε)),

which is equivalent to

eα ≤ eεBs+O(ε). (4.27)

By decreasing ε if necessary, we have

eα(1−s) ≤ Bs .

Therefore,

μ2(Ik+�0+p�(ũ, a1, . . . , ap)) ≤
p∏

i=1

1
q�(ai )2s

≤ qk+�0+p�(ũ, a1, . . . , ap)−2t

|Ik+�0(ũ)|t , (4.28)

where the last inequality follows the same argument identical to equation (4.15).
(2) By the definition of μ2,

μ2(I2(ũ, a1, . . . , am, c)) =
( m∏

i=1

e�α(1−s)

q�(ai )2sB�s

)
· 2
en(α+ε)

=
( m∏

i=1

1
q�(ai )2s

)
· em�α(1−s)

Bm�s
· 2
en(α+ε)

.

Although the setting is slightly different, one can follow the proof of equation (4.16) and
show that whenever n is large enough,

n(1 − ε) ≤ m� ≤ n (4.29)

since n = k + m� + �0 and � is fixed. Hence, using 2en(α+ε) ≤ c ≤ 3en(α+ε), we get

em�α(1−s)

Bm�s
· 2
en(α+ε)

= enα(1−s)

Bns
· 1
enα

· eO(nε) = 1
enαsBns

· eO(nε)

= 1
csBns

· eO(nε).

Again, by decreasing ε and increasing s if necessary, we have

1
csBns

· eO(nε) ≤ 1
e2ntεctBnt

.

By equations (4.28) and (4.26), it follows that

μ2(I2(ũ, a1, . . . , am, c)) ≤ qk+�0+m�(ũ, a1, . . . , am)−2t

|Ik+�0(ũ)|t · 1
e2ntεctBnt

� |I2(ũ, a1, . . . , am, c)|t
|Ik+�0(ũ)|t .
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Remark 4.9. We present an inequality that will be also used in a later discussion:

en(α+ε)(1+t) · qn(ũ, a1, . . . , am)2t ·
( m∏

i=1

e�α(1−s)

q�(ai )2sB�s

)
· 2
en(α+ε)

� en(α+ε)(1+t) · 1
|Ik+�0(ũ)|t · em�α(1−s)

Bm�s
· 2
en(α+ε)

by equation (4.28)

= 1
|Ik+�0(ũ)|t · enα(1+t−s)

Bns
· eO(nε) by equation (4.29)

≤ 1
|Ik+�0(ũ)|t · Bns(1+t−s)

Bns
· eO(nε) by equation (4.27)

≤ 1
|Ik+�0(ũ)|t ,

where the last inequality follows from the fact that the error term eO(nε) can be made
smaller than Bns(s−t).

Next, the following lemma gives the estimation of the μ2-measure of any ball B(x, r)

with x ∈ [0, 1] and r > 0.

LEMMA 4.10. For any r > 0 and x ∈ [0, 1], we have

μ2(B(x, r)) � (M + 2)4(M + 1)2� · rt

|Ik+�0(ũ)|t ,

where the unspecified constant is absolute.

Sketch proof. It suffices to focus on the case r < |Ik+�0(ũ)|. We need to consider three
cases according to Lemma 4.7.

Case 1: r ≤ |In+1(ũ, a1, . . . , am, c)|/18. In view of Lemma 4.7(2), B(x, r) only
intersects the fundamental interval I2(ũ, a1, . . . , am, c) to which x belongs. By the same
reason as Case 1 in Lemma 4.6, and using Lemma 4.8(2) instead of Lemma 4.5(2), we
deduce that

μ2(B(x, r)) � rt

|Ik+�0(ũ)|t .

Case 2: |In+1(ũ, a1, . . . , am, c)|/18 < r ≤ |In(ũ, a1, . . . , am)|/(2(M + 2)4). In this
case, the ball B(x, r) intersects exactly the nth level basic cylinder In(ũ, a1, . . . , am), but
may intersect multiple (n + 1)th level basic cylinders inside this cylinder. Let

�2(x) = {2en(α+ε) ≤ c ≤ 3en(α+ε) : c is even and In+1(ũ, a1, . . . , am, c) ∩ B(x, r) �= ∅}.
In comparison to Case 2 in Lemma 4.6, here the choices for c are at most en(α+ε)/2 and
each (n + 1)th level basic cylinder In+1(ũ, a1, . . . , am, c) is of length at least

≥ 2−1qn+1(ũ, a1, . . . , am, c)−2 ≥ 2−12−23−2qn(ũ, a1, . . . , am)−2e−2n(α+ε).
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This gives

#�2(x) � min{en(α+ε)/2, r · qn(ũ, a1, . . . , am)2e2n(α+ε)}
≤ en(α+ε)(1−t) · (r · qn(ũ, a1, . . . , am)2e2n(α+ε))t

= en(α+ε)(1+t) · rt · qn(ũ, a1, . . . , am)2t .

By the definition of μ2 and the inequality presented in Remark 4.9,

μ2(B(x, r)) ≤#�2(x) · max
2en(α+ε)≤c≤3en(α+ε)

c is even

μ2(I2(ũ, a1, . . . , am, c))

�en(α+ε)(1+t) · rt · qn(ũ, a1, . . . , am)2t ·
( m∏

i=1

e�α(1−s)

q�(ai )2sB�s

)
· 2
en(α+ε)

≤ rt

|Ik+�0(ũ)|t .

Case 3: |Ik+�0+(p+1)�(ũ, a1, . . . , ap+1)|/(2(M + 2)4) ≤ r < |Ik+�0+p�(ũ, a1, . . . ,
ap)|/(2(M + 2)4) for some 1 ≤ p ≤ m − 1. In this case, the ball B(x, r) only intersects
one (k + �0 + p�)th level basic cylinder, that is, Ik+�0+p�(ũ, a1, . . . , ap). Hence,
following the same line as Case 3 in Lemma 4.6, we have

μ2(B(x, r)) � (M + 2)4(M + 1)2� · rt

|Ik+�0(ũ)|t .

Combining the estimation given in Cases 1–3, we arrive at the conclusion.

Completing the proof of Theorem 1.3. The proof is the same as that at the end of §4.1, we
leave out the details.

4.3. Case III: s∗ = lim supn→∞ sn is obtained along a subsequence of {sn,3}n≥1. There
exist infinitely many n such that

sn = sn,3 > t . (4.30)

Fix an ε < s∗ − t . By the definition of sn,

sn,3 > sn,2.

With Lemma 2.7(3), it follows that

a1(zn) ≤ Bnsn,3/2 < Bn/2.

By taking a subsequence, assume that integers satisfying equation (4.30) will ensure the
existence of the following limit:

lim
n satisfies equation (4.20)

n→∞

log a1(zn)

n
=: β ≤ log B

2
.

Recall the definition of sn,3. By the continuity of the pressure functions, we can infer from
the above discussion that

s∗ = inf{s ∈ [0, 1] : P(T , −s log |T ′| − (s/2) log B − sβ) ≤ 0}. (4.31)
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By Proposition 2.4, there exist integers � ≥ 2t/ε + 1 and M such that the unique
positive number s = s(�, M) satisfying the equation

∑
a∈{1,...,M}�

B−�s/2

q�(a)2seβ�s
= 1 (4.32)

is greater than t + ε.
Choose a large integer n ∈ N so that equation (4.30) is satisfied and

n − k ≥ �, en(β−ε) ≤ a1(zn) ≤ en(β+ε). (4.33)

Write n − k = m� + �0, where 0 ≤ �0 < �.
Let ũ = (u, 1�0) ∈ Nk+�0 and consider the following set defined by (n + 1)th level

cylinders:

{In+1(ũ, a1, . . . , am, a1(zn)) : ai ∈ {1, . . . , M}�, 1 ≤ i ≤ m}. (4.34)

We stress that for the (n + 1)th position, there is only one choice, that is, a1(zn). This
makes the discussion much easier than the previous two. By equation (3.14), there is an
interval, denoted by I3(ũ, a1, . . . , am, a1(zn)) such that

I3(ũ, a1, . . . , am, a1(zn)) ⊂ Fn ∩ In+1(ũ, a1, . . . , am, a1(zn)). (4.35)

Additionally, since a1(zn) ≤ Bn/2, by equation (3.14),

|I3(ũ, a1, . . . , am, a1(zn))| ≥ B−n/2

4qn(ũ, a1, . . . , am)2a1(zn)
.

Define a probability measure μ3 supported on Fn ∩ Ik+�0(ũ) as follows:

μ3 =
∑

a1∈{1,...,M}�
· · ·

∑
am∈{1,...,M}�

( m∏
i=1

1
q�(ai )2seβ�sB�s/2

)
· L(3)

a1,...,am,a1(zn),

where

L(3)
a1,...,am,a1(zn) := L|I3(ũ,a1,...,am,a1(zn))

L(I3(ũ, a1, . . . , am, a1(zn)))
.

The next two lemmas describe the gap between fundamental intervals defined in
equation (4.25) and the μ3-measures of these fundamental intervals, respectively. The first
one follows the same lines as the proof of Lemma 4.4.

LEMMA 4.11. Let I3 = I3(ũ, a1, . . . , am, a1(zn)) and I ′
3 = I3(ũ, a′

1, . . . , a′
m, a1(zn))

be two intervals defined in equation (4.25). If (a1, . . . , ap−1) = (a′
1, . . . , a′

p−1) but ap �=
a′

p for some 1 ≤ p ≤ m, then

dist(I3, I ′
3) ≥ |Ik+�0+p�(ũ, a1, . . . , ap)|

2(M + 2)4 .

Instead of giving the complete proof of the following lemma, we merely point out which
changes have to be made.
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LEMMA 4.12. The following statements hold.
(1) For any (ũ, a1, . . . , ap) with 0 ≤ p ≤ m,

μ3(Ik+�0+p�(ũ, a1, . . . , ap)) � qk+�0+p�(ũ, a1, . . . , ap)−2t

|Ik+�0(ũ)|t .

(2) For any (ũ, a1, . . . , am, a1(zn)),

μ3(I3(ũ, a1, . . . , am, a1(zn))) � |I3(ũ, a1, . . . , am, a1(zn))|t
|Ik+�0(ũ)|t .

Sketch proof. (1) Following the same lines as in Lemma 4.5(1), one has

μ3(Ik+�0+p�(ũ, a1, . . . , ap)) =
p∏

i=1

1
q�(ai )2seβ�sB�s/2 ≤

p∏
i=1

1
q�(ai )2s

� qk+�0+p�(ũ, a1, . . . , ap)−2t

|Ik+�0(ũ)|t .

(2) By the definition of μ3,

μ3(I3(ũ, a1, . . . , am, a1(zn))) =
m∏

i=1

1
q�(ai )2seβ�sB�s/2 .

In view of item (2), we only need to estimate
∏m

i=1(e
β�sB�s/2)−1 = e−m�βsB−m�s/2.

Although the setting is slightly different, one can follow the proof of equation (4.16) and
show that whenever n is large enough,

n(1 − ε) ≤ m� ≤ n,

since n = k + m� + �0 and � is fixed. Hence, by equation (4.33),

e−m�βsB−m�s/2 = e−nβsB−ns/2 · eO(nε) = a1(zn)
−sB−ns/2 · eO(ε).

Since a1(zn) = en(β+O(ε)), by decreasing ε if necessary, we have

a1(zn)
−sB−ns/2 · eO(ε) ≤ a1(zn)

−tB−nt/2.

This together with item (1) yields the conclusion.

Next, the following lemma gives the estimation of the μ3-measure of arbitrary ball
B(x, r) with x ∈ [0, 1] and r > 0.

LEMMA 4.13. For any r > 0 and x ∈ [0, 1], we have

μ3(B(x, r)) � (M + 2)4(M + 1)2� · rt

|Ik+�0(ũ)|t .

Proof. Assume that x ∈ I3(ũ, a1, . . . , am, a1(zn)) and r > 0. To estimate μ3(B(x, r)),
compared with Lemmas 4.6 and 4.10, only two cases need to be considered instead of
three, because there is only one choice for the (n + 1)th position of the basic cylinder
(see equation (4.34)), namely a1(zn). According to Lemma 4.11, the proof is split into two
cases.
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Case 1: r ≤ (|Ik+�0+m�(ũ, a1, . . . , ap+1)|)/2(M + 2)4.
Case 2: (|Ik+�0 + (p+1)�(ũ, a1, . . . , ap+1)|)/(2(M + 2)4) ≤ r < (|Ik+�0+p�(ũ, a1,

. . . , ap)|)/2(M + 2)4 for some 1 ≤ p ≤ m − 1.
The argument is similar to Cases 1 and 3 in Lemma 4.6 (or Cases 1 and 3 in

Lemma 4.10), respectively. We omit the details.

Completing the proof of Theorem 1.3. The proof is the same as that at the end of §4.1, we
leave out the details.
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