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1. Introduction. In a recent article Cheney and Sharma (1) studied the 
linear operator Pn denned by 

Pn(J,x)^bn,kf(^) 
where 

(0 if k < n, 
Un,k — 

I (1 - r)n+1 e x p ( I 4 7 ) l , ^ ( 0 r * - " if k > n; 

here Z / n ) (t) denotes the Laguerre polynomial of degree j . Cheney and Sharma 
proved that if/ is continuous on [0, 1], then Pn(f, x) converges uniformly to 
f(x) on [0, a] where 0 < a < 1. 

In this paper we consider the matrix Z(r, t) = (bn,k) as a summability matrix 
and determine some of its properties. The special case L(r, 0) is the well-known 
Taylor matrix T(r) (2). Thus, L(ry t) is a generalization of T(r). 

In §2 we examine the regularity of L(r, t). In §§3 and 4 we examine the sum­
mability of the geometric series and a series of Legendre polynomials (re­
spectively) by means of the L(r, t) transform. In §5 we determine sufficient 
conditions on rx and r2 which ensure that each sequence that is summable 
T(ri) is summable L(r2, t) to the same value. 

2. Regularity. A matrix C = (cn,k) is regular if and only if the well-known 
Silverman-Toeplitz conditions: 

(2.1) lim cn,k = 0, k = 0, 1, 
W->oo 

CO 

(2.2) l i m ^ cn,k = 1, 
W-»co fc=0 

and 
( °° ) 

(2.3) S UP) ]C \Cn,k\\ < °° 
n \ t=0 J 

are satisfied. 
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THEOREM 2.1. (i) IfL(z,t) is regular for some real or complex t, then \z\ < 1. 
(ii) If L(z, t) is regular for some t < 0, then Im(s) = 0 and 0 < Re(s;) < 1. 
(iii) For a given value of z, L(z, t) is regular for each t if and only if Im (z) = 0 

andO < Re (a) < 1. 
(iv) If t < 0, L(z, t) is regular if and only if Im(z) = 0 and 0 < Re(z) < 1. 

Proof. ( i )By(7 , (5.1.9)), 
oo 

Z4 reW 
is a power series in z with radius of convergence equal to one. Hence, 

OO 00 

£ bn,k and £ \bn,k\ 
k=0 k=0 

can converge for \z\ < 1 only. Thus, we must have \z\ < 1. 
(ii) By (i) we have \z\ < 1. For t < 0, Lk

n2n(t) > 0 for k > n = 0, 1, . . . . 
Hence, 

A;=0 
U - 2 m+1 

exp ( — ) IÈ 2£',(0I*Ï 

Suppose |s| < 1. Then, by (7, (5.1.9)), 

Ê IM - ii -.r|«p(j4-,)I(' - w>~'«P(^[) 

which is uniformly bounded for n > 0 if and only if 

11 - * l 
1 - |s| 

< 1. 

However, |1 — z\ > 1 — \z\\ thus we must have Im(js) = OandO < Re(s) < 1. 
Now, suppose \z\ = 1. Then 

X) |6»,jt| = |1 - z 
k=0 

But, by Abel's theorem, 

n+l 
exp 

tz £ £&(*). 

£ L(
k
n2n(t) 

k=n 

diverges for/ < 0 since l}k2n(t) > Oand 

l i m e L{
k
n2n{t)xk = lim (1 - x)-"-^-*'"1-** 

x î l k=n 

So, we cannot have \z\ = 1. 

r î l = +». 
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(iii) Let z be given. If L(z, t) is regular for each t, it is regular for some t < 0. 
Hence, by (ii),Im(s) = OandO < Re(s) < 1. 

Now, let Im(s) = 0 and 0 < Re (a;) < 1. Condition (2.1) holds for L(z, t) 
without restriction on z. Condition (2.2) is satisfied if \z\ < 1; cf. (7, (5.1.9)). 
Furthermore, 

Ê|ô,.*|=|l-Sr1 |exp(T^-) 
*=0 I \ 1 — 2 / 

< 1 - * in+1 

n+1 

exp 

exp I 

s \L(
k

n2n(t)\\*rn 

k=n 

(JÊJ\\YY( * ")MV-» 
Vi - z) \ h, n \k-n-jj j\ |Z| 

( tz \ v M ! ( i V+j+i 
Vi - */ ! h j \ Vi - i*i/ 

which is uniformly bounded for n > 0. Thus, Condition (2.3) holds. So 
L (z, t) is regular for each t. 

(iv) Let / < 0. If Im(s) = 0 and 0 < Re(2) < 1, then, by (iii), L(z, t) is 
regular. If L(z, t) is regular, then, by (ii), lm(z) = OandO < Re(s) < 1. 

3. Summability of the geometric series. 

THEOREM 3.1. Let \r\ < 1. For each t, the L(r, t) transform continues the geo­
metric series analytically into the region 

\z: 
(I - r)z 
1 — rz < i n {z:\rz\ <!l}. 

Proof. Let \r\ < 1 and define 

00 

<Tn(s) = YJ bn,kSk(z), 
k=n 

where sk(z) is the &th partial sum of the geometric series. It is clear that 

<rn(z) ;lLbn,kZ' 
k+l 

1 - Z 1 - ZUn 

since, as in Theorem 2.1 (iii), if \r\ < 1, we have Condition (2.2) satisfied. So 

~*+1 - Z (1 - rf+1 exp(T^—)L™n(ty-nzk+1 

k=*n \ i — ' ' / 

2Z b„,k 2" 

[(1 - r)z]n+1 exp 
\J- ~~ "/ k=n 
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if \rz\ < 1. Hence 

if 

l i m X X * 2 * + 1 = 0 

(1 ~ r)z 
1 — rz 

< 1 and \rz\ < 1. 

These regions are identical with those of the T(r) transform for like values of 

The region in which the L(r, t) transform provides the analytic continuation 
of an arbitrary Taylor series may be determined by the Okada theorem (6). 

4. Summability of a series of Legendre polynomials. Let P„(z) and 
Qn(w) denote the Legendre polynomials of the first and second kind (respec­
tively) of degree n. Then it is known (8) that 

= Ë $n+l)Pn{z)Qn(w)% 
w — z n=0 

for fixed w, in the interior of the ellipse E with foci ± 1 and passing through w. 
Let 

(4.1) sk = £ (2» + l)Pn(z)Qn(w) 

and 

(4 .2 ) dn = Pn+l(z)Qn(w) - Pn(z)Qn+1(w). 

Then, by the Christofïel formula, 

= sn+ (n + 1)~ -dn. 
w — z w — z 

Choose the branch of (/32 — 1)* such that /3 + (/32 — 1)* lies in the exterior of 
the unit circle and let 

fjL = /x(0) = z + (z2 — 1)* cos <j> 
and 

v = v(a) = w + (w2 — 1)* cosh a. 

Then, the Laplace integral representations of Pn(z) and Qn(w) are 

(4.3) Pn{z) =~ {\nd$ 

and 

(4.4) Qn(w) = JV"-1**. 

From (4.2), (4.3), and (4.4) we obtain 

(4.5) 
7T J o Jo \V I L V V J 
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LEMMA 4.1. If\rO\ < I, then 

1255 

Z (* + Dèn./ = «+ 1 -
trd 

1 - rd. 
( 1 - r ) / fr \ 

jr^rexp\r--r) 
( trd Af(i -Qg"!' 

^—w/j^+i 

Proof. We have 

Ë ô„,y+1 = £ (1 - r)n+1 exp(-^-W(^ 
[(l-r)d~\n+1 ( tr \ ( trd \ 

= L T ^ ^ J exp\T^~r> expV~ T=a) 
for I rd I < 1. The desired result is obtained by differentiation. 

THEOREM 4.2. The sequence [sk] of partial sums (4.1) is L(r, t)-summable to 
(w — z)~lfor each t and 0 < r < 1 whenever 

/br a// 0 < a: < o°, 0 < 0 < T, and 

< X < 1 

Proof. Let 
sup 

y — ry 

v — rjj, 
< i. 

^rc — ^ #rc,& «$£ — 
1 

Then 
w — z w — z k~n 

1 

E (* + i)ô».*i*. 

lim 
w — z 

if and only if 

lim £ (*+l)&,,*<** = (>. 

From (4.5) and since \n/v\ < X < 1/r for all 0 < a < <», 0 < <t> < ?r, we have 

fci fen 7 r J o J o \ ^ / L ^ ^ J 

=irr[£<i+i)i-«(*)if-7]"**-
From Lemma 4.1 we obtain 

£ (*+ D&.jtd» 

r r I M>- i 
J o J o \{v — r/x)' 

exp 

X sup 
4>,a 

v — r/ji\ 
d(j>da. 
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Hence 

lim £ (* + l)i 
enever 

n,kdk = 0 

| M ( 0 ) 

v (a) 
< X < -

r 

all 0 < a < oo , 0 < (f> < 7T, and 

sup £_ 
v 

- r\x 
- Y\X 

< 1. 

The last inequality yields three cases: (i) r = \, (ii) r <\, and (iii) r > \. 
Cases (i) and (ii) are identical with those studied by Cowling and King (3); 
and the regions of summability of the sequence (4.1) by means of the trans­
formation L(r,t) are given in Theorem 2.1 for r = \ and Theorem 2.3 for 
r < h 

In case (iii) we have 
\fi — rn\ 

if and only if 
TfJL 

< 1 

|M| 
2r 

•ReQiv) > 
1 

2r - 1 ^ y ^ 1 - 2r ' ' 

which is equivalent to fx being in the exterior of the circle 

r 
K M 2 r - 1 = few)'} 

for fixed v. Let ext(K/) denote the exterior of K/. I t follows readily that 
{z: |z| < 1} £ ext( i£ / ) . Let A/ and 1/ be the internal common tangents to the 
unit circle and K/, and let HV

T and L/ be the open half-planes having h/ 
and 1/ as boundaries (respectively) and containing the unit circle. Let JV

T 

be the finite area exterior to K/ and bounded by K/ and the lines h/ and / / . 
Let C / = H/ U Z / U J/. Now, {s: |s| < 1} C H„ C / and, if M 6 H , C/ , 
then 

V — TfJL 
< 1. 

Since ju(#) describes the line segment with end points z — (z2 

z + (s2 — 1)^ for 0 < 0 < 7T, and since 
1) ' and 

we need only require 
z - (s2 - l)* e n , c/ f 

2+ (Z
2- i)*6 n , c / 

(by construction of C / ) . This is equivalent to requiring z G Bw
r where BW

T is 
the image of C\v CV

T under the mapping w = \(s + 1/s). 
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The requirement that 

^ < x < i 
v(a) ! r 

holds for all 0 < 0 < 7T, 0 < a < a>, provided 

\z + (z2 - 1)*| < \\w + (w2 - 1)*|, 

i.e., z + (z2 — 1)* must lie strictly inside the circle with centre at the origin and 
radius r~l\w + (w2 — 1)T|. This is equivalent to requiring that z lie strictly 
inside the ellipse Ew

r with foci ± 1 , passing through 

r lW 2(TO + (w2 - 1)*) J 2(TO + (w2 - 1)*). 

Notice that £ , / and 5 w
r contain the ellipse E with foci ± 1 , passing through w. 

We have proved 

THEOREM 4.3. The sequence of partial sums of the series 

Ê (2» + l)P.(*)0-(w) 

'̂5 L(r, t)-summable to (w — z)~l for fixed w and J < r < 1 whenever z lies in any 
closed subdomain contained in the region BW

T C\ EW
Tfor each t. 

The domains in which the L(r, /) transform provide the analytic continuation 
of a general series of Legendre polynomials 

(4.6) f(z) = Ê anPn(z)y an = ^ ^ ( f(w)Qn(w) dw, 

for the cases r = \ and r <\ are the same as those determined by Cowling 
and King (3) in Theorems 2.2 and 2.4, respectively. In a recent paper (4), 
Jakimovski proved a general result which gives the domain in which the series 
(4.6) is ̂ 4-summable to f{z), provided the matrix A and the domain in which the 
sequence (4.1) is ^4-summable to (w — z)~l have certain properties. However, 
Jakimovski's result does not apply to the L(r, t) matrix for \ < r < 1 since 
the domain D in which L(r, t) is efficient is not a generating domain (Condition 
(iv) of Definition 1.1 is not satisfied). 

Because of the computational difficulties involved, the author has not yet 
determined this domain. 

5. The relation T(ri) C.L(r2lt). In the following we assume that {xn} is 
r(ri)-summable to x. Let {an} be the T(r±) transform of {xn}, i.e., 

oo 

On = /Li Cn,k %k 
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where (cn,k) is the T(ri) matrix. It is known (2) that if fi ^ 1, then the T(ri) 
matrix has as its inverse the T( — ri/(l — r±)) matrix. Let (dn,k) be this matrix. 
Let (bn,k) be the L (r2, t) matrix. 

LEMMA 5.1. If rx ?± l , r 2 ^ l,andri ^ r2and 

10 if n > j , 

71,3 )Y^bn,kdk,j ifn<j, 
V k=n 

then (ln)j)istheL((r2 — ri)/(l — r1),tr2/(r2 — ri)) matrix. 

Proof. If either rx = 0 or r2 = 0, the result follows immediately. Suppose 
ri ^ 0 and r2 9

e 0. Then 

i 

2^f ®n,k djc,j 

LEMMA 5.2. If \ri\ + \r2\ < |1 — r^then 

OO OO 

12 \K,k\Jl \dk,j\Wj\ 
k—n j=k 

converges. 

Proof. Since [a-j] converges, there exists M > 0 such that |cr;j < M for all 
j = 1 , 2 , . . . . So 

OO OO OO OO 

T, \Kk\H \dk.}\\<ri\ <MY. \Kk\Il K J 

= M\l - r2 

k=n j=k 

n+1 ( tr~2 \ V> iT-(n) / A M ifc-J 1 A; e x p \ =— • ' % « ' - ' ' * » " - ' • - • " • «*+1 
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THEOREM 5.3. If 

(i) N < 1, r2 * 1, 
(ii) N < |r2|, 

(iii) H + |r2| < |1 - n\, 
and 

(iv) |1 — rt\ + |ri - r2| = |1 — rx\, 
then \ L (r2, t)-summable to x. 

Proof. We have 
oo 

0"n = ? J Cn,k %k-
k=n 

Let 
oo 

$n = 2-J ^n,k <*k* 
k=n 

By Conditions (i), (ii), and (iii) and a result of Laush (5), we have sn = xn. 
Let 

oo 

Tn = / f On,k %k-
k=n 

So 
°° ( j \ 

Tn = 2-r V 2*/ bn,k dfc,j)<Tj 
j—n \ k=n / 

by Lemma 5.2 and Condition (iii). By Lemma 5.1 and Conditions (i) and (ii), 

oo 

j—n 

where (lntj) is the L((r2 — f i ) / ( l — ri), tr2/(r2 — r{)) matrix. By Theorem 
2.1, this matrix is regular if and only if 

0 < ^ < l , 
1 — ri 

which follows by Condition (iv). Therefore 

lim Tn = x. 

If t = 0 in Theorem 5.3, we have the case T(r{) C T(r2) studied by 
Laush (5). 

COROLLARY 5.4. Let rx and r2 be real. i /O < n < r2 < 1 and r\ + r2 < 1 — ru 

then l Xft i t/o L (r2, t)-summable to x. 
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