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POUR-EL’S LANDSCAPE

TAISHI KURAHASHI AND ALBERT VISSER

Abstract. We study the effective versions of several notions related to incompleteness,
undecidability, and inseparability along the lines of Pour-El’s insights. Firstly, we strengthen
Pour-El’s theorem on the equivalence between effective essential incompleteness and effective
inseparability. Secondly, we compare the notions obtained by restricting that of effective
essential incompleteness to intensional finite extensions and extensional finite extensions.
Finally, we study the combination of effectiveness and hereditariness, and prove an adapted
version of Pour-El’s result for this combination.

§1. Introduction. Reflection on the meaning of incompleteness and
undecidability results gave rise to notions like essential undecidability of
theories and computable inseparability of theories: a consistent c.e. theory
U is essentially undecidable iff all its consistent extensions V (in the same
language) are undecidable, and a consistent c.e. theory U is computably
inseparable iff its theorems and its refutable sentences are computably
inseparable. We note that these notions have different flavours: essential
undecidability looks at the relation of the given theory with other theories
and computable inseparability looks at the relation of the theory with c.e. sets.

Such notions were studied in the period 1950–1970 (see, e.g., [16, 18]).
Their various relations and non-relations were established. See the schema
at the end of Section 2.4.

Marian Boykan Pour-El, in her ground-breaking paper [1], made an
interesting discovery. Where there are examples of essentially incomplete
theories that are not computably inseparable, the effective versions of these
notions coincide. The present paper is a study of results along the lines
of Pour-El’s insight. We study effective versions of notions connected to
incompleteness and undecidability and establish their interrelationships. See
the schema at the end of Section 5 for an overview of our results.
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POUR-EL’S LANDSCAPE 363

In the usual statements of incompleteness results, there is often a
restriction to some specific formula class. For example: for all c.e. extensions
U of the Tarski–Mostowski–Robinson theory R, we can effectively find a
Σ0

1-sentence � that is independent of U from an index of U. The Pour-El
style results in this paper will reflect the possibility of such restrictions: we
will add a parameter for the formula class from which the witnesses of, e.g.,
incompleteness or creativity may be chosen.

Effective versions of incompleteness and undecidability results have
unavoidably an intensional component. For example, a theory U is effectively
essentially incomplete iff there is a partial computable function � such that,
for all indices i, if the c.e. set Wi is a consistent extension of U, then �(i)
converges to a sentence that is independent of Wi . We see that the function
that provides the independent sentences operates on presentations rather
than directly on the extensions of the given theory itself. Thus, our paper is
as much a study of the consequences of intensionality as it is of effectiveness.
In the case of finite extensions, we can operate more extensionally, since
we can consider these as given not by an index but rather by a sentence.
This fact enables us, in the special case of finite extensions, to compare the
intensional and the extensional. In Section 4, we study the extensional finite
case.

1.1. Overview of the paper. In Section 2, we introduce the basic notions.
We present an analysis of what the effectivisation of a notion is in Section 2.5.
Section 3 gives our presentation and extension of Pour-El’s work. Then, in
Section 4, we study the extensional case for finite extensions. Section 5 is
concerned with the combination of effectiveness and hereditariness. Among
other things, we prove that for any consistent c.e. theory, effective essential
hereditary creativity and strong effective inseparability are equivalent. The
section is a sequel to the paper [28], where the non-effective case of
hereditariness is studied.

Apart from reading the paper from A to Z, there are several other paths the
reader may beneficially follow. Section 2 is more or less obligatory in order
to understand the rest, but, e.g., Section 2.2 can be read lightly to return
to when the relevant notions are needed. Of Section 3, the presentation
of Pour-El’s original result in Section 3.1 should not be skipped, but the
reader could cherry-pick from the rest. Then, the reader can choose between
Section 4 and Section 5.

§2. Notions and basic facts. In this section, we introduce the various
notions that we employ in this paper and present some basic facts.

2.1. Theories. A theory is given as a set of axioms in a given signature.
We take the signature to be part of the data of the theory. Note that we
do not take a formula representing the axiom set or an index of the axiom
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set as part of the data. The same theory can have different enumerations.
Moreover, these enumerations are enumerations of the axiom set and not of
the theorems.

We write Up for the set of theorems of U and Ur for the U-refutable
sentences or anti-theorems of U, i.e., Ur = {ϕ | U � ¬ϕ}.

We will also consider mono-consequence: U �m ϕ iff there is a � ∈ U
such that � � ϕ. We have the corresponding notion of mono-consistency,
which was developed by Lindström (cf. [10]). We write Um for the set of
mono-theorems of U and Un for the set of mono-refutable sentences.

Strictly speaking, there is no disjoint notion of mono-theory. A mono-
theory is just a theory. However, sometimes we will still use the word to
indicate that we intend to use the given set of sentences of the given signature
with the notion of mono-consequence.

The notion of mono-theory plays a role in Theorem 2.9. Below we show the
notion of mono-theory is connected to the idea of computable sequence of
c.e. theories. There are heuristic differences between the notions. Sometimes
it is better to think in terms of the ‘flatter’ notion of mono-theory, sometimes
it is pleasant to visualise a sequence of theories.

We define Û as the set of all non-empty finite conjunctions of elements
of U. We have the following convenient insight.

Theorem 2.1. We have: U � ϕ iff Û �m ϕ. As a consequence, Up = Ûm

and Ur = Ûn.

We note that we have V � U iff V �m Û . So, (̂·) is the right adjoint of the
projection functor of theories (of a given signature) with � into theories (of
the given signature) with �m. We also note that, of course, (·)p gives us an
isomorphic functor. The advantage of (̂·) is the fact that it does not raise the
complexity of the given set for most measures of complexity.

A computable sequence (Ti)i∈� of c.e. theories is given by a c.e. relation
T (i, ϕ). Here, of course, Ti := {ϕ | T (i, ϕ)}. We demand that all Ti are in
the same signature. We take this signature as part of the data of the sequence.
A sequence of theories is consistent if each of its theories is.

Consider a computable sequence of c.e. theories, given by T (i, ϕ). We
define T m :=

⋃
i∈� T̂i . Clearly, T m is a c.e. mono-theory. It is easy to see

that T m �m ϕ iff Ti � ϕ, for some i.
Conversely, given a c.e. mono-theory U we can associate a computable

sequence (Ti)i∈� of c.e. theories as follows. Enumerate U in stages and, if, at
stage i, a sentence ϕ is enumerated, put ϕ in Ti . Clearly, U �m ϕ iff Ti � ϕ,
for some i.

Since metamathematical results on sequences of theories are mostly
concerned with the relation ∃i ∈ � Ti � ϕ, we can usually replace sequences
of theories given by T by mono-theories U and study U �m ϕ.

https://doi.org/10.1017/bsl.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.26
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2.2. Theory-extension. We may define various notions of theory-
extension. The basic notion is simply U ⊆ V : the V -axioms extend the
U-axioms. Here the V -language may extend the U-language. We have three
‘dimensions’ of variation.

i. We can put restrictions on the V -language. We consider two possibili-
ties. We use a superscript s, for ‘same’ or for ‘signature’, to indicate that
the U- and the V -language coincide. We use a superscript c to indicate
that the V -language extends the U-language by at most finitely many
constants.

ii. We do not compare the axiom sets but appropriate closures of the
axioms sets. When we compare the theorems, we indicate this by a
subscript p. We can also compare the mono-theorems. We indicate
this by a subscript m.

iii. We may put constraints on the cardinality of the extension. We use the
subscript f for finite extensions.

So we will use, e.g., U ⊆s
f
V , for: V is a finite extension of U in the same

language. If we use, e.g., U ⊆s
pf
V , this is of course intended to mean that

the theorems of V are theorems of a finite extension of U. We will useU � V
for U ⊆s

p V and U �m V for U ⊆s
m V .

We note that if Up = U ′
p and Vp = V ′

p, then U ⊆s
pf
V iff U ′ ⊆s

pf
V ′.

We will be looking at mono-extensions of non-mono theories. For this
case the following notion of extension is a relevant one.

• U � V := {ϕ ∧ � | ϕ ∈ U and � ∈ V }.
• U � V iff U � V ⊆s

m V .

Let X and Y be disjoint c.e. sets. Two sets Z and W weakly biseparate X
and Y iff X ⊆ Z, Y ⊆ W , Z ∩ Y = ∅, and W ∩X = ∅. We say that Z and
W biseparate X and Y iff they weakly biseparate X and Y and Z ∩W = ∅.
We will not use the following theorem later, but we state it for the sake of
understanding.

Theorem 2.2. a. If U � V , then Û ⊆s Up ⊆s
m Up � V ⊆s

m V .
b. If U � V and V is mono-consistent, then Vm and Vn weakly biseparate
Up and Ur.

c. U � U iff Um = Up.

Proof. (a). Suppose U � V . The inclusions Û ⊆s Up ⊆s
m Up � V are

obvious. To prove Up � V ⊆s
m V , it suffices to show that for any k,

ϕ0, ... , ϕk ∈ U , and � ∈ V , there exists a � ∈ V such that

� � ϕ0 ∧ ··· ∧ ϕk ∧ �.
We prove the statement by induction on k, and the case of k = 0 is
immediate from U � V . Assume that the statement holds for k and let
ϕ0, ... , ϕk, ϕk+1 ∈ U and � ∈ V . By the induction hypothesis, there exists a
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� ∈ V such that � � ϕ0 ∧ ··· ∧ ϕk ∧ �. Since U � V , there exists a �′ ∈ V
such that �′ � ϕk+1 ∧ �. We obtain �′ � ϕ0 ∧ ··· ∧ ϕk ∧ ϕk+1 ∧ �.

(b). Suppose U � V and V is mono-consistent. Since Up ⊆m V by (a),
we have Up ⊆ Vm and Ur ⊆ Vn. If � ∈ Up ∩ Vn for some sentence �, then
there would be a� ∈ V such that� � ¬�. SinceUp � V ⊆s

m V , there would
be a � ∈ V such that � � � ∧ �. Then, � is inconsistent. This contradicts the
mono-consistency of V. Therefore, Up ∩ Vn = ∅. In a similar way, we can
prove Ur ∩ Vm = ∅.

(c). By (a),U � U is equivalent toUp �U ⊆s
m U , and toUp ⊆s

m U . Also,
Up ⊆s

m U is equivalent to Um = Up. �

2.3. Interpretability. An interpretation K of a theory U in a theory V
is based on a translation of the U-language into the V -language. This
translation commutes with the propositional connectives. In some broad
sense, it also commutes with the quantifiers but here there are a number of
extra features.

• Translations may be more-dimensional: we allow a variable to be
translated to an appropriate sequence of variables.

• We may have domain relativisation: we allow the range of the translated
quantifiers to be some domain definable in the V -language.

• We may even allow the new domain to be built up from pieces of,
possibly, different dimensions.

A further feature is that identity need not be translated to identity but can be
translated to a congruence relation. Finally, we may also allow parameters in
an interpretation. To handle these the translation may specify a parameter-
domain. For details on the various kinds of translation, we refer the reader
to [26].

We can define the obvious identity translation of a language in itself and
composition of translations.

An interpretation is a triple 〈U, 	, V 〉, where 	 is a translation of the
U-language in the V -language such that, for all ϕ, if U � ϕ, then V � ϕ	 .1

We write:

• K : U � V for: K is an interpretation of U in V.
• U � V for: there is a K such thatK : U � V . We also writeV �U for:
U � V .

• U �loc V for: for every finitely axiomatisable sub-theory U0 of U, we
have U0 � V .

1In case we have parameters with parameter-domain α this becomes: V � ∃ �x α( �x) and,
for all ϕ, if U � ϕ, then V � ∀ �x (α( �x) → ϕ	, �x).
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• U �mod V for: for every V -model M, there is a translation 	 from the
U-language in the V -language, such that 	 defines an internal U-model
N = 	̃(M) of U in M.

In Appendix B, we will have a brief look at effective versions of local
interpretability, essentially concluding that all such versions collapse either
to ordinary local interpretability or, somewhat surprisingly, to global
interpretability.

In [28], the relation of essential tolerance was studied since it has backwards
preservation of essential hereditary undecidability. In Appendix C, we
briefly consider effective essential tolerance. This relation has backwards
preservation of effective essential hereditary undecidability.

2.4. The non-effective notions. In this subsection, we introduce the non-
effective notions. We will then discuss what the appropriate corresponding
effective versions should be in the next subsection.

Our first building blocks are decidability, completeness, and
separability.

• A theory U is decidable if there is an algorithm that decides provability
in U. In other words, U is decidable iff Up is computable. A theory is
undecidable if it is not decidable.

• A theory U is complete if, for every U-sentence ϕ, we have U � ϕ or
U � ¬ϕ. In other words, U is complete iff Up ∪Ur = SentU . A theory
is incomplete if it is not complete.

Suppose P is a property of theories. We say that U is essentially P if all
consistent c.e. extensions (in the same language) of U are P . We say that U
is hereditarily P if all consistent c.e. sub-theories of U (in the same language)
are P . We say that U is potentially P if some consistent c.e. extension (in the
same language) of U is P .

We defined essential and potential and hereditary with respect to ⊆s. In
this paper we also will consider these notions with respect to ⊆s

f
.

If R is a relation between theories the use of essential and hereditary and
potential always concerns the first component aka the subject. Thus, e.g., we
say that U essentially tolerates V meaning that U essentially has the property
of tolerating V. Tolerance itself is defined as potential interpretation. So U
essentially tolerates V if U essentially potentially interprets V. We will have
a closer look at essential tolerance in Appendix C.

An important recursion theoretic notion is computable (in)separability.
Two c.e. sets X and Y are computably separable iff, there is a computable
Z such that X ⊆ Z and Y ⊆ Zc. Two sets are computably inseparable
iff they are not computably separable. We want to apply computable
(in)separability to theories and pairs of theories by designating certain
sets of sentences associated with the theories as candidates for computable
(in)separability.
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Let us say that a pair of theories (U,V ) is acceptable iff U and V have
the same signature and are jointly consistent. Let (U,V ) be acceptable. We
define:

• (U,V ) is computably (in)separable iff Up and Vr are computably
(in)separable.

• U is computably (in)separable iff (U,U ) is computably (in)separable.
• U is strongly computably (in)separable iff (U, 0U ) is computably

(in)separable.

Here, 0U denotes the pure predicate calculus in the language of U.
We define: (X ,Y) ≤1 (Z,W) iff there is an injective computable function

f, such that n ∈ X iff f(n) ∈ Z, and n ∈ Y iff f(n) ∈ W . Our definition
generalises [20, Definition 2.4.9, p. 40], which coincides with our definition
when we restrict ourselves to disjoint pairs of sets. We have (X ,X ) ≤1 (Y ,Y)
iff X ≤1 Y . Clearly, if (X ,Y) and (Z,W) are disjoint pairs and if (X ,Y) is
computably inseparable and (X ,Y) ≤1 (Z,W), then (Z, W) is computably
inseparable.

We have the following simple insights:

Theorem 2.3. (U,V ) is computably inseparable iff (V,U ) is computably
inseparable.

Proof. We note that negation witnesses that (Up, Vr) ≤1 (Ur, Vp). So if
(Up, Vr) is computably inseparable, then so is (Vp, Ur). �

Theorem 2.4 (Subtraction Theorem). If (U + ϕ,V + ϕ) is computably
inseparable, then so is (U + ϕ,V ).

Proof. The function � �→ (ϕ ∧ �) witnesses that

((U + ϕ)p, (V + ϕ)r) ≤1 ((U + ϕ)p, Vr). �

The computable inseparability of a theory is closely related to the
undecidability and the incompleteness of the theory. Indeed, the computable
inseparability of a theory U implies the essential undecidability of U. For
example, the computable inseparability of the theory R of weak arithmetic
follows from the work by Smullyan [14], and then the essential undecidability
of R that was first established by Tarski, Mostowski, and Robinson [21]
immediately follows. It is well-known that, for any consistent c.e. theory,
essential incompleteness and essential undecidability are equivalent, and so
the computable inseparability ofR also yields the essential incompleteness of
R. Here, the essential incompleteness of R is also strengthened. Mostowski
[11] proved that R is uniformly essentially incomplete, that is, for any
computable sequence (Ti)i∈� of consistent c.e. extensions of R, there exists
a sentence simultaneously independent of all theories in the sequence.
Interestingly, Ehrenfeucht [4] proved that Mostowski’s theorem is equivalent
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to the computable inseparability of R, namely, he proved that, for any
consistent c.e. theory U, U is computably inseparable if and only if U is
uniformly essentially incomplete.

Finitely axiomatisable theories sometimes behave well. Tarski,
Mostowski, and Robinson [21] showed that for a finitely axiomatisable
theory, essential undecidability is equivalent to essential hereditary
undecidability. Also, it follows from the Subtraction Theorem (Theorem 2.4)
that for a finitely axiomatised theory, computable inseparability is equivalent
to strong computable inseparability. Note that strong effective inseparability
implies essential hereditary undecidability. So, the finitely axiomatised
theory Q which is an extension of R is strongly computably inseparable
and essentially hereditarily undecidable. Here, since R is not finitely
axiomatisable, the essential hereditary undecidability of R is non-trivial.
This was proved by Cobham, but his proof of the result was not published.
Vaught [22] gave a proof of Cobham’s theorem by proving the strong
computable inseparability of R. For a detailed study of the notion of
essential hereditary undecidability, see [28]. See [26] and [9] for new proofs
of Cobham and Vaught’s theorems.

Relating to these notions, we also introduce the following two notions:

• U is f-essentially incomplete iff, for any U-sentence ϕ, if U ∪ {ϕ} is
consistent, then U ∪ {ϕ} is incomplete.

• U is f-uniformly essentially incomplete iff, for any k ∈ �, whenever
U0, ..., Uk–1 are consistent c.e. extensions of U in the same language,
then there is a sentence independent of each of the U0, ... , Uk–1.

It is easy to see that a theory U is f-essentially incomplete iff the Linden-
baum algebra of U is atomless. For f-uniform essential incompleteness, we
have the following:

Proposition 2.5. Every essentially incomplete theory is f-uniformly essen-
tially incomplete.

Proof. We prove, by induction on k, that, ifU0 ... , Uk–1 are consistent c.e.
extensions of U in the same language, then there is a sentence �k independent
of each of the U0, ... , Uk–1. We set �0 := �. In case Ui ∪Uk is consistent
for some i < k, we replace both Ui and Uk with Ui ∪Uk , and apply the
induction hypothesis to the reduced sequence. Suppose all the Ui ∪Uk , for
i < k, are inconsistent. We define �k+1. For each i < k, there is aϕi , such that
Uk � ϕi and Ui � ¬ϕi . Let ϕ be the conjunction of the ϕi . So, Uk � ϕ and,
for each of theUi , where i < k, we haveUi � ¬ϕ. Suppose � is independent
ofUk . We define �k+1 := (� ∧ ϕ) ∨ (�k ∧ ¬ϕ). It is immediate that this does
as promised. �

The relationships between these non-effective notions are visualised in
Figure 1. In [12], the existence of a decidable f-essentially incomplete
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f-essentially incomplete

essentially undecidable essentially incomplete

f-uniformly
essentially incomplete

computably inseparable
uniformly

essentially incomplete

essentially
hereditarily undecidable

strongly
computably inseparable

Figure 1. Implications between non-effective notions.

theory was proved. Also, essential hereditary undecidability and computable
inseparability are incomparable in general (cf. [28, Example 6]). Therefore,
none of the implications in Figure 1 are reversible. Related to this figure, one
could consider the notions such as f-essential undecidability and f-essential
hereditary undecidability etc., but we will not deal with these notions, as
they are beside the main subject of this paper.

In what follows, we explore the effectivisations of these notions of
incompleteness, undecidability, and inseparability.

2.5. What is effective?. Notions like essential and hereditary operate
extensionally on the notions they modify. The situation is not so simple
for adding effective. Adding “effective” in front of an expression operates
intensionally on the definition of the concept.

Suppose the definition of P has the form ∀ �x ∃�y ϕ( �x, �y), where ϕ does
not start with an existential quantifier. We propose to say that effectively
P means that there are computable functions �� such that ∀ �x ϕ( �x, ��( �x)).
If the given definition of P has the form ∀ �x (�( �x) → ∃�y ϕ( �x, �y)), where ϕ
does not start with an existential quantifier, then, effectively P means that
there are partial computable functions �� such that

∀ �x (�( �x) → ∃�z ( ��( �x) � �z ∧ ϕ( �x, �z))).

Remark 2.6. An alternative proposal would be to suggest that effectively
P simply means the Kleene realisability of the salient definition of P .
However, this does not always deliver the desired outcomes.

2.5.1. Effective undecidability. A c.e. set X is decidable iff

∃i ((X ∩Wi) = ∅ ∧ (X ∪Wi) = �).

So, X is undecidable means:

∀i (∃y (y ∈ X ∧ y ∈ Wi) ∨ ∃x (x �∈ X ∧ x �∈ Wi)).
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Equivalently,

∀i ∃x ((x ∈ X ∧ x ∈ Wi) ∨ (x �∈ X ∧ x �∈ Wi)).

The constructivisation of this is: there is a computable � such that

∀i ((�(i) ∈ X ∧�(i) ∈ Wi) ∨ (�(i) �∈ X ∧�(i) �∈ Wi)).

So this is the notion of being constructively non-computable (see [13, p. 162]).
Alternatively, X is undecidable also means:

∀i ∃y ((X ∩Wi) = ∅ ⇒ (y �∈ X ∧ y �∈ Wi)).

So, the effectivisation of this is: there is a computable � such that

∀i ((X ∩Wi) = ∅ ⇒ (�(i) �∈ X ∧�(i) �∈ Wi)).

This is exactly the notion of being creative.
Every constructively non-computable set is exactly a c.e. set whose

complement is completely productive, which is a notion introduced by
Dekker [3]. It is proved in [13, p. 183, Theorem VI] that productivity and
complete productivity coincide, and hence creativity and constructive non-
computability also coincide. So, these notions serve stable effectivisation of
the notion of undecidability.

2.5.2. Effective essential undecidability. Let us assume the definition of
the essential undecidability of U is

∀i ∀j
((
Wi � U and con(Wi)

)
⇒

∃x
(
(x �∈ Wip ∧ x �∈ Wj) ∨ (x ∈ Wip ∧ x ∈ Wj)

))
.

Here con(Wi) is an abbreviation of the statement ‘Wi is consistent’. So our
recipe gives: there is a partial computable � such that

∀i ∀j
((
Wi � U and con(Wi )

)
⇒(

�(i, j)↓ ∧
(
(�(i, j) 	∈ Wip ∧�(i, j) 	∈ Wj) ∨ (�(i, j) ∈ Wip ∧�(i, j) ∈ Wj)

)))
.

By the usual argument, we can always choose � total. Moreover, our
definition is equivalent to: there is a total computable � such that

∀i
(
(Wi � U and con(Wi)

)
⇒

(
j.�(i, j) witnesses that Wip is creative)

)
.

So this gives us that effective essential undecidability is the same thing as
effective essential creativity. We will work with the last notion. This notion
was suggested in Feferman’s paper [5, Footnote 11] and investigated by
Smullyan [15].

In the rest of the paper, we will simply stipulate the effective versions of the
relevant notions. The reader may amuse herself by deriving the definitions
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following our recipe. We briefly discuss why there is not separate notion of
effective local interpretability in Appendix B.

2.5.3. Constraining the witness. Effective notions usually have a partial
computable function� that chooses some (counter)example. In many cases,
it is interesting to put a constraint on the (counter)examples, i.e., on the
range of witness providing function �. For example, consider effective
essential incompleteness. One usually specifies that the witnesses can be
chosen to be Σ0

1 (or, equivalently, Π0
1). In this case we will speak of effective

essential Σ0
1-incompleteness. We will see that there are other interesting

restriction than this familiar one.
More generally, if the constraintX is a set of numbers coding sentences-of-

the-given-signature, and P is the property of theories under consideration,
we will speak about effective X -P . Note that we do not demand that X
is c.e..

We can make this even more general. Let F be a function from sets of
sentences to sets of sentences (all of the given signature). We do not put
any effectivity constrains on F . Moreover, we allow F to be empty on
some arguments. For example, U is effectively essentially F-incomplete iff,
for every i such that Wi axiomatizes a consistent extension of U, there is a
ϕ ∈ F(Wi), such thatϕ is independent ofWi . We note that ifF has constant
value X , we are back in the simpler case.

2.6. Effective inseparability. Two disjoint c.e. sets X and Y are said to be
effectively inseparable iff, there exists a partial computable function � such
that for any c.e. sets Wi and Wj , if Wi and Wj weakly bi-separate X and
Y , then �(i, j) converges and �(i, j) /∈ Wi ∪Wj . Let (U,V ) be acceptable
pair of theories. We define:

• (U,V ) is effectively inseparable iff Up and Vr are effectively inseparable.
• U is effectively inseparable iff (U,U ) is effectively inseparable.
• U is strongly effectively inseparable iff (U, 0U ) is effectively inseparable.

We define witness comparison notation. For every c.e. relation R( �x), we
can effectively find a primitive computable relation R�( �x, y) such that R( �x)
iff ∃y R�( �x, y). For all pairs of c.e. relationsR0( �x) andR1( �x), we define:

• R0( �x) ≤ R1( �x) :↔ ∃y (R�0( �x, y) ∧ ∀z < y ¬R�1( �x, z)),
• R0( �x) < R1( �x) :↔ ∃y (R�0( �x, y) ∧ ∀z ≤ y ¬R�1( �x, z)).

We note that the witness comparison notation is intensional. The procedure
to find R� given R operates on a presentation of R and gives a presentation
of R� as output.

Proposition 2.7. In the definition of effective inseparability, restricting
weakly bi-separating sets to bi-separating sets yields an equivalent notion.
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Proof. This is because if Wi and Wj weakly bi-separate X and Y , then
we can effectively find k0 and k1 such that Wk0 ∪Wk1 = Wi ∪Wj , and Wk0

and Wk1 bi-separate X and Y . Such k0 and k1 are obtained by letting:

• Wk0
= {n | (n ∈ Wi) ≤ (n ∈ Wj)} and

• Wk1
= {n | (n ∈ Wj) < (n ∈ Wi)}. �

Smullyan analyzed the notion of effective inseparability extensively, and
in particular various notions related to effective inseparability are discussed
in his [17, 18]. For more information on this topic, see the recent paper by
Yong Cheng [2].

The effective inseparability of the theoryR follows from a result established
by Smullyan [15]. Smullyan mentioned that effective inseparability implies
effective essential creativity. Also, for any consistent c.e. theory, effective
essential creativity clearly implies effective essential incompleteness. Ehren-
feucht [4] provided an essentially incomplete theory that is not computably
inseparable, but, in the effective case, such an example cannot exist. Namely,
for any consistent c.e. theory, effective essential incompleteness implies
effective inseparability. This result was established by Pour-El. Actually,
Pour-El proved more. We say that a theory U is effectively if-essentially
F-incomplete iff there is a partial computable function� such that for any i, if
Wi is a consistent finite extension of U, then�(i) converges,�(i) ∈ F(Wi),
and �(i) is independent of Wi . Here, ‘if ’ stands for ‘intensional finite
extensions’. The notion of effective ef-essential F-incompleteness is studied
in Section 4, where ‘ef’ stands for ‘extensional finite extensions’. Pour-El
called effective essential incompleteness effective extensibility. She called
effective if-essential incompleteness weak effective extensibility. Pour-El’s
theorem is stated as follows:

Theorem 2.8 (Pour-El [1, Theorem 1]). For any consistent c.e. theory U,
the following are equivalent:

a. U is effectively inseparable.
b. U is effectively essentially creative.
c. U is effectively essentially incomplete.
d. U is effectively if-essentially incomplete.

In the next section, we prove a slightly strengthened version of Pour-El’s
theorem (Theorem 3.1). Furthermore, our proof is slightly simpler than the
original one. For completeness, we describe Pour-El’s original argument in
Appendix A.

We say that a theory U is effectively uniformly essentially X -incomplete iff,
there is a partial computable function� such that for any j, if j is the index of a
computable sequence of consistent c.e. extensions (Ti)i∈� of U, then we have
that�(j) converges,�(j) ∈ X , and�(j) is independent of Ti for all i ∈ �.
For any consistent c.e. theory, effective inseparability easily implies effective
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uniform essential incompleteness. So, one could say that, in the effective case,
Ehrenfeucht’s result on the equivalence between computable inseparability
and uniform essential incompleteness is superseded by Pour-El’s work.
However, we do think it is instructive to include the effective analogues
of Ehrenfeucht’s theorem here, also since these results have entirely self-
reference free proofs. We also present the effective version of Ehrenfeucht’s
results from the mono-perspective.

Theorem 2.9. Let U be a consistent c.e. theory. Let X be a set of sentences.
The following are equivalent.

a. U is effectively X -inseparable, i.e., there is a partial computable function
�, such that for all pairs of sets Wi , Wj that weakly bi-separate Up and
Ur, we have �(i, j) converges, �(i, j) ∈ X , and �(i, j) �∈ Wi ∪Wj .

b. U is effectively uniformly essentially X -incomplete, i.e., there is a partial
computable function �0, such that, for every computable sequence of
consistent c.e. extensions U ′

i of U with index j, we have that �0(j)
converges, �0(j) ∈ X , and, for all i, U ′

i � �0(j) and U ′
i � ¬�0(j).

c. There is a partial computable function�1, such that, for every computable
sequence of U-sentences �0, �1, ... with index j, such that each �i is
consistent with U, �1(j) converges, �1(j) ∈ X , and, for all i, we have
U � �i → �1(j) and U � �i → ¬�1(j).

d. There is a partial computable function�2, such that, for every computable
sequence of U-sentences �0, �1, ... with index j, such that each �i is
consistent with U, we have�2(j) converges,�2(j) ∈ X , and, for all i, we
have 0U � �i → �2(j) and 0U � �i → ¬�2(j).

e. U is effectively �-essentially X -m-incomplete, i.e., there is a partial
computable function �3, such that for every mono-consistent Wj � U ,
we have �3(j) converges, �3(j) ∈ X , and, �3(j) �∈ Wjm ∪Wjn.

f. There is a partial computable function�4 such that, for any Wj such that
Û �Wj is mono-consistent, we have �4(j) converges, �4(j) ∈ X , and,
�4(j) �∈ Wjm ∪Wjn.

Moreover, each of (a), (b), (c), (d ), (e), ( f ) is equivalent to a version, say
(a′), (b′), (c′), (d′), (e′), ( f′) where the witnessing function is total.

Proof. “(a) to (b)”. Consider a computable sequence (U ′
i )i∈� of

consistent c.e. extensions of U. Say our sequence has index j. Let
V :=

⋃
i∈� U

′
ip and let W :=

⋃
i∈� U

′
ir. We can find indices k and � for V

and W effectively from j. Clearly, V and W weakly bi-separate Up and Ur.
We take �0(j) := �(k, �). It follows that �0(j) is in X and is independent
of each U ′

i .
“(b) to (c)”. We can effectively transform an index j of the sequence

(�i)i∈� into an index j ′ of the sequence of theories (U + �i)i∈�. We set
�1(j) := �0(j ′).
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“(c) to (d)”. We can take �2 := �1.
“(d) to (e)”. Suppose Wj � U and Wj is mono-consistent. We can

effectively find an index k of an enumeration (�s)s∈� of the elements of
Wj from j. Since Wj and Ur are disjoint, we have that �s is consistent
with U for each s ∈ �. We obtain that �2(k) converges, �2(k) ∈ X ,
and for all s, 0U � �s → �2(k) and 0U � �s → ¬�2(k). We then have
�2(k) /∈ Wjm ∪Wjn. We take �3(j) := �2(k).

“(e) to (f)”. Consider any c.e. Wj such that W := Û �Wj is mono-
consistent. It is easy to see thatW � U . We can easily find an index k of W
from j. We take �4(j) := �3(k).

“(f) to (a)”. Suppose Wi and Wj weakly bi-separate Up and Ur. Let

V := Wi ∪ {� | (¬�) ∈ Wj}.

If Û � V were mono-inconsistent, there would be a � ∈ V andU � ¬ �. The
second conjunct tells us that � �∈ Wi and (¬ �) �∈ Wj . A contradiction. So,
Û � V is mono-consistent. We clearly can find an index k of V effectively
from i and j. We take �(i, j) := �4(k).

We prove the equivalence between (a) and (a′). The (a′)-to-(a) direction
is trivial. We assume (a). Consider any pair of indices i, j. We define �∗.
We can effectively find indices i ′, j ′ of Up ∪Wi and Ur ∪Wj . We compute
�(i ′, j ′) and, simultaneously, we seek a counterexample to the claim that
Wi ′ ,Wj′ weakly biseparate Up and Ur. If we find a value of �(i ′, j ′) first
then we give that as output of�∗(i, j). If we find a counterexample first, we
give that as output (or, alternatively, we give some fixed chosen sentence as
output). It is easy to see that �∗ is total and satisfies our specification.

The equivalences of (b) and (b′), (c) and (c′), (d) and (d′), (e) and (e′),
and (f) and (f′) are proved in an analogous way. �

§3. Pour-El’s Theorem. In this section, we prove Pour-El’s Theorem in a
slightly stronger version (Section 3.1). We give a variant (Section 3.2) and
describe some sample applications (Sections 3.3 and 3.4). In Section 5, we
present an adaptation of the argument that applies to effective hereditary
creativity.

3.1. The Theorem. In this subsection, we give our version of Pour-El’s
result.

Theorem 3.1. Suppose U is effectively if-essentially F-incomplete. Then, U
is effectively F(U )-inseparable.

Proof. Let U be effectively if-essentially F-incomplete with partial
computable witness �. Suppose Wi and Wj weakly biseparate Up and Ur.

Using the Recursion Theorem with parameters (cf. [19, Theorem 3.5]),
we effectively find a k∗ (depending of i and j) such that
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Wk∗ = U ∪ {ϕ | �(k∗) � ϕ and ϕ ∈ Wi} ∪
{� | ∃ϕ (�(k∗) � ϕ and ϕ ∈ Wj and � = ¬ϕ)}.

We note that we have

Wk∗ =

⎧⎪⎨⎪⎩
U ∪ {�(k∗)}, if �(k∗) converges and �(k∗) ∈ Wi ,

U ∪ {¬�(k∗)}, if �(k∗) converges and �(k∗) ∈ Wj ,

U, otherwise.

Let U ∗ := Wk∗ .

• Suppose �(k∗) converges to, say, ϕ∗ and ϕ∗ ∈ Wi . It follows that
U ∗ = U ∪ {ϕ∗}. Since ϕ∗ �∈ Ur, we have that U ∗ is consistent and,
hence, ϕ∗ is independent of U ∗. A contradiction.

• Suppose �(k∗) converges to, say, ϕ∗ and ϕ∗ ∈ Wj . It follows that
U ∗ = U ∪ {¬ϕ∗}. Since ϕ∗ �∈ Up, we have that U ∗ is consistent, and,
hence, ϕ∗ is independent of U ∗. A contradiction.

We may conclude thatU ∗ = U . Hence,�(k∗) converges, say to ϕ∗. We have
ϕ∗ �∈ Wi ∪Wj .

Clearly, our argument delivers a total computable� , such that, whenever
Wi and Wj weakly biseparate Up and Ur, we have �(i, j) �∈ Wi ∪Wj .

Finally, we note that the Wk∗ are all equal to U and, thus �(i, j) =
�(k∗) ∈ F(U ). �

As a consequence of Theorem 3.1, we obtain the following corollary
showing the equivalence of several relating notions. For each formula class
X and theory U, let [X ]U be the closure of X under U-provable equivalence.

Corollary 3.2. For any consistent c.e. theory U and set of sentences X ,
the following are equivalent:

a. U is effectively X -inseparable.
b. U is effectively essentially X -creative.
c. U is effectively essentially X -incomplete.
d. U is effectively if-essentially X -incomplete.

Moreover, in caseX is c.e., each of (a), (b), (c), (d ) is equivalent to a version,
say (a′), (b′), (c′), (d ′) where X is replaced by [X ]U .

Proof. The implications “(a) to (b)”, “(b) to (c)”, and “(c) to (d)” are
obvious.

“(d) to (a)”. Immediate from Theorem 3.1 by letting F to be the function
having the constant value X .

Suppose X is c.e. It suffices to show the equivalence of (c) and (c′). The
implication “(c) to (c′)” is trivial because X ⊆ [X ]U . We treat “(c′) to (c)”.
Suppose that U is effectively essentially [X ]U -incomplete, as witnessed by a
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partial computable function�. Note that if T is a consistent extension of U
and ϕ is independent of T, then each element of [{ϕ}]U is also independent
of T. Let � be a partial computable function such that for each i, if �(i)
converges, then�(i) is in [{�(i)}]U ∩ X . Then, it is shown that� witnesses
the effective X -incompleteness of U. �

Corollary 3.3. If U is effectively if-essentially F-incomplete, then U is
effectively F(U )-inseparable and effectively if-essentially F(U )-incomplete

3.2. A variant: double generativity. In Smullyan’s book [18], many notions
that are equivalent to effective inseparability were introduced (see also
[2]). As a sample of variants of the argument in Section 3.1, we focus
on double generativity among them as the double analogue of constructive
non-computability, and discuss its witness constraining version.

We say that a theory U is doubly X -generative iff there exists a total
computable function� such that for any i, j ∈ �, if Wi ∩Wj = ∅, then:

• �(i, j) ∈ Up iff �(i, j) ∈ Wj ,
• �(i, j) ∈ Ur iff �(i, j) ∈ Wi ,
• if �(i, j) /∈ Wi ∪Wj , then �(i, j) ∈ X .

We obtain a prima facie less constrictive notion if we demand that the
Wi , Wj are the Vp, Vr of some theory V. A consistent c.e. theory U is
X -theory-generative iff, there is a total computable function � , such for
every consistent theory V in the U-language with index i, we have:

• �(i) ∈ Up iff �(i) ∈ Vr,
• �(i) ∈ Ur iff �(i) ∈ Vp,
• if �(i) /∈ Vp ∪ Vr, then �(i) ∈ X .

Theorem 3.4. For any consistent c.e. theory U and set of sentences X , the
following are equivalent:

a. U is doubly X -generative.
b. U is X -theory-generative.
c. U is effectively if-essentially X -incomplete.

Proof. “(a) to (b)”. Suppose that a total computable function �
witnesses the double X -generativity of U. Let V be any consistent c.e. theory
with index i. We can effectively find k0 and k1 from i such that Wk0 = Vp

and Wk1 = Vr. Let �(i) := �(k0, k1). It is immediate that � witnesses that
U is X -theory-generative.

“(b) to (c)”. Suppose � witnesses that U is X -theory-generative and
let V be a consistent c.e. theory that if-extends U with index i. Since the
first two cases of X -theory-generativity cannot be active, it follows that
�(i) �∈ Vp ∪ Vr and �(i) ∈ X .
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“(c) to (a)”. Suppose that U is effectively if-essentially X -incomplete. Let
� be a partial computable function that witnesses the effective if-essential
X -incompleteness of U. We may assume that �(k) converges if Wk is an if-
extension of U, whether Wk is consistent or not. By the Recursion Theorem
with parameters, there exists a computable function �(x, y) such that,
setting �∗(x, y) := �(�(x, y)), we have

W�(x,y) =

⎧⎪⎪⎨⎪⎪⎩
U ∪ {�∗(x, y)}, if

(
�∗(x, y) ∈ (Up ∪Wx)

)
≤

(
�∗(x, y) ∈ (Ur ∪Wy)

)
,

U ∪ {¬�∗(x, y)}, if
(
�∗(x, y) ∈ (Ur ∪Wy)

)
<

(
�∗(x, y) ∈ (Up ∪Wx)

)
,

U, otherwise.

Since W�(i,j) is an if-essential extension of U for all i and j, we find that
�∗(i, j) is a total computable function.

We show that �∗ witnesses the double X -generativity of U. Let i and j be
such that Wi ∩Wj = ∅ and let ϕ∗ := �∗(i, j).

• Suppose
(
ϕ∗ ∈ (Up ∪Wi)

)
≤

(
ϕ∗ ∈ (Ur ∪Wj)

)
holds. Then,W�(i,j) =

U ∪ {ϕ∗}. Since W�(i,j) � �(�(i, j)), we have that W�(i,j) =
U ∪ {ϕ∗} is inconsistent. So, ϕ∗ ∈ Ur. Since Up ∩Ur = ∅ and
ϕ∗ ∈ Up ∪Wi , we obtain ϕ∗ ∈ Ur ∩Wi .

• Suppose
(
ϕ∗ ∈ (Ur ∪Wj)

)
<

(
ϕ∗ ∈ (Up ∪Wi)

)
holds. As above, it is

shown that ϕ∗ ∈ Up ∩Wj .
• Otherwise, ϕ∗ /∈ Up ∪Wj and ϕ∗ /∈ Ur ∪Wi . Since W�(i,j) = U is a

consistent if-essential extension of U, we have ϕ∗ = �(�(i, j)) ∈ X .

A simple exercise in propositional logic now shows that �∗ witnesses the
double X -generativity of U. �

3.3. Orey-sentences of extensions of Peano Arithmetic. In this subsection
we treat Orey-sentences for extensions of PA. The results of Section 3.4 will
extend these results, but it is nice to see the simple case first.

Let U be any consistent c.e. extension of Peano Arithmetic. An Orey-
sentence of U is a sentence O, such that U � (U +O) and U � (U + ¬O).
Clearly, an Orey sentence O of U is independent of U. We also note that
the Orey property is extensional in the sense that it only depends on the
theorems of the given theory.

Here is one way to construct an Orey-sentence for U. Let Wi be an
enumeration of the axioms of U. We define Wi,n as the theory axiomatised
by the first n axioms enumerated in Wi . We define

�iϕ :↔ ∃x ( Wi,x ϕ ∧ Wi,x �).

Here Wi,x stands for provability in Wi,x and stands for ¬ ¬, so, Wi,n �
arithmetizes the consistency of Wi,n. We write � for ¬�¬. We find that �i
satisfies the modal laws of K. Moreover, we have the seriality axiom D, i.e.,
�i�. Finally, we can prove �iϕ �U ϕ (see [6] or [27]).
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We find �i with PA � �i ↔ ¬�i �i . We claim that �i is an Orey-sentence
of U. We have, temporarily omitting the subscripts i and U :

� � ¬��
� �¬ �
� ¬ �

¬ � � ��
� ��
� �.

Since, we have � � ¬ � and ¬ � � ¬ �, we find, using a disjunctive interpre-
tation, �� ¬ �. Similarly, we find �� �. Thus, �i is an Orey-sentence of U
as promised.

Remark 3.5. The Orey-sentences �i produced in our example are all
known to be true. We can also use �i to build U-internally a Henkin
interpretation of U. This interpretation comes with a truth predicate Hi .
The Liar sentence i of Hi is also an Orey-sentence of U. However, in this
case, it is unknown whether i or ¬ i is true.

We note that, in the real world, the Henkin construction just depends
on the theorems of the given theory, not on the axiomatisation. It does
depend on the chosen enumeration of sentences. Thus, as long as we keep
the enumeration fixed, the truth-value of i remains the same when we run
through i that enumerates axiom sets of PA.

Let O be the function that assigns to sets of sentences A in the signature
of arithmetic the Orey-sentences of the theory axiomatised by A. Note that
it is possible that there are no such Orey-sentences, so the empty set will be
in the range of this function. We have shown the following:

Theorem 3.6. PA is effectively essentially O-incomplete.

Applying Corollary 3.3, we find the following:

Theorem 3.7. PA is effectively O(PA)-inseparable and, thus, effectively
essentially O(PA)-incomplete.

Theorem 3.7 illustrates the important insight that independence,per se, has
nothing to do with strength. Of course, we are familiar with this point, e.g.,
from the well-known results on, e.g., the continuum hypothesis which is an
Orey-sentence of ZF that is independent of many extensions that have to do
with strength. However, Theorem 3.7 has a somewhat different flavor in that
it presents a systematic construction of such sentences for a wide range of
theories.
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3.4. Consistency and conservativity. We say a formula α(x) is a binumer-
ation of a theory U iff for any U-sentence ϕ, if ϕ ∈ U , then U � α(�ϕ�);
and ifϕ /∈ U , thenU � ¬α(�ϕ�). For each binumeration α(x) of U, we can
naturally construct a formulaPrfα(x, y) saying that y is the code of a proof of
a formula with the code x in the theory defined byα (cf. [6]). Let Conα be the
consistency statement ¬∃y Prfα(�⊥�, y) of U, where ⊥ is some U-refutable
sentence. Let C be the function that assigns to sets of sentences A in the
signature of arithmetic the set of all sentences of the form Conα, where α is
a binumeration of some computable axiomatisation of an extension A of PA
axiomatised by A. It is known that PA is effectively essentially C-incomplete
(cf. Lindström [10, Theorem 2.8]). Thus, PA is effectively C(PA)-inseparable
and effectively essentially C(PA)-incomplete.

For each n ≥ 1, let Dn be the function that assigns to sets of sentences A in
the signature of arithmetic the set of all sentences ϕ such that ϕ and ¬ϕ are
both Πn-conservative over the theory axiomatised byA. It is well-known that
for any consistent c.e. extension U of PA, D1(U ) = O(U ) (cf. [10, Theorem
6.6]). For every pair of functions F and G from sets of sentences to sets of
sentences, let F ∩ G be the function defined by (F ∩ G)(A) = F(A) ∩ G(A).

For each binumeration α of an extension U of PA, the formula PrfΣn
α (x, y)

is defined as

∃u ≤ y (Σn(u) ∧ trueΣn(u) ∧ Prfα(u→̇x, y)).

Then, we have the following:

Proposition 3.8 (The small reflection principle (cf. [10, Lemma 5.1(ii)])).
Let U be any computable extension of PA and α be a binumeration of U. Then,
for any sentence ϕ and natural number m, we have

U � ∃y < m PrfΣn
α (�ϕ�, y) → ϕ.

Theorem 3.9. For each n ≥ 1, PA is effectively essentially C ∩ Dn-
incomplete.

Proof. Suppose that Wi is a consistent c.e. extension of PA. By Craig’s
trick, we can effectively find a k from i such thatWk is a primitive computable
axiomatisation of Wi . Let �(x) be an effectively found primitive computable
binumeration of Wk . We can effectively find a formula α(x) such that

PA � α(x) ↔
((
�(x) ∨ ∃y < x PrfΣn

� (�Conα�, y)
)
∧ ∀z < x ¬PrfΣn

� (�¬Conα�, z)
)
.

We show that Conα is Πn-conservative over Wk . Let � be any Πn sentence
such that Wk ∪ {Conα} � �. Then, Wk ∪ {¬ �} � ¬Conα. There exists a
number q such that PA ∪ {¬ �} � PrfΣn

� (�¬Conα�, q). Thus, PA ∪ {¬ �} �
α(x) → x ≤ q. We have
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PA ∪ {¬ �} � ∀y < q ¬PrfΣn
� (�Conα�, y) →

(
α(x) →

(
x ≤ q ∧

∀y < x ¬PrfΣn
� (�Conα�, y)

))
→

(
α(x) → (�(x) ∧ x ≤ q)

)
→ (Con�≤q → Conα).

→ Conα.

The last step uses the fact that �(x) a is binumeration of Wk in combination
with the essential reflexiveness of PA. By combining this with the small
reflection principle, we obtain Wk ∪ {¬ �} � Conα. Since Wk ∪ {Conα} � �,
we conclude Wk � �.

We show that ¬Conα is also Πn-conservative over Wk . Let � be any Πn
sentence such that Wk ∪ {¬Conα} � �. Then, Wk ∪ {¬ �} � Conα. There
exists a number p such that PA ∪ {¬ �} � PrfΣn

� (�Conα�, p). For each q > p,

we have PA ∪ {¬ �} � ∃y < q PrfΣn
� (�Conα�, y). We obtain

PA ∪ {¬ �} � ∀z < q ¬PrfΣn
� (�¬Conα�, z) → α(q).

So, for a sufficiently large q > p, we have

PA ∪ {¬ �} � ∀z < q ¬PrfΣn
� (�¬Conα�, z) → ¬Conα.

By combining this with the small reflection principle, we have Wk ∪ {¬ �} �
¬Conα. Since Wk ∪ {¬Conα} � �, we conclude Wk � �.

We have proved that Conα ∈ Dn(Wi). Consequently, we have that Conα is
independent of Wi .

By Πn-conservativity, we obtain that for each m ∈ �,

• Wk � ∀y < m ¬PrfΣn
�

(�Conα�, y) and

• Wk � ∀z < m ¬PrfΣn
�

(�¬Conα�, z).

Hence, we have Wk � α(m) ↔ �(m). This means that α(x) is also a
binumeration of Wk , and, thus, Conα ∈ C(Wi). We take �(i) := Conα.
Then, � witnesses the effective essential C ∩ Dn-incompleteness of PA. �

Corollary 3.10. PA is effectively (C ∩ Dn)(PA)-inseparable and effectively
essentially (C ∩ Dn)(PA)-incomplete.

§4. Effective ef-essential incompleteness. Effective forms of incomplete-
ness employ presentations of the extensions considered. This is necessitated
by the fact that our witnessing partial computable functions need finite
objects to operate on. In the finite case, we do have an alternative available to
presenting an extension by a c.e. index. We can simply specify the sentence we
extend with. In this section, we study this notion of effective incompleteness
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for finite extensions and a variant. We consider the relation of these two
notions to if-essential incompleteness.

Definition 4.1. Consider a c.e. theory U. We define:

• U is effectively ef-essentially F-incomplete iff there exists a computable
function�, such that, for any sentence ϕ, ifU ∪ {ϕ} is consistent, then
�(ϕ) is independent of U ∪ {ϕ} and �(ϕ) ∈ F(U ∪ {ϕ}).

• U is effectively ef-essentially F-incomplete w.r.t. N and � iff N is
an interpretation of R in U and, for any sentence ϕ, if U ∪ {ϕ}
is consistent, then �(�ϕ�) is independent of U ∪ {ϕ} and �(�ϕ�) ∈
F(U ∪ {ϕ}). Here the numerals are the numerals provided by N. To
avoid heavy notation, we pretend that N is one-dimensional. Of course,
this is inessential.

The notion of effective ef-essential incompleteness was studied by Jones [7]
as the name effective nonfinite completability. We have the following simple
insight.

Theorem 4.2. Every effectively if-essentially F-incomplete theory is effec-
tively ef-essentially F-incomplete.

Proof. This is immediate seeing that, given ϕ, we can effectively find an
index of U ∪ {ϕ}. �

However, an effectively ef-essentially incomplete theory can be decidable
as we show in the following example. So, the converse of Theorem 4.2 does
not generally hold.

Example 4.3. We consider the theory Succ◦ in the language of zero and
successor. The theory is axiomatised by: zero is not a successor; successor is
injective; every number is either zero or a successor; for every n, there is at
most one successor-cycle of size n.

One can show that Succ◦ is decidable and that every sentence is equivalent
to a Boolean combination of sentences Cn saying ‘there is a cycle of size n’
(see, e.g., [12, Appendix A]). We note that, over Succ◦, the Cn are mutually
independent.

Let ϕ be any Succ◦-sentence. We can effectively find a sentence �,
equivalent to ϕ, which is a Boolean combination of the Cn. Let k be the
smallest number so that Ck does not occur in �. We set �(ϕ) := Ck . It
is easily seen that � witnesses the effective ef-essential incompleteness of
Succ◦.

We can say more about the difference of the two notions. The following
two theorems reveal an intrinsic difference between if- and ef-.

Theorem 4.4. Suppose X is c.e. and � is a partial computable witness that
U is an effectively if-essentially X -incomplete c.e. theory. Then, we can find,
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effectively from an index of �, a ϕ ∈ X , such that U ∪ {ϕ} is inconsistent. In
particular, Up ∪ X is not mono-consistent.

Proof. By the Recursion Theorem, we find an i such that

Wi =

{
U ∪ {�(i)}, if �(i) converges and �(i) ∈ X ,
U, otherwise.

If the second clause would obtain, Wi would be a consistent if-extension of
U. So, �(i) would converge to an element of X . Quod non. Thus, only the
first clause can be active. Hence,�(i) converges to an element ϕ of X . Then,
Wi = U ∪ {ϕ} andWi � �(i). By the effective if-essentialX -incompleteness
of U, we have that U ∪ {ϕ} is inconsistent. �

Theorem 4.5. Suppose U is a consistent effectively ef-essentially incomplete
c.e. theory. Then, there is a c.e. set X such that U is effectively ef-essentially
X -incomplete and every ϕ in X is consistent with U, i.o.w., Up ∪ X is mono-
consistent.

Proof. Suppose U is effectively ef-essentially incomplete as witnessed by
�. We take

�(ϕ) :=

{
(ϕ → �(ϕ)), if �(ϕ) converges,
undefined, otherwise.

Let X be the range of � .
If ϕ is inconsistent with U and �(ϕ) converges, then U � ϕ → �(ϕ)

and, thus, �(ϕ) is consistent with U. If ϕ is consistent with U, then �(ϕ)
converges and �(ϕ) is independent of U ∪ {ϕ} and, a fortiori, consistent
with U. �

Combining Theorems 4.4 and 4.5, we immediately find the following
corollary:

Corollary 4.6. Suppose U is a consistent effectively ef-essentially incom-
plete c.e. theory. Then, there is a c.e. set X such that U is effectively ef-
essentially X -incomplete but not effectively if-essentially X -incomplete.

The next theorem gives a condition under which effective ef-essential
X -incompleteness w.r.t. some N and � implies effective essential
X -incompleteness.

Theorem 4.7. Let U be a consistent c.e. theory and suppose U is effectively
ef-essentially X -incomplete w.r.t. N and �. Then, U is effectively essentially
X -incomplete via a witnessing function �, where �(i) is of the form �(���).

Proof. We assume the conditions of the theorem. Suppose that Wi is a
consistent extension of U. We construct formulas �0 and �1 with some desired
properties as follows. Our construction is an adaptation of a solution to [10,
Exercise 3.4].
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Stage 1. We start with Σ1-formulas α0 and α1, where α0 represents Wip
and α1 represents Wir. We arrange it so that the αi start with a
single existential quantifier followed by a Δ0-formula.

Stage 2. Let �0 := α0 ≤ α1 and �1 := α1 < α0. We note that the �i
represent the same sets as the αi . Moreover, if n ∈ Wip, then
�0(n) is true, and, hence R � �0(n) ∧ ¬ �1(n). Also, if n ∈ Wir,
then R � �1(n) ∧ ¬ �0(n).

Stage 3. Let �(x) be a Σ1-formula with one existential quantifier followed
by a Δ0-formula that is equivalent in predicate logic with
(�0(x) ∨ �1(x)). By the Fixed Point Lemma, we find a �, such
that, for every n, we have R � �(n) ↔ �(n) ≤ α0(��N (n)�). By
the reasoning of the FGH Theorem (see, e.g., [24, Section 3] or
[8]), we have: Wi � �N (n) iff �(n) is true iff n ∈ Wip ∪Wir. We
define �i(x) := (�i(x) ∧ �(x)). We find:
A. The �0 and �1 represent Wip and Wir, respectively.
B. If Wi � (�0(n) ∨ �1(n))N , then n ∈ Wip ∪Wir.
C. If n ∈ Wip, then R � �0(n) ∧ ¬ �1(n).
D. If n ∈ Wir, then R � �1(n) ∧ ¬ �0(n).

We can effectively find a sentence � from i satisfying the following
equivalence:

U � � ↔
((
�0(��(���)�)N → �(���)

)
∧

(
�1(��(���)�)N → ¬ �(���)

))
.

Suppose, towards a contradiction, that �(���) ∈ Wip ∪Wir.

• Suppose �(���) ∈ Wip. Then, by (C), we obtain U � � ↔ �(���).
Since U ∪ {�} � �(���), we have that U ∪ {�} is inconsistent because
U is ef-essentially X -incomplete w.r.t. N and �. Thus, U � ¬ �, and,
hence, U � ¬ �(���). This contradicts the consistency of Wi .

• Suppose �(���) ∈ Wir. Then, by (D), we obtain U � � ↔ ¬ �(���).
SinceU ∪ {�} � ¬ �(���), we have thatU ∪ {�} is inconsistent. Thus,
U � �(���). This contradicts the consistency of Wi .

We have shown that �(���) is independent of Wi . By (B), we find that
U � (�0(��(���)�) ∨ �1(��(���)�))N . Since

U � ¬ � →
(
�0(��(���)�) ∨ �1(��(���)�)

)N
,

we have that U ∪ {�} is consistent. Hence, �(���) ∈ X . We take �(i) :=
�(���). Thus,� witnesses the effective essential X -incompleteness of U. �

We show that the converse of Theorem 4.7 does not generally hold. For
this, as compared with Corollary 3.2, we prove the following proposition
stating that the notion of effective ef-essential X -incompleteness w.r.t. N
and � is not equivalent to the one obtained by replacing X with [X ]U .
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Proposition 4.8. If U is effectively ef-essentially incomplete w.r.t. N and �,
then there exists a computable set X of formulas such that U is effectively ef-
essentially [X ]U -incomplete w.r.t. N and �, but U is not effectively ef-essentially
X -incomplete w.r.t. N and � for all �.

Proof. Suppose that U is effectively ef-essentially incomplete w.r.t. N
and �. Let X be the computable set defined by

X := {�(�ϕ�) ∧
�ϕ�∧
i=1

(0 = 0)N | ϕ is a U -sentence}.

Since each �(�ϕ�) is U-provably equivalent to some element of X , we have
that U is effectively ef-essentially [X ]U -incomplete w.r.t. N and �. On the
other hand, since there are unboundedly many U-sentences ϕ in the sense
of Gödel numbers such that U ∪ {ϕ} is consistent, it is shown that there
is no single formula � such that U is effectively ef-essentially X -incomplete
w.r.t. N and �. �

Remark 4.9. Suppose U is a c.e. theory that interprets R via N. Then, we
can find a � such that U is essentially ef-incomplete w.r.t. N and �. This is a
variant of Rosser’s Theorem. It follows, by Theorem 4.7, that U is effectively
if-essentially incomplete. Moreover, this can be relativised to X , for any X
that contains all the �(�ϕ�)’s. From the results presented in this section, we
have the following observations.

• By Theorem 4.4, we can effectively find a �, such that U ∪ {�(�)} is
inconsistent.

• By Corollary 4.6, we can find a c.e. set Y , such that U is effectively ef-
essentiallyY-incomplete, but not effectively if-essentiallyY-incomplete.

• Finally, by Theorem 4.8, we can find a computable Z such that U
is effectively ef-essentially [Z]U -incomplete w.r.t. N and �, but not
effectively ef-essentially Z-incomplete w.r.t. N and � for all �. By
Theorem 4.7, U is effectively if-essentially [Z]U -incomplete, and so by
Corollary 3.2, we find that U is effectively if-essentially Z-incomplete.

We provide some versions of the converses of Theorems 4.2 and 4.7 when
U and X satisfy a certain condition.

Theorem 4.10. Let U be a consistent c.e. theory and let N be an
interpretation of R in U. Let X be a c.e. set of sentences. Suppose that we
have a U-formula true such that U � true(�ϕ�) ↔ ϕ, for all ϕ ∈ X . Then,
the following are equivalent:

a. U is effectively ef-essentially [X ]U -incomplete w.r.t. N and � for some �.
b. U is effectively if-essentially X -incomplete.
c. U is effectively ef-essentially X -incomplete.
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Proof. “(a) to (b)”. This follows from Theorem 4.7 and Corollary 3.2.
“(b) to (c)”. By Theorem 4.2.
“(c) to (a)”. Let � witness the effective ef-essential X -incompleteness of

U. By the representability theorem, we find a formula G�(x, y) representing
� in R. Define

�(x) := ∃y ∈ �N
(
GN� (x, y) ∧ true(y)

)
.

We show that U is effectively ef-essentially [X ]U -incomplete w.r.t. N and
�. Suppose that U ∪ {ϕ} is consistent and, thus, �(ϕ) ∈ X and �(ϕ) is
independent of U ∪ {ϕ}. We get

U � �(�ϕ�) ↔ ∃y ∈ �N
(
GN� (�ϕ�, y) ∧ true(y)

)
↔ true(��(ϕ)�)
↔ �(ϕ).

Thus, �(�ϕ�) is also independent of U ∪ {ϕ} and we find �(�ϕ�) ∈ [X ]U .
�

Remark 4.11. One might wonder whether there is an infinitary version
for the ef-notions. It seems that this will be non-trivial to attain. The reason
is that we can use Craig’s trick to transform every index i effectively to an
index i∗, so that (U + Wi)p = (U + Wi∗)p and Wi∗ is computable. We can
even make Wi∗ p-time decidable. In case U is a pair theory, we can even
make Wi∗ a scheme (see [23] or [25]). So, we would have to look for some
really different notion of extension.

§5. Heredity. In this section, we study what happens when we consider
effective notions combined with hereditariness. Our main insight here is that
an adapted version of Pour-El’s result also holds in this case.

Definition 5.1. A consistent c.e. theory U is effectively essentially
hereditarily X -creative iff there exists a partial computable function � such
that for any i, j, k ∈ �, ifWk is a consistent extension of U,Wi is a subtheory
of Wk , and Wip ∩Wj = ∅, then �(i, j, k) converges, �(i, j, k) ∈ X , and
�(i, j, k) /∈ Wip ∪Wj .

Lemma 5.2. For any consistent c.e. theory U, the following are equivalent:

i. U is effectively essentially hereditarily X -creative.
ii. There exists a partial computable function � such that for any i, j ∈ �,

if Wi is a theory consistent with U and Wip ∩Wj = ∅, then �(i, j)
converges, �(i, j) ∈ X , and �(i, j) /∈ Wip ∪Wj .

Proof. “(i) to (ii)”. Let �(i, j, k) be a partial computable function wit-
nessing the effective essential hereditary creativity of U. We define a partial

https://doi.org/10.1017/bsl.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.26


POUR-EL’S LANDSCAPE 387

computable function � by �(i, j) := �(i, j, k), where k is an effectively
found index of (U ∪Wi)p. It is easy to see that � witnesses condition (ii).

“(ii) to (i)”. Let � be a partial computable function that witnesses
condition (ii). We define a partial computable function � by �(i, j, k) :=
�(i, j) for all k. It is easy to see that � witnesses the effective essential
hereditary X -creativity of U. �

Theorem 5.3. For any consistent c.e. theory U and set X of sentences, the
following are equivalent:

a. U is strongly effectively X -inseparable.
b. U is effectively essentially hereditarily X -creative.

Proof. “(a) to (b)”. Let� be a partial computable function that witnesses
the strong effective X -inseparability of U. Suppose thatU ∪Wi is consistent
and Wip ∩Wj = ∅. we can effectively find numbers k0 and k1 from i and j
such that Wk0 = Wip and Wk1 = Ur ∪Wj . Clearly, Wk0 and Wk1 biseparate
0Up and Ur. By strong effective X -inseparability, �(k0, k1) converges,
�(k0, k1) ∈ X , and �(k0, k1) /∈ Wk0 ∪Wk1 . We take �(i, j) := �(k0, k1).
Then, � satisfies Condition (ii) of Lemma 5.2, and, hence, U is effectively
essentially hereditarily X -creative.

“(b) to (a)”. Suppose that U is effectively essentially hereditarily X -
creative. Let � be a partial computable function that witnesses Condition
(ii) of Lemma 5.2. Suppose that Wi and Wj biseparate 0Up and Ur. By the
Double Recursion Theorem with parameters (cf. [19, Exercise 3.15(b)]), we
can effectively find numbers k0 and k1 from i and j such that:

• Wk0
=

{
{ϕ}, if �(k0, k1) � ϕ and ϕ ∈ Wi ,

∅, otherwise.

• Wk1
=

{
{¬ϕ}r, if �(k0, k1) � ϕ and ϕ ∈ Wj ,

0U r, otherwise.

Suppose, towards a contradiction, we have that �(k0, k1) � ϕ and
ϕ ∈ Wi ∪Wj .

• If ϕ ∈ Wi , then Wk0
= {ϕ} and Wk1

= 0U r. Since Wi ∩Ur = ∅, we
have ϕ /∈ Ur, and hence U ∪Wk0

is consistent. If � ∈ Wk0p
∩Wk1

for
some �, then ϕ � � and 0U � ¬ �. This contradicts ϕ /∈ Ur. So, we find
Wk0p

∩Wk1
= ∅, and we obtain ϕ = �(k0, k1) /∈ Wk0p

∪Wk1
. This

contradicts ϕ ∈ Wk0p
.

• If ϕ ∈ Wj , then Wk0
= ∅ and Wk1

= {¬ϕ}r. If � ∈ Wk0p
∩Wk1

for
some �, then 0U � � and ¬ϕ � ¬ �. We obtain ϕ ∈ 0Up, and this
contradicts Wj ∩ 0Up = ∅. Thus, we have Wk0p

∩Wk1
= ∅. Since the

theory U ∪Wk0
= U is consistent, we obtain ϕ /∈ Wk0p

∪Wk1
. This

contradicts ϕ ∈ Wk1
.
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We have shown Wk0 = ∅ and Wk1 = 0Ur. Since U ∪Wk0 is consistent and
Wk0p ∩Wk1 = ∅, we obtain that�(k0, k1) converges and�(k0, k1) ∈ X . We
have also shown�(k0, k1) /∈ Wi ∪Wj . We take �(i, j) := �(k0, k1). Thus,
� witnesses the strong effective X -inseparability of U. �

We note that the proof in the (b) to (a) direction only employs finitely
axiomatised theories.

We also study an adapted version of the result established in Section 3.2.
We say that a theory U is strongly doubly X -generative iff there exists a total
computable function� such that for any i, j ∈ �, if Wi ∩Wj = ∅, then:

• �(i, j) ∈ 0Up iff �(i, j) ∈ Wj ,
• �(i, j) ∈ Ur iff �(i, j) ∈ Wi ,
• if �(i, j) /∈ Wi ∪Wj , then �(i, j) ∈ X .

Theorem 5.4. For any consistent c.e. theory U, the following are equivalent:

a. U is strongly doubly X -generative.
b. U is effectively essentially hereditarily X -creative.

Proof. “(a) to (b)”. Suppose that a total computable function �
witnesses the strong double X -generativity of U. Suppose that Wi is a theory
consistent with U and Wip ∩Wj = ∅. We can effectively find k from i such
thatWk = Wip. SinceWk ∩Wj = ∅, we have that�(k, j) ∈ 0Up iff�(k, j) ∈
Wj ; and �(k, j) ∈ Ur iff �(k, j) ∈ Wip. Since 0Up ∩Wj = Ur ∩Wip = ∅,
we obtain�(k, j) /∈ Wip ∪Wj and�(k, j) ∈ X . We take�(i, j) := �(k, j).
Thus,� satisfies Condition (ii) of Lemma 5.2. So, U is effectively essentially
hereditarily X -creative.

“(b) to (a)”. Suppose that U is effectively essentially hereditarily X -
creative. Let� be a partial computable function that witnesses Condition (ii)
of Lemma 5.2. We may assume that� is a total function. By the Recursion
Theorem with parameters, there exist total computable functions�0 and�1
such that, setting �∗(x, y) := �(�0(x, y), �1(x, y)), we have:

W�0(x,y) =

{
{�∗(x, y)}, if

(
�∗(x, y) ∈ (0Up ∪Wx)

)
≤

(
�∗(x, y) ∈ (Ur ∪Wy)

)
,

∅, otherwise.

W�1(x,y) =

{
{¬�∗(x, y)}r, if

(
�∗(x, y) ∈ (Ur ∪Wy)

)
<

(
�∗(x, y) ∈ (0Up ∪Wx)

)
,

0Ur, otherwise.

We show that�∗ witnesses the strong double X -generativity of U. Let i and
j be such that Wi ∩Wj = ∅. We set ϕ∗ := �∗(i, j).

• Suppose
(
ϕ∗ ∈ (0Up ∪Wi)

)
≤

(
ϕ∗ ∈ (Ur ∪Wj)

)
holds. Then,

W�0(i,j) = {ϕ∗} and W�1(i,j) = 0U r. Since,

�(�0(i, j), �1(i, j)) = ϕ∗ ∈ W�0(i,j)p ⊆ W�0(i,j)p ∪W�1(i,j),
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by Condition (ii) of Lemma 5.2, we have that (I) W�0(i,j) is inconsistent
with U or (II)W�0(i,j)p ∩W�1(i,j) �= ∅. If (I) holds, thenϕ∗ ∈ Ur. If (II)
holds, thenϕ∗ � � and 0U � ¬ �, for some �, and henceϕ∗ ∈ 0U r ⊆ Ur.
Therefore, in either case,ϕ∗ ∈ Ur. Since, 0Up ∩Ur = Wi ∩Wj = ∅ and
ϕ∗ ∈ Wi ∪ 0Up, we obtain ϕ∗ /∈ 0Up ∪Wj and ϕ∗ ∈ Ur ∩Wi .

• Suppose
(
ϕ∗ ∈ (Ur ∪Wj)

)
<

(
ϕ∗ ∈ (0Up ∪Wi)

)
holds. Then,

W�0(i,j) = ∅ and W�1(i,j) = {¬ϕ∗}r. Since W�0(i,j) is consistent with
U and

�(�0(i, j), �1(i, j)) = ϕ∗ ∈ W�1(i,j) ⊆ W�0(i,j)p ∪W�1(i,j),

by Condition (ii) of Lemma 5.2, we have that � ∈ W�0(i,j)p ∩W�1(i,j)
for some �. Then 0U � � and ¬ϕ∗ � ¬ �, and hence ϕ∗ ∈ 0Up.
Since, 0Up ∩Ur = Wi ∩Wj = ∅ and ϕ∗ ∈ Ur ∪Wj , we obtain that
ϕ∗ ∈ 0Up ∩Wj and ϕ∗ /∈ Ur ∪Wi .

• Otherwise,ϕ∗ /∈ 0Up ∪Wj andϕ∗ /∈ Ur ∪Wi . In this case,W�0(i,j) = ∅
and W�1(i,j) = 0U r. Since W�0(i,j) is consistent both with U and
W�0(i,j)p ∩W�1(i,j) = ∅, we obtain ϕ∗ = �(�0(i, j), �1(i, j)) ∈ X .

Thus, �∗ witnesses the strong double X -generativity of U. �

We prove a closure property for strong effective inseparability. For a theory
U and formula classes X and Y , we write:

• X ∧ Y for {(ϕ ∧ �) | ϕ ∈ X and � ∈ Y}.
• U � X iff, for all ϕ ∈ X , we have ϕ � U .

Theorem 5.5. Suppose U � X . Suppose further that U is X -creative and
effectively Y-inseparable. Then, U is strongly effectively X ∧ Y-inseparable.

Proof. Suppose U � X . Let U be X -creative and effectively
Y-inseparable. Suppose Wi and Wj bi-separate Up and 0Ur.

Let W := {� | ∃ϕ ∈ Wj U ∪ {�} � ϕ}. Suppose� ∈ Up ∩W . Then, for
some ϕ ∈ Wj , we have U ∪ {�} � ϕ and U � �. So, U � ϕ. Quod non.
By X -creativity, we can effectively find a ϕ∗ ∈ X such that ϕ∗ �∈ Up ∪W .
We claim that (†) {ϕ∗}p ∩Wj = ∅. If not, ϕ∗ � �, for some � ∈ Wj . So, a
fortiori, ϕ∗ ∈ W . Quod non.

Let Wi∗ := {� | (ϕ∗ ∧ �) ∈ Wi} ∪ {ϕ∗}p and

Wj∗ := {� | (ϕ∗ ∧ �) ∈ Wj}. Suppose � ∈ Wi∗ ∩Wj∗ .

Then ϕ∗ � � and (ϕ∗ ∧ �) ∈ Wj . It follows that (ϕ∗ ∧ �) ∈ {ϕ∗}p ∩Wj .
Quod non, by (†). Since ϕ∗ ∈ X , we find that Up ⊆ {ϕ∗}p ⊆ Wi∗ . We
have
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ϕ ∈ Ur ⇒ ϕ∗ � ¬ϕ
⇒ 0U � ¬ (ϕ∗ ∧ ϕ)
⇒ (ϕ∗ ∧ ϕ) ∈ 0Ur

⇒ (ϕ∗ ∧ ϕ) ∈ Wj

⇒ ϕ ∈ Wj∗ .

So Ur ⊆ Wj∗ .
We can effectively find a �∗ ∈ Y , such that �∗ �∈ Wi∗ ∪Wj∗ . So, we have

(ϕ∗ ∧ �∗) �∈ Wi ∪Wj and (ϕ∗ ∧ �∗) ∈ X ∧ Y . �

Example 5.6. The strong effective inseparability of the theory R was
proved by Vaught [22, 5.2]. In [9, Theorem 2.4], the authors provided new
proofs of this fact. Here, we give a proof of this fact in terms of Theorem 5.5,
based on the method developed in [9]. In [9, Generalised Certified Extension
Theorem], it is proved that for any Σ1-sentence �, we can effectively find a
sentence [�] satisfying the following conditions:

i. [�] � �,
ii. if � is true, then R � [�],

iii. if � is false, then [�] � R.

Let X = {ϕ | ϕ � R}, then R � X . Since R is not finitely axiomatisable, we
haveRp ∩ X = ∅. We show thatR isX -creative. LetWi be any c.e. set disjoint
from Rp. From i, we effectively find a Σ1 sentence � satisfying

R � � ↔ [�] ∈ Wi .

If � were true, then [�] ∈ Wi . Also by (ii), [�] ∈ Rp, a contradiction. Thus, �
is false, which implies [�] /∈ Wi . By (iii), we get [�] � R, and so we find [�] ∈
X . Since Rp ∩ X = ∅, we also have [�] /∈ Rp. Then, the partial computable
function � defined by �(i) := [�] witnesses the X -creativity of R.

Since R is effectively sent-inseparable, by Theorem 5.5, we have that R is
strongly effectively (X ∧ sent)-inseparable.

It is known that there exists a consistent c.e. theory which is effectively
inseparable but is not essentially hereditarily undecidable (see [28, Example
6]). Relating to this example, we propose the following problem.

Problem 5.7. For any effectively inseparable consistent c.e. theory U, can
we find a formula class X such that U is effectively X -inseparable but not
strongly effectively X -inseparable?

The relationships between effective notions we have considered so far are
visualised in Figure 2.
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effectively
essentially X -creative

effectively
essentially X -incomplete

effectively
ef-essentially X -incomplete

effectively X -inseparable
effectively uniformly

essentially X -incomplete

effectively essentially
hereditarily X -creative

strongly
effectively X -inseparable

Figure 2. Implications between effective notions.

§Appendix A. Pour-El’s original proof. For the sake of completeness,
we reproduce Pour-El’s original argument here. Where our argument in
Section 3.1, is a direct diagonal argument, Pour-El’s argument proceeds by
embedding disjoint pairs of c.e. sets in the given theory.

We say that 〈X ,Y〉 ≤s 〈Z,W〉, or 〈X ,Y〉 is semi-reducible to 〈Z,W〉, iff
there is a computable � such that, for all n, if n ∈ X , then �(n) ∈ Z, and,
if n ∈ Y , then �(n) ∈ W . (As far as we can trace it, this notion is due to
Smullyan (cf. [2, 15, 18].)

Lemma A.1. Suppose U is effectively if-essentially incomplete as witnessed
by a partial computable function �. Let X and Y be disjoint c.e. sets. Then
〈X ,Y〉 ≤s 〈Up, Ur〉. An index of a witness for the semi-reducibility can be
effectively obtained from an index of � and the indices of X , and Y .

The argument is an adaptation of Smullyan’s argument that every disjoint
pair of c.e. sets is 1-reducible to any given effectively inseparable pair See
[13, Exercise 11.29] or [20, Exercise 2.4.18]. We work with semi-reducibility
rather than one–one reducibility to keep the argument as simple as possible.

Proof. We may assume that �(i) converges if Wi is an inconsistent
theory. By the Recursion Theorem with a parameter, there exists a total
computable function �(x) such that, setting �∗(x) := �(�(x)),

W�(x) =

⎧⎪⎨⎪⎩
U ∪ {�∗(x)}, if �∗(x) converges and x ∈ Y ,
U ∪ {¬�∗(x)}, if �∗(x) converges and x ∈ X ,
U, otherwise.

We show that �∗ witnesses the semi-reducibility of 〈X ,Y〉 to 〈Up, Ur〉.
For any n, W�(n) is either a finite consistent extension of U or an

inconsistent theory, and so�∗(n) = �(�(n)) converges. Thus,�∗ is a total
computable function.
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Suppose n ∈ X . Then, W�(n) = U ∪ {¬�∗(n)}. Since, W�(n) �
¬�(�(n)), we find, by our assumption on �, that W�(n) is inconsistent. It
follows that U � �∗(n).

The other case is similar. �

Lemma A.2 (Smullyan [15, Proposition 1]. Suppose 〈X ,Y〉 is effectively
inseparable and 〈X ,Y〉 ≤s 〈Z,W〉. Then, 〈Z,W〉 is effectively inseparable.

Proof. Suppose � witnesses the effective inseparability of X and Y .
Suppose further that� witnesses the semi-reducibility of 〈X ,Y〉 to 〈Z,W〉.

Suppose the pair 〈Z ′,W ′〉 separates 〈Z,W〉. Say, the indices of Z ′ and
W ′ are i and j. Let X ′ := {n | �(n) ∈ Z ′} and Y ′ := {m | �(m) ∈ W ′}.
Clearly, 〈X ′,Y ′〉 separates 〈X ,Y〉.

We can effectively find indices k and � for X ′ and Y ′ from i and j. Let
s := �(�(k, �)). Suppose s ∈ Z ′. In that case �(k, �) is in X ′. Quod non.
Similarly, s �∈ W ′. �

Theorem A.3. Suppose U is effectively if-essentially incomplete. Then, U
is effectively inseparable.

Proof. Suppose U is essentially if-effectively incomplete. Let 〈X ,Y〉
be any effectively inseparable pair of sets. We find, by Lemma A.1, that
〈X ,Y〉 ≤s 〈Up, Ur〉. So, by Lemma A.2, also 〈Up, Ur〉 will be effectively
inseparable. �

Inspecting our argument, we see that, if � is a witness of the effective
essential incompleteness, then the witnesses of essential inseparability are in
the range of �.

Remark A.4. The function �∗ of the proof of Lemma A.1 is actually a
witness of many-one reducibility. We can see the other direction as follows.

Let �∗ be as in the proof of Lemma A.1. If U � �∗(n), then, a fortiori,
W�(n) � �(�(n)) and, thus, thatW�(n) is inconsistent. It follows that n ∈ X
or n ∈ Y , since otherwise W�(n) would be the supposedly consistent theory
U. But if n ∈ Y , we find that U � ¬�∗(n), quod non, since we assumed that
U � �∗(n) and that U is consistent. So n ∈ X . The other case is similar.

By padding we can assure that �∗ is injective, thus witnessing one–one
reducibility. However, this construction will not preserve the fact that the
range of�∗ is contained in the range of�. (It still will be so modulo provable
equivalence in predicate logic.)

§Appendix B. Effective local interpretability? All formulations of what
effective local interpretability is that we could think of either collapse to
ordinary local interpretability or to interpretability. Let idV denote the
conjunction of the equality axioms of a theory V. We define:
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• U �A-loc V iff there is a partial computable �, such that, whenever
V � ϕ, we have �(ϕ) converges, say to 	, and U � (idV ∧ ϕ)	 .

• U �B-loc V iff there is a partial computable � , such that, whenever
Wi = {�} and V � �, we have �(i) converges, say to �, and U �
(idV ∧ �)� .

• U �C-loc V iff there is a partial computable �, such that, whenever
Wj = {�0, ... , �k–1} and V � �s , for all s < k, we have�(j) converges,
say to �, and U � id

�
V and U � ��s , for s < k.

We show that A-local and B-local coincide with local and that C-local
coincides with global.

It is immediate that, ifU �B-loc V , thenU �A-loc V . It is equally immediate
that ifU �A-loc V , thenU �loc V . SupposeU �loc V . We showU �B-loc V .
Consider any index i. We enumerate Wi . As soon as we find any � in Wi , we
run though the U-proofs to find a conclusion of the form (idV ∧ �)� . If we
find such, we take �(i) := �. It is easy to see that � witnesses U �B-loc V .

Clearly U � V implies U �C-loc V . We prove the converse direction.
Suppose �0, �1, ... enumerates the theorems of V. Let� be given as a witness
of U �C-loc V . Using the Recursion Theorem we find j∗ such that Wj∗ is
given as follows. We first compute �(j∗). As long as it does not converge,
we put nothing in Wj∗ . As soon as �(j∗) converges, say to �∗, we add �0
to Wi∗ and search for a U-proof of ��

∗

0 . As long as we don’t find such, we
add nothing more to Wj∗ . As soon as we do find such a proof, we add �1 to
Wj∗ . Etcetera. It is now easy to see that�(j∗) converges, Wj∗ = Vp, and �∗

witnesses U � V .

§Appendix C. Effective essential tolerance In [28], Albert Visser studies
essential tolerance, a reduction relation that backwards preserves essential
hereditary undecidability. The results of that paper have precise effective
counterparts. The reduction relation effective essential tolerance backwards
preserves effective essential hereditary creativity.

Definition C.1. U effectively essentially tolerates V or U 	eff V iff there
are partial computable functions �0 and �1, such that, whenever Wi is a
consistent extension of U,�0(i) and�1(i) converge andW�0(i) is a consistent
extension of Wi and �1(i) codes a translation 	 that witnesses W�0(i) � V .

We can always assume that the witnesses of effective essential tolerance are
total. Let U be given with some index j. We start with the partial witnesses
�k for k = 0, 1. Say, the total ones will be �k . Consider any index i. We
can, from i, effectively find an index i∗ of U ∪Wi . We now compute in
parallel �0(i∗), �1(i∗) and we search, again in parallel, for a contradiction
in U ∪Wi . If we find a value of a �k(i∗) first, we set �k(i) to that value.
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If we find an inconsistency in U ∪Wi , we set the �k(i) that do not have a
value yet to some random value.

We first verify some basic properties of 	eff .

Theorem C.2. The relation 	eff extends �.

Proof. Suppose U � V as witnessed by 	0. We take �0(i) := i and
�1(i) := 	0. �

Theorem C.3. The relation 	eff is reflexive and transitive.

Proof. Reflexivity is trivial. (It also follows from Theorem C.2.) We prove
transitivity. Suppose U 	eff V 	eff W and let �0, �1 witness U 	eff V and
�0, �1 witness V 	eff W . Let Wi be any consistent extension of U. Let
j := �0(i) and 	 := �1(i), then Wj is a consistent extension of Wi and 	
witnessesWj � V . LetY := {ϕ | Wj � ϕ	}. We can effectively find an index
p of Y from j and 	. Letk := �0(p) and� := �1(p). Then,Wk is a consistent
extension of Y and � witnesses Wk �W . Let Z := Wj ∪ {ϕ	 | Wk � ϕ}. It
follows from the consistency of Wk that Z is a consistent extension of Wi .
Since 	 witnesses Z �Wk , the composition 	 ◦ � witnesses Z �W . We can
effectively find an index q of Z from j, k and 	. We define �0(i) := q and
�1(i) := 	 ◦ �. Thus, �0, �1 witness U 	eff W . �

In [28], it is shown that the non-effective version 
 is strictly between
model-interpretability and local interpretability. Since, of course, V 
eff U
impliesV 
 U andV 
 U impliesV �loc U , we find thatV 
eff U implies
V �loc U . As we have seen, in Appendix B, we can view local interpretability
as its own effective version. So this result can be viewed as an implication
between effective notions. Regrettably, we are not aware of a good effective
version of model interpretability, so the implication fromV �mod U to V 

U seems to have no good effective analogue.

We proceed to show the retro-transmission of salient properties.

Theorem C.4. Let U be c.e. and consistent.

i. Suppose V is an effectively essentially incomplete c.e. theory and U 	eff

V . Then, U is effectively essentially incomplete.
ii. Suppose V is an effectively essentially hereditarily creative c.e. theory and
U 	eff V . Then, U is effectively essentially hereditarily creative.

Proof. Ad (i). Let�witness that V is an effectively essentially incomplete
and let�0,�1 witness thatU 	eff V . Let Wi be a consistent extension of U.
Let j := �0i and 	 := �1i . Then Wj is a consistent extension of Wi and 	
witnesses that Wj � V . Let Z := {� | Wj � �	}. We can clearly effectively
find an index k ofZ from j and 	. Let� := �(k). Then � := �	 is independent
of Wj and, a fortiori, of Wi . Inspecting the argument, we see that � can be
effectively found from i.

https://doi.org/10.1017/bsl.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.26


POUR-EL’S LANDSCAPE 395

Ad (ii). Suppose V is an effectively essentially hereditarily creative c.e.
theory and U 	eff V . Let � witness the effective essential hereditary
creativity of V and let �0, �1 witness U 	eff V . We are looking for a
witness � of the effective essential hereditary creativity of U.

Suppose Wi is a c.e. theory in the language of U and U ′ := U ∪Wi
is consistent. Suppose further that Wip ∩Wk = ∅. We need that �(i, k) �∈
Wip ∪Wk .

Let s be an index of U ′ and let j := �0s and let 	 := �1s . So, Wj is
consistent and extends U ′. Moreover, 	 witnesses that Wj interprets V.

• Let Z := {� | Wi + id	V � �	}. Let p be an index of Z. We have Z �
� iff Wi + id	V � �	 . Moreover, since Wj is a consistent extension of
Wi + id	V , we find that Z is consistent with V.

• LetX := {ϕ | (id	V → ϕ	) ∈ Wk}. Let q be an index ofX . Supposeϕ ∈
Zp ∩ X . Then, (id	V → ϕ	) ∈ Wip and (id	V → ϕ	) ∈ Wk . Quod non.

We may conclude that � := �(p, q) �∈ Zp ∪ X . We find (id	V → �	) �∈
Wip ∪Wk . We found p and q effectively from i and j. So, we can set
�(i, j) := (id	V → �(p, q)	). �

In [28], the notion of Σ0
1-friendliness was developed. Inspecting the proof

of [28, Theorem 35] and what is said directly below the proof, we see that if
U is Σ0

1-friendly, then U 	eff R. This provides a nice source of examples of
theories that are effectively essentially hereditarily creative. Specifically, the
theory PA–

scatt studied in [28] is effectively essentially hereditarily creative.
In Appendix A of [28] it is shown that we can extend essential tolerance by

considering theory extensions that allow addition of finitely many constants.
This notion yields earlier results by Vaught in his [22]. We did not pursue
this avenue yet, but, prima facie, there seem to be no obstacles to extend the
results of this appendix to this wider notion.
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Série des sciences mathématiques, astronomiques et physiques, vol. 9 (1961), no. 1, pp. 17–19.

[5] S. Feferman, Degrees of unsolvability associated with classes of formalized theories.
Journal of Symbolic Logic, vol. 22 (1957), no. 2, pp. 161–175.

[6] ———, Arithmetization of metamathematics in a general setting. Fundamenta
Mathematicae, vol. 49 (1960), pp. 35–92.

[7] J. P. Jones, Effectively retractable theories and degrees of undecidability. Journal of
Symbolic Logic, vol. 34 (1969), pp. 597–604.

[8] T. Kurahashi, Some observations on the FGH theorem. Studia Logica, vol. 111 (2023),
no. 5, pp. 749–778.

[9] T. Kurahashi and A. Visser, Certified �1-sentences, preprint, 2023, arXiv:2306.13049.
[10] P. Lindström, Aspects of Incompleteness, second ed., Lecture Notes in Logic, 10,

Association for Symbolic Logic, Natick, 2003.
[11] A. Mostowski, A generalization of the incompleteness theorem. Fundamenta

Mathematicae, vol. 49 (1961), pp. 205–232.
[12] J. Murwanashyaka, F. Pakhomov, and A. Visser, There are no minimal essentially

undecidable theories. Journal of Logic and Computation, (2023), exad005.
[13] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill

Book Company, New York, 1967.
[14] R. M. Smullyan, Undecidability and recursive inseparability. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik, vol. 4 (1958), pp. 143–147.
[15] ———, Theories with effectively inseparable nuclei. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik, vol. 6 (1960), pp. 219–224.
[16] ———, Theory of Formal Systems, Annals of Mathematics Studies, 47, Princeton

University Press, Princeton, 1961.
[17] ———, Creativity and effective inseparability. Transactions of the American

Mathematical Society, vol. 109 (1963), pp. 135–145.
[18] ———, Recursion Theory for Metamathematics, Oxford Logic Guides, 22, The

Clarendon Press, Oxford University Press, New York, 1993.
[19] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical

Logic, Springer, Berlin, 1987, A study of computable functions and computably generated
sets.

[20] ———, Turing Computability: Theory and Applications, Springer, Berlin, 2016.
[21] A. Tarski, A. Mostowski, and R. M. Robinson, Undecidable Theories, Studies in

Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 1953.
[22] R. L. Vaught, On a theorem of Cobham concerning undecidable theories, Logic,

Methodology and Philosophy of Science, Proceedings of the 1960 International Congress
(E. Nagel, P. Suppes, and A. Tarski, editors), Stanford University Press, Stanford, 1962,
pp. 14–25.

[23] R. L. Vaught, Axiomatizability by a schema. Journal of Symbolic Logic, vol. 32
(1967), no. 4, pp. 473–479.

[24] A. Visser, Faith & falsity: A study of faithful interpretations and false �0
1 -sentences.

Annals of Pure and Applied Logic, vol. 131 (2005), nos. 1–3, pp. 103–131.
[25] ———, Vaught’s theorem on axiomatizability by a scheme. Annals of Pure and Applied

Logic, vol. 18 (2012), no. 3, pp. 382–402.
[26] ———, On Q. Soft Computing, vol. 21 (2017), no. 1, pp. 39–56.
[27] ———, The interpretation existence lemma, Feferman on Foundations, Outstanding

Contributions to Logic, 13, Springer, Cham, 2018, pp. 101–144.
[28] A. Visser, Essential hereditary undecidability. Archive for Mathematical

Logic, Visser, A. Essential hereditary undecidability. Arch. Math. Logic (2024).
https://doi.org/10.1007/s00153-024-00911-y

https://doi.org/10.1017/bsl.2024.26 Published online by Cambridge University Press

https://arxiv.org/abs/2306.13049
https://doi.org/10.1007/s00153-024-00911-y
https://doi.org/10.1017/bsl.2024.26


POUR-EL’S LANDSCAPE 397

GRADUATE SCHOOL OF SYSTEM INFORMATICS
KOBE UNIVERSITY
KOBE, JAPAN

E-mail: kurahashi@people.kobe-u.ac.jp

PHILOSOPHY, FACULTY OF HUMANITIES
UTRECHT UNIVERSITY
UTRECHT, THE NETHERLANDS

E-mail: a.visser@uu.nl

https://doi.org/10.1017/bsl.2024.26 Published online by Cambridge University Press

mailto:kurahashi@people.kobe-u.ac.jp
mailto:a.visser@uu.nl
https://doi.org/10.1017/bsl.2024.26

	1 Introduction
	1.1 Overview of the paper

	2 Notions and basic facts
	2.1 Theories
	2.2 Theory-extension
	2.3 Interpretability
	2.4 The non-effective notions
	2.5 What is effective?
	2.5.1 Effective undecidability
	2.5.2 Effective essential undecidability
	2.5.3 Constraining the witness

	2.6 Effective inseparability

	3 Pour-El's Theorem
	3.1 The Theorem
	3.2 A variant: double generativity
	3.3 Orey-sentences of extensions of Peano Arithmetic
	3.4 Consistency and conservativity

	4 Effective ef-essential incompleteness
	5 Heredity
	Appendix A Pour-El's original proof
	Appendix B Effective local interpretability?
	Appendix C Effective essential tolerance
	REFERENCES

