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Abstract. The principles are set out for the construction of a theory of 
the motion of the orbit plane of Hyperion, using the mixed set of angle 
parameters, using different reference planes for different angles, which it 
has proved convenient to use. It is found that this leads to additional 
terms, which have not been shown in previous published theories. The 
theory is developed in general principles exactly, and in detail as far as 
is needed to enable comparison to be made with the observational data 
at present available, and, from parameters which have been derived from 
opposition means from the period 1875 to 1922, the co-efficients of some of 
the larger long-period terms are computed. 

1. Introduction 

It has become usual, when developing theories of the motion of Hyperion 
in its orbit plane, including the effects of the very close resonance of orbital 
period with Titan, to use longitudes, including the longitude of the apse, 
referred to the Ecliptic and Equinox (i.e. First Point of Aries), of course of 
some specified date. However, when dealing with the motion of the orbit 
plane, the governing equations are very much simplified by using parameters 
which refer the orientation of the plane to the equator plane, or ring plane, 
of Saturn, since the orbit planes of Hyperion and Titan (and in fact of 
all the satellites except Iapetus) are inclined at quite small angles to that 
plane, and the differential equations for the rectangular-type orbital plane 
parameters may be treated as linear, for any precision of the theory which 
has been so far required. 
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2. The parameters employed 

Let us now examine the effects of using this mixed set of parameters, re-

ferred to two different reference planes, in work on the motion of Hyperion. 

Let us use the following notation: 

i for the inclination of the orbit plane to Saturn's equator plane, 

h for the longitude of the ascending node of the orbit, on Saturn's equator 

plane, measured from the ascending node of Saturn's equator on the 

Ecliptic, 

/ for the inclination of the orbit plane to the Ecliptic, 

Ω for the longitude of the ascending node of the orbit, on the ecliptic, 

measured from the Equinox, 

Ie for the inclination of the equator plane of Saturn to the Ecliptic, 

Ω β for the longitude of the ascending node of Saturn's equator on the 

Ecliptic, also measured from the Equinox. 

A consistent canonical set of orbital parameters may be constructed by us-

ing Saturn's equator plane as the reference plane, which has the advantage 

of being effectively fixed in orientation, since the gravitational couple on 

Saturn is so small. One way to remove one source of complication from 

the task of comparing results with those obtained by the use of more usual 

reference systems, would be to measure all longitudes from the equinox, 

along the Ecliptic to the to the ascending node of Saturn's equator on the 

Ecliptic, and then along Saturn's equator to the ascending node of the or-

bit on Saturn's equator, and then (except for the longitude of the node 

itself) along the orbit. (Then longitudes so defined would be subject to 

precession, almost entirely due to the precessional motion of the equinox 

along the ecliptic.) A canonical set of orbital parameters may be set up in 

which all longitudes are defined in this way, thus avoiding any complica-

tion arising from the use of different reference planes in the construction of 

a perturbation theory (including the use of a Lie series transformation to 

separate the long-period effects from those of short period.) Let us denote 

by φ a longitude defined on this basis (i.e. using the Ecliptic, equator plane 

of Saturn, and orbit plane). 

Since, however, most reduction of observational data proceeds on the 

basis of longitudes measured in the more conventional way, i.e. from the 

Equinox along the Ecliptic to the ascending node of the orbit on the Eclip-

tic, it is necessary, in interpreting longitudes predicted by such a canonically 

consistent theory as is considered above, to relate the two systems of lon-

gitudes. Let us denote by φ a longitude defined in the conventional way 

(i.e. using only the Ecliptic and orbit planes). Usually the theory will in-

volve differences of longitudes of the two satellites, of the type φχ — φχ (or 

corresponding differences of their apse longitudes, etc.). Such a difference 
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will differ from the corresponding difference φπ — Φτ by quantities of the 

second order in the inclinations ijj and ίχ of the satellites' orbits to Sat-

urn's equator plane, and that will, in most aspects of the motion, lead to 

negligible consequences in the predictions to any precision which has so far 

been required. But, as observational data of finer precision are acquired, it 

will become necessary to take these differences into account. 

3· The equations for the perturbations 

As mentioned above, the differential equations for the motion of the orbit 

plane will be approximately linear if expressed in terms of the rectangular-

type parameters 

ρ = sin i sin h = sin I sin (Ω — fie) 

q = sin i cos h = sin J cos Ie cos (Ω — fie) — cos J sin Ie ^ ' 

The Lagrange equations for the mixed set of orbital parameters (λ ,07 ,α , 
e> <1ιΡ)? with the disturbing function, Ä , expressed in terms of this same set, 

are found to be, without approximation, 

where 

da _ 2 dR 

dt na dX ' 
de _ Y OR X dR 

dt na2 dX na2 dw ' 
dX _ 2 dR | Y dR Ζ v 

dt na da na2 de nab ' 
dw _ X dR Ζ 

dt na2 de nab ' 
dq cos idR Ζ r _ . T.(dR dR\ 
— = —— r ( q cos 1 + s m i e -—- + - — >, 
dt nab dp nabKH J\dX dw y 
dp _ | cos idR Ζ ^ (dR dR\ 
dt nab dq nab^ C°S \ dX dw ] ' 

X = 5 

e 
1 - e 2 

Y = X -
e 

1 Ζ = 
1 + cos I ' 
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V = pcos I — - (qcos I+ sm Ie)—, 

and we note that 

and 

cos J = cos i cos Ie — q sin Ie 

cos i = yjl — (q2 + p 2 ) . 

4. The terms from the perturbations by Titan 

The most important part of the disturbing function, Ä , is that correspond-
ing to the effect of Titan: 

Γ 1 ΓΗ 

R T = GrriT { — cos S 
IA TT 

in which 

G is the constant of gravitation, 
πίτ is the mass of Titan, 
Δ is the distance between Hyperion and Titan, 
rjj is the distance between Hyperion and Saturn, 
τχ is the distance between Titan and Saturn, 

S is the angle subtended at the centre of Saturn by Hyperion and Titan, 

so that 

Δ 2 = rjj + r\ — 2rjjTT cos S. 
Now let us put 

RT = R0 + 6R, 

in which Ro is R T as evaluated with S replaced by φ Η - Φτ, the difference 
between the true longitudes of Hyperion and Titan, and with Δ replaced by 
Δ ο , which is Δ also evaluated with S replaced by φ Η — φτ- Thus RQ is that 
part of R T giving the main part of the perturbations in the orbit plane, 
and SR contains all of the terms in R T involving the parameters of the 
orbit plane. Then we find, taking proper account of the use of the different 
reference planes used in the definitions of the various angles, that, to second 
order in qu and pn (the values of q and p, respectively, for Hyperion), we 
obtain 
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{AI r*}* 

+ ! ' r^ijtan2 ( I ) { P H - - c o s 2 { Φ η - φ τ ) ) \ 

SR = GrriT^TH^T 

r»2_*»2 

where 

Τ = \{-{(9H-qT)
2
 + {l + 2 t a n 2 ( | ) } ( p H - p y ) 2 } cos - φτ) 

+ {{<IH - qr)2 - (ph - Pt)2} COS {φΗ + φ τ - 2 Ω 6 ) 

+ 2 (çh - 9τ ) - Ρτ) sin (V>jy + φτ - 2 Ω 6 ) 

2 | (pj /ÇT - ChPt) + 2 tan ( y ) ( P H - Ρτ) 

tan 2 ( ^ ) ( p / / g i / - pr?r)J sin (φΗ - φτ)\. 

+ 

+ 
Substituting these terms into the Lagrange equations for the rates of change 
of qjj and pu, we find some cancellation of terms, leading to some simplifi-
cation in the terms of lowest order (as the comments at the end of section 

2 lead us to expect), and that —— has to first order, in fact the terms 

nHm'K,{(pH - 2>T){COS (φΗ - φτ) + cos (φΗ + Φτ - 2 Ω β ) } 

+(qh - ÇT){sin (Φη - Φτ) - sin (φΗ + Φτ - 2 Ω β ) } } , 

and that — — has, also to first order, 
at 

nHm'JC{(qH - « r ) { - cos (φΗ - φτ) + cos (φΗ + φτ - 2 Ω β ) } 

+(ρη - PT){sin (φΗ - Φτ) + sin (φΗ + Φτ - 2 Ω β ) } } , 

where 

/C = -(ΙΗΤΗΤΤ 

w 4. 
and 

/ ™>Τ 

m = . 
ms 
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where ms is the mass of Saturn. The extra terms arising from the use of 

mixed reference planes do not cancel out in the expressions for a n d 

^ H , even to first order, and, to this order, both have the terms 
at 

nHm'K tan (J^j - ç r ) j- cos (φΗ - φτ) + cos (φΗ + φτ - 2 Ω β ) | 

+(ΡΗ - Ρτ) sin (φΗ + Φτ~ 2 Ω β ) 

+ | ρ τ + { c o s Ie sec 2 (^j - 2 tan (^j j sin (φΗ - ^ τ ) | 

+ | " ^ 1 Γ t a n 2 ( y ) c o s JePjy{l - cos 2(V># - ^ r ) } . 

Now from the results of the theory of the motion in the orbit plane 

(Message, 1989, 1993), we find the expressions, in which we indicate by 

" < Τ > " the result of averaging a quantity ".T7" over λ # — λχ, to isolate 

the long-period and critical terms, 

< Κ cos (φΗ - Φτ) > = Σ Σ Aij cos (ir - jC), 
* 3 

< Κ sin (φΗ - Φτ) > = Σ Σ ßhJ
 s i n ( i r ~~ iO» 

* 3 

< Κ exp {ι (φΗ + φ τ - 2 Ω 6 ) } > = Σ Σ C^3 e x P {* (*r - JC)> > 
* 3 

where τ is the argument of the free libration (of about 21 month period), 

and ζ is the linear part of the argument vojj — ήτ (of about 181 year 

period), and ι is yf-î. 

5. The terms from other perturbations 

From the solar perturbations, the main term in R is 

^nlrjj (3 cos 2 S0 - 1), 

where no is the mean motion in the relative motion of the Sun and Saturn, 

and So is the angle subtended at the centre of Saturn by the Sun and 

Hyperion. The largest long-period parts of this term are 
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4nH 

3U2° ί1 + ^ 2 } { { C O s 2 I e + { c o s 2 / e " 2 > c o s 2 (λο - Ü ^ } P H 

+ { s i n Ie + qn cos J e } sin 2 ( λ 0 - Ω 6 ) j , 

düfj 
and the largest long-period solar terms in are 

£ n o r t f j 1 + c o s 2 - QH sin 2J e - qjj cos 2J e + pjj cos 2 Ie 

+ { s i n 2 Ie + qH sin 2J e + qjj cos 2J e + Ph ( C O S 2 J e - 2 ) } cos 2 ( λ 0 - Ω β ) 

+ 2 | P H sin J e + QHPH c o s / e } sin 2 ( λ 0 - Ω β ) | , 

from which the largest long-period solar terms in —— are 
at 

The largest long-period term from the effect of the figure of Saturn in 

and the corresponding term in 

Here Re is the radius of Saturn's equator, and J2 is the co-efficient of the 

second zonal harmonic in the external gravitational field of Saturn. 

6. The solution of the equations. 

To proceed to a solution of the equations for qjj and pu, introduce the 

complex variable 
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where κ is a constant to be chosen. The equations may then be written, to 
the precision to which we have been working, 

^ = ΜΗ {-aZ - a'Z - 6S + Σ/?? e x P (LUJ) % 

j 

-ΣΉ e x P ( * w j ) 2 

j 

+ Σ^' e x P ( t v i ) } > 
3 

where a, a', 6S, ßj, 7 j , and pj are constants, and i ij , W j , and Vj are linear 
functions of the time (corresponding to the various terms in the equations 

for —~~~ and — r ^ - ) . The constant κ is chosen so that a ' takes the value 
at dt 

zero. This is found to require that, approximately, 

K4 _ I _ 3 nl sin 2 Ie 

4 njj m' A),o ' 

which gives κ the value 0.999565 The constant α is given by 

3 
a = πι'Αο,ο + ~R2

eh + .... « 1.40377/, 
Δι 

and 

δ, = -4- s in2 / e « 0.00000118. 
8n& 

We note that, if the ßj were all zero (as would be true in the presence only 
of those terms which Woltjer (1928) took) , then the linear equation for Ζ 
would be solvable exactly. However, some of the ßj are in fact significant. 
The solution may be written in the form 

Ζ = c exp (—tv) — — 

+ Σα3 β χ ρ (tvj) 

3 

+ Y^bj exp {t(uj + v)} 

3 

+ Σ 6 ; e x p v ) } 
3 

+ Σ Σ*** β χ ρ " v * ) } 
3 k 
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3 k 

+ Σ Σ dj* β χ ρ iL(uj - u * - v ) } 
3 k 

+ Σ Σ Σ 6 i . M β χ ρ {i(u3 - u k + ye)} 
j k i 

+ e t c . . . 

in which the constants of integration are the amplitude, c, of the free os-
cillation, and the phase of the linear argument, v, of the free oscillation. 
Substituting this solution into the differential equation, and equating the 
co-efficients of each of the (infinite number of) periodic terms, leads to 
an array of algebraic equations which may be solved by iteration to give 
the values of the amplitudes a j , 6j, 6̂ ·, Cj^, dj^, ej,k,i, e t c , . . . , of the 
forced terms, and the rate of change, χ, say, of the argument ν of the free 
oscillation. 

7. Identification of some of the major terms. 

Let us now identify some of the main forced terms in the motion of the 
orbit plane, beginning with those of type dj exp (tVj). 

Corresponding to j = 1 let us set the term arising from the precession 
of the orbit plane of Titan. This has a period of about 690 years and the 
relevant argument is v x = 41.4° - 0.5213°(/ - 1880.25), with t in years. 
Then the solution gives a\ = 0.041° and the main contribution to qjj is 
0.333° cos vi and to pH is 0.333° sin νχ. 

Corresponding to j = 2 let us set a term with argument v2 = Ωο, the 
node of the orbit of the relative motion of the Sun and Saturn. Since the 
mean motion of this is about 6 seconds of arc per century, it is effectively 
constant in this context. The contribution to qn is -0 .745° and that to 
PH is -0 .037° . 

Corresponding to j = 3 let us set a term with argument 
v 3 = 2λο — Ωο + π. For this we find that = —0.018°; the contribution 
to qH is -0 .018° cos ( 2 λ 0 - Ω 0 ) and that to pH is -0 .018° sin ( 2 λ 0 - Ω 0 ) . 

A significant term of the type bj exp {t(uj + v)} is associated with that 
term in the disturbing function which has argument 8 λ # — 6λχ — 2Ω# and 
appears in the present theory with ιΐχ = 2(£ + τσχ — Ω 6 ) + 7Γ, which has 
period 10.3 years. The theory gives b\ = —0.013° and the contribution to 
QH is 

0.013° sin {2(C + VDT - Ω 6 ) - ν } , 

and that to pjj is 

0.013° cos {2(C + zur - Sie) - ν } . 
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It remains, to the precision to which we are at present working, to 

consider the free oscillation. A fresh analysis of the values of the opposition 

means of orbital parameters which derive from the observational data from 

the time interval 1875 to 1922 gives for the amplitude c = 0.521° ± 0.012° 

and, for the argument ν, 9 4 . 9 1 ° ± 1 . 4 Γ - ( 2 . 6 5 1 ° ± 0 . 0 9 7 ° ) · ( * - 1 9 0 0 . 0 ) . This 

rate gives an estimate for the mass of Titan, in terms of that of Saturn, of 

(2.73 ± 0.11) · 10~ 4 , but since the data span only a fraction of the period of 

this free term, about 136 years, this estimate cannot be considered to have 

very high weight. 

Work is in hand to make an analysis of all the available observational 

data in one solution in comparison with this theory, which it is hoped will 

improve the estimates of the parameters. To make comparison with more 

precise observational data, as may become available for example from the 

"Cassini" mission, would require the retaining in the theory of more terms 

than we have considered in section 7, and perhaps also of terms of higher 

than second order in qjj and pu in the expression for 6R in section 4 above. 

Also it might possibly be necessary to include, in the theory of the motion 

in the orbit plane, those terms of second order in the mass of Titan resulting 

from the effect of terms in 6R on \JJ and π Η (and perhaps also a and e ) , 

though such terms will be very small indeed, however, having as factors the 

square of Titan's mass and also the very small angle of inclination of the 

orbit plane to Saturn's equator plane. 
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