THE L(r, ty SUMMABILITY TRANSFORM
ROBERT E. POWELL

1. Introduction. In a recent article Cheney and Sharma (1) studied the
linear operator P, defined by

P,(f,x) = gﬂbn'kf<k ; n>

where
itk <m,

@ - exp<1 t: r)Lk(_",)L(t)rk_” ifE>mn;

bn,k =

here L;™ (t) denotes the Laguerre polynomial of degree j. Cheney and Sharma
proved that if f is continuous on [0, 1], then P,(f, x) converges uniformly to
f(x)on [0,a] where0 < a < 1.

In this paper we consider the matrix L(r, t) = (b,,;) as a summability matrix
and determine some of its properties. The special case L (7, 0) is the well-known
Taylor matrix 7°(r) (2). Thus, L(r, t) is a generalization of T'(r).

In §2 we examine the regularity of L(7, ¢). In §§3 and 4 we examine the sum-
mability of the geometric series and a series of Legendre polynomials (re-
spectively) by means of the L(r,t) transform. In §5 we determine sufficient
conditions on 7; and rs which ensure that each sequence that is summable
T (r1) is summable L (7, t) to the same value.

2. Regularity. A matrix C = (¢, ;) is regular if and only if the well-known
Silverman—Toeplitz conditions:

2.1) lim ¢, = 0, k=0,1,...,
(2.2) limz g = 1,

n-00 k=0
and

(2:3) sup{ 2 lcn,kl} <
n k=0 J
are satisfied.

Received September 23, 1965; revised version received January 25, 1966. This research has
been supported in part by a National Science Foundation Summer Fellowship.
This paper is a portion of the author’s doctoral dissertation written at Lehigh University in

1965-66 under the direction of Professor J. P. King.
The author is indebted to the reteree for some helpful suggestions which, in particular,

include an improvement of Theorem 2.1.

1251

https://doi.org/10.4153/CJM-1966-123-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-123-3

1252 ROBERT E. POWELL

TureorEM 2.1. (i) If L(z, t) is regular for some real or complex t, then |z| < 1

(ii) If L(z, t) is regular for some t < 0, then Im(z) = 0 and 0 < Re(z) < 1.

(iii) For a given value of z, L (2, t) is regular for each t if and only iof Im(z) = 0
and0 < Re(z) < 1.

(iv) If t < 0, L(z, t) is regular if and only if Im(2) = 0 and 0 < Re(z) < 1.

Proof. (1) By (7, (5.1.9)),
i L ()"

is a power series in z with radius of convergence equal to one. Hence,
O Lo
2 bas and 3 [ba
k=0 k=0
can converge for |z| < 1 only. Thus, we must have |z] <

(ii) By (i) we have |z| < 1. For t < 0, L{,(t) > 0 for k>n=0,1,....
Hence,

= n t n, n
3 [bnal = 1= 2™ on(755) > L0l

Suppose |z| < 1. Then, by (7, (5.1.9)),

> bl = 1 — 2+ exp(—ti—) 1 — [z))™* exp< —tz] )

l2|
() ol o)

1 — |z
which is uniformly bounded for # > 0if and only if

1 — 3
1—|2|<1'

However, |1 — 2| > 1 — |z|; thus we must have Im(z) = 0and 0 < Re(z) < 1.
Now, suppose |z| = 1. Then
exp( >

> L.

k=n

Z=: bui] = |1 — 8"

But, by Abel’s theorem,

3 LE.0).

k=n

diverges for ¢ < 0since L{,(t) > 0and
llmz LY, (t)x" = li%n (1 —x)™" = = 4o,
z11 k=n zll

So, we cannot have |z| =
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(iii) Let 2z be given. If L(z, ) is regular for each ¢, it is regular for some ¢ < 0.
Hence, by (ii), Im(z) = 0and 0 < Re(z) < 1.

Now, let Im(z) = 0 and 0 < Re(z) < 1. Condition (2.1) holds for L(z, t)
without restriction on z. Condition (2.2) is satisfied if |2| < 1;cf. (7, (5.1.9)).

Furthermore,
= n tZ n, —n
5% Il = 11— 2 exp(125) | £ 22 011P
%=0 2

o k—n
G |ntl 124 k > L__ k—n
<=2 exp<1 - z) ; = <k B 2l
= |1 — g|**? tz . V_ZJ_j ( )n+i+l
= 11—l exP(l = > 2 1— ¢

B [1—2])'”rl < iz < |tz )

—<1—|z| eXpl—z!eXpl—lzl ’

which is uniformly bounded for #» > 0. Thus, Condition (2.3) holds. So
L(z, t) isregular for each .

(iv) Let t < 0. If Im(z) = 0 and 0 < Re(z) < 1, then, by (iii), L(z, t) is
regular. If L(z, t) isregular, then, by (ii), Im(2) = 0and 0 < Re(z) < 1.

3. Summability of the geometric series.

THEOREM 3.1. Let |r| < 1. For each t, the L(r, t) transform continues the geo-
metric series analytically into the region

=z

Proof. Let |r| < 1and define

< 1} N {z:|rz| <il}.

oa(z) = 2 b 54(2),

where s, (z) is the kth partial sum of the geometric series. It is clear that

Z bn,k Z

l—z l—zk_n

On (Z ) =

since, as in Theorem 2.1 (iii), if |7] < 1, we have Condition (2.2) satisfied. So
S baa =3 (1 — )t exp<1 tr r> L, ()
k=n k=n -

= [(1 — )" exp< r> ki L&, @) (rz)*™

P NEC
T Ll1—rz XP\1 =) &P 1—r7rz
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if [rs| < 1. Hence
lim > b, 21 =0

N> k=n
if
|
(d=ra <1 and |rz| <L
1—7s

These regions are identical with those of the T'(r) transform for like values of
r (2).

The region in which the L(r, t) transform provides the analytic continuation
of an arbitrary Taylor series may be determined by the Okada theorem (6).

4. Summability of a series of Legendre polynomials. Let P,(z) and
Qn(w) denote the Legendre polynomials of the first and second kind (respec-
tively) of degree n. Then it is known (8) that

-3 e+ DR,

w—2z

for fixed w, in the interior of the ellipse E with foci 41 and passing through w.

Let
k
4.1) Sk = Zo (2n + 1)P,(2) Qu(w)
and
(4.2) dy = Ppy1(2)Qn(w) — Pp(2)Qnir(w).
Then, by the Christoffel formula,
1 1
w_2=sn—|- (n+1)w—zd"'

Choose the branch of (82 — 1) such that 8 + (82 — 1)% lies in the exterior of
the unit circle and let
p=u(@) =2+ (2 — 1)cos¢
and
v =v(a) = w+ (w? — 1)%cosh a.

Then, the Laplace integral representations of P, (z) and Q,(w) are

4.3) P =L [ s
and
(4.4) 0n () = fo T

From (4.2), (4.3),and (4.4) we obtain

(4.5) =7 f: J; <H1;>[
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Lemma 4.1. If |78] < 1, then

1 -1 — r9)° 1—7

Proof. We have

Z b8t = Z a1 -— r)n+1 exp(l tr > ;(fi)n(t) k—ngl+1
k=n —_

k=n
_[(1—7)0]"“ . < tr > <_ 1o >
“Ll1-m P\ —7) P\ 11

for |78] < 1. The desired result is obtained by differentiation.

TuEOREM 4.2. The sequence {sy} of partial sums (4.1) is L(r, t)-summable to
(w — 2)"Yforeachtand 0 < r < 1 whenever

w(@) <\ <1
v(a) 7
forall0 € a < «,0 < ¢ < 7, and
b — T
sxg) — <1
Proof. Let
@ 1 @
Tn=kz=nbn,ksk=w_z__—'_;E(k"}'l)bnkdk
Then
lim r, = —
7> w—3z
if and only if

lim > (k4 1)b,:di = O.

noco k=n

From (4.5) and since ]u/v[ <A< 1/rforall0 < a < «,0 <

¢ <
Ses i g oo [ ()2 v
e T

From Lemma 4.1 we obtain

(” tl+7 E|r>\>exp<1 Elm)ﬂ
),

, we have

3 (b + Dbos ds

k=n
L)
Wepl—r

<

k= rp
v — U

uy —
v — m)

X sup d¢ da.
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Hence
lim > (B4 1byxdi =0
N k=n
whenever
l
lu(d’) <r<i
v(a)
forall0 € a < «,0 < ¢ < m,and
o 4]
el =l <t

The last inequality yields three cases: (i) r = %, (ii) » < %, and (iii) » > %
Cases (i) and (ii) are identical with those studied by Cowling and King (3);
and the regions of summability of the sequence (4.1) by means of the trans-
formation L(r,t) are given in Theorem 2.1 for r = 3 and Theorem 2.3 for
r<3

In case (iii) we have
b= TH
v — 7

<1

if and only if

I.u[ - 27’ Re(:"w) > 2 Iy‘ ’

which is equivalent to u being in the exterior of the circle

. A0 7 1—7
K”‘{”““ % —1" (21’——1”)}

for fixed ». Let ext(K,”) denote the exterior of K,’. It follows readily that
{z: |2] <1} € ext(K,"). Let #,” and I,” be the internal common tangents to the
unit circle and K,”, and let H,” and L,” be the open half-planes having #%,”
and /,” as boundaries (respectively) and containing the unit circle. Let J,”
be the finite area exterior to K,” and bounded by K,” and the lines %,” and /,".
Let C," = H,” U L,"UJ,". Now, {z: |2 <1} CN,C7 and, if u € N, C,7,
then

M —ru
v — ru

<L

Since u(¢) describes the line segment with end points z — (2 — 1)} and
z+ (22 — 1)¥for0 < ¢ < , and since

Z — (22 - 1)% € mv Cvry
we need only require

Z+ (Zz_ 1)% € mv Cvr

(by construction of C,7). This is equivalent to requiring z € B,,” where B, is
the image of M, C," under the mappingw = (s 4+ 1/s).
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The requirement that

u(¢) 1
2(2) i SA<y

holdsforall0 < ¢ < 7,0 € @ < o, provided
2 + (22 — D} < Nw + (w? — 1)},

ie., 2z 4 (22 — 1)* must lie strictly inside the circle with centre at the origin and
radius r~'Jw + (w? — 1)%|. This is equivalent to requiring that z lie strictly
inside the ellipse E,,” with foci &1, passing through

1 [w 3 1 —2r2 ; ] .
7 2w+ (»" — 1))
Notice that E," and B,,” contain the ellipse £ with foci 41, passing through w.
We have proved
THEOREM 4.3. The sequence of partial sums of the series

0

> @+ VP 0u@)
is L(r, t)-summable to (w — z)~1 for fixed wand 3 < r < 1 whenever z lies in any
closed subdomain contained in the region B," (N E," for each t.

The domains in which the L (7, t) transform provide the analytic continuation
of a general series of Legendre polynomials

@8 O =Fare, o= [ jwo.w

for the cases r = % and r < } are the same as those determined by Cowling
and King (3) in Theorems 2.2 and 2.4, respectively. In a recent paper (4),
Jakimovski proved a general result which gives the domain in which the series
(4.6) is A-summable to f(z), provided the matrix 4 and the domain in which the
sequence (4.1) is A-summable to (w — 2)~! have certain properties. However,
Jakimovski’s result does not apply to the L(r, t) matrix for ¥ < r < 1 since
the domain D in which L (7, t) is efficient is not a generating domain (Condition
(iv) of Definition 1.1 is not satisfied).

Because of the computational difficulties involved, the author has not yet

determined this domain.

5. The relation 7'(ry) C L(rs, t). In the following we assume that {x,} is
T (r,)-summable to x. Let {s,} be the T'(r;) transform of {x,}, i.e.,

(o)
On = Z Cn,k Xk
k=n
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where (¢,,;) is the T'(r;) matrix. It is known (2) that if 7, # 1, then the 7 (r,)
matrix has as its inverse the 7°(—7,/ (1 — r;)) matrix. Let (d, ;) be this matrix.
Let (b,,:) be the L(rs, t) matrix.

LemMma 5.1, Ifry #£ 1,7s #Z 1,and r1 # reand

0 ifn > j,
j

Z bnvk dk»]' 1:fn <]‘7
k=n

bn,j =

then (1,,;) 1sthe L((rs — r1)/ (1 — r1), tre/ (r2 — r1)) matrix.

Proof. If either r; = 0 or 7, = 0, the result follows immediately. Suppose
r1 # 0and 7e % 0. Then

j
ch bn,k dk,i

”(_h)sz; Lz_n(t)<— %)(i)

(2" )= )
_<1——71 eXpl—?’g 1—1’1 Lj_n Yo — 71 .
LEMMA 5.2. If]h[ + I?’Ql < ll - rll,then

E Ibnku |dx,sl]o4]

k=n =k

converges.

Proof. Since {c;} converges, there exists M > 0 such that |os;] < M for all
i=12,....5

2 1buel 25 i sllos| <M 2 (ol 25 di,
k=n i=k k=n Ji=k

— AT — nFl tre > SO k—n[____l___]"+1
= M|1 — 7 exp<1 . f\;‘; |Li=a (®) [ |72 1= 7| — |r|

|1 — 7, :\"‘“ ( tre >
<M{u~n| = fril =Trol 4 17PN =7

X eXp(— 1 — 7 l_tr2|!rl| — Inl)'
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THEOREM 5.3. If
(1) || <1,7e %1,
(i) |ri] < [ro,
(iii) [ra + |rof <[1 =i,
and
(V) 1 =7 +lrn— 1o =L —r,
then {x,} is L(rs, t)-summable to x.

Proof. We have

(o]
On = Z Cn,k Xko
k=n
Let

(e
Sn = Z dn.k O
k=n

By Conditions (i), (ii), and (iii) and a result of Laush (5), we have s, = x,.
Let

@
Tn = Z b, X
k=n
So

© j
Tn = E (kZ n.x dk.j)‘ff
j=n =n

by Lemma 5.2 and Condition (iii). By Lemma 5.1 and Conditions (i) and (ii),

@
Tn = E Injoy

j=n
where (l,,;) is the L((rs — 71)/ (1 — r1), tro/(r2 — 1)) matrix. By Theorem
2.1, this matrix is regular if and only if

Y2 — N

0< <1,

1—71

which follows by Condition (iv). Therefore

lim 7, = x.
If t =0 in Theorem 5.3, we have the case 7'(r,) C T'(r:) studied by

Laush (5).

CoOROLLARY 5.4. Letriand rabereal. If O < ry < re < landry + ra <1 —ry,
then {x,} is L(rs, t)-summable to x.
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