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A discrete Markov model is proposed to study the interscale dynamics of high Reynolds
number wall turbulence. The amplitude modulation of the small turbulent scales due to
the interaction with large turbulent scales is investigated for three experimental turbulent
boundary layers. Through an appropriate discretisation of the turbulence signals, recently
proved universal thermodynamic bounds for discrete-state stochastic systems are shown
to apply to continuous-state systems like turbulence, regardless of the distance from the
wall and the Reynolds number. Adopting Schnakenberg’s network theory for stochastic
processes, we provide evidence for a direct proportionality relation between the mean
cycle affinity-based entropy production rate (a stochastic thermodynamic quantity) and a
mean entropy production rate associated with the net large-to-small-scale turbulent kinetic
energy production. Finally, new insights into the relative arrangement (lag/lead) between
large and small scales are provided.
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1. Introduction

Fluid flows have been the subject of several works adopting theories and tools from
stochastic thermodynamics (Seifert 2012; Falasco & Esposito 2025). Most notably, the
celebrated fluctuation theorem was initially tested on shear flows (Evans, Cohen & Morriss
1993). The significant link between fluid flows and stochastic thermodynamics becomes
even more apparent when turbulent flows are investigated, as turbulence naturally suits
the (stochastic) thermodynamic formalism owing to its random-like nature and non-
equilibrium properties (Peinke, Tabar & Wichter 2019). Outstanding results in this context
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include, among others, the verification of various forms of the fluctuation theorem in
turbulent flows (Ciliberto er al. 2004; Nickelsen & Engel 2013; Fuchs er al. 2020;
Porporato et al. 2020; Yao et al. 2023, 2024), the emergence of Markovian features of
the turbulence energy cascade (Friedrich & Peinke 1997; Peinke ef al. 2019) and its
implication for small-scale turbulence (Renner et al. 2002, 2006; Reinke et al. 2018), as
well as the broken asymmetry (irreversibility) in the statistics of turbulence quantities
from a Lagrangian (Jucha et al. 2014; Xu et al. 2014; Polanco et al. 2018) and an Eulerian
(Zorzetto, Bragg & Katul 2018; Drivas 2019; Cheminet et al. 2022; Iacobello et al. 2023;
Schmitt 2023) viewpoint.

Although the interdisciplinary connection between turbulence and stochastic thermo-
dynamics has been an active area of research (Peinke et al. 2019), several open issues
remain, e.g. under which circumstances the stochastic thermodynamics formalisms can be
applied to investigate the complex turbulence interscale energetic processes. The problem
is further complicated when wall-bounded turbulent flows are considered, owing to the
explicit dependence of the flow properties on one or more spatial coordinates. In wall-
bounded turbulence, in fact, energetic processes take place both in the scale space (at fixed
spatial location) and the physical, three-dimensional, space where organised fluid motion
develops over time (Jiménez 2018). This study aims to adopt a stochastic thermodynamics
framework to shed more light on the energetic processes at play in turbulent boundary
layers. A discrete Markov model and Schnakenberg’s network theory for stochastic
processes in non-equilibrium steady state (Schnakenberg 1976; Andrieux & Gaspard 2007)
are adopted here, to investigate the amplitude modulation (AM) interscale interaction in
turbulent boundary layers at a high Reynolds number. The AM in turbulence consists
of an interscale interaction mechanism, where the amplitude of the smaller turbulent
scales tends to be enhanced or dampened by the behaviour of the larger turbulent scales
(Hutchins & Marusic 2007; Marusic, Mathis & Hutchins 2010; Andreolli ef al. 2023).

Interscale AM in turbulent flows has been studied in the last two decades (Hutchins &
Marusic 2007; Mathis et al. 2009a), but the mechanisms behind this phenomenon are far
from being fully understood (see, among others, Mathis et al. 2009b; Ganapathisubramani
et al. 2012; Agostini & Leschziner 2014; Talluru et al. 2014; Baars et al. 2015; Duvvuri &
McKeon 2015; Anderson 2016; Squire et al. 2016). For instance, the energetic processes at
play that generate and sustain such a modulation phenomenon, and what tools of analysis
can effectively capture key features of AM, are still subjects of research (Dogan et al. 2019;
Andreolli et al. 2023). Nevertheless, advancing our understanding of AM — alongside
frequency modulation (Baars er al. 2015; Iacobello, Ridolfi & Scarsoglio 2021) — in
turbulent flows has significant implications, not only from a theoretical perspective but
also for deploying more effective control strategies for drag reduction that have a major
impact on several transportation and energy systems such as aircraft, ships and wind farms
(Marusic et al. 2021).

Specifically, here we address the following two questions.

(i) Which turbulence quantity — equivalent to a thermodynamic force — drives the
interscale AM process out of equilibrium?

(i1)) Do universal thermodynamic bounds hold for high Reynolds number turbulence
processes like AM?

We show here that the net large-to-small-scale turbulent kinetic energy production is
the main turbulent quantity that can be associated with an analogous thermodynamic
force driving the AM process out-of-equilibrium (question (i)). In particular, the entropy
generation rate associated with the AM is provided in both the stochastic thermodynamics
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and fluid dynamics formalism, and the two formulations are shown to be equivalent to a
proportionality factor. Moreover, we show that universal thermodynamic bounds hold for
high Reynolds number turbulent boundary layers (question (ii)). Such bounds refer to the
asymmetry of the two-time cross-correlations between two variables at a given temporal
lag, where such an asymmetry is a fundamental statistical signature of systems in non-
equilibrium steady state (Ohga, Ito & Kolchinsky 2023). Although question (ii) may ap-
pear to be disconnected from question (i), the bounding quantity — that is, the cycle affinity
— is strictly related to the entropy generation rate, and the verification of the aforemen-
tioned bounds provides supporting evidence for the applicability of the proposed model.

It is worth highlighting that, the verification of thermodynamic bounds (question (ii)) for
high Reynolds number turbulence represents a notable outcome that can have significant
implications for studying turbulent flows beyond AM, due to the ubiquitous adoption of
temporal cross-correlation in turbulence analysis (Jachens et al. 2006; Wallace 2014).

To answer the questions (i) and (ii) above, three turbulent boundary layer datasets are
exploited, which are detailed in § 2. The Markov model is described in § 3, and results
are presented in §4. In particular, the applicability of thermodynamic bounds in wall
turbulence is discussed in § 4.1, the entropy production rate associated with the large-
small scale AM is discussed in § 4.2, while insights into the large-small scale arrangement
are discussed in § 4.3. Concluding remarks and future outlook are finally reviewed in § 5.

2. Amplitude modulation quantification and dataset details

Interscale AM is quantified, following previous studies (Mathis et al. 2009a), as the cross-
correlation coefficient Crg = Corr[uy (t), Es.1.(t)] between the large-scale streamwise
velocity signal, uy(¢), and the low-pass filtered envelope fluctuations (zero mean),
Eg 1(t), of the small-scale streamwise velocity signal ug(¢). Specifically, the signal
Eg 1(¢) is calculated — following Mathis et al. (2009a) — by evaluating the envelope Es(¢)
of the small-scale signal u g, and then applying a long-wavelength pass-filter to Eg(¢) with
the same cutoff wavelength used to separate u; and ug (see more filtering details below).

Accordingly, u; and Eg are the two key variables used to represent the AM
phenomenon. Although other approaches have been proposed to quantify AM (Dogan
et al. 2019), the correlation-based method is able to capture the key features of AM in
turbulence.

Three experimental datasets of turbulent boundary layers over a smooth wall are
employed at frictional Reynolds number Re, =2200 (TBL2k), Re,. = 13300 (TBL13k)
and Re, = 14750 (TBL14k), where Re, = U,§/v, U, is the frictional velocity, § is the
boundary layer thickness and v is the kinematic viscosity. Experiments provide an easier
way to reach higher Re, compared with numerical simulations, where spatial snapshots
are instead usually stored. For each experiment, time series of the streamwise velocity,
u'(y, t) are available at various wall-normal coordinates, y, and time z.

To decompose the streamwise velocity signals into their small- and large-scale
components, ug and uy, a Fourier filtering approach is adopted such that u(z) = uy (t) +
us(t) (Dogan et al. 2019), where u(y, t) =u’(y, t) — U(y) and U is the mean velocity.
Cutoff wavelengths in the range Ay /8§ =1, ..., 5 are used, and Taylor’s hypothesis is
adopted to get Ay ., from time series data, namely Ay ., = U (y)/fco, Where f, is the
cutoff frequency. Although the applicability of Taylor’s hypothesis in wall turbulence is
still the subject of ongoing research (e.g. see Squire et al. 2017), the local mean velocity
U has been extensively used as the convection velocity, Uy, to convert time series into
spatial series. An alternative choice for U, was provided by Yang & Howland (2018) in
the context of modulation in wall turbulence, where they proposed to use Ugpny = 1/ (, y)
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label Re, Tinin Nea fir y;;.n # sensors
TBL14k 14750 94 12 0.783 10.45 One-point
TBL13k 13300 122 10 1.63 10.53 Two-point
TBL2k 2200 88 10 3.44 9.72 One-point

Table 1. Main parameters for the three turbulent boundary layer datasets.

to quantify the AM, due to a dependence of the AM coefficient on the intensity of
turbulence fluctuations. This choice of the convection velocity is tested in this work, and
results for U,y = u’ are reported and discussed in Appendix A.

It is worth noting that, A, .,/8 = 1 is the minimum value that effectively separates small-
and large-scale motions (Mathis et al. 2009a), while A, ,/6 =5 is taken as the upper
threshold as previous works have reported Ay .,/8 =~ 6 as a typical (maximum) length of
large-scale motion in turbulent boundary layers (Mathis et al. 2009a). Moreover, TBL2k
represents a lower limit for Re,, since Re, = 2000 has been indicated as a lower bound to
effectively observe large-small scale separation (Hutchins & Marusic 2007).

Table 1 includes some details for the three datasets that are relevant to the present
study. The quantity Tyuin = T Upnin/ Ax co:max 1S the minimum number of times the cutoff
wavelength A, ., is contained in the signal length 77U across the boundary layer height,
where U,in = U (Yimin) 1s the mean velocity at the minimum wall normal location y,
and Ay ¢o: max 1 the maximum cutoff value. Table 1 indicates that the cutoff wavelength is
contained at least 88 times for TBL2k, and even more for the other datasets, thus ensuring
that the signal is long enough. Here N,, (fourth column in table 1) is the number of
different samples used for ensemble averaging the results as indicated by the (e) notation.
For the TBL14k case, since three sets of measurements are available, each time series
is split into four non-overlapping signals leading to a total of N,, = 12 signal segments
at each y coordinate. For the TBL13k and TBL2k cases, instead, only one experimental
run is available. Therefore, time series from the TBL13k and TBL2k datasets are split into
N.q = 10 non-overlapping signal segments at each y coordinate. A discussion on the effect
of N, and Ty, is reported in Appendix C.

The sampling frequency and the first wall-normal coordinate are, respectively, f;" =
fsv/Uf and yntm = yminUx«/v, where the + superscript signifies normalisation in wall
units. Finally, the last column in table 1 indicates the number of synchronised hot-
wire sensors used for the measurements. For the TBL13k case, one hot wire probe was
shifted at various y* while the other hot wire probe was maintained at a fixed wall-
normal coordinate y* & 469 (corresponding to the centre of the log-layer). Accordingly,
a one-point and a two-point AM coefficient can be calculated for TBL13k. In the latter
case, uL(ny, t) and Es,L(y;r, t) are shifted in time to get Corr[uL(yf“, 1), uL(y;“, 1]
maximised (Dogan et al. 2019), with yfr =3.9y/Re, and yz“ a wall-normal variable
coordinate.

The three turbulent boundary layer datasets used in this study are publicly available
online, and further experimental details can be found in previous publications (Baars et al.
2015, 2016, 2024).

3. Stochastic thermodynamics approach to AM
The large turbulent scales (#7) and the small turbulent sgale amplitude (Egs 1) are first
discretised using the sign function as u;, = Sign[u;] and Es ; = Sign[Es 1 ]. Figure 1(a)
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Figure 1. (a) Example of u;, and E ;. signals (solid lines) and their discretised versions Uy, and ES,L (dashed
lines). (b) States numbering and corresponding pairs of %y, and Eg 1. (¢) The AM correlation coefficients for
the TBL14k case at various cutoff wavelengths Ay .,/8: original signals (black lines) and discretised signals
(green lines).

shows an example of u7 and Eg, ; time series (solid lines) and their discrete counterparts
ur and Eg 1 (dashed lines). A total of n =9 diffe{ent states, s;, 1S obtained where each
state corresponds~ to a pair of discrete values (iz, Es ) as illustrated in figure 1(b). Note
that 7, =0 and Es 1 =0 correspond to the nearest time of a zero-crossing of the signals
ur, and Eg 1, respectively.

The sign function represents a simple yet reliable choice for signal discretisation to retain
the main features of interscale AM. The validity of our choice is confirmed in figure 1(c),
which shows the one-point AM coefficient, Cy g, obtained from the original (black) and
discretised (green) signals for various cutoff filters. Figure 1(c) confirms that the key
features of the AM phenomenon are preserved after the signal discretisation, specifically,
the positive modulation in the near-wall region (y* < 100) and the sign inversion of the
correlation coefficient at y* & 3.9./Re, (that is, the wall-normal coordinate of the middle
of log-layer (Mathis et al. 2009a)) are well captured through the discretised signals. It is
worth stressing that, the lower correlation values observed after the discretisation are not
deemed significant and, most importantly, the dynamical features of the large-small scale
coupling behind the AM phenomenon are preserved in iz and Eg . Specifically, the
alternating sequence of positive and negative u; and Eg ; values is maintained, as also
highlighted in the cross-correlation patterns discussed below (see § 4.3).

The interplay between 7 and ES, 1, 1s modelled as a Markovian stochastic system
on a network of the n =9 states, where the transition probability rate from a state s;
to a state s; #s; is r;j > 0 (Seifert 2012). Using transition probability rates r;; between
states s; and s;, a transition rate matrix R = R;; is constructed as R; =r; if i # j, and
Rij =— ) ; i for any k #i. The dynamics of the marginal probability distribution for
each state p = p(s;) therefore follows the master equation dp/df = R p (Andrieux &
Gaspard 2007; Seifert 2012; Ohga et al. 2023). By using this transition network model,
Schnakenberg’s network theory can be applied, where the vertices of a network correspond
to the states of the stochastic system, while edges are transition probabilities between such
states (Schnakenberg 1976; Andrieux & Gaspard 2007). Particularly, Schnakenberg found
that the system entropy generation can be expressed at a macroscopic level in terms of
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network cycles (Schnakenberg 1976). A key quantity in Schnakenberg’s theory is the cycle
affinity, which is defined as

Fij
Fe= In —, (3.1
(i%;c it
for each network cycle ¢ with non-repeating states (Seifert 2012). The cycle affinity F,
quantifies the entropy variation associated with the completion of a cycle ¢ in the steady
state, and therefore it vanishes in equilibrium conditions (Schnakenberg 1976; Seifert
2012). Moreover, F. is associated with the thermodynamic forces (such as a chemical
reaction potential) maintaining the system in non-equilibrium conditions (Andrieux &
Gaspard 2007; Seifert 2012).
Using the interpretation of F. as entropy production over the completion of a cycle c,
the thermodynamic entropy generation rate for all network cycles can be calculated as

Saff = ZFC(‘IC+ —Je )= ch (n;,+ - n%)v (3.2)

where J., =n. /T and J._ =n._/T are the cycle currents, T is the time-series length
and n.,_ and n._ are the number of times a cycle ¢ is completed clockwise and
anticlockwise in a time series (Seifert 2012). All entropy terms in this work are intended
to be normalised by the Boltzmann constant (Seifert 2012; Falasco & Esposito 2025).
The mean entropy generation rates for the AM process written in terms of both stochastic
thermodynamics and fluid dynamics formalisms are expected to agree both qualitatively
and quantitatively up to a proportionality factor depending on methodological aspects
(e.g. the state discretisation). In fact, the entropy production rate related to a physical
phenomenon (turbulence AM, in this case) should be quantifiable using different methods
that are able to capture the underlying physical phenomenon. Here we find a strong link
between the two formalisms and find that the mean stochastic thermodynamic entropy
generation rate associated with network cycles, (sq), is directly proportional to a mean
turbulent entropy generation rate associated with the interscale energy transfer, (sys), as

(sLs) = a(sq) + B, (3.3

where f is a residual entropy generation rate, « is a proportionality factor and (e) signifies
ensemble averaging over N,, signals (see table 1). While a convergence of the wall-normal
behaviour of the entropy generation rates is observed for lower N., (longer signals) as
discussed in Appendix C, ensemble averages are taken as different signal samples generate
different values of sz g and 544 due to statistical variability in the measurements, although
the spread in many cases is not significant (e.g. see error bars in figure 3a), thus leading to
smoother and more statistically robust results.

The entropy relation in (3.3) connects the stochastic thermodynamics representation
of AM in wall turbulence (via s44) with a fluid mechanics representation of the interscale
energy transfer (via sz g). However, while 54 is well defined in stochastic thermodynamics
as per (3.2) (Seifert 2012), sps needs to be determined by means of fluid mechanics
arguments. Here, we address this issue and find that (3.3) holds if (spg) is defined as

(AOLs)
ks

(sLs) = (34)

where kg = (u%) /2 is the small-scale kinetic energy acting as a temperature of the system
(as proposed by Yao, Zaki & Meneveau 2023) and (A®ps) is the net large-to-small scale
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streamwise turbulent kinetic energy production (note that, for Ease of notation, angle
brackets in (szs) indicate both ensemble and temporal averaging). Particularly, (A®pg)
is defined as (A®;s) = (Ogs) — (@), where (®g) and (®) are (Kawata & Alfredsson
2018)

our, oug
(Os)=-2 <usus—>, (Or) :2<”LML_>» (3.5)
ax ax
with spatial derivatives are calculated by invoking again Taylor’s hypothesis, dx =
—U(y) dt. The two terms (®g) and (@p) have the form of energy production terms
and have been interpreted as the energy transfer from the large to small scales ({(®g)),
and vice versa ({(®1)) (Kawata & Alfredsson 2018; Chan, Schlatter & Chin 2021). Both
(®g) and (O} ) are positive quantities indicating that energy is mainly transferred from the
large to the small scales (Wang et al. 2021). However, (®g) and (®1) can have different
values due to the different quantities involved: the former represents the rate of energy
due to large-scale internal shear layers (duy /dx), while the latter represents the rate of
energy due to the small-scale internal shear layers (dus/0dx). The difference between these
two quantities, i.e. (A®rgs), therefore, is referred to here as the net large-to-small scale
streamwise turbulent kinetic energy production that, in general, can be either positive or
negative depending on the relative magnitude of (®g) and (@ ). As discussed in §4,
however, (A®j ) is mostly positive throughout the boundary layer height, in the range of
cutoff wavelengths considered here.

The expression for (szg) in (3.4) was inspired by Yao et al. (2023), where an entropy
generation rate is defined in terms of interscale energy transfer in the context of isotropic
turbulence and a normalisation of the energy transfer through the small-scale turbulence
kinetic energy is proposed. On this point, it is worth noting that, a more rigorous
definition of temperature for the system — as well as (®g), (@) — should involve all three
velocity components. Using the streamwise velocity component only, therefore, leads to a
simplification that is, however, deemed reasonable in the context of AM in wall turbulence
as follows from extensive literature on the AM of the streamwise velocity u (see § 1).

4. Results

Evidence for the applicability of (universal) thermodynamic bounds is first reported in
§4.1. We then show the validity of (3.3) for the three datasets in § 4.2. Further insights
into the small- and large-scale arrangement are also discussed in § 4.3.

4.1. Verification of universal thermodynamic bounds in wall turbulence

Thermodynamic bounds have been found to apply to various physical systems (Nicholson
et al. 2020), such as in biological systems (Ohga et al. 2023). Equivalent bounds holding in
turbulence, however, are rarer (Tanogami & Araki 2024). In this article, we show that the
thermodynamic bounds derived by Ohga et al. (2023) are verified in turbulent boundary
layer flows. For a Markov (stochastic) model like the one described in § 3, the following
inequalities are expected to hold:

tanh | F./(2n F
| Xbal <maXM < max =2, .1
c tan (7w /n¢) c 2w
——
fup Foo

where c is a cycle of n, > 3 non-repeating states (where n. is the number of states in the
cycle) (Ohga et al. 2023). The quantity on the left-hand side of (4.1), xp4, 1S @ measure of

1019 A24-7


https://doi.org/10.1017/jfm.2025.10585

https://doi.org/10.1017/jfm.2025.10585 Published online by Cambridge University Press

G. lacobello

(@) TBL2k (b) TBL13k (© TBLI14k
1.0 1.0

TTIL " 3 fHr L HIHR b T T
0.8 g{; HI“I T ‘ﬂl 0.8 ;III T = T TP\H\
0.6 F 0.6
0.4 0.4 ‘
0.2 0.2 0.2

X1/ Fup
ol Exy 0 0
10! 102 103 10! 102 103 104 10! 102 103 104
y* y* y*

Figure 2. The inequalities in (4.1) are reported for the three experimental datasets as a function of y*, and at
various cutoff wavelengths: Ay /8 =1, A ¢o/8 =3 and Ay ,/8 = 5. Since the effect of Ay ¢, is not discernible
due to overlapping, the same colour and marker symbol are used for the three cutoff thresholds, A ... Panel
(b) includes both one- and two-point results. Black plots correspond to | xpq|/Fup While red plots correspond
to the ratio F,,/Foo. The mean values are shown with error bars representing the minimum and maximum
values for each ratio at various y .

correlation asymmetry, defined as

T T
Xba = lin}) ba _—ab , 4.2)
i 2\/(Cz(1)a - nga) (Cgb - Cl;b)

where C;, = Corr[b(t + 1), a(t)] and C}, = Corrla(t + ), b(¢)] are the two-time cross-

correlations between variables a and b at time lag 7, and Cjj, and C;,, are autocorrelations
(Ohga et al. 2023). In this study, a(t) =u(t) and b(r) = ES,L(I). The asymmetry C;  #
C;, is a fundamental statistical signature of systems in non-equilibrium steady state (Ohga
et al. 2023).

Equation (4.1) implies that | xpq|/Fup < 1 (tighter bound) and F,,/ Foo < 1, which are
verified in figure 2 for all datasets, at all wall-normal location y ™, at all cutoff wavelengths
Ax.co used to decompose small- and large-scales, and for both one-point and two-point
AM. A noisy behaviour is observed in the intermittency region, namely, for y/§ — 1,
where AM is not expected to occur (Mathis et al. 2009a); nevertheless, thermodynamic
bounds are still verified in the intermittency region.

Figure 2 shows that thermodynamic bounds hold for the AM interaction (question (ii)),
and provides a posteriori evidence on the applicability of the discrete stochastic Markov
model and Schnakenberg’s cycle representation of AM in wall turbulence. Most notably,
while such thermodynamic bounds have been proved to hold for discrete-state systems, the
extension to continuous-state systems such as turbulence was left to be proved by Ohga
et al. (2023). Here we provide evidence that the thermodynamic bounds in (4.1) hold for
continuous-state systems, provided that a suitable time-series discretisation is performed
that captures the system dynamics (figure 1c¢).

Besides the inequalities verification, it is worth highlighting that x;, can be interpreted
as a measure of directed information flow from variable a to variable b (Ohga et al.
2023), namely, from the large scales to the small scales in this study. In other words,
Xba Can be seen as a measure of the extent to which information of large-scale motion is
transferred to small scales (Tanogami & Araki 2024). The inequalities in (4.1), therefore,
indicate that large-to-small-scale information flow is bounded by the cycle affinity. Using
the analogy between F. and A®pg as discussed in §4.2 below, inequalities in (4.1)
suggest — like in other systems in non-equilibrium steady state such as biochemical systems
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(Mehta & Schwab 2012) — the presence of thermodynamic trade-offs on the information
flow that can be achieved for a given interscale energy production level A®; ¢ and kinetic
energy ks.

It follows that a possible interpretation for these ratios is of information-thermodynamic
efficiency, namely, how efficiently information flows from large-scales to small-scales
(Tanogami & Araki 2024). Figure 2 shows that the inequality ratios — hence information-
thermodynamic efficiency — are largely uniform across the boundary layer, although both
| Xba| and Fyp (or Fo) are not constant with y* (not shown). Further results on the inequal-
ity verification are also provided in Appendix A using a different choice for the convection
velocity. Interestingly, the inequality ratios tend to decrease in the near-wall region for
Ucony = ', suggesting that the interscale information flow (xp,) is lower compared with
the corresponding upper bounds, namely, a lower information-thermodynamic efficiency.
Explaining such a difference for the two choices of U,y requires a deeper understanding
of the relation between yp, and the cycle affinity F. proposed by Ohga et al. (2023),
both from a stochastic thermodynamics and fluid mechanics perspectives; however, this is
outside the scope of this work and will be explored in future studies.

4.2. Equivalence of mean entropy production rates

To visually demonstrate the validity of the equivalence relation between entropies in (3.3),
the wall-normal behaviour of the entropies normalised in wall units — namely, (SZ_S) =
(srs)tx and (s+)ﬁ, = aﬁt(s;}f) + Byir, Where (s;l'}f) = (Sq)tx and 1, = v/ Uf is the wall-unit
time scale — is shown in figure 3(a) for the TBL14k case. The proportionality parameters,
ag; and B, are obtained through linear fitting between (s s(y)) and (sq(y)). Two fitting
ranges are used, namely, y/§ < 0.5 and y/§ < 0.8 (vertical dashed lines in figure 3a): the
former value corresponds to the wall-normal location where the intermittent region starts
(Baars et al. 2015), while the latter value extends the fitting range but keeping it lower than
unity to discard the highly intermittent region for y/§ — 1.

Figure 3(a) clearly indicates a very good overlap for various cutoff wavelengths. In
particular, figure 3(a) shows that (szrs) > ( throughout the boundary layer, i.e. (®g) >
(®r). Interestingly, the entropy generation rate has a maximum in the log layer, shifting
to higher y* by increasing the cutoff wavelength A, ... This outcome was not visible
from a simple cross-correlation analysis as shown in figure 1(c), and it points out that
the peak entropy generation rate resides in the log layer rather than in the buffer layer,
as one might have expected as the buffer layer hosts several key dynamical phenomena
in wall turbulence (Jiménez 2018). Since the entropy production rate can be seen as a
measure of the power consumed by a system in maintaining the non-equilibrium steady
state (Mehta & Schwab 2012), figure 3(a) (as well as results reported in Appendix C)
indicates that the log layer is the region where most of the power is needed to maintain
the non-equilibrium steady state between large and small velocity scales involved in the
AM mechanism. This outcome can be explained as a result of the more significant degree
of misalignment between large- and small-scale velocities in the log layer, which can be
observed, e.g. from the lagged cross-correlation patterns as shown in figure 4.

A more quantitative analysis of (3.3) is performed to obtain the parameters « and .
Starting from the latter, the residual entropy generation rate 8 is shown in figure 3(b) as
a percentage of (srs), with e indicating averaging over y. Since 8 is a scalar, it accounts
for the whole variations along the wall-normal direction and, therefore, percentages need
to be interpreted as a ratio over the whole boundary layer height. The parameter S
can be interpreted as B = (Syes,aff) — (Sres,L5), Where Syes o includes the residual entropy
not associated with cycles, and s, 15 includes the residual entropy not associated with
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Figure 3. (@) Wall-normal behaviour of (szrs) (magenta lines) and (s+)ﬁt (black lines) for Ay /8 =2,3,5;
error bars indicate the standard error of the mean. The vertical dashed lines are y/§ =0.5 and y/§ =
0.8. (b) Wall-normal behaviour of |Bg/(srs)| as a percentage. (c¢) Wall-normal behaviour of «f and
(d) the goodness of fit R2. In panels (b—d), solid lines correspond to fitting up to y/8 = 0.5 while dashed
lines to y/8 = 0.8, and the same colour legend as in (b) applies to (c¢) and (d). The horizontal dashed line in
(¢) is a = 0.106.

local energy transfer such as due to spatial transport. Figure 3(b) reveals that B is a

small fraction of (szs) for A, ¢»/8 > 2 at high Reynolds number (TBL13k and TBL14k).
Higher percentage values are found for the TBL2k case as expected because AM is less
enhanced at a lower Reynolds number (Mathis ef al. 2009a), suggesting that residual
terms contribute more significantly to the entropy generation rate associated with the AM
phenomenon. This is in agreement with previous studies showing that (®g) and (®p)
are weaker at lower Reynolds numbers (Wang et al. 2021), thereby suggesting that their
contribution — and in turn the contribution of (A®; ) in (s;s) — in the AM mechanisms
reduces as Re, decreases. Moreover, the larger values of g for Ay .,/8 =1 in figure 3(b)
are associated with the fact that (s, ) drops towards the edge of the boundary layer (this
can be observed in figures 10d, 11d and 12d; see Appendix C), thus leading to poorer fitting
(figure 3d). However, the near-wall behaviours of (s s) and (s.p) are still in agreement, as
well as the wall-normal location of their peak (see figures 10a.d, 11a,d and 12a,d).

The behaviour of g and the goodness-of-fit parameter, R? (also known as the
coefficient of determination), are shown in figure 3(c—d). The goodness-of-fit parameter
R? reaches high values (larger than 0.9) as the cutoff filter increases, quantitatively
confirming the high degree of overlap illustrated in figure 3(a). In particular, the highest
R? is observed at approximately Ax,co/8 =~ 3, as at this threshold small- and large-scale
velocity are well separated (this is more evident at higher Reynolds number due to the
larger spectral separation). Similar to By, the slope coefficient a; also tends to converge
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for Ay c0/8 = 2, providing a unique estimate for high-Re, turbulent boundary layers of
afiy 7~ 0.106 (dashed horizontal line in figure 3c). As shown in figure 3(b—d), the fitting
range does not significantly affect the results, especially in terms of the goodness-of-fit
parameter (figure 3d).

Based on results reported in figure 3, we can conclude that a proportionality relation
exists between the entropy generation rate written in the fluid mechanics (turbulence)
formalism and stochastic thermodynamics formalism, i.e. (sps) >~ a(sqf). Combining this
outcome with the observation that one specific cycle, ¢y ={1;2; 3; 6;9; 8; 7; 4; 1}, is
found as the most likely to occur at all vertical coordinates y* (see cycle occurrence
analysis in Appendix B), (3.3) can be rewritten as

(AOrs)
ks

for y/8 < 0.8 (where ¢_ refers to reversed cycle, i.e. ¢y taken in the reversed order).
Equation (4.3) indicates that the behaviour of (syg) is proportionally related to the
affinity and occurrence of the cycle ¢ (taken in the clockwise or anticlockwise direction);
further discussion on cycle ¢ and its relation to large-small scale arrangement is provided
in §4.3. Recalling the thermodynamic interpretation of cycle affinity F. (§ 3), results
discussed in this section and presented in figure 3 suggest that net large-to-small scale
turbulent kinetic energy production, (A®pyg), is a candidate turbulence quantity to
be interpreted as an analogous thermodynamic force driving the AM process out-of-
equilibrium (question (i)) for 1 < Ay /8 <5. Although further research is needed to
establish a direct relationship between the two formalisms, present results provide further
evidence of an interdisciplinary link between turbulence and stochastic thermodynamics.

(sLs) = ~(Fe (S — J2))s (4.3)

4.3. Large-small scale arrangement

As mentioned in the previous section and as reported in Appendix B, the discretisation
of the AM dynamics into nine states leads to the emergence of the cycle ¢y =
{1;2:3;6;9;8;7;4; 1} and its reversed c_={1;4;7;8;9;6;3;2; 1} as the most
frequent cycles at all y™. In particular, the cycle ¢ is more frequent than ¢_ at all y™
(see figure 9 in Appendix B), namely ng, > ne . Since ¢y is a clockwise cycle (see
figure 1b), nz, > ne_ implies that the small-scale velocity amplitude, E s.L, leads in time
(lags in space) the amplitude of %, at all y*. This outcome contrasts previous AM results
reporting, through a cross-correlation analysis, a small-scale temporal lead only close to
the wall, while a switched behaviour occurs away from the wall (Baars et al. 2015, 2017).

The lagged cross-correlation is exemplified in figure 4 for TBL14k for three cutoff
wavelengths, and for both the original (Es 1 (¢) and uz (¢)) and discredited (Eg 1 (¢) and
uy (1)) signals. As shown in figure 4, the lag-lead patterns are preserved in the lagged cross-
correlation of the discretised signals (dotted lines) compared with the original signals
(solid lines). This indicates that the discrepancy with the literature in terms of large-small
scale lag is not due to the signal discretisation operation. The reason for the mismatch with
previous studies, instead, is found in the different values of the residence time of each state,
namely the amount of time 7 (s;) in which each state s; is observed. Particularly, states can
be split into two groups, namely, {s1, s9} and {s3, s7}, where the former corresponds to the
states in which Eg 1 (¢) and uy (¢) are concordant (same sign) while the latter corresponds
to states in which Eg 1 (t) and ur (¢) are discordant (opposite signs), see figure 1(b). States
involving zero crossings (i.e. {s2, s4, S5, S¢, s3}) are not considered here as they do not
significantly contribute to the cross-correlation calculations. Accordingly, the fraction of
time in which both Eg ; (#) and u (¢) are concordant is indicated as 7°(1,9)/T (where
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Figure 4. Cross-correlation map between uy (t) and Eg 1 (¢) (solid lines) and between i (z) and ES,L(t)
(dotted lines) at time lag v (in wall units), for the TBL14k case at (a) Ax.co/8 =1, (b) Ax.co/8 =3 and
(¢) Ax,co/8 = 5. Isocontours range from —0.4 to 0.4 with a step of 0.1; the same colourbar shown in (c) applies
to all three panels. For comparison purposes, the discretised cross-correlations (dotted lines) are multiplied by
a factor equal to 1.43 in all three panels.
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Figure 5. Wall-normal distribution of the fraction of time in which u; (¢) and Es 1 (¢) are concordant (states 1
and 9) or discordant (states 3 and 7), evaluated at A .,/8 =3 for (a) TBL2k, (b) TBL13k and (c¢) TBL14k.
The vertical (black) dashed line is the reference location for the log-layer centre. Here, 7, refers to the
residence time calculated for cycles only, and the error bars indicate one standard deviation. The same legend in
(b) applies to all three panels.

T(1,9)=T(s1)+ T (s9)), while the fraction of time in which both Es 1. (¢) and ur () are
discordant is indicated as 7' (3, 7)/ T (where T (3, 7) = T (s3) + T (s7)).

As shown in figure 5, T (1, 9)/ T (concordant signs) is larger than 7' (3, 7)/ T (discordant
signs) in the near-wall region, but the two fractions switch above the centre of the log layer
(dashed black lines in figure 5). This behaviour is observed not only for the whole time
series (blue and magenta lines in figure 5) but also when the time fractions are evaluated
for the segments of time series corresponding to all cycles (cyan and red lines in figure 5),
ie. Tc(1,9)/Tcqu and T (3, 7)/ T¢ a1, Where Te a1 if, the total amount of time associated
with all cycles c. Therefore, the interplay between Eg ; and u7 is indeed well captured
within cyclic intervals of the signals.

Figure 5 reveals that the switch in the lead—lag pattern in the cross-correlation (figure 4)
is mainly due to a switch in the duration of temporal intervals in which Eg ; (¢) and uy ()
are concordant or discordant. Namely, the switch in the sign of maximum correlation
(suggesting a lead or a lag between the two signals) is mainly due to a redistribution of
the duration of 7'(1, 9) and T (3, 7) in the boundary layer, rather than to variations in the
signal amplitudes (note that signals are Z-score normalised in the definition of correlation
coefficient). This change is illustrated in figure 6, where residence times are clearly visible
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Figure 6. Four examples of discrete state signals extracted from the TBL14k dataset at (a,c) y*© = 10 and
(b,d) y* = 3200. The four intervals highlight the appearance of (a,b) ¢y (clockwise cycle) and (c,d) ¢—
(anticlockwise cycle). The corresponding signs of u; and Eg ; are also highlighted, following the state
convention of figure 1(b). For comparison purposes, the vertical grid spacing is set to the same value for
all four plots, equal to 500/ f; (where 1/f; is the sampling time step).

within each (clockwise and anticlockwise) cycle, either close to the wall (figure 5a,c) and
above the log-layer centre (figure 5b,d).

From the outcomes reported in figures 4, 5 and 6, as well as figure 9 in Appendix B,
we can conclude that small-scale amplitude, Es 1 (f), indeed tends to lead in time (lag in
space) large scales, uy, throughout the boundary layer height as suggested by the cycle
occurrence, but the different duration of each state significantly affects the sign of the
maxima in the cross-correlation. This result does not invalidate previous arguments on
why a positive or negative AM is observed close or away from the wall, respectively (e.g.
as discussed in § 4 by Baars, Hutchins & Marusic 2017). However, it points out that —
by definition of lead and lag between two signals — variations in the amplitude of the
small scales are more likely to take place after (in space) the variations in the large-scale
signs (figure 6), where the latter correspond to the alternating sequence of large-scale low
and high-speed zones. Physically, this conclusion implies that it is more likely that small
scales tend to adapt to changes to the behaviour of large scales, rather than vice versa, in
agreement with the idea that large scales provide a background flow to locally generate
small-scale structures (Wang et al. 2021).

5. Discussion and conclusions

Results presented in this article provide evidence for the validity of Schnakenberg’s
network theory in wall turbulence. Specifically, we shed more light on the energetic
mechanisms behind AM, showing that the net large-to-small-scale turbulent kinetic energy
production, (A®ps), can be seen as the main turbulent quantity driving the AM process
out-of-equilibrium (question (i)), hence leading to a predominantly positive entropy
generation. Interestingly, we find that (A®ps) = (Og) — (@) is the variable that best
capture the (interscale) energy transfer behind AM, rather than the total energy transfer
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(®s) 4+ (Or) that appears in the transport equation of the scalewise Reynolds stress
equation, as derived by Kawata & Alfredsson (2018). In fact, the total energy transfer
appears as a source term in the small-scale Reynolds stress equation, which is in agreement
with the fact that both (®g) and (@) are positive and hence pointing to a prevalent
forward energy cascade mechanism (Wang er al. 2021). However, in the context of AM,
it turns out that the interplay between the energy transfer due to the large-scale velocity
gradient ((®g)) and the energy transfer due to the small-scale velocity gradient ({®p))
is a more appropriate quantity. In particular, (®g) > (@) is the condition that leads
to a positive entropy generation rate (figure 3a), which implies that most of the energy
transfer can be associated with large-scale velocity gradients (i.e. due to duy /dx). This
result resonates with previous works, e.g. focusing on conditional analysis, highlighting
that the small-scale amplitude changes depending on the large-scale internal shear layer
behaviour (Baars et al. 2017). Moreover, coherent structures — i.e. low-speed streaks and
quasistreamwise vortices, as well as hairpin vortices — have been associated with events of
large (®g) and (@) values (Wang et al. 2021), thus supporting the argument for a link
between the development of coherent structures and entropy generation and irreversibility
(Tacobello et al. 2023).

Remarkably, our results are obtained at scale separations (A, .,) at least three orders
of magnitude larger than dissipative scales, which are of the order of the Kolmogorov
length scale, n™ = O(1) (Smits et al. 2011), and where thermal fluctuation effects become
relevant (Bandak er al. 2022; Tanogami & Araki 2024). This outcome supports the
argument that stochastic thermodynamics is applicable at scales much larger than the
microscopic scale, provided that a sufficient scale separation exists between the slow (large
scale) degrees of freedom and the fast (small scale) ones (Seifert 2012). This is indeed
the case of wall turbulence at high Reynolds numbers, where a neat large-small scale
separation exists between the large- and small-scale motions both in energetic terms and
in their temporal evolution (Jiménez 2018).

It is important to remark here that the linear relationship between (sys) and (sqp) of
(3.3) — as well as (4.3) — is derived on the basis of a similarity process, where the wall-
normal behaviour of the two mean entropy generation rates is observed to match for
various Reynolds numbers and cutoff wavelengths (see figure 3). Accordingly, (3.3) is
to be interpreted as a regression model with fitting parameters o and f. Nevertheless,
as discussed above, it is known that many features of the AM in wall turbulence can be
associated with the spatiotemporal arrangement of the small and large scales along internal
shear layers (Baars et al. 2017; Saxton-Fox, Lozano-Durdn & McKeon 2022). Therefore,
the involvement of (®g) and (@) (which include spatial derivatives of u; and ug) in
(3.3) aligns well, from a physical perspective, with the modelling of AM that, in this work,
relies on the discrete network representation. These insights, supported by the existence
of a robust proportionality relationship between (sp.s) and (sqf) (as discussed in § 4,
particularly via the goodness-of-fitting parameter, R?), suggest the presence of a deeper,
more formal, connection between interscale energetic mechanisms in wall-turbulence and
the cycle-based, Markovian, representation of the same phenomenon. However, to the best
of our knowledge, this formal connection has yet to be established, and future research in
this direction would be advocated.

Finally, we speculate that the proposed network model can be extended, for example,
to investigate the development of coherent flow structures under a new lens, as these
are often identified via thresholding techniques (Kailasnath & Sreenivasan 1993; Wallace
2016; Chowdhuri & Banerjee 2023) naturally leading to a discrete formulation. In this
regard, the extension of the present approach to spatial data (e.g. extracted from numerical
simulations) is an intriguing and useful aspect connected to the choice of the convection
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Figure 7. Same as in Figure 2 but for the convection velocity Ucony = u’. The green marker in (b) is
|x1/Foo < 1 for the individual signal with |x|/F,, > 1.

velocity in adopting Taylor’s hypothesis (as reported in Appendix A). The extension of the
present study to spatial data from numerical simulations is currently under investigation
and will be the subject of future work. Moreover, the validity of fluctuation relations
in wall turbulence — extending results by Yao et al. (2023) — is still an open issue to
be explored, as many questions still remain on the connection between turbulence and
non-equilibrium thermodynamics (Yao et al. 2024). Specifically, the verification of the
fluctuation relations requires a robust evaluation of probability distributions, which implies
the need for accurately resolved and extensive datasets, alongside appropriate definitions
of entropy generation rates. The complementary use of experimental measurements and
numerical simulations, therefore, could help shed light on the validity of fluctuation
relations in wall turbulence.
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Appendix A. Effect of the convection velocity

The choice of the convection velocity, Ugq,y, on the Taylor’s hypothesis to convert time
series into spatial series is discussed in this appendix. Results reported in the main text
correspond to the widely adopted case of U,y = U (y), namely, the convection velocity is
the local mean velocity. Here, we show results for U,y = u/(, y) as proposed by Yang &
Howland (2018) in the context of wall turbulence modulation.

Figure 7 shows the inequality ratios (4.1) for the three datasets and at cutoff wavelengths
Ax.co/0 =1, 3, 5. Both ratios are smaller than unity, confirming the validity of (4.1). It
should be noted that in only one instance the tighter bound | xpq|/Fup exceeds unity at the
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Figure 8. Comparison of the fitting parameters (a) B, (b) o and (c) the goodness-of-fit parameter R? for
the two convection velocity definitions, Ugpny = U (solid lines) and Ugyny = 1’ (dashed lines). The fitting range
here is y/§ < 0.8. The three datasets are highlighted as: TBL2k, red lines, crosses; TBL13k, blue lines, circles;
TBL 14k, black lines, filled dots.

first wall-normal location in figure 7(b), however, the bound | xp,|/Fo 1s still verified as
highlighted by the green marker. This is considered a numerical outlier, which disappears
if, for example the time series length is increased.

More generally, it is observed that the ratio |xpq|/Fupy (black lines) reduces close
to the wall (y* < 100) compared with the reference case, Ucpny = U(y), shown in
figure 2. The reduction in the |xpq|/Fypy ratio in the near-wall region for Uepny = u’
indicates that there is a larger gap in the large-to-small-scale information flow for
y* < 100 compared with the log layer, achievable at a given level of affinity F (i.e. a
lower information-thermodynamic efficiency). This near-wall variation in the interscale
information-thermodynamic efficiency may be associated with the presence of the wall
itself, particularly, with the relationship between the streamwise velocity fluctuations and
wall-shear-stress fluctuations in the near-wall region, which was the main argument behind
the choice of Ugyny = u' (¢, y) (Yang & Howland 2018). Moreover, efficiency variations
in the near-wall region tend to be in agreement with recent observations of a local
decoupling between large and small scales in the near-wall region (Andreolli ez al. 2023).
Nevertheless, as already mentioned in § 4.1, additional research is needed to shed more
light on the link between xp, and F that can explain the behaviour of their ratio.

The impact of the choice of the convection velocity on the analogy of (3.3) is reported
in figure 8. Some variations (with respect to the case Uy,y = U; solid lines in figure 8)
are noted for the two fitting parameters By, (figure 8a) and oy, (figure 8b). However, these
variations are not significant, as also emerging from the goodness-of-fit parameter R>
(figure 8c) that closely follow the U,y = U case.

In summary, the results shown in figures 7 and 8 indicate that the proposed stochastic
model for AM and the analogy between entropies extend to various choices of the
convection velocity.

Appendix B. Wall-normal behaviour of cycle occurrence

The cycle occurrence is evaluated in this appendix, following the cycle decomposition
of the network model described in §3. In particular, we separate the contribution
of the cycle ¢, ={1;2;3;6;9;8;7;4;1} (clockwise), its reversed cycle ¢_=
{1;4;7;8;9; 6; 3; 2; 1} (anticlockwise), and all the remaining cycles cymers. The cycle
occurrence is hence defined as the ratio between the number of cycles n. and the total
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Figure 9. Fraction of the average occurrence of the cycle ¢ occurring in the clockwise direction, ¢y (black)
and anticlockwise direction, ¢_ (blue), and all remaining cycles comers (red) as a function of the vertical
coordinate, y/8. The three turbulent boundary layer datasets (TBL2k, TBL13k and TBL14k) are indicated as
plot titles. Symbols correspond to various cutoff wavelengths: filled circles, Ay ¢,/8 = 1; crosses, Ay co/8 =3;
open circles, Ay ¢o/8 =5.

number of cycles:
Ne tot = n/C\+ + ne + ncnthers‘ (Bl)

Figure 9 shows the wall-normal distribution (in percentage) of the average n./nc ;o
ratios for the three datasets, and at various cutoff wavelengths, A .,/d (results are intended
to be ensemble averaged but the (e) is dropped here only for Ease of notation). It turns out
that the cycle ¢ and its reversal ¢_ are the most frequent cycles at all vertical coordinates
y (up to the intermittency region), and for all datasets and cutoff wavelengths. Particularly,
4+ occurs more frequently on average than ¢_, as mentioned in §4.3, supporting the
hypothesis that small scales tend to adapt to changes to the behaviour of large scales,
rather than vice versa.

Appendix C. Parametric analysis on the time series length

The effect of the time series length on the wall-normal behaviour of the entropy production
rates, (sqfr) and (szg), is reported and discussed in this appendix. As reported in table 1 and
discussed in § 2, the time series of the streamwise velocity fluctuations u(y, ¢) are divided
into N,, non-overlapping segments of length 7'. The time series duration 7', however, does
not provide meaningful information when evaluated in isolation. A more representative
value is the Tp,;; quantity reported in table 1, that is the minimum ratio between the time
series duration 7 and the temporal length of a turbulent scales with wavelength A .,
advected at the mean velocity U. For a given dataset and a given cutoff wavelength, such
a minimum is found for the minimum value of U, which is at the closest point to the
wall, y,in. An increase in N,,, therefore, results in a decrease in the time series duration
compared with the characteristic time scale A ¢,/ U.

The effect of increasing Neq, i.e. decreasing Tpin, On (sqf) and (sp ) is illustrated in
figures 10, 11 and 12 for the TBL14k, TBL13k and TBL2k cases, respectively. Overall,
it turns out that convergence of the results is acceptable for values of T},;, approximately
larger than 40. The results discussed in the main text, however, correspond to a 7}, largely
exceeding this threshold value for all cutoff wavelengths (see blue lines in figures 10,
11 and 12). As expected, the lack of convergence is amplified for larger cutoff values
(figures 10c, f, 1lc, f and 12c, f) and the measurement points closer to the wall are those
more affected by an increase in Ny,.
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Figure 10. Wall-normal behaviour of (a—c) {sps) and (d=f) (sq) for increasing values of N,, (decreasing
values of T}y;,) for the TBL14k case. The three cutoff wavelengths are (a.d) Ax /8 =1, (b,e) Ax,co/6 =3 and
(C:f) /lx,co/s =3.
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Figure 11. Same as in figure 10 but for the TBL13k case. In (f), the purple line corresponds to N, = 32 as for
the red line, but where the sampling frequency, f;, was halved (doubling the sampling time step) to highlight
the impact of the sampling frequency at low y™.

Interestingly, (sys) (figures 10a—c, 11a—c and 12a—c) appears to be more sensitive to
an increase in N, than (sqq) (figures 10d—f, 11d—f and 12d—f). This behaviour is mostly
associated with border effects (due to the finiteness of the time series) in the calculation
of the derivatives duy /dx and dug/dx in (3.5). Moreover, (s; s) for the TBL14k case are

1019 A24-18


https://doi.org/10.1017/jfm.2025.10585

https://doi.org/10.1017/jfm.2025.10585 Published online by Cambridge University Press

Journal of Fluid Mechanics

(C) x1073 /l)r,cu/‘s =5

(a) 4 %1073 /lx,co/‘s =1 (b) 55 %1073 /lx,co/a =3

3 | 2.0 = 1.5
A/‘.«\(\
= : = 15 = i
+:§ 2 A ’\‘A\/\‘ +:§ /V\\AU +:§1 1.0 f wf‘
= / W <= 1.0 P W = !
1 / f 0.5
\ 0.5 éj/; \ \
0 -/ 0 - W 0 I 'S
100 10" 102 10 10* 100 10" 102 10 10* 100 10" 102 100 10*
y* y*
X107 Ayeo/8=3 ) X105 Ay /6=5
3
15
2 — 10 :
+3
1 & 5
iy 0f v
0 0 ¢
/ -5
100 10" 102 10 10* 100 100 102 10 10* 10 10" 102 10° 10*
y+ y+ y+

Figure 12. Same as in figure 10 but for the TBL2k case.

more sensitive to an increase in N, at large cutoff wavelengths (figure 10e,f) compared
with (spg) for the TBL13k case (figure 1le, f). The reason for this difference — although
the Reynolds number values for the two datasets are relatively close — stems from the
higher sampling frequency, f;, of the TBL13k dataset (see table 1), which in turn affect
the robustness of the calculation of the derivatives in (3.5). This effect is demonstrated
in figure 11(f), where the sampling frequency was halved for the N,, =32 case (purple
line), resulting in larger deviations of (s; ) at small y* compared with the case at higher
sampling frequency (red line).

In summary, the parametric analysis reported in this appendix points out that results
discussed in the main text (corresponding to blue lines in figures 10, 11, 12) are not
significantly affected by the time series length (as well as the sampling frequency), for
all cutoff wavelengths considered.
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