Check for
updates

J. Plasma Phys. (2025), vol. 91, E87 ~© The Author(s), 2025. Published by Cambridge University Press. 1
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited. doi:10.1017/S0022377825000042

Lectures on statistical mechanics

Allan N. Kaufman!-, Bruce I. Cohen?#*® and Alain J. Brizard3*

IPhysics Department, University of California, Berkeley, CA, USA
2Physics Division, Lawrence Livermore National Laboratory, CA, USA
3Physics Department, St. Michael’s College, Burlington, VT, USA

Corresponding author: Bruce 1. Cohen, bruceicohen @ gmail.com

(Received 7 September 2024; revision received 23 December 2024; accepted 9 January 2025)

Presented here is a transcription of the lecture notes from Professor Allan N. Kaufman’s
graduate statistical mechanics course Physics 212A and 212B at the University of
California Berkeley from the 1972—-1973 academic year. 212A addressed equilibrium sta-
tistical mechanics with topics: fundamentals (micro-canonical and sub-canonical ensem-
bles, adiabatic law and action conservation, fluctuations, pressure, and virial theorem),
classical fluids and other systems (equation of state, deviations from ideality, virial coeffi-
cients and van der Waals potential, canonical ensemble and partition function, quasistatic
evolution, grand-canonical ensemble and partition function, chemical potential, simple
model of a phase transition, quantum virial expansion, numerical simulation of equations
of state, and phase transition), chemical equilibrium (systems with multiple species and
chemical reactions, law of mass action, Saha equation, chemical equilibrium including
ionization and excited states), and long-range interactions (including Coulomb, dipole,
and gravitational interactions, Debye—Hiickel theory, and shielding). 212B addressed
nonequilibrium statistical mechanics with topics: fundamentals (definitions: realizations,
moments, characteristic function, and discrete variables), Brownian motion (Langevin
equation, fluctuation—dissipation theorem, spatial diffusion, Boltzmann’s H-theorem),
Liouville and Klimontovich equations, Landau equation (derivation, elaboration, and H-
theorem, and irreversibility), Markov processes and Fokker—Planck equation (derivations
of the Fokker—Planck equation and a master equation), linear response and transport the-
ory (linear Boltzmann equation, linear response theory of Kubo and Mori, relation of
entropy production to electrical conductivity, transport relations and coefficients, normal
mode solutions of the transport equations, sketch of a generalized Langevin equation
method for transport theory), and an introduction to nonequilibrium quantum statistical
mechanics.
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Foreword

Allan Kaufman (1927-2022) grew up in the Hyde Park neighborhood of Chicago
not far from the University of Chicago. Allan attended the University of Chicago for
both his undergraduate and doctoral degrees in physics. Allan’s doctoral thesis advi-
sor was Murph Goldberger who was relatively new to the faculty at Chicago and just
five years older than Allan. Allan presented a theoretical thesis on a strong-coupling
theory of meson-nucleon scattering. Allan published an autobiographical article
entitled ‘A half-century in plasma physics’ in A.N. Kaufman, Journal of Physics:
Conference Series 169 (2009) 012002.

Allan worked at Lawrence Livermore Laboratory from June 1953-1963. While
at Livermore Laboratory he taught the one-year graduate course in electricity and
magnetism in 1959-1963 at UC Berkeley. In 1963 he first taught the first semester
of the graduate course in Theoretical Plasma Physics 242 at Berkeley. He taught the
plasma theory course at UCLA in the 1964-1965 school year while on leave from
Livermore before joining the faculty at UC Berkeley in the 1965 school year. Allan
frequently taught the graduate plasma theory course and the graduate statistical
mechanics course Physics 212A and B until his retirement from teaching in 1998.

These lecture notes were from Kaufman’s graduate statistical mechanics course
in the 1972-1973 academic year. The notes follow the chronological order of the
lectures. The equations and derivations are as Kaufman presented, and the text
is a reconstruction of Kaufman’s discussion and commentary. Equation numbers
were added to facilitate the exposition of the derivations. Although the material is
50 years old, the mathematical rigor and elegance of Kaufman’s treatment of the
subject matter should still be useful to students interested in learning the fundamen-
tals of statistical mechanics. A few of the equations that are important results and
conclusions in the analysis are labeled as “Theorems” to draw attention to them:
these are not necessarily formal theorems in the mathematical sense but are con-
sistent with terminology in physics textbooks. Editor’s Notes, Editor’s Addendum,
and Reviewer’s Comments have been inserted with the goal of providing additional
useful material, updates, and references. In this regard we are very much indebted
to the three reviewers of these lecture notes who were very energetic and whose sug-
gestions have added considerable value, which deserves attribution and recognition.
In particular, we thank Dominique Escande and Martin Lemoine for their many
valuable comments in reviewing the manuscript. These lecture notes are intended as
a resource.

The focus of Kaufman’s research at Berkeley was plasma physics. Although
these lecture notes address the general subject of statistical mechanics, there is a
definite emphasis on plasma physics in the examples and applications. Statistical
mechanics is foundational for plasma physics. Examples of specific material in
these lecture notes addressing plasma physics topics are as follows: Hamiltonian
theory for a kinetic plasma with Coulomb forces, rigorous derivation of the pressure
and virial expansion, partition function and statistics for an unmagnetized plasma
in thermal equilibrium with electromagnetic waves, the Bohr-Van Leeuwen theo-
rem in an equilibrium plasma, derivation of the Poisson-Boltzmann equation for
a Coulomb model of a plasma in thermal equilibrium, analysis of Debye shielding
and quasineutrality conditions, derivation of the Maxwell-Boltzmann equilibrium
distribution, Hamiltonian theory of a nonequilibrium plasma with electromagnetic
fields, Langevin equation model of Brownian motion in a plasma with Coulomb
forces, the fluctuation-dissipation theorem, Boltzmann’s H-theorem, derivations of
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Liouville, Klimontovich, Vlasov, Landau, Boltzmann, and Fokker-Planck equa-
tions in a plasma, linear response theory and derivation of transport equations and
coefficients, collisions, and conductivities (electrical and thermal) in a plasma.

Bruce Cohen joined Kaufman’s research group during the 1971-1972 academic
year and received his PhD in 1975. These lecture notes were word-processed in 2023
after Allan’s death in December of 2022. Allan encouraged Cohen to word-process
his notes on plasma theory and statistical mechanics so that they could be shared.
In 2019 Kaufman and Cohen published Cohen’s transcription of Kaufman’s lecture
notes from the graduate plasma physics course at Berkeley, Physics 242 (Kaufman &
Cohen 2019).

Alain Brizard worked at Berkeley as a post-doctoral researcher from 1989-1992
with Kaufman, from 1992-1994 with Ken Fowler, and the summers of 1995-2000
with Kaufman and Jonathan Wurtele. Alain was a research collaborator with
Kaufman for three decades. Brizard published many papers with Kaufman and the
book Ray Tracing and Beyond, with E.R. Tracy, A.S. Richardson, and Kaufman,
Cambridge University Press (2014). Brizard reviewed Kaufman & Cohen (2019)
and suggested valuable improvements before its publication.

Professor Kaufman’s work on these lecture notes was performed while he was
employed as a Professor of Physics at the University of California Berkeley.
Professor Kaufman’s separate research activity was funded in part by the United
States Department of Energy. Bruce Cohen’s work on these lecture notes was pro
bono. Cohen’s separate research activity has been funded at the Lawrence Livermore
National Laboratory by the United States Department of Energy. Alain Brizard is a
Professor of Physics at St. Michael’s College in Vermont, and his separate research
activity in the present and past has been supported by the United States National
Science Foundation and the Department of Energy. Brizard’s work on these lecture
notes was not funded under his research grants.

Bruce I. Cohen
Alain J. Brizard
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1. Equilibrium statistical mechanics

[Editor’s Note: In the first lecture of Physics 2124 Kaufman discussed the syllabus
and schedule for the lectures. Kaufman used CGS units with some customizations
throughout his notes, e.g., Boltzmann’s constant is set to unity. There was no textbook
for the course. Some of the references for his lectures included L. D. Landau and E. M.
Lifshitz, Statistical Physics (Landau & Lifshitz 1969); R. C. Tolman, The Principles
of Statistical Mechanics (Tolman 1938); R. Kubo, Statistical Mechanics (Kubo 1965);
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and
Liquids (Hirschfelder, Curtiss & Bird 1954); F. Reif, Fundamentals of Statistical and
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Thermal Physics (Reif 1965); H. B. Callen, Thermodynamics and an Introduction to
Thermostatics (Callen 1960); and R. Becker, Theory of Heat (Becker 1967).]

[Reviewer Dominique Escande’s Comment: Section 2.4 of Sator, Paviloff & Couédel
(2023) provides a series of useful references in order to go further into the foundations
of statistical mechanics. ]

1.1. Fundamentals

Statistical mechanics provides a mathematical framework for bridging the gap
between microscopic laws to macroscopic descriptions. Statistical mechanics is con-
fronted with a set of dichotomies: equilibrium versus nonequilibrium; a range of
degrees of freedom from few (~10) to many (~10%), to very many (~10%*), to
a denumerable infinity, to an uncountable infinity; classical versus quantum; rela-
tivistic versus nonrelativistic; closed versus open systems; inert versus chemically
reactive; and many levels of description, e.g., exact, kinetic f(x, v, ?), fluid n(x, ?),
v(x,t), T(x, t). Statistical mechanics is home to the fundamental laws of thermody-
namics: (0) A= B = C transitivity; (1) conservation of energy; (2) the change of
entropy is nonnegative AS > 0; (3) entropy S — 0 as temperature 7 — 0. Statistical
mechanics distinguishes between extensive and intensive properties of matter, i.e.,
properties that are either volume dependent or independent, respectively.

1.1.1. Postulate of equal probabilities

DEFINITION: A macroscopic state is described by a set of partial information. A
microscopic state can be described by a set of either classical information or quantum
information that is a complete set of detailed information at the finest level including
boundary and initial conditions.

EXAMPLE: Consider N coupled harmonic oscillators with Hamiltonian H given by

H=Z%(pi2+a)[2qi2) +)"Zcijk%qj%< (1.1)
i=1 ijk

with parameters N, A, {c;;x}, {w;}. In a finite-sized box, the energy eigenstates for
an uncoupled system of harmonic oscillators are discretized and representative
of quantum systems. Because H in this example has no explicit time dependence,
H is a constant of the motion; and the macrostate can be characterized by its
energy without knowledge of the initial conditions. There is only partial information
available in this example.

How does one relate microscopic information to a macroscopic description?

POSTULATE (Fundamental Postulate - R.C. Tolman) All microstates consistent with
the given partial information (macrostate) are equally probable.

DEFINITION: I'(Ey) = number of microstates with E < E|,

At this point we drop the classical picture for a little while for pedagogic rea-
sons, chiefly because counting and summing microstates over a discretized phase
space resolves certain mathematical measure complications encountered in classical
systems.

DEFINITION: In the discretized quantum picture the probability of one given

microstate is |
RTAY En < E ’
probability = w, = { 7(%0) 0 (1.2)
0, E,, > Eo.
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In the limit of a very large number I'(E,) we employ the correspondence
principle, and in the volume €2 of allowed phase space one obtains

(@) =lim fﬂd—imp.

m = (1.3)

For large I" there are many accessible microstates, and the probability of a given
microstate with energy E, is a relatively smooth function of energy because the
granularity of the energy is such fine scale.

1.1.2. Example: N uncoupled oscillators

EXAMPLE: N uncoupled simple harmonic oscillators. Let N = 3 and use a canonical
transformation to action-angle variables:

gi = ./ *sin 6, :
! @i ! — H=ZC{)1J1 (14)
pi =+/2J;w;cos 6; i=1

Further simplify by requiring by requiring w; = w, = w3 = wy. We note that
{61, 0,, 65} are ignorable in H; hence, the actions J; are constants of the motion;
and the energy is given by E = wy(J; + J, + J;3). The volume occupied by the sys-
tem of three oscillators in phase space is a triangular solid in J-space, with vertices
{Jo, 0, 0}, {0, Jo, 0}, and {0, 0, Jo} where Jy= Ey/w, and a rectangular solid in 6-
space spanning [0, 277 ] in each of the three 0 coordinates. The product volume in the
{J, 0} phase space divided by 4* yields the number of states:

volume (Qn)’1/EN\°1E, 1/ E )\’
T(Ey) = = (=2 2= 2. 1.5
(Eo)=—35 h3 2(w0) 3w, 3!\ o (15)

In (1.5) we are assuming that typically the number of states is large, i.e., Ey >
hwoN. For the general case of NV oscillators,

I'(Ey, 3) — I'(E,, N) L(E (1.6)

— =—l— . .
0 0 N! ﬁ(,()o

If we allow each of NV oscillators to have any one of M possible energy states,
where

E — %ﬁa)o
M=—2—, (1.7)
FLCUO

then Kubo (1965, p. 38) shows that the number of distinguishable states is given by

N+M-1)!
I'(E, wO)ZZ((]V——l)']W') (1.8)
M

EXAMPLE: To illustrate (1.8) consider N =3 oscillators and M =4 energy levels,
for which there are 15 states {(4,0,0), (3,1,0), (3,0,1), (2,2,0), (2,0,2), (2,1,1), (1,3,0),
(1,0,3), (1,2,1), (1,1,2), (0,4,0), (0,0,4), (0,3,1), (0,1,3), (0,2,2)} in agreement with
(N+M—DYI(N = D! M]=6!/(2! 4!) = 15.

DEFINITION: The specific oscillator energy is £ = E/N.
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Returning to (1.6) and using the definition of the specific oscillator energy one

obtains
1 E\" NYV(&N NorgY
FE.N=—(+2) =(-2) »——(r2) . 19
N! ﬁa)o N! ﬁ(l)o N2 N ﬁ(,()o
where in (1.9) we have made use of Stirling’s approximation N!~ /27 N(N/e)"

for large N. We identify & /hw, as a basic quantum number. We note that if the
basic quantum number is O(10) and N ~ 102 I" is rather large.

DEFINITION: Take the natural logarithm of the number of states and introduce
the concept of entropy. If all states in I" are equally probable, then define the
entropy as

1
S(Ey, Ny = InI" - N In ﬁ +N—=In2rN)~N In i + N (1.10)
ﬁa)() 2 ﬁwo

for large N. Thus, S ~ O(N).

DEFINITION: Introduce the specific entropy S = §/N. Hence,
&
S= 1n<—°)+1, (1.11)
ﬁ(l)o

which has no N dependence (‘normal dependence’) and is a number of order unity.
[Editor’s Note: Prof. Kaufman remarked at this point that Problem 2-33 in Kubo
(1965) addressing the correspondence principle was interesting and not at all obvious.]
EXAMPLE: Consider an ensemble of N atoms or molecules with a harmonic
oscillator Hamiltonian. We will derive the specific entropy for an ideal gas.

The model Hamiltonian for an ideal gas of atoms or molecules is given by
3N 2
P;
H= |:—+<I>], (1.12)
i=1

where each atom or molecule has three degrees of freedom in its motion, and we
consider a cube with volume V = L* and we assume the potential energy ® = 0. The
magnitudes of the momentum components are constrained by the total energy for

each oscillator: pi + p3 + p; < (V2mE )2. The phase-space volume is the product of

the cubic volume V' and the spherical volume (47 /3)(+/ 2mE)3, and the number of
states for three degrees of freedom per oscillator scales as

4
- (VamE)'L?

Ff:3 ~ T

In (1.13) we note the quantum discretization. To derive the number of states

for N atoms or molecules we begin with the volume of a 3N-dimensional sphere is
given by

(1.13)

3N
vgN(R)=n3£VR3N/r<7+1), (1.14)

where I'(z) denotes the gamma function. Note that since I"(n + 1) =n! for any
nonnegative integer, the shorthand notation I'[(3N/2) 4+ 1] = (3N /2)! is used. Now
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we introduce the dimensionless ‘phase-space’ radius
L
R=p7=x/2mEL/h, (1.15)

where the volume in configuration space is V = L*. We divide V5y(R) by N! to
eliminate permutations of indistinguishable states to obtain

3N

V3N(R) _(anE) 2 VN

N h3N(3—N>!N!
2

where E is the total energy for N particles with three degrees of freedom each. At
this point we introduce a few definitions to facilitate reducing equation (1.16) to a
more recognizable form.

[(E;V,N)= (1.16)

DEFINITION: The specific energy is £ = E/N. The particle density is thenn =N/ V.

With these definitions, use of Stirling’s approximation to remove the factorials,
I'(z4+1)=2nz(z/e)¢, for z> 1, and with N > 1 we obtain the following result

from (1.16)
3N 5N N 5N
demEN [ 1 \" 1
F%(_ﬂni_z) ( 3) €’ :( 3) ¢ (1.17)
3 p nA Vo6 N ni V6 N

where the average momentum per particle is p = /(47 /3)m& and the thermal de
Broglie wavelength is A = h/p. Here nA? is the number of particles in a de Broglie
cube, which must be a small number to justify a classical description. From (1.17)
we calculate the entropy and recover the specific entropy of an ideal gas:

SzlnI“—>8:£
Wros N 1 16 5

=B ) Ay — BT 2B N2 @AY (1.18)
N 2 N N 2N 2

1.1.3. Microcanonical ensemble
Next we introduce the concepts of subcanonical and microcanonical ensembles

DEFINITIONS: An ensemble of states for energies Ey < E is a subcanonical ensem-
ble, and we denote the number of states by I',. The ensemble of states for energies
E —SE < E, < E +§E is defined as a microcanonical ensemble, and its number of
states is denoted I7,.

Physical subcanonical ensembles have monotonically increasing I, as functions of
increasing energy E. We can evaluate I, as follows using (1.18):

I,(E—3E)
I5(E) }

2
S(E)—SESS+ L GE? 5 +..

I(E,8E)=TI,(E)—I,(E—-38E)=1TI,(E) [1 —

S(E—S8E) dE
= [(E) [1 - ] ~ L (E) | 1— o
~I.(E) [1 —e—ﬂ“E%“EV%], (1.19)

where f=(dS)/(dE)=1/T. Note that the specific energy E/N ~ O(T), and
hence the last term in the exponential on the right-hand side of (1.19) is small
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compared with the 6 E term given the constraint 7 < 6 E < E, so that I, (E, §E) ~
IL(E)(1 - e“%E). Furthermore, e #°f is exponentially small and, hence, I}, ~ I,.
The interpretation of this is that the number of states is a sharply increasing function
of energy such that the volume of the hypersphere is dominated by the volume of the
bounding annular shell, i.e., for V.~ RY — 8V /V ~N(@SR/R), N > 1 and R/R K
1, but N(6R/R) = O(1). For the conditions £ K §E K E— 1/N K SE/E < 1, the
system remains on the hypersurface that can be parametrized in terms of the actions
and fills it. The angle space is filled as well.
Now consider the classical entropy after Taylor-series expanding,

o

dr,
TL(E.8E)=T,(E) = I,(E —8E)N3E— + O(SE?) (1.20)

after Taylor-series expanding. As compared with (1.19), I, x§E as §E — 0 rather
than I,. The entropy is the logarithm of I',

dr,
Sy=1InT,=InsE+ In 2. (1.21)

The first term on the right-hand side of (1.21) is a fixed additive term and small
compared with the second term which is the natural logarithm of the density of
states and is very large.

The classical microcanonical entropy is to good approximation

dr,
dE -
EXAMPLE: Calculate S, a5 for the harmonic oscillator model of the ideal gas and
compare it with the quantum entropy expression. We anticipate that if the two
expressions are different, it is only due to constants. The classical microcanonical
entropy is given in (1.21), while the quantum entropy is given by

dr Sy

Sgn=InI—1T = eSm 15 = ed 15 = Bedim (1.23)

Using dI" /dE = BeSem in the last term in (1.21),

Spcus= I 8E + In Be’m = In 8E + In B+ S, =0(1) + O(1) + O(N)~ S,
(1.24)

We note that we should introduce 4" in the denominator in the expressions for
I" to give the correct dimensionless units for the phase-space normalized volume.
However, this results in no change in the final formulas due to taking the logarithm
of a product expands into the sum of logarithms; and the S,,, ~ O(N) term remains
dominant.

Next consider the phase space of a system with many degrees of freedom whose
trajectory in phase space is constrained by a Hamiltonian. Define a subdomain in
this phase space as a shell with thickness §¢ and volume defined by dpdg = dAd¢,
and the thickness of the shell is parametrized by a variation in the total energy:

Hp.q)=E —sE. °E_\vH|. s OF
pP,q)= - ) = ) =TS,
L2 IVH(p, 9)|

(1.22)

Su,class = In

(1.25)

which varies as a function of p and ¢ in phase space. If the probability of the system
occupying a given subdomain in phase space is proportional to the volume of the
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subdomain, then
SE

IVH(p, )|

THEOREM (Boltzmann’s Ergodic Hypothesis): The orbit of the system of microstates
will completely fill the volume of the accessible phase space given the initial data
constraining the degrees of freedom. Over time any subdomain will be occupied for a
time proportional to the subdomain’s volume, i.e., all accessible microstates are equally
probable over a long period of time.

Probability « dA §¢ =dA (1.26)

As stated here the Ergodic Hypothesis has the difficulty that the orbit of the
system is a one-dimensional manifold embedded within the energy surface and has
a different measure than that of the energy surface. Thus, the orbit of the system
cannot fill the energy surface in a strict sense. Hence, there is a need for refining the
Ergodic Hypothesis as follows.

THEOREM (Quasi-ergodic Hypothesis due to G. D. Birkhoff (1931)): Every finite
region on the energy surface is accessible.

THEOREM (Ergodic): A system spends equal times in equal volumes (except for a set
of measure zero pathological initial conditions).

COROLLARY: For any integrable function of the phase-space coordinates f(p, q), the
time average of f(p, q) is equal to its space average almost everywhere. This is a very
important consequence of the ergodic theorem.

1.1.4. Nonequilibrium macrostates
We next take up the examination of nonequilibrium macrostates. Consider the sim-
ple example of a domain composed of two adjacent contiguous subdomains I and
IT occupied by an ideal gas with numbers of particles and energies {N;, E;} and
{Nu, En}. We further assume that the ideal gas is described by the same harmonic
oscillator Hamiltonian introduced in (1.12). After an invisible membrane is removed
we allow transfer of energy between the two subsystems, but no losses to the exterior
world. Thus,

Ei+ Eg=const=E. (1.27)

The accessible number of microstates for the combined system before the
membrane is removed is given by

I'(Ey, En) = I[1(Ey) Tu(En) , (1-28)
from which follows that the entropy is given by
S(E1, En) = In I'(Ey, En) = In I(Ey) + In I3 (En) = Si(Ey) + Su(Ew) - (1.29)

After the membrane is removed, a constraint on the number of states is removed;
and the final number of states can exceed the initial number of states:

E
Ly < Tina(E) =f I'(E\, Eny=E — E)dE,. (1.30)
0

Think of the integral in (1.30) as the sum over the number of possible energy
states. Clearly the initial and final entropies satisfy Sp,i < Sina. The probability that
the subsystem I has energy E} subject to the constraint that the total system energy
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is E, is given by the relative fraction of states in system I having energy E; and

system II having energy Ej, which given by the product of the respective numbers

of microstates, divided by the total number of states having energy E = E; + Ey:
(Ey, Ex) S ELE=SIED+Su(En)

r e
p(EIE) = —F it = 5 o eSHED SiEu=E—E) (1.31)

The exponential eV in (1.31) is a monotonically increasing function of Ej,
whereas the exponential eSEn=E=ED i5 a monotonically decreasing function of Ej.
Hence, the probability p has a sharp peak at some value E; = E1, satisfying

o 05 oS
Lol R\ W DY} (1.32)
oF, < 3E, T 9E,

Using our earlier introduced definitions of 8 and 7', 8 = (dS)/(dE)=1/T , (1.32)
yields the following relation:

Pi(Er= Ey) =Pu(En=FE — EL), (1.33)

at E; = E}, where p achieves a sharp maximum, i.e., its equilibrium; and 7; = Ty;.
We have not yet specified what systems / and I/ are composed of. For example,
recall the expression for the specific entropy of the system comprised of harmonic

oscillators in (1.11),
&
S=1n(—> +1, (1.34)
ﬁ(,()o

and the expression for the specific entropy of an ideal gas given in (1.18)

S:%—m@Aﬁ, (1.35)

where the thermal de Broglie wavelength is A=h/p and p= /(4 /3)mE were
introduced earlier preceding (1.17). For systems composed of an ideal gas each of
the three degrees of freedom per atom has (1/2)T energy, then £ = (3/2)T is the
specific entropy. Moreover,

1 N; 1 Ny

_ _ M 1.36
R v b T (1.36)

which determines Et,. For a system composed of one-dimensional harmonic oscil-
lators, the specific potential energy and kinetic energy each have (1/2)T energy; and
thus the specific energy for each oscillator is £ =T.

We next consider fluctuations § Ey in Ey away from its equilibrium value Ep,. We
examine the formal Taylor-series expansions of Sy and Sy; with respect to deviations
SE; from Ey,:

ds, 1 B,
St(Ey) =S(Ew) +0E e, 1.37
1(ED) = S(Evn) + I<dE1) +2( Ey) (dEl)E,*+ (1.37)
ds 1 d
Su(En) = S(E — Ev) +5EII(dEH) + E(SEH)Z(df:H) +
I En I Eqp
ds 1 d
=S(EH=E—EI*) - 5E1<d_;) +2( H) <d£11) +
11 En 11 E—El,

(1.38)
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14 A.N. Kaufman and others
Use of (1.31) for the probability and (1.33), (1.37), and (1.38) yields
pEr = 1P BB ), b o(al)

8 2( 1 1 (8Ey)2
~e 7 GED (WJFCHNH) =e 202 . (1.39)

The probability has a sharp peak around its most probable (equilibrium) value
at EI*-

DEFINITION: C appears in (1.39) and is the derivative of the specific energy with
respect to the temperature and depends explicitly on the degrees of freedom,

c=o =12 (1.40)

e 2 ideal gas,
1 harmonic oscillator.

One can read off the standard deviation o around the peak of the probability
distributionp (8 Ep)from the right-hand side of (1.39)

1 1\
o=T + ~T+/N. (1.41)
(CINI CIINII>
We note that for Ny ~ Ny, (1.41) determines that o ~ T+/N and o/E;~ l/ﬁ < 1.
In the limit that N;<< Ny, e.g., a heat bath, then 0 = \/C;N{T and o/E; ~ 1//N; K
1.
Let’s compare S(E) with S(E(E}, E})):

E E (Ep)?
I'(E) =/ dE\I"(E\, Epn) =/ dE\T(E}, E}) e RN I'(E;, E})) V2mo?
0 0
(1.42)
aside from units. Using the relation S =1In I", (1.42) leads to
S(E)=S(E;, Ey) + 1 In(2mo?) ~ S(E}, E})) (1.43)

because S(E), S(El*, EI*I) ~O(N) > (1/2) In(2ro?) ~ O(In N). The conclusion is
that the entropy is somewhat invariant relative to the system constraints involved.

EXAMPLE: Consider N >> Ny and Ey > Ej, a heat bath if you will. Then

ds, &5
Su(E)~Er g+ 3 Ef "3+

[(Ey, E)=(E) IW(E — E)) = (E)) e s (1.44)

We note that d*Sy;/dE2 = dB/dEy; ~ —N}/Ny in (1.44), and we further impose that
NI2 <« Ny so that this term is small. Hence, (1.44) becomes

F(EI, E) ~ FH(E) e—ﬂII(EI—THSI(EI)) = FH(E) e—ﬁIIFI(EIsTII)’ (1‘45)

where we have introduced the definition of the free energy Fi(Ey, Tn) = E;—
TuSi(Ey), so called because this is the energy available to do work. We recall that
for an ideal gas Ty = (2/3)(E1/Ny)

The probability is proportional to I"(Ey, E), i.e.,

o (Ey) o e PuFiELTD (1.46)
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The peak of the probability distribution determines the most probable value of E;
which corresponds to the minimum of the free energy F;. Minimizing the free energy
of the microstate is equivalent to maximizing the total system entropy.

EXAMPLE: The free energy of an ideal gas is given by
3 5
Fi(Ey, Tn) = Ey— TuSi(E)) = Nl2 — TuM |:§ - ln(nlAf(Tl)):| . (1.47)

EXERCISE: Show that the most probable temperature is 7;* = Tj;.

Next we turn to the calculation of the probability of a quantum microstate. Recall
the expression given in (1.31). The probability of a microstate »n in subsystem I in
contact with subsystem II is constructed as follows. First, we observe based on (1.31)

I I
wi x FII(EII —F — E,{) — eSH(Eu)(E—En) — SUEWE ,—PuEy+... (1.48)

and we note that the ¢SV ig just a probability constant that will cancel out after

division. Dividing the right-hand side of (1.48) by the sum of I} over all # yields the
probability
e—ﬁnEé

W= Z=Zi(fn)=) e M5, (1.49)

n

where Z constitutes the Gibbs canonical ensemble, i.e., the statistical ensemble of
possible states in equilibrium with a heat bath at fixed temperature.

1.1.5. Adiabatic law and action conservation
Consider the slow evolution of a system, i.e., an adiabatic change. We refer to
Kubo’s book for the ideas here.

EXAMPLE: Assume a slowly varying Hamiltonian for a harmonic oscillator system
with N =1 modeled by

H(p.q:1)=3p’ + jw;(1)g’ (1.50)

and we assume dw,/dt < w}. Energy is not conserved here because the Hamiltonian
is time dependent due to wy(¢) . The elliptical orbit of the system in the (p,q) phase
space evolves, but the area of the ellipse is conserved, i.e., there is an adiabatic
invariant. The time derivative of the Hamiltonian can be calculated from

dH o0H

L T — wntng? 1.51
dr Y Wowoq ( )

From (1.51) we calculate the time-integrated change AH from (1.51):

AH = /dtH /dt a)oq (1.52)

For purposes of calculating AH over time durations long compared with the
oscillation period, we can assume that w,/w, is approximately constant over the
oscillation period; and we can average wjg” over the oscillation period. Noting that
(1/2){wiq*) = (1/2)(H), we conclude that

AH ~ /dt— and ) % (1.53)
(H) wo
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16 A.N. Kaufman and others

DEFINITION: Introduce the action

1 H
J= [ pag = (1.54)
2 (Oh)

EXERCISE: Calculate the time derivative of J in (1.54) and use (1.53) to deduce

J (H) @

LA CO N INTS (1.55)
Hence, the action is ‘conserved.’

EXAMPLE: N >1 and generalize the time dependence of the Hamiltonian:
H(p, g; A(t)) where A, — A + A in a time interval Ar that is large, i.e., A is assumed
to change at a very slow rate compared with wy:

dln A CZ)()
H=H(p, q; A(1)), 1 —
(O)
A AMOH A9 H da . [ 3H oH
AHE/ Hdt=/ —dt=/ —dr A/ —dt —AA< >
0 o Ot 0 A dt 0o OA oA/,
OH
_mz< > (1.56)
RS rm

where the time average has been replaced by an average over the energy surface in
phase-space I, (E) .

Hence, AH = AM0H /OA), or AE/AN= (0H/0A), where the energy E charac-
terizes the microcanonical ensemble.

1.1.6. Subcanonical ensemble
The number of states for a subcanonical ensemble (all states with energies less than
a particular energy E) is given by

1 H<E,

F(E,A)Efdpqu(E—H(p,q;A)), where 05{ -

1.57
0 H>FE. ( )

Consider a small change in I" due to a small change in the parameter A and
ol
AA=AA{—

accompanying a change in E:
oH ol
_ _l’_ _
OE |\ OA [ O |g

or or
8E oA |
oH oH
=AA {/ dpdqdé(E — H) <3T>E + / dpdqé(E — H) <_<3_)\>E)} =0,
(1.58)

Al = AE

where we have made use of (d(x))/(dx) =8(x) and §(x) is the Dirac §-function.
Thus, the two terms cancel on the right-hand side of (1.58); and A" =0 under a
slow change in the parameter A. In practice, dlnA/d¢ is required to be much smaller
than the rate of change of anything else in the system.

COROLLARY: Given AE/AL=(0H /3)\); for adiabatic changes, then AI"' =0, and
in consequence AS = 0. (Adiabatic Law: entropy is conserved.)
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EXAMPLE: For an ideal gas I'(E, V) ~ V¥E3"/2 and an adiabatic change in V,
then E ~ V=3 in order that AI' =0. Hence, the pressure is P~ E/V ~1/V3/3,
i.e., PV>3 = const, the usual adiabatic law for an ideal gas.

1.1.7. Pressure and the virial theorem
We next introduce the concept of a generalized force {A;} to go with parame-
ters A = {A;}. Consider an vector array of parameter values A and the Hamiltonian

H(p,q;2).

EXAMPLE: Particles in their own electric field and in an externally applied electric
field with electric potential ¢, have the Hamiltonian:

H:Zp_?"'zﬂ'i'ze‘d) (r;) (1.59)
- Zmi oy rij i (A VANE P .

where e; are the particle charges, m; are the particle charges, p; are the momenta,
and r;; are the distances between the i and j particles. We note that

> autn) = [ dix pix. (nhanto) (1.60)

and define the charge density as

p(x, Vi)=zei5(-"7—"i)- (1.61)
We can choose A to be whatever attribute of the Hamiltonian is of interest, e.g.,
A ={e;} or {r;} or other.
DEFINITION: The generalized force is

dH(p, q; L)
A(p,q;k)5+

EXAMPLE: The functional derivative (0H)/(0¢o(x)) = p(x, {r;}) (Goldstein 1950;
Schiff 1968).

In (1.62) A(E; A)is the thermodynamic generalized force, and the averaging brack-
ets indicate an average over the accessible phase space for a given energy E. Then
using the Adiabatic Law:

and A(E; M) =(A(p,q; M))g, (1.62)

dH(p,q;2) JE(S, 1)
BV N

A(E; A) =

. (1.63)

S

EXAMPLE: The macroscopic charge density averaged over the phase space con-
strained by constant energy £ and fixed entropy is

_ OE(S, ¢o(x))
(p)(x) = Tah)

We next introduce the concept of pressure. Let A =V where V is the volume. Then
using (1.63) the pressure P is

(1.64)

S

_AH(p.q; V)

P(p,q; V)=—A=
(r.q;V) 3V

(1.65)
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EXERCISE: Take the model Hamiltonian for an ideal gas or a charged parti-
cle plasma and show the consistency of (1.65) with the elementary definition
P = F/area where F is the macroscopic force. We note from (1.63) and (1.65) that
P=—0E(S,V))/ V)}S =—(0E(S, V))/(areaaﬁ){s and one can identify the force
from —(0E(S, V))/(a(i)!S noting that dV = area - d€. It is also helpful to note T =
(QE(S, V))/(E)S)’V and generally dE(S, 1) =TdS + A -dA At constant entropy,
dE(A) |s=A-di=—PdV =—Parea-dl = —F - dd = —dE. Hence, the pressure at
constant entropy is the force divided by the area. We will return to consideration of
the pressure subsequently.

|Editor’s Note: Kaufman made the cryptic remark that this exercise is not trivial
and alluded to the Ergodic Theorem (§ 1.1.3) without further explanation.)

Next we introduce the concept of heat. Again consider a physical system com-
posed of two subsystems I and II. The composite Hamiltonian is H = H; + Hy+
H,,, where H;, is the interaction Hamiltonian. The energy gained or lost by
subsystem I is then

AEI:/dtHI:/dt (H,, H}:/dt{Hl,Him}EQl. (1.66)

The Poisson bracket is {A(p,q), B(p,q)}=—%;((3A)/(0p;)(0B)/(dq;) —
(0A)/(0g;)(0B)/(dp;)), and Qj is the heat transfer. The total time derivative of any
quantity can be shown to be

A=A 08, 0 M A (1.67)
Tt T ap P T 9g T Sk ‘

THEOREM: If thermal equilibrium is maintained during heat input and if

SV =861=0, then
Q=8E=T8§—>8S=Q/T (1.68)

and for a slow variation of )\ in the neighborhood of thermal equilibrium:
AE=Q+W=0Q0+R, (1.69)

where W or R equals the work done on the subsystem and Q is the heat or thermal
input energy. If R = -PdV for small dV, then from dE(S,V) = TdS - PdV we realize
that Q = TdS whether or not work is being done on or by the subsystem. If thermal
equilibrium is not maintained, then internal processes will drive the system toward
equilibrium with AS > 0 and AS > Q)T where AS is the sum of internal and external
heat input. We realize that (1.69) is quite general, and AS = (AE — R)/T is generally
true.

THEOREM: The change in time of TdS >dE + PAV, and there is equality if the
system is in thermal equilibrium.

We return to consideration of the pressure. Consider a surface enveloping a vol-
ume and a differential surface area element d’o with the vector oriented outward
and normal to the surface. The sum of forces on a “wall” at the surface of the

volume is
Y fi.=Pdo (1.70)
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and as a consequence of Newton’s third law the force of the wall back on the volume
1s E,‘ wi — —sz(f.
From (1.70), Newton’s law, and the divergence theorem

N
D fuiri=— % Pr-d’o = —/ d&*rv -(Pr) (1.71)
i=1 4

Here the force of the wall back on the system is balanced by the pressure of the
particles back on the wall. If we assume the system is in equilibrium then we can
also assume that the pressure is uniform and pull P outside the integral in (1.71).

Hence,
N

Zﬁm-r,»:—/ d3rv-(Pr)=—P/d3rv-(r)=—3PV. (1.72)
\%4 |4

i=I
The last relation in (1.72) is the so-called ‘virial’ of the wall. Now consider Newton’s
third law including forces on the particles on one another and of the wall on the

particles:
Zri'miﬁi:Zij,i‘ri+wa,i‘ri' (1.73)
i i#j i

Using (1.72) to replace the last term in (1.73) we obtain the following.

1

~3v D oremiy =Y Y fien (1.74)

i i#j

P =

which can be further manipulated and simplified using

Xi:ri-mii)i:%Zm-mivi—Zmivfz%A—2K, (1.75)

where K is the total kinetic energy and A = ) r; - m;v; has units of action, and

1

ZZf.f,i-rF—ZZfi,j-Vf=—Zij,z--rj

i#j J i#j ] i#j ]
=133 fi i—ry) (1.76)
i#j ]
to obtain
P bk dA+IZZf (ri—r;) (1.77)
=— - — = o r=ry) g .
3V dr 24 £ i !

COROLLARY: The phase-space average (dA/dt) =0.

Proof: A= (q, p), then (dA/dt) = [dI'p(q, p)(d/dt)A(g, p) where the integral is
over the phase-space volume and p is the phase-space probability density; and we
can generalize to A(g, p; t). We use

dA DA 0A L 0A DA -
ar ot " Pop T T o ’ '
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and note

dA\ d dr 4 d dr | o
<dt> dt/ p(q, p)A(q, p) — /E( p(q, p)A(q, p) (1.79)

as the volume element in phase space may have time dependence. However, we note
that dp/dr = 0 as a consequence of Liouville’s theorem, and (d/d¢) I' = 0 due to con-
servation of probability volume (which is not independent of Liouville’s theorem).
Hence, (dA/dt) =d/d¢(A). Finally, at equilibrium with no explicit time dependence,
dA/0t =0 and then d/df{A) =0 . We can now calculate the phase-space average of
(1.77) at equilibrium which becomes

1 1
(P)= {2<K +§<Z ij,i-<rf—w>>]- (1.80)

i#j
EXAMPLE: (K)=(3/2)NT which is valid for an ideal or nonideal gas (with
interactions), and (1.80) becomes

1
(P):nT+W<Z Zf,,,.-(r,-—rj)>, (1.81)

i#
where n=N/V.

1.2. Classical fluids and other systems
1.2.1. Equation of state and deviations from ideality

POSTULATE: Consider a general force law of particle j on particle i represented by

. 0
f;j:_rijgd)(rij)’rijzri_rj’ (182)

where (2/3)(K/V)=(N/V)T =nT. We justify (1.82) based on Newton’s third
law and symmetry. Then the equilibrium pressure deduced from (1.81) is

<P>—nT——<ZZ,-,--,~,~d > ZZ< i Fig > (1.83)

i#] i#j

commuting the sum over N(N—1)~N2pairs of interacting particles with the
averaging bracket. Hence,

2

N
P=nT — W(”uﬂb/(’”lz))- (1.84)

The nT term is the kinetic pressure and the second term in (1.84) is the interaction
pressure. The average in the interaction pressure is

(ringd’ (rp)) = f d3”12,0(l’ij — 1) 1@’ (r12) (1.85)

due to isotropy in the probability density and because the interaction force depends
only on the scalar separation distance. The probability density can be represented as

g(ri2)
V 9

p(ri) = (1.86)

Downloaded from https://www.cambridge.org/core. IP address: 10.3.209.135, on 15 Jul 2025 at 01:16:16, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377825000042


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000042
https://www.cambridge.org/core

Journal of Plasma Physics 21

where g(ry,) is the pair correlation function such that g(oco) — 1 and f g dvol=V.
Then (1.84) becomes

2

N n?
P=nT — W(”u‘ﬁ/(”lz)) =nT — 3 / 41l driag (rin)rng’ (r12). (1.87)

If we formulate the energy of a particle (atom or molecule) from first principles
by summing the kinetic energy and the potential energy due to interactions over the
volume, one obtains 3

n

e=31+5 [ dragrg. (1.88)
We can make some qualitative remarks regarding the dependencies of the pair cor-
relation function g and the interaction potential ¢ on ri, so that the integral in
(1.88) remains well behaved, and the results for P and £ are physical. Given the
constraints g(oo) — 1 and [ g dvol=V, ¢(r;;) must fall off faster than 1/r}, as
rip, — 00. For ri; — 0, g(ri2)¢(r;2) cannot diverge as fast as 1/r,. As a result,
excluded are the Coulomb and gravitational potentials ~ 1/r and the dipole-dipole
interaction potential ~ 1/r3.

1.2.2. Virial coefficients and van der Waals potential

Consider a dilute gas with only pair interactions and g(r;,) ~ e #9712 Particle 1
interacts with particle 2, and the rest of system acts as a heat bath. At high densities
when triplet or higher-order interactions become important, there are corrections to
this correlation function. As rj, — 00, ¢ — 0 and g(oo) — 1. We can substitute this
into (1.87) for P and (1.88) for &:

2 o0
Pn,T)=nT — T”nz / s?ds e P95/ (s) + O (n?)
0

=mngT/ ds(1 — e P9 1+ 0m?), (1.89)
0

where s =r;, and T = 1/8, and we have integrated by parts. We can represent the
result in the standard form

Pn,T)

7 =n+n’by(T) +n’bs(T) + ..., (1.90)

where b,(T) are ‘virial’ coefficients. In this ‘classical’ example, the second virial
coefficient is

mav:%/d%u—eﬂwb. (1.91)

The second virial coefficient gives information on the interaction potential of the
two particles.

EXAMPLE: Van der Waals force + hard sphere — Consider the schematic for the
electric potential shown in figure 1.

The repulsive force for r < 2r, is represented as a hard sphere where 2r, is the
minimum distance between two hard-sphere centers with ry the hard-sphere radius.
For this model (1.91) yields
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FIGURE 1. Model van der Waals + hard sphere potential.

ba(T) = 5 ' + 3 / &s $(5) =4V~ 7, (1.92)

where V, = (47 /3)r§ > 0 due to repulsion, —2a = [ ;fo d’s ¢(s) which is attractive

and assumed small, and 1 — e #?®) ~ B¢ (s) inside the integral. To be consistent with
the expansion in (1.89) and (1.90) we require that nV, < 1.

EXERCISE: (i) Show that £ = (3/2)T — na and there is no contribution from the Vj
constant term. (ii) Show from 7dS =d€ + PdY where V=1/n that S=(5/2) —
In nA® —4(Vy/V), where A =h/~/2nmT (iii) Convert to standard van der Waals
form:

<P+ )(V 4V =T (1.93)

1.2.3. Canonical ensemble and the partition function

Any subsystem, micro or macro, in contact with a heat bath at 7" has the attributes
as described in (1.49) and parametrized by number N, volume V, and temperature
T. The ensemble of such states is a canonical ensemble. The probability w, and
partition function Z are

e_ﬂEn

— . — —BEn
Wy =——; zzin:e (1.94)

Given the set of probabilities {w,} let us find S{w,}.

EXAMPLE: Let n=1,2,3 and E=E,, E,, E;, and make M (M — oo0) measure-
ments. As a matter of definition what we mean by w; is that n =i occurs w;,M
times. The number of states for a given number of measurements M is

M! M!
f= H(Mwn)' :(wlM)'(sz)l(w3M)| (195)
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and the corresponding entropy is

Sy=Inly=MInM—M — Z [Mw, In(Mw,) — Mw,]

n

=—M Z w, In(w,), (1.96)

where we have used X,w, = 1. From (1.96) we define the entropy associated with
making a single measurement on the ensemble of three states in equilibrium with a

heat bath: S
= im (24 )= _
S:A}Enoo(M) =-> " w, In(w,). (1.97)

EXAMPLE: Suppose all I" states are accessible with equal probability, such that

r

1 1
w,=— and S=-Y —Ih—=InT. (1.98)

n=1

More generally, the entropy for the canonical ensemble using (1.49) is

1 1
Sy = — Z Ee*ﬁEn 1n2e*ﬂfn =lnZ+8 Z w,E,= In Z+B(E).  (1.99)

n

For a canonical macroensemble we can convert the sum in the partition function
into an integral:

Z(ﬂ)=/dreﬂE=/dEj—geﬂE. (1.100)

Recall that S, ~ S, = In I" from which it follows that I" =¢% and (dI"/dE) =
e’ (dS,)/(dE) = Be® ; then we obtain

Z(,B):,B/dEe(_ﬁE*S"):,B/dEe_ﬁ(E_TS"(E)):ﬂ/dEe_ﬂF(E’T), (1.101)

where F is the free energy and T is the temperature of the heat bath independent
of the energy of the system. That energy for which F is a minimum will maximize
the partition function. We require the most probable energy E*(T') is that which
determines (0F (E - T))/(dE) =0. Then we expand the free energy around E*:
F(E,T)=F(E*,T)+ 18E282F + (1.102)
9 — 9 2 aEz DI .

From (1.101) and (1.102):

Z(B) ~ peF(ED) / dsEe " HE S — g (1) ooy = e (1) Sax T F7,

(1.103)
where oy = /T/F”, and from (1.99) and (1.103)
Sean=InZ+B(E)= In B—BF(E*, T)+ 1 In2nT/F")+B(E)
~—BF(E",T)+ B(E)=—-B(E"—TS,(E")) + B(E), (1.104)
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where In =0(), BF(E*,T)=0(N), and (1/2) n2xT/F")=0(1). Note
that F~O(E)~O(N), F'~O(/E)~O(/N) and In(N)~ O(1) to justify
(1/2) nQxT/F") = O(1).

One rearranges terms in (1.104) to obtain

Sean = Se (E*) + B(E) — E™) . (1.105)
For the canonical ensemble one can calculate (E) as a function of 8
1 107 0ln Z
E)= WE,=— PEE = —— = — ) 1.106
\E) Z v Z Xn:e Z op op (1.106)

We note that F(E*, T) = F(T) because fluctuations about E* are small. To O(N)
from (1.104)

InZ=—-BF(E*,T)=—BF(T) and F(T)=-T In Z(B). (1.107)
For In Z(8) > 1, then F(T) <0. From (1.106) and (1.107) we deduce
_ 0lnZ a,B_F -
E)=— B~ 0B and (E)(T)= E*(T)to O(N). (1.108)

It also follows that
dln Z _ AF(T)
s T

Sean(T)=1In Z—p , and hence dF = —SdT. (1.109)

1.2.4. Quasistatic evolution
We next identify a parameter A in the system in contact with a heat bath and consider
slow changes of the parameter:

1
w,(h) =~ D e EW and Z(B.a) =) e PO, (1.110)

n n

For a slow and small change of A the total entropy does not change:

ds
A(Ssystem + Sheatban) =0 and A(Ssystem) = —A(Sheatbatn) = — 7 A Epaph.
dE bath
(1.111)
Using (dS)/(dE)|pan = 1/ Ty and AEp,, = —Q, where Q is the energy/heat input
into the system, then

Q
ASgystem = T (1.112)
The system energy E (S, A) accrues a small change due to AA
AE=TAS+AAL= 0+ AAL. (1.113)

DEFINITION: Let R=AE — Q = AAX where A =(0E)/(0)1)]s.
From the definition of the free energy

F=FE—-TS—> AF=AE—-TAS—SAT=TAS+ AALX—TAS — SAT
_ AAAL=R, (1.114)
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because AT =0 due to the contact with the heat bath. We can now make some
general remarks regarding systems that are either thermally isolated or in contact
with a heat bath (table 1). We note that if there are no changes in the system
parameters, a system in contact with a heat bath experiences no change in S and F;
and the heat bath is superfluous.

1.2.5. Mode counting, classical versus quantum systems

EXAMPLE: N identifiable microsystems, e.g., N weakly interacting harmonic

oscillators
N

ZyB)=p e’ and E, =) & (1.115)

l1i:1

where n; can be thought of as the quantum numbers for the energy levels. The
partition function becomes

N
S Z Z Z B(eW+E2 +rel)) _ 1—[ Z -BEY) _ lj! Z.. (1.116)

ny  np i=1 n;

Hence, In Z = %;In Z;. In the special case where all N subsystems have the same
properties, Z = (ZH)¥ and In Z=N In Z,.

EXAMPLE: A classical gas or fluid consisting of N indistinguishable particles

d3di3Nq -
ZN(,Ba V)E‘/“/ W@ ﬂH(p'q), (1117)
H(p, q>—>2 +<I><{r,}> (1.118)

Using (1.118) in (1.117) one obtains

1 &p o & 1/ v \"
Zy(B. v>=m[v / e } U %e‘“’“’”}zm(lxg—@) On(p).

(1.119

where Qn(B) =[(f dg"/V¥)e #*UD] is the configurational partition function inde-
pendent of volume.
For an ideal gas ®({r})—>0 and OQun(B)=1; hence, Zy(B8,V)=

(1/NY(V/AB)".

EXERCISE: Show the specific free energy is given by f=F/N = T(ln nA3 — 1),
=(3/2)T, and S=(5/2) — InnA*. (Recall (1.47) and (1.92), and the exercise
following (1.92) in the limit ® — 0.)

EXAMPLE: Single harmonic oscillator (¢) with quantized energy levels
Energy levels:
Eﬁ:ﬁa)m—f—Eo, Eozéﬁa)g, (1120)
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Thermal isolation Contact with heat bath (T = const)
Slow change in A AE=AAA=R AF=AAA=R
Most probable microstate Smax Fiin
Approach to equilibrium AS>0 AF <0

TABLE 1. Adiabatically evolving systems.

1 1

ZK(,B):Ze_ﬂﬁW”:l—l-e_x—i-e_zx—i----: i w— T

n=0

(1.121)

We could compare the energy spectrum for the quantum harmonic oscillator in
(1.120) to a few continuous medium systems.

1. Vibrating string: A=2L/¢, £=1,2,3,....
2. Drumbhead.

3. Water waves, e.g., one-dimensional gravity waves in a narrow channel, three-
dimensional ocean waves (surface gravity waves, internal waves, etc.).

4. Electromagnetic waves, e.g., free space (w =kc), wave-guide modes, cavity

modes.
5. Plasma waves, e.g., electromagnetic waves (wy; = /kzcz—{—wﬁ), longitudinal
waves, etc.

6. Fluid sound waves: w; = kc,, ¢, = /v P/p.

7. Waves in a solid: longitudinal sound wave w; = kc,, transverse shear wave
wy =ke;.

In order to calculate the partition function and the statistical properties of any of
these systems, one must properly count the distinct modes. Here are two illustrative
examples.

(a) One-dimensional standing waves with nodes at x=0 and x = L: U(x,t) =
Asin(kx)sin(wt), o >0, A/2=L/L, k=2 /A and XX~ frde=
(L/m) [ dk.

(b) One-dimensional traveling waves with periodic boundary conditions at x
=0and x = L: U(x,t)=Asintkx —wt), w>0, A=L/¢, k=2n/A and
2 S, de=(L/2n) [, dk. If the traveling wave spectrum is sym-

metric with respect to positive and negative k, then (L/2rm) /% dk—
(L/m) [ dk.
In three spatial dimensions X,oges—> (2/7'[)3 [ dk.

EXAMPLE: Classical noninteracting oscillators with H,(J,) = J,w;,

dpd [ 2 T
Z:(B) =/ %fﬁ”‘”) = 7” / dJpePon = hﬁ% =—. (1.122)
0 ¢ (4
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We note that the result (1.121) for the partition function for the quantized harmonic
oscillator recovers the classical limit in (1.122) in the limit Aw, < T':

1 T

Zﬂ(ﬁ)quanmm = ﬁclulglgT m _>ﬁ_a)e (1123)

From (1.123) we can calculate the average energy per mode:

dlnZ  ho

(BT === =

(1.124)

which yields (E,;)(T) — T in the classical limit and recovers the Rayleigh-Jeans
classical result. For black-body radiation, each of the infinite number of modes has
energy 7T in the classical limit which leads to an infinite total energy when summing
over all of the modes, i.e., the ultraviolet catastrophe!

1.2.6. Electromagnetic modes and interaction of particles
Consider electromagnetic waves in an unmagnetized plasma. The dispersion relation
for transverse waves in an unmagnetized plasma is

w; =k’ + o (1.125)
and the total average wave energy summing over modes is

ha)( d3k fLC()[
W= — =2V | —— . 1.126
; efhor — 1 Q2m)? efror — 1 ( )

where the factor 2 in front of the integral in (1.126) takes into account the sum over
right and left circularly polarized waves. The energy density derived from (1.126) is

W ~ 4xiidk  h
z_ / d Y (T, w,, ko). (1.127)
0

V - (27_[)3 eﬁﬁwg _ 1

DEFINITION: The Wien wavelength and its inverse k,, are defined by A =1/k, =
he/T.

In the limit that the plasma density vanishes @, — 0, then the right-hand side of
(1.127) becomes
W =T oT* 7 ¢
—_— = =4, 0O =—— .
Vo557 c 60 (hc)’
(1.128) is the Stefan-Boltzmann law.
We note that Jackson (1975) showed that the wave energy density is related to the
spatially averaged magnetic field energy density (B?)/8x by the relation

(1.128)

W _(B)]

Vo 4m €

(1.129)

where € is the longitudinal plasma dielectric function; € = (k’c*/w?) = 1 — (v /®?)
in a cold plasma. For a wave packet the energy flux density is the product of the
wave energy density and the group velocity v, = (dw/dk) = (kc*/w).
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Consider electromagnetic traveling waves in a system with a finite volume and
periodic boundary conditions with magnetic field represented by

B(x,t)=v2) " Bsesin(k-x — axt + o), (1.130)

ke

where the By ; are real, and the average energies per mode are given by (1.124) which
yields (E,)(T) — T for hw, < T. Equation (1.130) might model waves emitted by
Bremsstrahlung. If we calculate the ensemble or spatial average of |B|*(x, 1) we
eliminate phases so that By ; is real:

(IBI*(x, 1)) ZB“ : (1.131)
From (1.129) the wave energy density is then
Wie (B (x, 1) o} 5 AT k3c? (Wi s)
L B’ (x, 1)) = . 1.132
% i e (IBPw0) kZ oV (1.132)

With the assumption of thermal equilibrium and doing statistical averages (1.126)
and (1.132) yield

(B 1 Kc? hoy [ dk K Ry
8 2V 4r W) e —1 ] 2n) o] efter —1
3/2
- -7 1.133
2712(ﬁc) / (1.133)

where o = k*c* + a)p, k*c*/w? =1 invacuum, x = hiwy /T, and @ = hw,/T. For a =
hw,/T < 1 the last integral on the right-hand side of (1.133) yields 7*/15 which is
the result for classical black-body radiation (1.128). For o = fiw,/T > 1 the integral
yields 34/(r/2)a*/?e~* which implies that the magnetic energy is exponentially small
for T — 0 accompanying a coalescence of the photons in the ground state as the
entropy likewise goes to zero (Nernst theorem).

EXERCISE: For a d-dimensional medium supporting normal modes with w; ~ k?
with p >0, e.g., p=1/2 for water waves, p =1 for sound waves, and p =2 for a
de Broglie matter wave, find the specific heat C ~ T9. The specific heat capacity
is defined as C =T09S/dT and recall that S is the specific entropy. Use (1.99) to
evaluate the entropy in terms of the partition function and the examples in § 1.2.5
as a template to calculate the partition function.

We now extend the analysis to an electromagnetic plasma with applied fields.
Consider a set of charged particles interacting with a given external field, e.g.,
{do(x, 1}, Ag(x, t)} with Lagrangian given by (Jackson 1975, ch. 12)

N N N
1 e;
LA{r;, v;; ¢y, Ao} = E Emivf— E eigo(ri, 1)+ E ?vi'AO(Viat)
i=1 i=1 i=1

e;e;

-y = (1.134)

r..
i<j L
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The equations of motion determined by the Euler-Lagrange equations are

. 1 1
m;v;, =e; Eo(Vi,l)+—vi XB()(V,',[) +€iZ€j —Vi— . (1135)
C r

j i

We can further expand the expressions in (1.134) and (1.135) to include an internal
electromagnetic field (also incorporating retarded time). To add a radiation field to
the Lagrangian we posit (via guesswork or covariance arguments, {E - B, E> — B?})
(Galloway & Kim 1971)

. d’x
L{ri’v[;AvA;¢0,A0}:L{r[7 vl;¢07A0}+/ 8

—j_[(Efad — Bfad) +..., (1.136)
where E, q(x, 1) = —(1 /c)/l(x, t) and B 4(x,t) =—V x A(x, t) in Coulomb (trans-
verse) gauge, V -A=0. After a little bit of guesswork and checking, the complete
Lagrangian including radiation fields for a plasma in the presence of applied and
internal electromagnetic fields is

. d3x 1 2 2
Lir;, vi; A, A5 ¢o, Ao} = L {ri, vis ¢o, Ao} + | — ZlA(xN — |V xA(x)|

81
1
+—/d3xj(x, {ri,v:}) - A, (1.137)
C
where
jGe A v =) evidx—r). (1.138)

The current j can be decomposed into a sum of longitudinal (curl free) and transverse
(divergence free) terms j=j* +j'. Only the transverse part contributes to (1.138) as
a consequence of the following result:

/d3xv¢.A=0=—/d3x<pv-A=0 where V-4=0. (1.139)

We decompose j into longitudinal and transverse pieces by calculating V -j and
V x j, and then inverting scalar and vector Poisson equations.

EXERCISE: Work out the Euler-Lagrange equations for the particles using (1.137)

to find
) 1 1
m;v; =e; | Eo(ri, t) + —v; X By(r;, t) | + ¢ Zej -V, —
C I rij
1
+ei|:Erad(riat)+_vi XBrad(rivt)i|- (1140)
c
DEFINITION: Define the functional derivatives (introducing bars over the partial
signs d)
aL 1. 1 . 9L 1.
= == A =——Er,(1 d H E_—:—_Era .
A anc (x) 1 Lra an (x) A Ime a(x)

(1.141)
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These are used in recovering Maxwell’s equations from the Euler-Lagrange equa-
tions applied to (1.137). For example, from the term fd’x|V x A|* one forms
2/dxV xA-Vx84—2[d’x84-V x(V x A) =2 [d’x84 - (47 /c)j from which
I(x) = —(1/4mwc)E .q(x) = —(1/47)V x Bq+(1/c)j'. In summary, the Lagrangian
in (1.137) recovers the correct Maxwell equations:

1. 1. 4
E.io=—-A4,V X Bryg — _Erad:_j-[jt and
C C C
1. 4, . )
VIAVxB—-E=—j|—>0=E+4nj— V-E =4np, (1.142)
C C

where we have made use of charge continuity: p + V - j=0.

DEFINITION: The canonical momentum in an electromagnetic field is defined by

oL e;
D= 3 =m;v; + — [Ao(r;, t) + A(r;, 1)] (1.143)
v; C

and as noted in (1.141)

oL 1
M) ==

1
A I = —EE(x). (1.144)

Recalling the definitions in (1.141), the Hamiltonian implied by the Lagrangian
in (1.137) is

H= Zpi'vi + / d*xI (x) -A(x) —

—Z ~m;v; +Zel ! +Zel¢0(rl’t)+/ (Erzad+Brad)

i<j

—K +C+R, (1.145)

where K =%;(1/2)m; vl, C=%X_j(ee;j/rij) + Xieiy(r;, 1), R= fd3x(Emd md)/
(8m). We note that there is no magnetic interaction energy in the Hamiltonian.

EXERCISE: Calculate p=—0H /dq, g = dH /dp, and recover Maxwell’s equations.
The generalized momentum and Maxwell’s equation in (1.141), (1.142), and (1.143)
have been calculated already from the Lagrangian in (1.137).

The classical partition function for an electromagnetic plasma with applied field is
given by

dI(x) d4 1 d’ d3,
Z(B, v; NM¢0,A0)—/]_[ (x)h (x)l_[N']_[/ e PR (1.146)

It is convenient to transform coordinates from (pi, ri, A, A) — (m;v;, r;, A, 1‘.1). Some
coordinate transformations will require the introduction of a noncanonical transfor-
mation. In general, the new volume element is related to the old volume element
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by a Jacobian factor, which is one for a canonical transformation and must be eval-
uated for a noncanonical transformation. The Jacobian matrix and its determinant
are generally

axnew,i

Ji= and J =det[J;]. (1.147)

0Xo1d. j
In this case p; — m;v; simply. The partition function can be recast as

v,m;e Pk o R
o[ e e

= Zkinetic(IB’ V)Zconﬁg(,B’ ¢)Zrad(vv :8) (1148)

Note that the dependence on A, has vanished. The kinetic component of the partition
function becomes (for an ideal gas)

17 ov e
Ziineic (B, V):HNJ![ A}(ﬁ)] : (1.149)

The configuration component of the partition function becomes

-B Zel¢0(’1

Zeontie (B, ¢>)—f]—[d i i< f} (1.150)

Note that e;e;/r;; becomes divergent as r;; — 0 , which could affect attracting
charge pairs, and requires a cutoff at the quantum limit.
Consider a Fourier series representation of the electromagnetic vector potential:

A(x, 1) = Z ZAk,é(z)e"’”, (1.151)
k e

where x takes on a continuum of values, the sum over k is denumerably infinite, e
are the two polarization states orthogonal to k, and we assume that 4_,; =4, so
that the sum over k is over a half-space (which we denote by ¥,) . The radiation
component of the Lagrangian in (1.137) becomes

.2
- {|Ak,@| —k2c2|Ak,E|2}. (1.152)

/ v
Lradz;Z‘l

Given (1.152), the following two functional derivative expressions are independent:
8Lrad _ Voo aLrad _ 14

IT e = < = — 5 = T — 2. 1.153
YT i, AT T R T L Ame " (1.153)
The radiation component of the Hamiltonian becomes
N 4rc? Vi
Hrad=R=;<nA+n A)—Lmdzl; NP+ (AP (L154)

We introduce the definition A = (a 4+ ib)+/27mc?/V and recast (1.154) as

Haa=) > {%a,iﬁ ?aiﬁg} +Y > {%z&fd kzc b,ie} (1.155)
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We are on our way to calculating the expectation of the statistically aver-
aged Hamiltonian. Recall from (1.148) that Zg.sica = ZkinZeontZraa and
e PH = ¢ PKe=PCe=PR based on (1.145). We note that there are two harmonic
oscillators in H,,4. Similar to (1.126) but accounting for the two harmonic oscillators
in the radiation contribution to the Hamiltonian one obtains

2hkc
(Hi)=————>2T for hkckKT (1.156)
eﬁﬁkc _ 1
and
! ! 2hkc 2hkc
e ke ke

which again recovers the black-body radiation formula. We conclude that the
radiation in the volume is independent of the particles except to the extent that
they influence the dispersion relation for the electromagnetic normal modes. For
example, in a plasma

32 T k2C2 ( 1 ) (1 158 )
- =———— (inaplasma .158a
87 [ i 2 k2c? + a)fy p
and in a vacuum
B? T .
fll = — (in a vacuum) (1.158b)
87 wi ke 2

THEOREM: In a classical system in thermal equilibrium, statistical mechanics and
classical mechanics imply that the average magnetization in response to a finite applied
magnetic field By vanishes, (M) = 0 (Bohr-Van Leeuwen,).

DEFINITION: j(x(r;, v;)) = X;e;v;8(x—r;).

To illustrate the Bohr-Van Leeuwen theorem consider the term in the Lagrangian
in (1.134) that depends on 4,

1
L:---+—/d3on~j(x)+..., (1.159)
c
from which follows using the functional derivatives introduced in (1.141)
1 L 9H
JX)==—=—= . (1.160)
c 04, 04y 1,4
COROLLARY: For small changes AX in L(q, q; A) and H(q, g; \)
8L|,;=—06H]|,,. (1.161)
Using Z = [ dI"e " we note
19Z dlnZ(B, v,
192 _9nZp.v.d) _ (1.162)

Z34, 34,
and using (1.148) Z = Zinetic(Bs V) Zeontie(Bs #) Z1aa(V, B), none of which compo-
nents Z; depend on A, and (1.162)

3 dre—pH 21 P
Loz —_g_><aH>=o. (1.163)

Z3d, Z 34,
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()= {5} {50

Jl=cVx{M)x)— (j)=0— (M) =0. (1.165)

Thus, the averaged equilibrium current and magnetization are zero in a classical
system. Systems governed by quantum mechanics do not have to obey the Bohr-
Van Leeuwen theorem, e.g., superconductors, permanent magnets with permanent
magnetic dipole moment, etc.

Hence, from (1.160)

>=0 (1.164)

and

EXERCISE: In a system with a uniform constant applied magnetic field B, and
Ay = (1/2)By x x with Ly, =p-By and p= (2¢)" f d*xx x j(x), show that (u) =
0= (dL/dB,) analogous to the arguments and results in (1.160)—(1.165).

[Editor’s Note: The Bohr-Van Leeuwen theorem continues to attract attention and
a rich literature exists. Some of the proofs of the Bohr-Van Leeuwen theorem reveal
subtleties associated with boundary conditions for finite domains.]

1.2.7. Grand canonical ensemble, grand partition function, and chemical potential
We next turn to consideration of grand canonical ensembles. A grand canonical
ensemble is a macroscopic ensemble of states that is in equilibrium with a reservoir.
We assume that the system I is in contact with reservoir system II, and the volume
of system I is fixed. System I may exchange particles and heat with system II, but
the total energy E = E; + Ey; and total number of particles N, = N/ 4+ N’ are fixed.
Typically system II is much larger than system I.

From (1.44) and (1.45), we note the probability of system I being in a particular
microstate n with energy E; and number of particles N/ is

{NI} OCFH[EH—E Ei(n, {N!}), N"= N, — N] St

STi(E,Ng)—Ex sy Nl KD |

—e LT (1.166)

Consider the microcanonical entropy S(E, Ny; A) and its properties 8 =0S/0E]y ;
and y, =93S5/0N;|g, Ny where N, is the vector of particle numbers whose compo-
nent index s denotes the species. We note that y, = O(1) . For example, the entropy
for an ideal gas is

3

5 N, h 5
S(E, NS, )\,)= E NA- 5 — In 7 ﬁ = E NS |:§ — In HSAS3:|,
s Tmy= K

3 S Ny

N=)"N, (1.167)

We next normalize the right-hand side of (1.166) to finish evaluating the probability
of being in the microstate » at thermal equilibrium:

e PuE1—yi-Ni

1 —
w{Nsl}," - Z Z e PuEI—yu-N’
{vi}

Downloaded from https://www.cambridge.org/core. IP address: 10.3.209.135, on 15 Jul 2025 at 01:16:16, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377825000042

(1.168)


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000042
https://www.cambridge.org/core

34 A.N. Kaufman and others

The denominator in (1.168) is identified as the grand partition function

LB yuiy= 3 3 e mEeM it = S Nz, (N By ), (1169)
(1} 7 (1)

where
Zi(Ny, Pu, )»)Eze_ﬁ”E'("'N') (1.170)

n

is the ‘petite’ partition function.
A small change in the entropy satisfies the difference equation

dS=BdE 4y, -dN, > dE =TdS — Ty, - dN,. (1.171)

DEFINITION: u, =—Typ, is a set of chemical potentials. Equivalently, u,=
dE(S, Ny, 1)/ON;.
Recalling the definition of y,, we can express the chemical potential as follows:

ps =T InnA’. (1.172)
Keep in mind that N, is variable.

EXAMPLE: The grand partition function for an ideal gas (of identical particles) is

_ AN
. Z ,VN(Zo Z(lev'y) _one, (1.173)

N=0

where Z; is the one-particle partition function as defined after (1.116), Z,=
%, e P — Vi/ A3 using (1.119). We note that (1.170) and (1.171) yield the simple
identities

<NI> = _w and (EI> = —w

oy 0Bu

EXAMPLE:In  an  ideal gas  (Ny)=—(d In Z(Bu, yy)/0yy) =Zie " =
Vle_y”/A3(,8H) = (VIVLHAS(,BH)/A3(}3H)) = nHVI and the number densities ny =ny
using (1.171), (1.172), and the definitions, and assuming that the bath and system I
share the same mix of species and can freely exchange particles without disturbing
the physics.

(1.174)

EXERCISE: Show that ((§N;)*) ~ 92 In Z/dy: is small if system I is macroscopic,
ie., Ny~ 0(10%).
Consider a macroscopic system I whose probability is given by

1
NI}_an W ——e rNZ(B,N)=—e P~ ﬂN>—Ze*ﬂQ, (1.175)

where F is the Helmholtz free energy, u = —T y, and the grand potential is defined

as

QL=QB, u;N)=F(B,N)—u-N. (1.176)
Recall that NV is the vector representing the set of occupation numbers in different
states.
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The probability of having a given set of occupation numbers is

1
~ Z(B.w)

The maximum of the probability wy with respect to N occurs at N*, i.e., (N) = N*.
Given (1.177), the maximum of wy corresponds to minimizing 2 with respect to V.
At the most probable set of occupation numbers N* the grand potential satisfies the
relation

e POP N, (1.177)

Wy

1
~_ _InZz (1.178)
B

plus a constant of smaller order.
Using the relations F=FE — TS, Q=F —p-N, (1.171), and (1.172), we have

dE=TdS+p-dN+ Adr and dF = —SdT + u-dN + Adx (1.179)

where, for example, we might choose A =V and A = — P from (1.65); and we arrive
at
o dlnZ
dQ=—SdT —N-dp+Adr and N=-—2=_2"% Ny=N*  (1.180)
o ay
for a macroscopic system. From (1.180) with A=—P and A=V
Q2 Q
dQ=-8SdT —N-du — PdV - P=——(T, u, V)= ——. (1.181)
Vv Vv
In deriving P =—Q/V we argue that Q is extensive (should scale with volume),

while 7" and u are intensive. Hence, Q =V fn(T, u) and
—PV=Q=F—pun-N. (1.182)

EXAMPLE: Grand partition function and grand potential for an ideal classical gas

VT
QT, nu,V)y=-ThZ=— et 1.183
2 ) ( )
Q T 1% P T
=t =— ¢, —=__ pP=nT. (1.184)
V. ANB) A (B) N vV

THEOREM (Gibbs-Duhem): Take the differential of (1.182), substitute (1.181), and
divide through by V to obtain

S
dP = 2dT +n-dp (1.185)

and P is determined as a function of T and p, or Tand n=N/V, i.e., the equation
of state,

dP
P(T,p): n(T,p)= @(T, w) — P(T, n). (1.186)

We next consider a few interesting examples.

EXAMPLE: Quantum ideal gas.
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Consider a subsystem consisting of a single-particle quantum state k for a simple
noninteracting electron gas. The energy of a single electron is
2

. s (non-relativistic), (1.187)

Jvp c2 +m?2c* (relativistic).

Note: If the particles are photons (bosons) instead, one must be careful because they
are not conserved. Ions, molecules, fermions, molecules, etc., are conserved if non-
interacting (no ionization, no recombination, no chemistry). Including a magnetic
field B and spin, the subsystem energy is

E:Zé‘kai;lB, (1.188)
k
where N, is an occupation number (N, = 0, 1 for fermions due to the Pauli principle;
and Ny =0,1,2, ..., oo for bosons); and (i is the magnetic moment associated with
the spin. The probability of the macroscopic state k with occupation number N is
th
- eV Ni=BENk e BE—1ts)Nk
Wy, = == , (1.189)
Zk ZNkzo e—ﬁ(gk—ﬂs)Nk

where the sum in the denominator for the grand partition function is just two terms
for fermions and a geometric series for bosons.

EXAMPLE: Bosons.

In order that Z, converges, & > u for all k. We also note that & =0, which
implies that u < 0. Hence, wy, oc e PEFDNe e wy is a monotonic and exponen-
tially decreasing function of N,. The most probable state is the state Ny =0. From
(1.189) one concludes

= 1
Nk>E Z kaNk:e/S(gk‘HT—l. (1190)

Ni=0

Here (NV,) is a monotonically decreasing function of &, and Einstein condensation
can occur when (N;) becomes macroscopically large which is possible at & = 0.

EXAMPLE: Fermions.
Because of the Pauli principle the occupation number N, = 0 or 1 for fermions.
The probability wy, is proportional to

N, O e PETIN, (1.191)

For p > 0 the argument of the exponential is positive for & < u, and is negative
for & > u. wy, takes on just two values as a function of Ny, at Ny= 0 and 1.
The argument of the exponential vanishes for & = u the Fermi level. Figure 2 plots

(Ny) = }szow v, N as a function of energy & (Fermi-Dirac distribution function).
We define £ = &; — u and the partition function Z; is then
AC +1 (fermions),
zk=(1+ae-ﬂf) o= ( ) (1.192)
—1 (bosons).
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n(e) 1/ , |[—kpT = 3u
1 . )E kT = ﬁ/l
—T=0

FIGURE 2. Fermi-Dirac distribution function (N )=n(E) (Riebesell 2022).

Then
InZi=0ln(l+oe?) and Z=[]Zi— hZ=) Iz (1.193)
k k

We recall the analysis leading to (1.182) and obtain

Q T T
_ _ _ —B(Ex—1)
P = AT In Z—VU Ek ln(l+ae % ;4)' (1.194)

We introduce the de Broglie wavenumber k and evaluate & = (hk)*/(2m). In (1.194)
we replace £;— gV [ (d’k)/(27)* where the factor g =25 + 1 and the spin factor
is S =1/2 or an integer. Then (1.194) becomes using In(1 + x) = B2, (= 1)'x’/¢

P:agT/ dx ln(l—i—ae*ﬂ(‘g"*’”)
2n)’

00 -1 3
=ogT Z(_l) ot ﬂeﬂ%(&rm
=1

¢ 2n)’
o -1 &k
_ gTZ( "2 (271)3["“&*“). (1.195)
=1

Recalling the definition A =h/+/2xmT and introducing the dimensionless fugacity
or absolute activity & = ef*, (1.195) leads to

o0

— 8T (_O—)lil ¢ . gT 0’%'2 %-3
_Ad(ﬂ); fl+% %_ %P(T,S)—m[f—ﬁ—i—m_{_‘”]’ (1.196)
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where the dimensionality d has been set to d = 3. We recall (1.186) which determines
the particle density n = 9P /0,

n(T’é):aP(T,M):ﬁéaP(T,E): 8 [5(1_267_3§+.'.)]

B 0 AY(B)
g )T,
= %) ; e gL, (1.197)

We note that the convergence of the expressions in (1.196) and (1.197) for P and
n requires that the absolute activity £ = ef* < 1, i.e., u < 0. (1.197) can be inverted
and solved iteratively for

§(T,n)= (1.198)

nAY(B) o nA‘(B)
2 (1 + — X0 +... ).
The value of nA°® yields a measure of how quantum mechanical the gas is: nA® <« 1
is the classical limit.

Using the definition & = ef* and (1.198), one obtains

Ad
u="T ln(n ('8)> + corrections (1.199)
8

and from (1.196) and (1.198)

o nA¢

P(n,T) :nT(l + 5

—+ O(nAd)z) (1.200)

where 3 is replaced by d.
The influence of o on the pressure is clear: ¢ = +1 for fermions has a repulsive

effect, while 0 = —1 for bosons has an attractive effect (symmetric wave function).
EXAMPLE: Bose gas.
Consider a gas of bosons, 0 = —1. The pressure relation (1.196) becomes
_gr =1 '
P8 = 1i ;wd/zg (1.201)
and the density relation (1.197) becomes
= 1
T,&)= — &' 1.202
W6 =5 Z o (1202)
The expression
AY(B) -
nT. )=y Ws (1.203)

=1
is a monotonic increasing function of & on [0,1] and takes on larger values for d =2
than for d=3 (it diverges at £ =1 for d =2). The limiting value of & is £ =1,
and the right-hand side of (1.203) becomes the Riemann zeta function R(x =d/2)
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where R(x) = X;2,1/£*. A few values of R(x) are given in the following list in order
of increasing Xx: R(1/2) =00, R(1)=00, R(3/2) =2.612, R(2) =7%/6 =1.645,
R(4)=7*/90=1.082, R(10) = 1.001. Here R is a monotonic decreasing function
of its argument and asymptotes to unity for large argument. Thus, for d =3,
(nA3) = 2.612g, g =28 + 1. Because £ is less than one, the value of (nA®),,,
is actually less than 2.612g. Recall the discussion accompanying (1.190) that (N;) is
a monotonically decreasing function of energy & and that a condensate can occur
in the ground state. From (1.193) the partition function satisfies

InZy=—In(1-§) and InZ=) o n(l+oe”). (1.204)
k
Hence,
dInZ dInZ 1
(Ngy=—2m20 Oz & 0 & 1 (1.205)
dy dE 1—& e>11—¢ 1-¢

and this is volume independent. Thus, (Ny) > occasé — 1, and £ =1—1/(Ny). To
illustrate the onset of the Bose-Einstein condensation, set £ to its limiting value £=1
in (1.203), set d =3, use R(3/2) =2.612, and evaluate A, g =1, and # in a specific
experiment for helium II to obtain

ﬁz
Ty(n) = 3.31—n*? — T, (theory) =3.13°K, (1.206)
m

where 27/R(3/2)*° =3.3128.... This compares with an experimental result of
2.19° K.

[Editor’s Note: No reference to a specific experiment was given. The boiling point of
Heis 4.2 K, and He II becomes a superfluid at approximately 2.17° K at 1 atmosphere
pressure. ]

There is a problem with applying the grand canonical ensemble to the description
of the Bose-Einstein condensate. Consider (1.201) and (1.202) for the pressure P
and the density # in the limits g=1 and d =3:

o0

T 1 1 1
P(T, &)= —— — & T,6) = —— — &t 1.207

TO=Tm L O L "
where £ =e” =eP* < 1 because p < 0. In the limit that £ — 0§ =nA°* is the num-
ber of particles in a de Broglie cube. However, from the expression for the number
density in (1.207), as &€ — 1

nA3=A3@:2.612—> (N) :2.6121, (1.208)
Vv A3

while in contrast (1.205) asserts (Ny) = 1/(1 — &) which diverges as & — 1 and is
volume independent, while () scales with V. Thus, there is a problem here. The
difficulty is that in using the grand canonical ensemble, any particular energy state
uses all the other states (systems) as the bath at a given temperature. However, when
the particular state is the ground state, the bath is not so large in comparison with
the number of states occupying the ground state at conditions such that & — 1 are
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Condensate (N, max) //
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i T ]
; 4 5

/ - Normal (N, micro)

FIGURE 3. Phase diagram for Bose—Einstein condensate, density versus temperature.

approached. The model of the grand canonical ensemble falls apart here for Bose
statistics.

A solution for bosons is to use the Gibbs ensemble Z (B, Vi, N;) in which the
system (I) is in contact with a heat bath allowing exchange of energy but in which
particle exchange is prohibited. In § 9.6 of Reif (1965) the authors present presented
an analysis of Bose—Einstein statistics. There is a clever use of a Lagrange multiplier
there. They show N, to be proportional to V, and the ground state is shown to
support large fluctuations. Landau & Lifshitz (1969) is another good reference on
the Bose gas.

A plot of the density versus temperature where the Bose-Einstein condensate
onsets based on (1.206) is shown in figure 3. A schematic of the relative fraction
in the ground state for the corrected theory is shown in figure 4, (Ny)/N versus T'.
Note that in the corrected theory both Ny and N scale with volume. Regarding
the pressure, the ground state has no energy; only the excited states contribute.
Equation (1.207) gives the correct pressure. Figure 5 presents a schematic for the
pressure versus density for various temperatures. For nA3 <« 1 the system satisfies
the ideal gas relation P ~nT while for nA3 > 2.612 the system begins to fill the
ground state.

Figure 6 presents a schematic of the pressure P versus the volume V = N/n for
various isotherms. The critical pressure for a given volume above which volume
there is no condensate scales as P, ~ V3/°.

EXAMPLE: Bosons in which the number N is not conserved, e.g., excitations and
photons. In such situations N is not conserved, N;=0,1,...,00 and u=0.
Calculate the properties using the grand canonical ensemble but with = 0 (should
agree with canonical ensemble). For the special case of photons in vacuum with
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FIGURE 4. Schematic of (Ny)/N versus T for the bose condensate.
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FIGURE 5. Schematic: P versus n for various temperatures.

wy =kc, & = hw, = hkc, summing over right-hand and left-hand circularly polar-
ized waves in three dimensions, we can calculate the grand potential Q from (1.183)
and (1.203):

11
Q=-VT R(4);E, Ay = —, (1.209)

where R(4) =74/90.
EXERCISE: Verify (1.209).
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FIGURE 6. Schematic: P versus V for various temperatures.

EXAMPLE: Ideal Fermi gas. Consider an electron gas with g =25+ 1=2 and
o = 1. The pressure from (1.195) is

&Ik
P(T, n) =2T | ——In(1 4+ ge &), 1.210
(T, w) /(271)3 n(l+oe ) ( )

For & > p: e P& W « 1 in the limit that T — 0 (8 — ©0), so that In(1 +0) =0;
and the electrons are completely degenerate. Note that for & = p*/2m = Rk /2m <

w: (=€) > 1 and In =) = B(u — &) in (1.210). The pressure receives finite
contributions only for & < u when T — 0:

kmax (Ex<m) d3k

P(0, M)=2/ (L —E. (1.211)

0 (2r )3
The density satisfies

n(T =0, u)= y :2/kmax (Ex<m) d3k _, 47”](; _ 8_7-[<&)3 _ 8_”A—3
’ o Jy @Qm)  T@n)' 3 \h 300
(1.212)
where we define the Fermi level
2 21,2
p hk
M:&:ﬁ: 2mF. (1.213)
From (1.212) and (1.213)
3 Ny h 8
k;=§7(2n)3=> AF=; and nA}:?. (1.214)
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Hence,as T — 0

3 23N 2
E=26N and P=2-3""_"Zu¢g, (1.215)
5 3V 5

in the nonrelativistic limit. Beware that £ depends on # via (1.213) and (1.214).

EXAMPLE: A nonideal gas (‘real gas’) in the classical and quantum limits
Consider a simple one-species gas with partition function in the classical limit.
From (1.119)

1 /v"
_(F) Ov(B, V), (1.216)

= —BEn(V.N) _
ZB.N.V)=) e =

n

where Qy(B, V)= [ (d’r/ V)Ne’“’(’i) is the configurational partition function and
® is the interaction potential. The grand partition function is then

Zy.B.V)=> e "™Z(B. N, V). (1.217)
N
Substituting (1.216) into (1.217)
=1 VeV =1
Z(y, B, V>=Zm< 23 ) Ox(B, V)= (VD" On(B, V)
N=0 —
=1+4+VzQ, +iVZ0+..., (1.218)

where z=&/A% =77 /A* is the activity in density units. Note that in the Boltzmann
gas limit & — nA°. In (1.218), O, =1 (no self-interaction); and

3 3 3 3
QzZ/ s / et (1219)

For large numbers of particles the thermodynamics is independent of the par-
ticular ensemble. However, for finite systems, e.g., N =100, the grand canonical
ensemble is invalid; N is not much larger than In(N). Consider applications of using
the grand canonical ensemble (1.217)-(1.219). For z=e¢77 /A% — n as n — 0 with
y =0S/IN(E,V, N), we have (1.218) for Z(y, 8, V) with

N
d3 r;

on(T, V):/ We-ﬂq’(’f) > 0. (1.220)

Consider (1.219) in more detail:

Erd’n g0 Er [ s 0 2by(T)
Q2:/ V2 e 12:/7{/7[6 _1]+1}:1— V )

(1.221)
where by(T) = —(1/2) [ &’s[e7#*® — 1] is defined in (1.91). We note that the term
2b,(T)/V = O(1/V) . Then

Z(y,B.V)=14+Vz+iVZ20+ O(N®) +-- -+ O(NHY", (1.222)
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FIGURE 7. Schematic: 8P = P/ T versus n equation of state and phase diagram.

where Vz=0O(N"), (1/2)V?z22Q, = O(N*?), and so on. The terms increase succes-
sively until the N* term, after which the terms in the series fall off, and the series
converges. The expansion in (1.222) is not as useless as one might think because
the series is monotonic increasing in z, the activity. As a function of z, Z(y, B, V)
increases from unity at z=0; and In Z is greater than 0 and increases with z. There
are some assumptions to keep in mind. For example, one requires that ® > —o0 in
order that Qynot go to oo, which excludes point masses and point charges. For the
hard core + van der Waals potential diagrammed in figure 1, there is a minimum
volume for the hard-sphere particle (47 /3)r; and a maximum number of particles
in the volume: Nya ~ V /(4 /3)rg For N > Ny Qy — 0. In these circumstances
we can terminate the series in (1.222) at N = N,,. The grand partition function is
analytic and finite. From (1.194)

1
P=—1InZ(z T,V 1.223
% (z ) ( )
and the physical pressure independent of volume satisfies

) 1
P(Z’ T)physical = Vlglgo IB_V In Z(Z’ T? V) (1224)

Here BP is a nonnegative and a monotonic increasing function of z. There is a
possibility of a discontinuity in the slope of 8P with respect to z. Using (1.197)

aP(u, T,V 9 9 In(l+Vz+1y2z?
PPV 2 1ppe, T, V=2 ( VS0
ou 0z 9z Vv
(1.225)

The density 7 is positive and so is dn/dz > 0. Where P has a discontinuity in its
slope at z = z7, for V — oo, a jump discontinuity can develop in the density n. The
equation of state for P as a function of density # can then exhibit a phase transition
at zr. Figure 7 depicts a schematic of an equation of state and a phase diagram.
Phase I might represent a gas, while phase II might represent a liquid or a solid.

n(iz, T,V)=
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In constructing the equation of state and phase diagram in figure 7, we note that

0 < ((§N)*)=(N? — (N)? and, as a consequence of (1.225),

Nz o a5 (1.226)

—_ = —= —_— = —_— > — > anda — .
ayr oz oP aP dn =

using T >0, (N)>0, and dn/dz > 0. Hence, P either increases with respect to

increasing # or has flat intervals.

There was fundamental work on phase transitions in physical systems in the ther-
modynamic limit based on the properties of small, model systems by Lee and Yang
(Lee & Yang 1952; Yang & Lee 1952). The theory revolves around complex zeros
of the partition function in finite-sized systems which may permit the possibility of
phase transitions.

1.2.8. Systems with external fields

We next analyze a system in the presence of an external field. Consider a system
with a downward-directed (with respect to z) gravitational field with gravitational
acceleration g. The gravitational potential for a particle in energy state a with occu-
pation number N, in subsystem II at z with mass species s is juxtaposed with a
subsystem I at z; above it is given by

v, =m g2, (1.227)

and the subsystem total energy summed over the internal energy and the energy in
the external field is ‘
E,=E™+ N,y.. (1.228)

The subsystem II and bath I are assumed to satisfy the conservation laws:
N:N]+NH, E:E[+EH. (1229)

We maximize the total entropy S = St + Sy and deduce the relations:

35S . 9
0=dS=) dS,= ZdE™ *dN,, 1.230
za: Z aEm TN, (1:230
with 9S(E, N dS(E, N
y5¥ and ﬂaz(—’) (1.231)
AN |, IE, |y,

and Ty = Ty. The dependence of the entropy S(E, N) on the internal energy in II
can be expressed in terms of the internal energy F;, and the occupation number N
as S(E, N) = S°(Ejn, N) = S°(E — Ny, N) from which follows

gy BSEN| 3" 9° | o g —pae )
PEY=TON L TN, Bl - TP
= U=+, (1.232)

i.e., the potential energy of the subsystem is the sum of the internal chemical poten-
tial and the external potential energy. Subsystems I and II are contiguous and in
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equilibrium with one another, and they share a common temperature. Thus, (1.232)
applies to both; and y and, hence, i are continuous:

= o = g+ =g’ + 9 (1.233)
For the case of an ideal gas,
o = Tln(nA3) and Tln(n1A3) +mgz = Tln(nHA3) + mgzy, (1.234)
from which follows the result for an isothermal system:
2 = epmstaan (1.235)
nn

If there is no net force on the isothermal system, then
TVn Bmes
V=0 — Vuy=-V¢ > —— =mg = n(z) =n(0)e /s, (1.236)
n

We can further elaborate the results in (1.234)-(1.236) using the Gibbs-Duhem
relation (1.186)

P
In the absence of the external field,
0 0 aP°
P(T,u)—> P (T, po) =P (T, n—y) = VP:W(—VI/I)- (1.238)
0

For example, —Vi{» =mg and then AP = —nmgAz.

1.2.9. Particle interactions: hard disks, pair and triplet correlations
We next return to consideration of correlated particles, the virial expansion, and
(1.218) and (1.219):

[ee]

1
Z(r, B, V) =) (VO QN (B V)

N=0

1
=14V 3VZ 0+ V2 0+

3N

d ri _ -
On(T, V)=/ e, (1.239)
d&*rd’ 2b,(T
Q2=/ r“/z "2 ppon —q "‘é ) (1.240)

for the case of studying the transition from a fluid to a solid, and the formation of a
close-packed structure. Berni Alder was a pioneer in molecular dynamics simulations
and exploited hard-disk models in the interaction potentials. Consider a working
model for Qs which captures the interaction of three particles:

3 3 3 3 3 3

0, Zf Erdnd'rs _giorom _ [ S19d i), —po10) -0
V3 V3

(1.241)
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DEFINITION: Introduce f;;, e #% =1+ f;; where lim f;; — 0. Then

(I+ fi)A+ f3)(A + fia) =1+ fio+ fs+ fis+ fiufos + fi2fi3
+ fufis+ fiufafis (1.242)

Now start performing the integrals in (1.241), e.g., (V/V?) fd*rd’rfi,=
(V2/V?) [ d&*ry fir; all of the terms are like this. Hence,

3 3
Q3=1+V/d3r21f12+W/d3r21/d3r31f12f13

1
+W d3r23/d3”21/d3”31f12f13f23- (1.243)

The second through fourth terms on the right-hand side of (1.243) correspond pic-
torially to —, A, A, i.e., two-particle interactions among two vertices (particles) or
three vertices (particles). Here O, has additional terms like X and other ways to con-
nect four vertices depicting two-particle interactions among four vertices (particles).
From (1.218) we can employ a Taylor-series expansion to calculate

1 2,2 1 3.3
InZ=Vz+ V20— 1+ V2 [0 —30:+2]..

6
=V +1v22 1()+1v33 1(3/\+A)+ (1.244)
=Vt Vi Ve .. .
in terms of the pictograms (Hill 1960). Hence,
InZ 1, 1,
=724+ () +-227BGA+ A)+---=BP. (1.245)
1% 2 6
Thus, the pressure is volume independent. We can rewrite (1.245) in the following

form:

BP(z. T)=Y z/C/T),

j=1
Ci=1,
C2 = %(_) 9

LAY+ (A) = H(o2 gt
C=3(0) + (A) =3+ (A,

Ca=.... (1.246)
From (1.225)
n(z, T)=z9/9z(BP) = ijfcj(T). (1.247)
j=1
Hence,
n=z+272C,+3°Cs +. .. (1.248)
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and
BP=z+7°Co+7°Cy+... (1.249)

from which it follows that

z=n-20"C,+n’(8C," = 3C3) +.... (1.250)
Substituting z from (1.250) into (1.249) and collecting terms in a power series in 7,
a virial expansion for § P can be obtained:

o0

BP(n, T)= n'by(T), (1.251)

j=1

where by =1,b,=—C,=—(1/2)(=) , by =4C> = 2Cs =(=)’ —(=)* = (1/3)(A) =
—(1/3)(A), and b4 contains irreducible forms involving (X,...). We discussed the
evaluation of b, earlier for the van der Waals model (1.92). For b; we have

1 1
b3=—§(A)=—§/d3r32/d3”21/d3”31f12f13f23- (1.252)
EXAMPLE: Assume a hard-sphere model
_17 r2 S a,
f= 0 (1.253)
) rp, >a,

which corresponds to ¢, = oo for r;; <a and ¢, =0 for r, > a, where a is the
diameter of the hard sphere or disk. We note that this model is highly simplified
and artificial. Actual configurations of three hard spheres generally cannot satisfy
rij < a for all three interacting pairs except for one orientation in which the three
hard sphere centers correspond to vertices of an equilateral triangle. Configurations
of four hard spheres cannot satisfy r;; <a for all possible pairs. Nevertheless, use
of the hard-sphere model in (1.253) and ignoring the reality that certain interacting
pairs can never satisfy r;; < a allow us to push through the calculations determining
the virial coefficients (Frisch 1964).
The evaluation of the virial coefficients in two dimensions leads to

bi=1, by=—Cy=—1(—)=1ind’, by=0.782(by)*, by =0.5327(by)". (1.254)

Then using (1.251) it follows that
BP =n + byn® +0.782b,°n* + 0.533b,°n* + O (n°). (1.255)

We note that (1/2)ma? is the area of two hard disks, and nwa?/2 is the average num-
ber of particles within two disks in two dimensions. The maximum two-dimensional
density for close-packed hard disks is 7y, = 2/a® from which nma?/2 =wn/nmay
and (1.255) becomes

P 14 n
nT N

2 3
+n20.782<L> +n30.533< ! ) T (1.256)

nmax nmax

where P/nT is an increasing function of n/n.,,, and increases faster as 7/my.y
increases in this example; P/nT diverges at a value of n/n,, equal to the radius
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of convergence which is less than or equal to unity. However, the virial coefficients
are not necessarily positive in the nonfluid region; and the P/T versus n/n,.. plot
can have a flat region as in figure 7 where there is a phase transition. In the flat
region the local number density is the ratio of the sum of the number of particles or
molecules in the two phases divided by the sum of the volumes of the two phases.
Recall the arguments accompanying (1.224)-(1.226) regarding the positivity of both
P/T and dP /dn for the grand canonical ensemble. By including more physics in ¢;»,
e.g., attractive forces, P/T versus n can acquire more structure.

1.2.10. Simple model of a phase transition

EXAMPLE: Hard-disk interaction in a two-dimensional periodic domain (particles
leaving the domain re-enter symmetrically). Alder and collaborators computed the
pressure using the virial expansion. In two dimensions and taking the time average

to simplify
P—@+L< E (r._y.).fi> (1.257)
T v v Al '

collisions
The collisional interaction can be evaluated as f ]’ = (d/dt)mv;| yision = Amv; /At and

in At

N
~ 2 rullAmvl) = v —-al|Ami)), (1.258)

coll

where r;; =a for hard disks and v, 1s the single-particle collision rate. We define
an effective temperature although there is no heat bath, K = NT. Hence,

P=nT+%vcou(|Amv,-|) (1.259)

or using ey = +/(v?)/€ where £ is the collisional mean-free-path

P co A i A i
Loy @anlldmul) e {lAuh (1.260)
nT 4 (Emvf) ') /{v?)

The right-hand side of (1.260) has no explicit temperature dependence, only
geometry and density dependence, at least for hard disks.

Hence, P/T versus n is a universal curve independent of isotherm for hard-sphere
interactions.

We note that in a dilute medium the collisional mean-free-path scales as
¢~ 1/no ~1/na®> where o is the collision cross-section. In dense regimes the
collisions are pretty much head on. As n — ny,y, then £ — 0 in crystalline structures.

In 1957 Alder and Wainwright published the results of numerical Monte Carlo
calculations based on a hard-sphere model for the interaction potential leading
to equation-of-state results (Alder & Wainwright 1957; Wood & Jacobson 1957).
Figure 8 taken from Wood & Jacobson (1957) shows Alder and Wainwright’s equa-
tion of state results for systems with 108 and 32 molecules, in which PV /T is plotted
versus the normalized volume V'/V, which is proportional to the number density #,
and V), is the close-packed volume for the system. Alder and Wainwright’s results
show an overlapping region wherein two distinct pressure states can coexist for the
same volume. The system supports the possibility of a spontaneous transition. In the
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[ " l ! ' ' ' ‘

/r—Nl RIAL,

V/Vo

FIGURE 8. Monte Carlo equation of state results from Wood and Jacobson (1957) showing
their results and those of Alder & Wainwright (1957) (solid line for 108 molecules; + for 32
molecules).

overlap region, i.e., the two-phase regime, there is a great amount of instability with
large fluctuations.

If we were to plot P/T versus n for Alder and Wainwright’s results in figure §,
P/T would grow from 0 at n =0 in the fluid region for increasing » until it reaches a
critical density 7., above which P/T might continue to increase if the system remains
a fluid, but the system may instead jump to a crystalline solid branch at a lower value
of P/T whose P/T then increases with n. Note that we earlier proved dP /dn > 0 for
the grand canonical ensemble, whereas the Alder and Wainwright systems do not
satisfy this constraint because their systems are microcanonical ensembles with a
relatively small number of particles/molecules rather than an infinite number.

Theories of the liquid state are difficult. Liquids are hard-sphere systems with a
weak interaction between particles/molecules considered as a perturbation.

P_AS(E.V.N) __ ,3SEnm) P

o eV 9ol L 1w hm). 1.261
T PY% "o a7 L Hhm) (1.261)
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From (1.167) and (1.261) one obtains

/!

SE,n)= ; — InnA*(E) — / (;—n/h(n’). (1.262)
0

Why is the entropy contribution negative as n increases? As n increases for N fixed,
V' decreases and configuration space is limited so I" decreases and the entropy must
decrease.

Consider a solid and its own vapor with strong enough forces such that even at
P — 0 there is a solid. Assume there is a solid surrounded by a gas. Further assume
that the energy of the solid can be represented by

1dVv
Eq = —Nyi&, + f(T)(neglible term) 4+ g(V)(neglible term) , V_PO < 1.

dp
(1.263)

The specific energy of the solid is &, = —&,, the binding energy. Fixed constants
are
N = Ngas + Nool and V= Vgas + Viols where Vil = N501V09 (1 264)

where V) is the volume per solid molecule. At equilibrium
8Esol
dN, sol

=—& =Ugs=T In ngaSA3(T) — ngasA3 — o 5/T
(1.265)

Equation (1.265) is a nice formula for the vapor pressure. The classical limit in
(1.265) is ngA* < 1, which implies that for & ~ 1 eV, T <« 1eV =12,000°K.

Consider increasing N, and concomitantly Vi, = Ny, Vy, while holding 7T fixed.
The volume V,,, must decrease for the total volume V fixed. In this case, NgsA® =
Vgase‘gb/ T decreases with decreasing Vias- Here ngys = Nyys/ Veus 18 just a function of
temperature and remains fixed. Hence, Py = ngsT = (T/A°)e /" remains fixed,
i.e., the vapor pressure remains constant as we increase N,.

We next include volume dependence in (1.263) so that V. is allowed to vary
around its optimum equilibrium value:

Msol = Mgas = Msol =

N (Vs = Vo)’
2 Vi

where N, /2 represents the number of interacting pairs and V, = V,,/Ns,. From
(1.266) is follows that

Esol = _Nsolgb + O(gb

(1.266)

0 Ey V, =V,

aVsol N.
which has the form of a Hooke’s force law. We can divide through by N, in (1.266)
to obtain the specific energy per solid molecule. We note that the system has the
following attributes:

Psol = Pgasv Msol = Mgasa V= ‘/sol + Vgasa N = Nsol + Ngasv S= Ssol + Sgas~

: (1.267)

sol

(1.268)
The total entropy is the sum of the gas and solid entropies:
S = Ssol(Esolv Vsolv Nsol) + Sgas(Egasa VgaSv Ngas)
= 8018801(85017 nsol) + Ngassgas (ggasv ngas) . (1 269)
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P solid

W

two phases

FIGURE 9. Schematic for P versus V phase diagram for the gas—solid system.

Given that the solid and gas are in equilibrium with one another at the same temper-
ature, then Py = Pgs and g = Mgss 10 (1.268). From iy = 0 Ego1/0 Nol| Set, Ve =
_gb + (1/2)a5b(vs - VO)Z/V(?, Mgas = T In ngasAS(T): Msol = Mgass Pgas = ngasT =
(T/A)e ®/T = Py = —a&,(V, — V) /V3, it then follows that

Vs = W) 1T v —&)T
—_ = , 1.270
Vo o gb A3 ¢ ( )
where 1/a~ O(1), T/E <O(), vy/A*> ~0O(1), and e /T « 1.
From (1.270) we conclude that only negligible deviations (compression or expan-
sion) of V, from ), are allowed. From (1.268) and (1.270) we can also derive

V — Ny V,
Ny = Tloe—a,/r_

Figure 9 presents of schematic diagram for the P versus } relation for the gas-solid
system with N and T fixed. For small values of ' greater than the minimum value
Nv, the system is a solid and the pressure is largest. As V increases, P decreases
while Ny,/N ~ 1 for a while, until N,/N begins to decrease and N,,/N increases.
Both gas and solid phases occupy the flattish intermediate region of the P versus V'
relation. At the largest values of V' there is only the gas phase. Not shown in figure 9
are trajectories followed from either end of P versus V' where we progress along
curves in the complete absence of the other phase, namely, beginning at largest V'
gas only and beginning at smaller V" solid phase only. Along these curves we can have
metastable states which require either nonuniformities, e.g., for the supersaturated
vapor to collect and precipitate upon, or over a long time cavities will appear (when
the solid is subjected to too little pressure) in which there is vapor.

(1.271)

1.2.11. Quantum virial expansion
Consider hydrogen atoms (no ionization) and H, formation. In the quantum picture
the grand canonical partition function is
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ZB,y, V)= Z e "N ZN(B, V)= Z e VN Z o—PEn(YV)
N=0 N=0 n

=14+e?Zi+e ¥ Z+..., (1.272a)
where = —Ty and introducing the internal energy 5}(“‘
—p& —ﬁ<%+ 5}?‘) g2 _pgint
I VO [ O
k k Kk n
v .
= FZ‘I“‘(;F}). (1.272b)

Recalling the analysis in (1.192)-(1.194), the statistical weight factor associated
with the possible quantum states now including angular momentum and spin quan-
tum numbers is go=(2S+1)(2I +1) where S=1/2 and I =1/2, then Z"(B) =
Y,e PEN = 4e~PCIm) where I = 13.6 eV, and we ignore excited states of hydrogen

to be consistent with the assumption of no ionization. Recalling the virial expansion
in (1.218) and (1.219) we have

=1
Zly, B, V) =) VD" QN (B, V). (1.273)
N=0 '
Define .
z
Zy =" ]\‘]), O (1.274)

and Qy are quantum virial coefficients:

27,

QOZI, lel, Q2:_,...
zi

(1.275)
Analogous to (1.234), u=T[ln zA>— In go] — Iy where go=R2S+1)2I +1)

= O(1) compared with zA®. Note that z as in (1.250) is equal to n to lowest order.
Analogous to (1.251)

[ee]

. Vv
BP(n, T):anbj(T), b =1, bz(T)z—E[QZ(T, Vy—11, .... (1.276)

j=1

EXAMPLE: For an ideal gas we employ classical counting for the possible states and
conclude that z; = z3/2 and b, = 0.

EXAMPLE: For quantum systems we carefully count the possible states. Consider
bosons with no internal structure, e.g., the helium atom with two states: n = (kq, k).
Then with E, =&, + &,
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zzzze—ffﬂ:< 5 +Z)eﬂ<skl+sz>
.

n k1,ky k1 <ky
= (% Z —{—% Z ) e_ﬂ(gkl"'gkz)
ki.ky ky=k>
=3 (Z%(ﬂ) +> e‘zf’fk> =3 (ZiB+7:2p)) (1.277)
k
where, from (1.119) and (1.274)-(1.276)
-V A (B)
Zi(B)=V/AB) and by(T)=-——Z,28)=— . 1.278
(B)=V/N(B A1) =5 0 == (1.278)
EXAMPLE: For Fermions we exclude the state with k; = k, and derive
A3
by (T) = @) (1.279)

42’

because Fermions have repulsive interactions.

1.2.12. Numerical simulation of equations of state and phase transitions, Berni Alder,
and molecular dynamics
Berni Alder’s work was mentioned earlier in §§ 1.2.9 and 1.2.10. Alder made seminal
contributions to molecular dynamics and was a pioneer in demonstrating molecular
dynamics as a viable approach to studying the statistical mechanics of many-body
interacting systems (Alder 1972, 1973). By employing Monte Carlo methods in
the numerical integration of the Newtonian equations of motion for ensembles of
particles, i.e., molecular dynamics simulations, a numerical scheme for solving the
Liouville equations was devised; and the partition function and its derivatives were
obtained. This approach was necessarily limited in the number of particles and,
hence, generated a microcanonical ensemble. The application of Monte Carlo inte-
gration methods is not straightforward and is good only when the quasi-ergodic
hypothesis is valid. How does one evaluate (1.220) using Monte Carlo integration

methods? We have
N,
1

d
ON(T, V)= / e P, (1.280)

In discussing the challenges attendant in numerically calculating Qy and the
partition function there are several points to make.

1. The numerical integration of Qy involves a multidimensional integration with
a certain number of Monte Carlo sampling points per dimension. If there
are [ points per dimension and 3N dimensions, then there could be as many
as *Nevaluations of the integrand. The dimensionality could be a number of
order ~ 10%. Furthermore, Q can be sharply peaked necessitating more numer-
ical resolution locally. The curse of dimensionality is a formidable aspect in
evaluating Qy.

[Editor’s Note: In recent years researchers dealing with uncertainty quantifica-
tion and machine learning have introduced systematic approaches to sample a
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multidimensional space in an optimally efficient fashion to mitigate the “curse o

dimensionality” problem. Furthermore, in the 50 years since these lectures com-
puting power has grown enormously; and molecular dynamics simulations have
been able to evolve to address systems that are orders of magnitude larger and
more complex.]

Numerical methods have more success in the case of the virial expansion of
the equation of state where the dimensionality and complexity of the successive
virial coefficients grows in a very limited fashion, e.g., (1.255) and (1.256).

2. For instantaneous phase-space pictures one can calculate the potential energy
by randomly placing particles in a box and computing Vy = X V;;(r;;), and this
is used in e~"¥/¥T Problems emerge at high density where particles get so close
together that the interaction potential V;; — oo and e~ "¥/*T — 0. In practice,
it is unlikely that random loading of particles one by one will get to the critical
densities where divergences may occur. So-called quiet and quasirandom load-
ing algorithms have been developed. The loading problem becomes a function
of the loading history.

3. What succeeds is ‘importance sampling’ in which a modified distribution is
sampled instead of the actual distribution in order to reduce the variance in
the sampling process. One generates a Markov chain numerically to obtain
results for a canonical ensemble (in reality a microcanonical ensemble).

EXAMPLE: Consider hard spheres for which ¢ =0 or oo (not accessible). Load N
hard spheres in a defined volume V' for a given temperature 7. Randomly displace
one sphere in the list. If this results in no overlap with another hard sphere, then this
is a successful new configuration and weight it by e~"¥/¥T_If, instead, this results in
overlapping another hard sphere, then return the sphere to its original position and
count the old configuration in the sum over states weighted by e~"*/¥T Continue
through the list. This kind of method works in practice, but in a certain sense it is
theoretically incapable of coming up with all configurations for hard spheres. The
simulation examples shown in figure § illustrate phase transition phenomena for
relatively small ensembles of simulation test particles. For insufficient numbers of
particles it becomes difficult to distinguish the distinct phases, and the relative size
of the statistical fluctuations becomes problematic.

1.2.13. Example: structureless particles with an interaction potential
Here we consider structureless particles with an interaction potential represented in
the virial expansion (§§ 1.2.2 and 1.2.9) by

1% 1
(T =——|2,—-27%), 1.281
2( ) le( 2 2 1) ( )
where
1% 1% 1%
! Z,=2Z5" 7%, Z5m = 22, (1.282)

T AB.m)’ T ANB.2m)  A(B.m)

We introduce Z% = (Z& — Z5') 4 75" where the terms in the parentheses are
the contribution due to the interaction. Then b, = b}” + b and
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int V2 3 rel rel0)
b2 (T)Z—V—2322(Z2 —Z2 )
(75) A
= —23A3(B, m) {Z ey e—ﬂ%} . (1.283)
k kO

The first sum on the right-hand side of (1.283) is

Z e PE — Z eTPIER Z e P (1.284)

k k,bound k,free

where & = (1/2)h*k*/(m/2) (note the reduced mass m1/2); and the second sum in
(1.283) is just over free (or ‘scattered’) states (0 > 0). At large distances the asymp-
totic wave function for free states (positive energy) with angular momentum £ is
(Landau & Lifshitz 1969; § 77):

1. br
Yy ~ —sm(kr - — + 8((]()) ,
r 2
k= %; 8¢(k) =01if no interaction, # 0 with interaction. (1.285)

Returning to (1.283) and (1.284), in the limit of large volume

1 ° ds 2
—BE, —BE t _Bhk?/2m
E e ok — E e a0 — — ;:0 2+ 1)/0 dk—k e (1.286)

k,free kO free

and (1.283) yields, after integrating by parts,

it m\§ g1 B[ .
b (T):—A3(,B, 5) doe+1)| Y el - ;55(0)+;/0 des, (&) e ¢

£=0 5]f<0
A3 m - +BEL _ éfoo _BE
= A(ﬁ,z);(ﬂ—i—l)[;[e‘ 1]+n : dEs,(E)e }

(1.287)

using Levinson’s theorem from quantum scattering theory: for k=0 §,(0) =7 x
number of bound states.

[Editor’s Note: § 77 of Landau & Lifshitz (1969) gives a more detailed explanation
of the analysis leading to the results in this section. Kaufman’s lectures in this section
are not self-contained, depend on other sources, and are more of an overview.]

EXAMPLE: Bosons. Bosons have symmetric wave functions, and the angular
momentum quantum number £ is even. Note that Fermions have antisymmetric
wave functions. If we assume that the bosons have repulsive interactions then there
are no bound states, and the first sum inside the square bracket in (1.287) van-
ishes. Furthermore, from quantum mechanics §, < 0, which then leads directly to
b'(T) > 0; and the pressure has increased due to the interaction.
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EXAMPLE: Bose gas with hard-sphere repulsive interaction. From the quantum
mechanical treatment for the phase shift §, in Schiff (1968, § 19), there is a treat-
ment for a spherically symmetric interaction potential in the special limit of a
hard-sphere interaction, Schiff’s (19.20), which in the low-energy limit simplifies to
Schiff’s (19.21). As T — 0 only the £ = 0 quantum number significantly contributes,
in which limit

So(ka) = —ka and bH"™(T — 0) = Az(,B, %) a, (1.288)

where r;; =a defines the distance between the hard-sphere centers. The pressure
increases because b, > 0. The pressure at low temperatures for the Bose gas with
hard-sphere interaction then follows from (1.200), (1.276), and (1.288), and recalling
by=0by +biit:
3(m
P NG s o). (1.289)
nT 16

EXAMPLE: Bose gas with an attractive interaction potential. In this case, bound
states are possible and oY <0, so the pressure is reduced. The term involving

Tt ole™” €1 — 1]in (1.287) contributes a net negative contribution to b, and from

quantum mechanics 8, > 0 so the second term in the bracket in (1.287) also con-
tributes a net negative contribution. As T — 0 (8 — o0) just a single bound state
and only ¢ = 0 are important. Hence, at low temperatures

. P
BT — 0) = —A*eP® and T 1 — neﬁg”A3(§> ; (1.290)
n

where &, is the disassociation energy, i.e., the binding energy of the molecule.

1.3. Chemical equilibrium

1.3.1. Systems composed of multiple species allowing for chemical reactions
Here we analyze systems with multiple species which interact with one another
through a chemical reaction. Some examples of simple systems are

H, «H+H

H < pt+ e

2H,0 < 2H,+ O,

H*+ CI” < HCI (1.291)

As a matter of notation, reactions such as H" + CI” < HCI can be represented
generically as A + B <> C = AB. We assume that a system I supporting a reaction
like those in (1.291) is in contact with system II which acts as a heat bath such that

E =E' + E" = constant (1.292)

and the chemical reaction dictates the following conservation laws
N4+ Nc = N, = constant, N3y + N, = N,, = constant, (1.293)
where N, is the number of atoms or molecules in the combined system. From the

point of view of a grand canonical ensemble, the probability p of the system I with
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{Ni, Nj, NL}is
p(Ni, Ny, N&) ~ D S TNy, Ny, Ne. E')
E!
x Iu(N"=N,—[Nj+N.]. N =N, — [N+ N/],E'" =E—E") (1.294)

and
IT=e% and Iy=e'. (1.295)

We assume that system I is a small perturbation with respect to system II, which
allows us to evaluate

BSH BSH aSII
Su= Su(N,, Ny, E) — E! — [N+ N —— )| =[N+ NL|| —
11 II( b ) (E)En) [ A+ C](aNa]]) [ B+ C] 8N151

= Su(Na, Ny, E) — BuE" — y!" [N+ N.] = /" [Ny + N.]. (1.296)

We then use (1.295) and (1.296) to express the probability in (1.294) as
PN Nj NEY ~ 37 e ! 78" ooy Sene) - (v
El
= 3 T (N (V). (1.297)
El

where B8, y.,and y, are determined in (1.296) from partial derivatives on Sy. We
note that F/ = E! — T'S’. We next introduce the definitions:

DEFINITION:

a==Tye, pp=—=Ty,, pe==TWVa+ V) (1.298)

We note that the definitions in (1.298) dictate .= 4 + up. The probability in
(1.297) can then be rewritten as

~ —pFl N __ —BEI-TS(E' . N))+Bn-N
p(Ni, Ny, N.) e PEHPEN =N 7y , (1.299)
WherelLE{MA’MBa/*’LC} andNE{NAvNBv NC}

LEMMA: From the formalism in § 1.2.7 and the expression in (1.299) we deduce

0InZ

V) =T , (1.300)
op
where 7. is the grand canonical partition function.
B3 s Ns B usNs
Z(p B. V)= & 5 ZWN. VY=Y e T 2N, B V)
{Ns} {Ns} s
=[1>_ " zN.. B. V) =[ [ Z:(B. 1. V) (1.301)
s {Ns} s
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extending expressions in § 1.2.7 to multiple species, using an ideal-gas approxima-
tion for Z(N, B, V) =[] Z,(Ny, B, V), and recalling .= jto + ptp. From (1.301) it

follows that
an=Z In Z,(us, B, V). (1.302)

We recall from (1.174) that (N;)=T (@ In Z)/op,=T (0 In Z;)/dpu, and observe
that the existence of the chemical reactions is only felt through p. = s + up.

1.3.2. The law of mass action
From (1.302) and (1.223) we evaluate the pressure

T
=, Z:ZPS (1.303)
and the partial pressure is
00 NS
T T VA
P, = v In Z; = v In Z eﬁ’“Ns( ]iz' =—1In exp(eﬂ’”ZY)
Ny=0
T Vv T
— eﬂll«s_Zé eﬁMsZ , (1304)
Vv AT AR y

where Z} = (V/ A*)Z! and Z! is the partition function for the internal states and the
sum over N, in (1.304) is recognlzed as the exponential. We recall (1.174) and the
Gibbs-Duhem relations (1.185) and (1.186) which when used in conjunction with

(1.304) yield
9P, T dlnZ,

s Vo,

and note that P, = (n,)T . The statistical average (n,) removes statistical fluctuations
in the number density. From (1.304) and (1.305) we obtain (n,) A* = "< Z! and then
with (n,) & n,, ignoring fluctuations and taking the logarithm,

= (n,) (1.305)

ms=T[In (n,A’) — In Z.]. (1.306)
From p. = s + wp and (1.306) one derives
InnsAY + InngAl — In nCA3C =InZ,+InZ,— InZ, (1.307)

or
naAnghy  Z,Z,

for an ideal gas. It is straightforward to include stochiometric coefficients: v.u, =
Valla + vy, and then (1.308) becomes

(ra83) (s A3) " (Z)"(Z5)"

(1.308)

= . (1.309)
(ncAd)e (z)™
We can group all the temperature dependence in (1.308) on the right-hand side to
obtain .
A, 7.7
Malty _ ¢ _ZaZp py (1.310)
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From P; =n,T ignoring fluctuations and (1.310) one then obtains

PPy AL Z,Zj
Pc ANy Z,

(T) =K ,(T), (1.311)

which is (104.3) of Landau & Lifshitz (1969) and is called the law of mass action
which is a formula employed in chemistry. With ¢, = P,/ P then (1.311) is equivalent
to cpcp/cc = PK,(T)=K.(P,T).

From the point of view of a closed isolated system with energy £ and vol-
ume V, and constraint (1.293), we can maximize the entropy S with respect to
(N4, N, N., E, V) and produce a general derivation of the most probable partition
function independent of the assumption of an ideal gas. Then

9S8 0S5 BN
0=6S=0N,—— +8Ng—— +SNo——, 1.312
“an, TN, TN, (1.312)
with £ and V fixed so they do not appear. With y, =9S/9dN, and SN, =8Ny =
— 8Nc, it follows that yc = y4 + yp. From the definition, u; = — Ty, we then recover

Me=a+ WUp.

1.3.3. Derivation of the Saha equation
Consider a system composed of hydrogen, protons, and electrons, allowing for

ionization:

H < p '+ e, un=n,+ e, Z,=2,and Z, =2, (1.313)
where the internal partition functions capture the two possible spin states (up and
down).

From (1.308) assuming negligible excitation of the hydrogen atoms, 7 < I ~
13.6¢eV,
n,A>nA\> 72 7
e (1.314)
I’lHAH ZH
where Z), =4e PEo =4eP! and E,=—1. We further assume that there is no elec-

tron/nuclear spin interaction and simplify (1.314) using n, ~n,, m,~my, and
A5 ~ A3, to obtain the Saha equation:

n’A}  Z.Z, 2x2

= = =e P 1.315
ny Zy 4ol ¢ ( )
DEFINITION: The degree of ionization is
H+ e e
P A S Ua— (1.316)

[HH]+[H] n.+ng ng

The total density is definedn =ny +n, +n, =no+n, =n¢(1 + f) and P=nT. We
use these definitions and divide (1.315) by ng =n/(1 + f) to obtain the following.
From Landau & Lifshitz (1969, equation (106.5)),

f2 1 1

— -B1 2 —
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FIGURE 10. Fractional ionization versus 7/ T(n) based on (1.321).

DEFINITION: We define the ionization temperature 7y by setting n A} = e # « 1 so0
that 7 > Ty and

1
n, T) =—. (1.318)
fn, T NG
From the ionization temperature relation

1

n—=—orTi(n)= (1.319)
nA: T nAzlm)

and . 3

In n_Ag =493-23 [logwnccl - EloglngV:| . (1.320)

EXAMPLE: For the interstellar gas, n~1 cm™, T;=13.6eV/(49.3+3.5In
(T1~1/4)) =(13.6/47.2) eV =10.29¢V.

EXAMPLE: For atmospheric densities, n ~ 10” em™3, Ty = (13.6/6.6) eV ~2¢V.

NOTE: The recombination temperature for hydrogen is 1000° — 2000°% ~ 0.1 —
0.2 eV, which sets a lower limit for a physically realistic value of 7.

Equation (1.317) can be expressed using (1.319)
1

Vi () e

The fractional ionization in (1.321) is plotted in figure 10 as a function of
T/T,(n); we note that most of the change in f occurs in the range 1/2< T/T,; <
3/2.

f(n,T)= (1.321)

1.3.4. Chemical equilibrium including ionization and excited states
We now extend the analysis in § 1.3.3 to include excitation of the hydrogen atom as
a first correction. The internal partition function becomes

o0

24
Z, =Y ner, (1.322)
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where 7 is the principal quantum number and the multiplier n> account for degener-
acy ignoring spin degeneracy. We note that the maximum atomic radius must scale
as R~ 1/ny'® where ny is the density of atoms, while the atomic radius for an
atom in the nth excited state scales as R ~ n’a, where a, is the Bohr radius. Setting
R ~ R.x we deduce the maximum quantum number allowed

/ R : ! > 1 (1.323)
nmax = e frnd . .
ay n(l)/3a0 (noaé) 1/6

Returning to (1.322)

0 n
Bl max 1 1 1
Z, = + E nlent ~efl 4 n2dn:eﬁ'+—nfna,(=eﬁl+——12.
3 3(n.a3)Y
-2 0 (l’loao)

(1.324)
The claim is that although 1 /(noag)l/2 is large compared with unity, it is small com-

pared with e#/ which scales as e#’ ~ 1/nyA2 based on (1.315). Hence, the excited
state’s contribution to the internal partition function is negligible.

1.4. Long-range interactions

Long-range interactions are important in neutral and nonneutral fluids and gases.
Some examples of interactions are Coulomb interactions affecting both nonneutral
and neutral systems. Dipole interactions are important when there is an applied
electric field. Gravitational interactions are significant in neutral systems at long
scales. Some of the topics addressed in this section include self-consistent fields,
spatial nonuniformity, quasineutrality, Debye shielding, and a virial theorem.

1.4.1. Classical treatment of interactions: Coulomb, dipole, etc.
We postulate a classical treatment for a system in contact with a heat bath. Then the
probability function will have the form

p(p, q) ~ e PEFXD ~ o PR B® o (D) p, (@) (1.325)

for a canonical ensemble with prescribed temperature 7. The configuration space
probability function obeys

—BD
m(;“”):%, QE/dNreﬂ‘b, (1.326)

where N rolls up the dimensionality of the system and the number of elements. For
the Coulomb interaction we have

ee;
o= - + e; ri), 1.327
Z . Z o (r) (1.327)
where & is the total electrostatic potential; and the electrostatic electric field satisfies
E = —V®. Gauss’ law relates the electric field to the charge density.

The one-particle density is defined by
n(xlr) =8(x—r), /d3x ny(x|r) = 1. (1.328)
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The ensemble average of n; given a probability density function as in (1.325) and
(1.326) is
N
) = [ & ro() st =3 ). (1.329)
i=1
We note that (n;)(x) =1/V if ¢ #¢(x), i.e., if ¢ has no spatial dependence. If we
introduce more than one species s, we have

Ny
n'@) =) (n.) ). (1.330)
i=1
We also note that as a matter of economy in notation
,O(Vl, r, ...,rN)S(x—r1)=,0(rN)5(x—r1) (1331)
and
(n))(x) = / dVrp(r") S(x—r) = p(r=x). (1.332)

Consider the spatial gradient of the number density in (1.330)

_Zfdfvra(x_m_p( ")

i 3P 1
=— E d¥rs(x — r)- -o
B i:l/ ré(x r) Qe

ad 3P
=—ﬂ;<8(x—r,») §> (1.333)

integrating by parts and identifying the averaging process along the way. We recall
(1.327) and take its gradient

0 ee; 9 9
a_r, Zar, Z e,¢0(r,)_28—riq>ij+;8—riq>j(r,»). (1.334)

ij J#i

We return to (1.134) to obtaln
<n (7~ f XD 8(x — rj)”

&x'(n; (x)n )) CDSS (x, x):|

(1.335)

J _
an (x)=-p

L i j#E

=—p

L i j#
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and
(n:(x) n;(x /dNr,o MY sx—r)8(x —r))=p(ri=x,r;=x)

= P(Vi =x)p(r; :x) = (n;)(x) (”j)(x) [1 + gij (x, x)] ) (1.336)

where the correlation function is g;; < 1 for dilute gases and/or for ®;;/T <« 1. We
shall neglect g;; presently and proceed. We will check on g;; later.
We return to (1.335) and note that Eﬁ; —E Ny —%,=0(Ny) — 0(1)%2;\’“.

Furthermore, we set Zi “(n;)(x) =ny(x) and Zi ( () =ny(x). Hence, (1.335)

becomes
inS(x):—ﬁn (x)i o +/d3x/2n/(x’)cl> (x, X) (1.337)
ax s ax s Y/ s ss ’ . .
We introduce the total self-consistent electrostatic potential ¢(x) neglecting
correlations,
dx) =0 (x)+/d3 ’Z ety () (1.338)
le—x| '
Equation (1.337) then becomes
0 d
— ny, = —Pesns(x) — 9(x) (1.339)
dx ox
or 5
T In n,= ,Bes ¢(x) — n,(x) = n,(0)e Pe?®), (1.340)
x

POISSON-BOLTZMANN EQUATION. We apply the Laplacian to (1.338) and derive
Poisson’s equation having identified §(x — x) from V?(1/|x — x’|) inside the volume
integral with respect to x':

Vi = —4rn |:,00(x) + Z esnS(O)e_ﬂ”S“’(")j| . (1.341)

Equation (1.341) is a single quasilinear partial differential equation for the electric
potential.

1.4.2. Example of an electron gas and Coulomb interaction
Consider an electron gas with ¢°(x) = 0. Equation (1.341) becomes

Vi = —dmenye P, (1.342)
Define v = Be¢(x) =e¢/ T, from which (1.342) becomes
Vi =—K?", (1.343)

where K*=4nfe’ng=1/A,,.. Now consider a one-dimensional limit of (1.343)
and solve by standard methods:

2
%1// =—K’"V > ¢y(x)=-2In [sec(%)] (1.344)
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and

n(x) :n(O)secZ(%) ) (1.345)

We note that the number of electrons N, assumed large, can be determined from the
integral of (1.345) over a domain defined by [—a,al:

N = /ﬂ dx n(x) =2n(x =0) %tan(%). (1.346)

Assume that the argument of the tan( ) in (1.346) approaches /2 so that N is large,
but not too close. From

K T 1
axT T 5100 em™ (1.347)

V202 RERYEP
for T ~10 eV and a ~ 1 cm. This estimate is independent of any specific value of
N. Given (1.345) which diverges at argument value /2, as more particles are added
they tend to end up at the edges, which is a consequence of the electron-electron
repulsion. This is very different from a neutral system. Suppose N = 10'? instead of
infinity. Then from (1.346) and (1.344) with a=1cm,

Ka _ tan ™! (i) =tan! <£> — Y(a)
V2 na) 10°

=—21In [sec(%) ~ tan(%) - %}

=—-2In(N107*) ~ —20. (1.348)
Hence, |e¢|(a) =~ 20T =200 eV for the parameters of this example.

1.4.3. Example of a stellar cluster and gravitational interaction

Consider a system of charge-neutral, finite-mass elements interacting through gravita-
tional forces. Assume that the elements share equal masses. Introduce a gravitational
potential 1 (x) such that

n(x) =nee "V V2 =4x Gmn(x) = 4w Gmnge PV, (1.349)
Introduce K? = (47 Gm3n,)/(T) and W = (m,y)/(T) so that (1.349) becomes
VW = K2 V. (1.350)

It can be shown that (1.350) has the solution

K
Y(x)=2In cosh(—x> — 2K x forlarge x,
V2

) ( Kx ) _2Kx
n(x) =ng sech”| — ) — 4nge V2 forlarge x. (1.351)
V2

In three dimensions with spherical symmetry the gravitational potential has the
asymptotic limit for large r, ¥ — —GM/r and n(r) — nge PmoMo/r 5o that
n(o0o0) — ny which is a contradiction (n(co0) needs to vanish). In three dimensions
with spherical symmetry, one cannot satisfy the equations of thermal equilibrium.
Hence, clusters are constantly losing particles; and, similarly, terrestrial atmospheres
are constantly losing particles.
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1.4.4. Example with ions and electrons, and Coulomb interaction
Consider a plasma with electrons and singly charged ions (or perhaps positrons).
Gauss’ law leads to Poisson’s equation:

Vi = —dme [n;(x) — n (x)] = n,(x) =n;(x) + ﬁv%. (1.352)

Equation (1.352) becomes a statement characterizing quasineutrality if
(1/4we)V3¢p < n;. In thermal equilibrium

n.(x) =nlef?. (1.353)

Suppose L, is the scale length for the density gradient. Then using Be¢ = In n,/n?,
(1.352) leads to

n.(x) =n;(x) +

]
=nx) |14+ -—— . (1.354)

4 Be? L_fll 4 Bn;e? L_f,l

DEFINITION: Ap = /T /4mwne? is the Debye length. Hence, A3 = 1/47Be’n.
Equation (1.354) then becomes

2
n.(x) =n;(x) |:1 + 0(2—§>j| . (1.355)

The value of Ap is millimeters in many laboratory plasmas and meters in many
space plasmas. Quasineutrality corresponds to Ly >> Aj,.

1.4.5. Example with ions and electrons, and Coulomb and gravitational interactions
Next we consider a simple one-dimensional system composed of two species (ions
and electrons) with Coulomb and gravitational interactions. In thermal equilibrium
we have

No(x) = nle Pleotmessl . (x) = ple Pledtmise] (1.356)

and Poisson’s equation (1.352) is unmodified. Again n, ~n;. At z=0 define ¢ =0;
then n? =n?. As a consequence of quasineutrality and (1.356)

ep+m;gz=—edp +m,gz. (1.357)
We can then solve (1.357) for ¢ and take its gradient to determine the electric field:

ep=—1(m; —m,) gz (1.358)

and
eE:%(mi —m,)g. (1.359)

The equilibrium number densities are then

n.(x) ~n;(x) = n?e_%ﬂ(m'*'”f)gz. (1.360)
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1.4.6. Example with ions and electrons, and Coulomb interaction with correlations:
Debye-Hiickel theory and shielding

Here we assume a plasma in thermal equilibrium with multiple charge species and

an imposed test-particle distribution. Poisson’s equation becomes

Vi = —4m |:Z esng(x) + pf(x):| , (1.361)
where
ng(x) = nge*ﬂesd’("), ¢ — ¢ +5¢. (1.362)
The linearly perturbed Poisson equation and charge density satisfy
V2S¢ = —4r [Z e.8n,(x) + Spg(x):| (1.363)
and
ong(x) = —n?(x)ﬂes&l)(x). (1.364)
Substituting (1.364) in (1.363) one obtains
1
Vg = {47”3 Z efn?(x)j| Sp(x) — 4 8p°(x) = ren Sp(x) —dmeyd(x), (1.365)
s D

where the Debye length X is defined here by

T

) e

The solution of (1.365) with boundary conditions 3¢ (r — co) =0 and regularity at

r=0is 0
S (x) = — e /) (1.367)
r
and with the assumption of quasineutrality in the unperturbed equilibrium charge
densities
Sn, = Bedpn’ > 0 and dn; = —Bedgpn’ < 0. (1.368)

Thus, there is a slight excess of electrons around the test charge at x =0 and a slight
deficiency in the ions. Both perturbations in the charge densities decay spatially on
the scale of the Debye length. This is a manifestation of plasma shielding of the test
charge.

We next construct the conditional probability

pij (%, X) = pi(x) p; (x5 i at x) = (n;)(x) (n;)(x; i atx)
= (n;)(x) (n;)(x") [1 + correction due to i atx], (1.369)
where the correction is due to the perturbation associated with én,:

(nj)(x/; i atx) = (nj)(x/) [1 +(—pB) ej8¢(x’)]
= (n;)(x') [1 +(—,3)ejLe_*;:|. (1.370)

lx — x|
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The conditional probability including the correlation function correction is then
obtained from (1.369) and (1.370):

e.e Jx=x|

pij (x. x') = p; (x) p; () [1 +(—ﬂ#e_m)] : (1.371)

x|

Is the correlation g;;(x, x') = —B(eje;/|x — x'|)e " *1/*» « 17 We require for the
consistency of the theory for the self-consistent field solution that at least the effect of
gij» if not g;; itself, is small. If A is very small, then long-range 1/ forces are much
reduced, and only short-range effects survive. Thus, electrically charged particles and
their systems are uncorrelated in space if A is small; and all sorts of quantities such
as the entropy and energies are additive.

Consider the internal energy:

3 ee;
U)y==-NT -

3 ; ; /8(x—x,~)8(x’—xj)
= NT+<Zeej/d /d ]

i<j
3 J
= —NT + /d3 /d3 //O(x) /0] (x) + <Ucorrelati01'l>
2 |x — x|
3 ; |E())? 1 3
ZENTJF/d = /d Zn (x) (1.372)

where the second term is the field energy due to the macro field associated with not
having exact charge neutrahty Where does this result for (Ucorrelation) come from?
One can expand the expression for §¢

5= Ce T ~2(1 _L> + 00 (1.373)

Thus, the correction to the electric potential due to the shielding cloud is §¢goua =
—e;/Ap + O(r). The associated energy is €;8¢u,ua(0) = energy of the test particle
interacting with the cloud = — (e} /Ap) + O(r)|,=o. Hence,

1 (—e?)
Ucorrelation = 5 / d3x2ns(x) )\‘D . (1374)

Note that the factors of 1/2 that appear in the intermediate expression in (1.373)
and in Ugorelation arise from counting only the unique pairs from the double sums
over particles.

The condition for weak correlations on which the validity of the Debye—Hiickel
theory depends is

1 Ne* 3 e’
——— XK =NT — K T. 1.375
2 <L = SNT > . < ( )
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Define the radius Ry =e*/T. For T ~10 eV, Ry ~ 1 A. The condition for weak
correlations can be rewritten as
nR; <1, (1.376)

i.e., if there are many particles within the strong interaction distance Ry the corre-
lations are not weak. For T ~ 10 eV and n < 10**cm™ the interactions are weakly
correlated, i.e., at anything less than solid densities the interactions are weakly cor-
related. We note that the ratio of Ugyrelaion t0 the total kinetic energy (3/2)NT

scales as
Ucorrelation 3
—————— ~ +/rR;. 1.377
%NT T ( )

Now that we know (U) in (1.373), define it simply as U, the total internal energy;
and we can derive the other thermodynamic quantities from the relations

dlnZ
U=- , F=-TInZ,
ap
oF ; 1
S=mZ+BU, u,= =T In ngA°+—¢, + e0, (1.378)
N |y 1 2
where €, = —e?/Ap is due to the interaction of the particle with its own shielding

cloud and the intrinsic electrochemical potential is identified as
pl= T Inn,A+1e,. (1.379)

We note as a warning that if we violate the validity condition in (1.375) and (1.376)
we can obtain a large correlation energy, but it is still short range in its effect.
For chemical equilibrium in a nonuniform medium one requires

0 al,LO(l’ls/)
0=V, =vVu' +Ve5¢=zas—vm/+esv¢, E=-Vg, (1.380)
’ ny
from which o
1 g (ny)
E=—) —Z"lyp,. 1.381
e Z ong " ( )

s/

EXAMPLE: Correlations are negligible in an ideal gas, T In n,A° + (1/2)e,~T
In n,A* and

1 oT In n,A’ 1 T
E~ — E — " Vnyx~— Y —Vny—n,~ePu? (1.382)
e ony eg — ny

s/

All this has been classical.

EXAMPLE: Suppose we have a degenerate electron gas. Recall equations
(1.212)—(1.215) in § 1.2.7 from which we have

nAj,zT”, Aj=—, L=y (1.383)
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if there is no external electric potential. The effect of an external field is

ep+—=u=e@+uy, Ay= N T3
m 2m(pn — e ) Cm(u—ep)): 3
(1.384)

Equation (1.384) gives the lowest-order number density as a function of ¢.
Performing an analysis similar to that in §1.4.6 involving the solution of the
linearized Poisson equation we recover shielding but with

[ 2
3Ho
Ap = 3 1.385
b 47 nge? ( )

and the condition that the correlations are weak is

3 23\’
Usow K K=<Npo or n<e—) < 1. (1.386)
5 Mo

For energies corresponding to 10 eV, the weak correlation condition (1.387) fails for
n~10*cm™3, ie., for solid-state conditions. With considerations similar to those
leading to (1.380) and (1.381) we can deduce the equilibrium electric field in a
nonuniform metal by setting Vi = 0 given (1.384).

[Reviewer Dominique Escande’s Comments: By treating n as a continu-
ous function, the analysis implicitly assumes that there are many particles
in the shielding cloud: so it is for weakly coupled plasmas only. In reality
the theory works for a number of particles larger than 40 (see https://www.
scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-35422017000100063).

— A Vlasov calculation of shielding can be performed for a weakly perturbative test
charge moving very slowly. Shielding does not exist for a fast particle. See, for
instance, (Nicholson 1983, § 9.2).

— A derivation of shielding avoiding the assumption of Boltzmann equilibrium is
provided in Meyer-Vernet (1993). It relies upon Gauss’ theorem and the Coulomb
deflection of particles.

— The shielded Coulomb potential is a basic example of a renormalized potential.
See McComb (2004, § 3.2).

— In order to go further on long-range interacting systems, Campa et al. (2014) is
a useful reference.|

2. Nonequilibrium statistical mechanics

[Editor’s Note: Physics 212B addressed nonequilibrium statistical mechanics. As
in Physics 2124 there was no textbook, and use was made of many of the same
references.|

2.1. Fundamentals

2.1.1. Definitions of a realization, moments, characteristic function, and discrete variables
As a vehicle to introduce a number of fundamental concepts and definitions we
consider a system in which a large particle with mass M is immersed in a collection
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of smaller particles with mass m that constitutes a gas or fluid. The Hamiltonian for
such a system is

H=iMV+3 " im} +3 o —R)+ Y o (ry). @.1)

i<j

The large particle has velocity ¥ and position R, while the smaller particles have
velocities v; and positions r;. We posit that the motion of the large particle consists
of fast variations due to fluid particles colliding with the large particle and slow vari-
ations due to the net diffusion of the large particle. An example of this is the motion
of pollen grains as in the famous observations of Brown (1827) that subsequently
was named Brownian motion. In this system, the kinetic energy of the large particle
satisfies

IM(VP4+ Vi +V2)=3T (2.2)

and (V2)=T/M.

DEFINITION: A realization of this system is a single instance of the system with
defined initial conditions.

A realization of a random process has a specific initial condition and time his-
tory. For a sufficiently long time we can compute the time average (V?), =T /M.
Now consider an ensemble of identical systems possessing different initial conditions
within the domain of the accessible phase space of the system. Then we can compute
the ensemble average (V72)_ ....(1) at a specified time 7, averaging over the different
initial conditions. We expect the same result 7/M if the ensemble average over ini-
tial conditions is equal to the time average of a single realization of the system. That
is to say we expect the ergodic hypothesis to be valid: the dynamics should spend
equal times in equal volumes of phase space for a random process. Furthermore, we
expect that every degree of freedom of a weakly coupled system should have 7'/2
energy associated with it as a consequence of ergodicity.

However, the results of experiments indicate that ergodicity is not always occur-
ring in systems that we might think are random. An example of this is found in the
numerical integration of the equations of motion of a chain of nonlinear oscillators
with Lenard-Jones interactions between nearest neighbors reported in Galgani &
Scott (1972). Instead of an equipartition scaling of the time-average kinetic energy
as in the one-dimensional version of (2.2), the numerical integration exhibited a
Planck-like scaling for the mean energy levels:

— 1
E,~— (2.3)

evon — 1

where o = h. We return to the introduction of fundamental concepts that we will
make use of in the course of the subsequent discussion.

DEFINITION: Let x be a random variable, whose probability p(x) is normalized on
the domain of x:

fdx ox)=1. (2.4)

The average of any function f of x is defined as
(e = [ dx o) £, 2.5)
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There is a one-to-one relation between f and x such that
dr|™

p(f)df =px)dx, p(f)=p(x) ol

/ df p(H=1. (26

EXAMPLE: Suppose K = (1/2)MV?, then
b o PK
V) ~ ~pyMV? Ky~ — ~ .
p(V)~e — p(K)~ N4

If there is absolute certainty that the random variable x has the value x,, then p(x) =
8(x — x¢) . If, instead, we have knowledge of the relative probabilities that x is equal
to a set of discrete values, then

p)=) pd—x), Y p=1. (2.8)

DEFINITION: Moments of a distribution of random variables are defined by

(2.7)

= f dxx‘p(x). (2.9)

The mean value of x corresponds to £ =1.

DEFINITION: Fluctuations are defined by Sx=x—{(x) and {8x) = O The standard
deviation o is the square root of the variance defined by 2= ((8x)%) = (x2) — (x)>.

DEFINITION: The characteristic function is defined by

Z. (k)= / dxe ™ p(x). (2.10)
It then follows
' oo k 00 ¢
Z=0=1, =" lx), Z.(k) = X))
=0 !
and
d'z, —ikx RV N
| = [ dee ™MD e = D ). (2.12)
k=0

We conclude that the probability function of the random variable and the moments
of the random variable completely determine one another:

p(x) = {(xY, €=0,1,2, ...} (2.13)
The inverse transform of (2.10) yields
dk .
p(x) = / —e'* 7 (k). (2.14)
2
CENTRAL LIMIT THEOREM: A statement of the central limit theorem is that when

the sample size of the discrete random variables is large enough, the probability
distribution tends toward a Gaussian:

p(x) = o (2.15)
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The characteristic function is obtained from (2.10) and (2.15):
Z (k) = e 3K L in 7 (k) = — ik (x) — k%0, (2.16)

Taking In Z, (k) has separated (x) from its shape with respect to its mean value.
More generally, In Z, (k) is determined by a series expansion of (2.10)
\3 N}

—i —i
(—)k3X3+"'+(—)k"Xn (2.17)
3! n!
where y,= K, are cumulants of the probability distribution and were described

by Danish astronomer T. N. Thiele as semi-invariants more than a century ago.
Two examples of the cumulants are the skewness and the kurtosis:

In Z,(k) = — ik(x) — 1k’c” +

K
skewness: —j Ky = (x*) = 3(xH) (x) +2(x)* = (8x?), (2.18)
o
: Ky 4 4
kurtosis:  — Ky =(8x") — 30" (2.19)
o

DEFINITION: Given two random variables x and y, the probability p(x, y) is
defined by

p(x, y)=pxly)p(y) = p(ylx)px), (2.20)
where p(x|y) is the conditional probability of x given y; and

p(x)=fdy p(x,y)=/dy p()p(x]y). (2.21)

DEFINITION: Given the function f(x, y) the probability function p(f) is

p(f) = / drdy px, S(f — Fx. ). (2.22)

DEFINITION: x and y are statistically independent if p(x, y) = p(x) p(y).
If x and y are statistically independent, then

px]y)=p(x). (2.23)

DEFINITION: The correlation of x and y can be inferred from (§xdy)= (xy) —
(x){y) using the definitions §x =x — (x), Sy=y — (y). If x and y are independent
then (6x8y) =0, but not the converse. If (§x8y) # 0, then x and y are dependent.

DEFINITION: A set of N random variables can be represented by
{x;}=x, i=1,2,...,N. (2.24)

The probability distribution p(x) satisfies the normalization condition
Sd%x p(x)=1. If the set of random variables is statistically independent,

then p(x) = ]_[,N:I pi(x;) The generalization of (2.10) to a N-dimensional vector of
random variables is

Z. (k)= / dVxe ™ *p(x) (2.25)
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and (2.14) generalizes to

dk .
p(x) = / —e** 7 (k). (2.26)
2w
The generalization of (2.17) is
In Z,.(k) =—ik- (x) — 3k-0° - k+ O(kkk). (2.27)
EXAMPLE: For a Gaussian probability distribution (2.26) becomes
1 CLleg-2

p(x) (2.28)

T el

2.1.2. Derivation of the central limit theorem
Assume the set {x;} is statistically independent. Define x = X;x;. Then

p0= [ dx o) a(x - Zm) = [ @[ o 8<x - Z%) (2.29)
and

2.0 = [arepw = [ @[ T

[T/ @ =[Tzw. @

then In Z,(k)=>_ In Z;(k).

EXAMPLE: For the special case wherein p; =p;, then In Z,(k) =%;1In Z;(k) —
N In Z,(k). As a matter of definition, (x) = £;(x;) = N(x), 0} = X,07 — Noy, and
0. — ~/Noy. As a consequence of these relations o./{x) =1/~ (N))o1/{x;) and
(—i)"

n!

In Z, (k) = — ik(x) — 1’02 + - -+ kK"K, (x) (2.31)

and K,(x) = NK,(x;) where K, are Thiele’s cumulants. Note that the inner products
k-(x) and k-0% -k in (2.27) and use of (x)=%;(x;) and o2 = %,07 have led to

(2.31).
Hence, as N — oo the distribution function becomes Gaussian:
In Z,(k) =N In Z;(k) = —ikN (x;) — 3k’ No{ + - - + (_L')k"NKn(xl) . (2.32)
n!

Using (2.26) and (2.32) we obtain

k . k . 1
p(x):/ d_elkxzx(k):/ d_elkxexp {—ik(x) — —kzoj+...}
2 2 2

dk . "
:/ S TN e SRR, (2.33)
T
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We evaluate (2.33) in the limit of large V. Assume that the largest contributions to
the integral over k derive from k ~ N'20,"! so that (1/2)k*No? ~ O(1). What then
happens to the general term?
_a\n _-nKn -7 _\n .
(;‘)k"NK,,(xl) LK L ED e (2.34)
n!

n! of n!

with K, ~ O (o). Hence, for n > 2, N'""/> - 0 as N — o0; and the general term for
n > 2 is vanishingly small as N — co. Then for large N the probability distribution
tends toward a Gaussian:

=P
,O(X):/;—keik("_<x))‘§k2’v”12:—l se P onef (2.35)
T V2n Noj

EXAMPLE: Consider the non-Gaussian probability distribution p(x;) ~ x}"~'e™

x; >0 For this distribution (x;)=m and o, =./m Based on p(x;), p(x)=
xVm=1e=x exactly, which derives from considering the sums of gamma-distributed

variables and is not a trivial result; and (x) = Nm and o, =~/ Nm.

EXERCISE: Take the limit as N — oo for p(x)=x"""le™ and recover p(x)~
e~F—WP/2Ne? 1 verify the central limit theorem.

EXAMPLE: Consider the non-Gaussian probability distribution p(x;) ~
1/(x}+1) for positive and negative x; Then (x;) = 0 and o= (x})~
S, dx(x?*/(1 4 x*)=00. Moreover, (x¥)=o0. The -characteristic function
is the Fourier transform of the Lorentzian in this example and is not analytic:
Z (k) ~ e ™. The central limit theorem is invalid for this probability distribution

because the moments are infinite.

2.1.3. Random processes, spectral density, and correlation function
Consider a random process for a particle velocity as a function of time V(¢) with
probability distribution ,o(V,l, Vigs Vigs oo s V,N). If one knows p, one can calculate

all of the moments of {V; }. For example,
WV VEV) = [ VYV (Vi Vi Vi Vi), (2.36)

DEFINITION (Stationary random process): If p(Viir\, Vigrys Videss oo oy Vigry) 18
independent of ¢, then the system or process is stationary.

DEFINITION (Ergodicity): In order for a system or process to be ergodic, it must be
stationary; and the time average of any moment must equal the ensemble average of
the same moment, e.g.,

<Vt+r, Vtirz ‘/t+1'3>l = <Vr+r1 V,i_tz Vt+r3>

The systems comprising the ensemble on the right-hand side of (2.37) are not pre-
pared necessarily the same uniquely, but are macroscopically identical. The systems
must be stationary in order to calculate the time average in (2.37) sensibly.

(2.37)

ensemble "

DEFINITION (Spectral density): Assume that (V) empe@) =0 or (V(#))ime =0
(equivalent if ergodic and stationary). The spectrum is determined by

V(w) = / dr 'V (t). (2.38)
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The two-time correlation is defined by

C@)=(V(Et) VIt —T)); or ensemble- (2.39)

The spectral density is defined by
S(w) = f dr €“"C(7). (2.40)

That S(w) is the power spectral density of the V (¢) field is a consequence of the con-
volution theorem. Consider a process V (¢) that satisfies the stationary and ergodic
assumptions. Then the Fourier transform satisfies

V(w) = / dt V(t) ', w=real, (2.41)
with reality condition
V(—w)=V*w). (2.42)

We note that (V(w)) — 0 due to symmetry. We want to calculate (|V (w)[*), but to
evaluate this will lead to the auto correlation:

<V(tl) V(t2)> - (V(tl) V(tl + T))ensemble = C(T) = (V(t)V(t + r)>t' (243)

Then C(z) =(V(#)V(t — 1)), = C(—7), i.e., C(7) is an even function. Furthermore,

T
CO) = (V(®) V() ensermtie = (V () V (1)), = IR C(t — 00) =0, (2.44)

where 7 in (2.44) is the temperature if V" is the velocity.

DEFINITION: The normalized correlation function is
R(t)=C(7)/C(0). (2.45)
EXAMPLE: The normalized correlation function for a Lorentz model looks like
R(t)=e""lcos wyt. (2.46)

As a consequence of (2.40) and since C(7) is even

00 . 00 d _
S(w) = / dr ¢°C(r) and C(r)= / 2—“’ e () . (2.47)
—00 —0o 47T
Then S(w) = S(—w) = S*(w), 1.e., S(w) 1s an even function and is real also:
*d
(V) :S(O):/ =2 S(w). (2.48)
oo 2T

DEFINITION: It is convenient to introduce subscripts

Cy =0 Xt = ) ensempte = (X () X (1 = 7)), (2.49)

to define the correlation function and spectral density for the general case.
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Consider

(V(0) V(@) = / h dr & / N dr’ e (v (1) V(1))

:/ dr e/ / dre’”™ C(1) = 2775(6() — a)’) S, (2.50)

using t' =1t — 7. Equation (2.50) tells us that there are no correlations between
Fourier components of the random field at different frequencies.

LEMMA: Given that (V(w)V*(@)) = (|V()|?) =278(0) S(w) we conclude that

S(w) > 0.
Now we replace the time integrals in (2.50) with the limiting forms
00 T/2
/ dt — lim dr, (2.51)
o0 T—o00 )
(where now T represents a time interval) so that
T/2
V(w) = Tlim dt V(t) e and 278(0) S(w) — 2nTS(w) for w=0o'
= J_ 12
(2.52)
and we obtain the result of the Wiener—Khinchin theorem:
(Ve (@)
Tlglgo —F = S(w). (2.53)

EXAMPLE: Return to consideration of the Lorentz model correlation function
V

R(1) =e"cos wyr — S(w) = Xi: T eLar (2.54)
where v is the inverse correlation time.
EXAMPLE: Exponential correlation function
R(t)=¢"" = S(w) = 2—”. (2.55)
v? + w?

2.2. Brownian motion
We return to the consideration of random processes and Brownian motion.

2.2.1. Langevin equation
The equation of motion for Brownian motion can be cast in the general form

MV =F(t)=(F)() 4+ 8F(¢). (2.56)

Given V() for a Brownian particle, we expect a viscous force for the mean force on
the particle, i.e., a viscous drag force:
2
dF)| 1,.d(F)

(F)YV)=(F)O)+ V- 7m R A TZ

d(F)

_yAR| 1)
Vo dv

V=0 2 dV2 V=0’
(2.57)
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where (F)(0) =0 as we assume that there is no external nonzero fields influencing
the particle at rest. Hence, to lowest order

MV =F(t)=—yV + 8F(1). (2.58)
From hydrodynamics, Stokes’ law gives
y =6mnR, (2.59)

where 7 is the specific viscosity and R is the radius of the Brownian particle if it is
a spherical object.

DEFINITION: Equation (2.58) can be rewritten in the form of a Langevin equation:

(M% + V) V() =8F(t)or (—iwM + ) V(w) =8F (). (2.60)
Hence,
_ @ oo (BF@P) S
V(w) = oty (IV(w) I7) = oMy Sv(@)=—15 vt
(2.61)

We assume that the Brownian particle has a much larger mass M than the parti-
cles in the surrounding fluid. This leads to much lower characteristic frequencies in
Sy (w) than in Sg(w). The fluid forces give rise to very rapid fluctuations in F:

JVE  JTTm
a

a

= VsF, RF(T) Nei‘}s}:‘rla (262)

Wsp ™
while the response of the Brownian particle velocity is

#SF(CU) v

Sy(w) = L Vy = R Ry(t)~e V", (2.63)

Because M is large, vy < vsp; and the power spectrum Sy (w) decays with respect
to frequency at much lower frequency values than does Sr(w). We can estimate

v ~n(V2)1/ ra? where a is approximately the atomic radius of the fluid parti-
cle and # is the fluid density. We assume that the mass density of the Brownian

and fluid particles are the same. The specific viscosity is n ~ pZ(Vz)l/ * where £ ~
(1/(nma?)), and M = (47 /3)pR3. Hence, vy ~ (67nR)/M ~ (67pl(V>)'*R)/M ~
67p(1/(nma®))(V)'*R/((47 /3)pR3). Note that n ~ (m(V?)'"?)/a? is independent
of the density. For a gas, (V2)'"* ~ /T/M, and n~ 10 in cgs units, whereas for
water 7~ 1077 in cgs units; so we can introduce a fudge factor O(1-10) in the
viscosity. Finally, our estimates of vr and vy lead to

ve 14 on(v)Pra® 1 4n ,, o R? w2 R?
_——— =——7 —~0( —>1.
vy 67 3 p#(Vz)l/zR 6w 3 (”a ) a2 ( )(na ) e >
(2.64)
If R ~ 107 cm and a ~ 10~* cm there is significant margin for satisfying the inequal-

ity in (2.64). Note that the origin of the R? factor in the numerator of (2.65) is the
1/M 1in the vy expression.
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2.2.2. Fluctuation-dissipation theorem
We return to consideration of the spectral densities Sr(w) and Sy (w) in (2.63):

1
SF(C()) ~ m, w~Vy KL Vg (265)

for frequencies w relevant to the velocity response. Then w?/vZ ~ 1072 or 107* and
Sr(w K vr) = Sr(0), and from (2.64)

19 (0)
~ M?2 F
From (2.40) the inverse Fourier transform of Sy (w) yields the correlation function:
SF<O) —vylt|
Cv('l,') = M2—21)Ve VIiEL (267)

However, we know from the fundamental definition of Cy (t) in (2.39) that Cy (0) =
(V) =T/M. Hence,

T
Cv(r)zﬁe_"‘/'” and Sp(w) =2yT, (2.68)

good for w « vr. Now consider the integral of Sr(w) over a frequency interval
[—Aw, Aw] where Aw K vp.
The fluctuation-dissipation relation is

A% dw Aw
((8F)2)Aw:/ —Sp(a)):2§2yT=4

—Aw 2

Aw

—yT. (2.69)
2w
This is the fluctuation-dissipation theorem or Nyquist theorem due to Einstein in
his work on Brownian motion.

2.2.3. Spatial diffusion and diffusivity
If the velocity field in Brownian motion is a random process, the particle
displacement inherits randomness from the velocity.

DEFINITION: Let x be the position of the particle and V its velocity.
For a specified time interval At there is an accrued displacement:

t+At
Ax =/ dr'v(t"). (2.70)
t
The ensemble-averaged displacement inherits its value from the ensemble-averaged
velocity:
t+At
(Ax):/ di'(V('))=0 (2.71)
t
if (V('))=0. We can then calculate the ensemble-averaged variance of the
displacement:

t+Ar
((Ax)2)=/ dr’ {/dr’ (V(r’)V(ﬂ))}

t+At (V2>
:f dr’ {/dt’C (|t/—t/|)} =2-— [vVAt— 1 +e*”VA’], (2.72)
t 74 v

\%
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where (2.68) is used to evaluate Cy (|t —'|) = (V?)e™V!"="| The variance has the
two limiting values:

(VH(AL?  wAr L,

2y
(Ax)*) = 2<V2>§ AL 1, (2.73)
\%4

For short times the variance in the displacement grows quadratically in time as if the
velocity is constant, whereas for long times the variance in the displacement grows
linearly in time apropos of a diffusion process!

DEFINITION: The diffusivity is defined by

2
D= lim ‘&7 (2.74)
vyAt—oo  2AL

The diffusivity is then

Ax)* V2 TM T
D= fm ‘A0 _V)_TM_T (2.75)
vwAt—oo  2At vy My vy

This result allows us to define and evaluate the steady velocity response to a steady
external force, i.e., the mobility

(MV) +(yV) = (8F) + (F™) > (y V) = (F*) = F. (2.76)

DEFINITION: The mobility u is then defined as

(Vi 1
= =—. 2.77
W= = (2.77)
Using (2.75) and (2.77) we arrive at the Einstein relation:
D=uT (2.78)

The diffusivity, which characterizes random spatial diffusion, is related directly to
the mobility, i.e., the response to an external steady force, and the temperature.
We return to the consideration of (2.73) in more detail:

10+At fo+Ar
(Ax)?) = f dr’ {f dr’ (V(f)V(ﬂ))}

to+At
=f dr’ {fdt VYV —r))}. (2.79)

Note that the limits of integration in the second integral in (2.79) are implied based
on the original limits of the double integral which corresponded to the boundaries
of a rectangle in the ¢ and ¢’ domain, #, to t, + At in each direction. We recognize
that Cy () = (V(#)V (¢ — 1)) from (2.49) and Cy(|t|) = (V*)e "I, The correla-
tion function Cy(|t|) falls off sharply over a time 7.~ O(1)v,'. We assume that
At > 1. The direct implication of the sharp fall off of Cy(|t|) is that the dominant
contributions to the double integrals in (2.72) and (2.79) are over a narrow region
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surrounding the diagonal #' = ¢’ in the original rectangle in the # and ¢" domain. This
allows us to extend the limits of integration in the /' dr integral in (2.79) to [—o0, 0]
with no loss of precision. Evaluation of (2.79) is then straightforward:

1p+AL 00 0 >
/ dt’{f dr Cv(‘f)}=At{/ dr Cv(r)}=2m{/ dr CV(T)}-
1o -0 - 0

(2.80)
From (2.75) and (2.80)

_((Ax)?) [ (v
D, = A _/0 dr Cy(v) = o (2.81)

and we recover the result in (2.75).

ExXAMPLE: Using the evaluation of vy and the specific viscosity n in the last section

we have
T
= . (2.82)
6TnR
Assume 7 =20-25°C, R~ 10" cm, and a ~10"% cm, then D, ~2 x 10~% cm?/s.
Hence,

(Ax)?) =2D, At ~4 x 10*Arcm® and o, ~2 x 107*\/Ar(sec) cm. (2.83)
Because of the 1/R dependence in D,, smaller particles diffuse considerably faster.

Next we consider the probability of a particle having a displacement x; relative to
a reference or initial displacement x,, and we appeal to the central limit theorem:

()’
(5 ) = S (2.84)
P = D '
Now multiply both sides of (2.84) by the probability p(xq). Then
(o)’
e 4Dt
p(x;, X0) = p(x0) p(x;]x0) = ﬁp(xo) . (2.85)

These probabilities are not statistically independent. The displacement at time ¢ is
very dependent on the displacement at t=0. The probability of the displacement
p(x,) without specifying x, is given by the integral over x,:

p@»=/de&w@Epun) (2.86)

and p(xp) = p(x; 0).
Then

o(x; t)—/dx
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The constructed solution p(x; ) satisfies the diffusion equation:

9%p

D= (2.88)

0 (x5 1)
— x; —
at”

This all carries over to three dimensions: 9/dt(p(x; 1)) = DV?p We note that going
from one to three dimensions in the diffusion equation comes with extending the
boundary conditions from one to three dimensions, alters the Green’s functions for
integral solutions of the diffusion equation, and changes how theorems are proven.

2.2.4. Boltzmann’s H-theorem
In this section we consider example calculations derived from (2.88) which lead us
to Boltzmann’s H-theorem.

EXAMPLES:

1. Given the initial condition p(x,0)=po(1 +€sinkx) the solution to
the partial differential equation in (2.88) is straightforward: p(x,?) =

,00<1 +ee ¥ Pl sin kx) for t >0.

2. Consider the integrated form of (2.88) with reflecting wall boundary conditions
dp/ox =0:

d 0 02 0
0=$fdxp(x,t)=/dxa—f:/de—'O:D—'O . (2.89)

2
dx ax boundary

Now solve the boundary value problem given the initial conditions in the first
example and defining a relation between k and the length of the box L, e.g.,
k =2m /L. Given that the definition of the flux is I" = —DVn and the boundary
conditions, there should be no flux across the bounding surfaces.

3. H-theorem (Boltzmann): Introduce the entropy

S(t)=— / &Ex px; 1) In p(x; t). (2.90)

Then from its time derivative

/d3 |:—1n —|——:| /d3 lnp——/d3xp
0 D
—/d3xa—'(; lnp:—/d3xlnpDV2,0=/d3x—V,0-V,0

0

D
:/d3x—|V,0|220 (2.91)
Y

and we note that surface terms in the integration by parts vanish since the
flux across bounding surfaces is assumed to be zero, p is nonnegative, and
the volume integral of p is conserved with the zero flux boundary conditions.
Thus, only if p is perfectly flat will S stop growing; and there is irreversible
growth until the entropy achieves a maximum.
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4. § has an upper bound if p = constant corresponding to uniformity, which is
the asymptotic limit corresponding to Vp = 0 yielding dS/dr = 0.

Note: Boltzmann (1872) used the Boltzmann equation rather than the diffusion
equation used here to derive the H-theorem and obtained the Boltzmann distribution
as an asymptotic state.

2.3. Liowville and Klimontovich equations

In this section kinetic equations are introduced to describe the evolution in phase
space of a deterministic system when initial conditions might not be precisely known.

2.3.1. Liouville equation

We postulate a vector function I'(¢) that describes the state of a system of particles,
i.e., its momenta {pi} and positions {qi}, and assume further that there exists a
Hamiltonian H (p, ¢; t) that determines the evolution of the system:

. O0H . oH
g=—, pi=——. (2.92)
api 9g;
EXAMPLE: Charged particle motion in electromagnetic fields is described by the
equations
1
hv): F=v b:i[ﬂu0+—wﬂx3m0}. (2.93)
m c

EXAMPLE: Viscous system
hv): i=v b=—2u). (2.94)
m

Here I'(¢) has 2f dimensions, where f is the number of degrees of freedom. The
domain of I'(¢) is sometimes called phase space. The evolution of I'(¢) is formally
expressed as

d .
ST=ra.o. (2.95)

Given I'(I'g) — I'; =T (t|I') is determined. Keep in mind that I" represents the
phase-space-independent variable {r, v}. For three spatial dimensions, I'- space has
6f dimensions. For a specified fixed time 7, I' - §(x —x;, p— p;) in probability.
Hence,

p(I;1\To) =8( — I (1]T)), (2.96a)

p(I; o) p(Lo) =p(I'y, To) p(I'50) E/dFOAp(Ft» ro). (2.96D)
How does p(I';t) evolve with time ¢? This is the fundamental question of

nonequilibrium statistical mechanics.
For a state function A(TI'),

d d
<mm5/ﬁrmmmnniﬁm=/ﬁrmfhﬁnn. (2.97)
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Thus, we evaluate

P P ax 9 : 9 9 £).¢
— ([ tITy) = —8(x) — = ——8(x)- I'(I,1)—8(x) = —8(x) - —
a7 oI t|Ty) e (x) o7 Va (x) ( )ar (x) X (%) oT
9
=——=8x) -1, 2.98
ax 0 (2.98)

where X =T — I'(¢t|I’y), 35(x)/9X =035(X)/0I', and 90X /0ot = —i’(l’, ). Hence,

0 0 0 0 0

— ot ) =——T | Ty —p(I;t| T ) =—— -\ =T\ Ir;:r .

Y o( |T'y) oz (|Ty) an( |T'y) ar (8t (|Iy) p( | o))
(2.99)

Note that I'(t[Iy) is not a function of I' and I'(¢t|I'y) # . However,
/o) (¢t|Cy) =T (L (t|Ty),t); and from (2.96a) o(I';t|Ty) =8( — I'(t|Ty));
hence, (2.99) becomes

9 (;t|Ty) = o (3r.n N _ 9 (F(T, t)p(T; 1T )) (2.100)
82‘ 1% ) 0) — ar at p|= ar , 1)p ) 0 . .
EXAMPLE: Consider a one-dimensional, field-free, viscous system to illustrate
(2.100)
dV— % 9 (V5 t|lVy) = 9 (=yVp) (2.101)
dt - y ) at 10 ) 0) — av y p ) .

where I' — V — V in one dimension.
Now we return to (2.99) and integrate over the I'y domain:

d 0 a .
5 A0 = [ ano(r o prs i) == [ dpos e (FI0 pir)

d . 0 .
=———. | dlyo(L)I[ (T, ¢t r,t{\ry)=——-(r,t r;q),
Ve / oo(Lo) (L, t) p(I'; t|Ty) 81"( (L, 1) p(T:1))
(2.102)
which is the continuity equation for the probability in phase space.

EXAMPLE: Return to the one-dimensional, field-free, viscous system in (2.101). We
guess a solution

1 oz
o(Vit)=————¢ 2’0 and o(t) =o0pe . (2.103)

V2mo?(t)

EXERCISE: Check whether (2.103) is a solution of (2.101) and (2.102).
We return to (2.102) and expand the right-hand side of the continuity equation:

d J . .0
o) =—p—0 L[, 1) =T —p(I';1)

ot or or
(2 +T 9 ([;1)= 9 (Tt (2.104)
o1 or )PV TP e ‘
We define the convective derivative D/DtE(a/E)t)—}—f -(0/0') and (2.104)
becomes
b (T; 1) = 9 (T, (2.105)
o PP TP - '
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EXAMPLE: With V = —yV, then (D/Dt) p=yV and p increases following the
orbit.
For a Hamiltonian system (3/dI) - I'(I", 1) =0

Proof: We have

o . 0. 0 9H 9 0H
— F(r)=) —qi+—p=) —————-—=0.  (2106)
or 9q; ap; dq; dp;  Op; 9g;

i i

Thus, for a Hamiltonian system, (D/Dt) p(I'; t) = 0; or, more formally,

%p(r; )+ {p, H =0, (2.107)

where {p, H} is the Poisson bracket. Equation (2.107) is a statement of Liouville’s
theorem.

EXAMPLE: Consider V = (e/mc)V x B(r, t) — V= (e/mc)e;xV; By We note that
% (0x;/0x;)+ 0 V,/B V; = - . =0. With this force law the system is not a Hamiltonian
system; nevertheless, the divergence of the flow field is zero. Thus, the flow can be
incompressible independent of whether the system has a Hamiltonian or not.

2.3.2. Klimontovich phase space and distribution function

Consider the velocity (or momentum) and position phase space for N particles. For
three spatial dimensions and three velocity dimensions, this is a six-dimensional by
N points phase space.

DEFINITION: This phase space corresponds to the Klimontovich space = u and
the corresponding phase-space density distribution function is the Klimontovich
distribution.

The equations of motion (assumed nonrelativistic) are

dx,»

S, (2.1084)
dl),' 1 ext E
dr :mi |:~fl (xi7vivt)+j(#i) ﬁa/} . (2108b)

For &; defined as the vector defining the i"* particle in the six-dimensional p space,
(2.108b) can be written as

A&, (1)  :en AN
= =& o+ _Zs &, &). (2.109)
J D)
DEFINITION: Let F = density,
N
F=) 8E—&®). (2.110)
i=1

With the use of the density, the second term on the right-hand side of (2.109) can
be expressed as

>~ [ FEE 6 6. 2.111)
J (i)
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EO g t>+/ds FEVE" (€, €)= 1, F). (2.112)

We can take the partial derivative of (2.110) with respect to time

dF (&, t)__z? % & —E(1))
z_%.z%@i,t, F)S(€ — &,1))
_ _% . {j_‘f(g, L —-s,.<t>)}
_ _% e 1 PFE D). (2.113)

Equation (2.113) is a nonlinear partial differential equation in seven variables, the
Klimontovich equation.

LEMMA 1: Usually (unless the physical system is pathological)

— 0. 2.114
R @114
LEMMA 2: Following from the previous lemma (if true) and (2.113),
a d
— | F=0. 2.115
(5 +85) @.115)

which is a Liouville-type equation.

DEFINITION: We introduce the ensemble average of F over initial conditions
for &;:

fl(s,z)z<F>(.s,r>=/drop<ro>26<-s — £,(1|T0)) (2.116)

The mean value of the Klimontovich equation (2.113) is then

0 .
_fl(E )——% (EF)
a ln ’
5 €0 nen) / dE'E" (£, 8) (F(E. 1) FE. 1).

(2.117)

DEFINITION: In (2.117) we have introduced the two-position correlation function

(FE.OFE D)= > (56 —E)5(E —&))
i J

=8¢ —EVAED+ D (FEDFE:D) (2.118)

i#]j
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and F;(§; 1) = 3(& —& i). The first term on the right-hand side of (2.118) is zero to
preclude self-forces.

|Editor’s Note: A slightly cleaner notation in which the double sum has i # j to
exclude self-forces could have been employed.|

Now expand the ensemble-average bracket after introducing §F; = F; — (F;):
(FiF;) = (((F)) + 8 F)((F}) + 6 F))) = (F:)(F;) + (8 Fi0 F;) (2.119)

using the identity (§ F;) = 0. We note that F; is a single term out of the NV terms in
the sum over i leading to fi; hence, F; — O(1/N) fi(§) and F; — O(1/N) fi(§");
and the sum X%,.;— N(N — 1) pairs. These arguments lead to

1
(FEYFE) =8¢ —-EN[1(E) + (1 - N)fl(&)fl(s/) + Z (8F:(§)SF ;(§).
. (2.120)
N is large; so we drop the 1/N term in (2.120). We identify the last term

hy= " (SF,(§)8F; (&) (2.121)

i#]
as the two-particle correlation which accounts for the forces between particles. We
also drop the first term on the right side of (2.120) 8(§ — &) f1(§) because the

contribution to ém from this term must be zero because self-forces are disallowed. If

we assume the lemma (2.114) is valid and can commute (3/0§&) - § leading to (2.115),
then (2.117) becomes

[ +EYE - —+/ds.s”’;= (5.&) fiE)- —g]fl(s;n

——S'/ds’s (EE) (e &:0). (2122

We note that the second term on the left-hand side of (2.122) derives from the
external force(s), and the third term contains the mean internal force. Equation
(2.122) is not a closed equation determining the evolution of the distribution f(&; 1)
because 4, the two-particle correlation appears. The next step will be to get an
equation for /,, but this will drag in /3, etc., that is, the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy emerges.

If the correlations vanish, the right-hand side of (2.122) is zero and the Vlasov
equation results:

+s Y& —+ d&'E" (£, &) L&) — | A& 1) =0. (2.123)
as

DEFINITION: Introduce fz(‘g‘, £') defined by

f(E &)= (FEFE)), (2.124)
i#j
LEMMA: Given (2.119) and the definition of h, in (2.121) then
f2(£ag/):fl(£) fl(g/)—i-hz(é’é/)- (2.125)
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From (2.125) we note that

ah, |OF aF\  af;
hy= — fifi— 8t2 <atF>+<F8t> aff fli. (2.126)

2.4. Landau equation

In the previous section we derived (2.123) as the collisionless limit of (2.122).
Progress can be made evaluating the right-hand side of (2.122) in particular
limits. If the gas is sufficiently dilute, then the Boltzmann parameter is small,
nay < 1. A simple representation of the collision operator can be derived if the
particle interaction potential is small, ¢/T < 1, leading to the Landau equa-
tion. Another limit useful for plasmas is obtained when (e?/Ap) /T <1, and the
Lenard-Balescu-Guernsey equation can be derived.

2.4.1. Derivation of the Landau equation

To derive the Landau equation we assume ¢/ T < 1 and consider a plasma which
is weakly coupled, i.e., the interaction potential and collisions are weak. In this
limit, &, ~ & ~ ¢;;; and h; ~ force x h, ~ &2, which is higher order in ¢ and will be
discarded. This truncates the hierarchy and allows the set of equations to be closed.
Recall from the previous section, the most severe truncation of the hierarchy arises
when /i, and all higher interaction terms are discarded, in which limit the Vlasov
equation (2.123) is obtained. From (2.126) we have

0 0 0 ext ext 9 / /.
[E+v-5+v 5 TP +P @) p]hZ("””P’P’t)

=f(r,r)- (———) fite,ps ) f1G, P 0). (2.127)

In (2.127) f(r, ¥) is the electric field force.

Next consider a system in which there is no external forces and to further simplify
we assume that system is uniform so that f — f(p; t). With these simplifications
and defining s =r — ' (2.127) becomes

0 ’ 0 /. __8¢(s) i_i . /.
|:§+(v—v)-ai|h2(s,p,p,t)— a5 (Bp’ ap)fl(l”f)fl(l’,f)- (2.128)

DEFINITION: The Fourier transform of g(s) is g(k) = / d’s g(s)e .
The Fourier transform of (2.128) is then

ol
[at-i-(v—v) lk} hy(k, p, p's 1) = —ike (k) - <———) file; ) fi(ps 1) (2.129)

Equation (2.129) is a quasilinear differential equation that is first order in time. The
corresponding limit of (2.122) for f; is

a 0 ¢
o N=——. | &P -L()h ' . 2.130
atfl(p’ t) ap / r p( aV(S) Z(S,p’P,t)> ( )
Fourier transforming (2.130) and using the convolution theorem, (2.130) becomes
8 d3k 3 /(1 * /
—fl(p 1= ) ~d°p (likp ()" h> (K, p, p'; 1)). (2.131)
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We note that for (9/9t) fi — —(9/9¢) f; and p — —p in (2.131) the sign changes on
both the left- and right-hand sides of (2.131); hence, (2.131) appears to be fully time
reversible. Thus far, there is no ‘H-theorem’ in (2.127)-(2.131).

With respect to the reversibility or irreversibility of (2.131) consider the following:

0 d
(5 ~|—oc> h=gt)—a=0 Eh(t):g(t) (2.132)
which has solutions .
h(t) = / di’g(t") + h(—00) (2.133a)
or based on future values
h(t) =h(o0) — / dr'g(t)). (2.133bh)
t

The solution in (2.133b) is disturbing because of causality considerations. It is
irreversibility that provides a philosophical basis for not solving history problems
backwards. Macroscopic variables lead to equations that do not tolerate ‘back-
ward’ or ‘final-value’ problems. However, the basic equations (2.127)-(2.131) at
the moment are fully time reversible. More work is needed to derive an irreversible
kinetic equation.

We return to the solutions of (2.128) and consider first the homogeneous equation
in the nonrelativistic limit. With the masses m =m’ =1 and w = v — v/, the solution
to the homogeneous limit (right-hand side equals zero) of (2.128) is simply

h, (k, D t) = hz(k, D 0) ekt (2.134)
The particular solution of (2.128) is
hay(k, p; p's t) = hy(k, p; p; 0) e

+/ dt/e—ik-w(t—z’)d)(k) ik <i — i) (fl(P; t/)fl(p/; t)) (2.135)
0 op adp’

The solution in (2.135) is the causal solution to the initial-value problem. The
interaction embodied in ¢ has been identified as the cause of the correlation.

DEFINITION: T =¢ — ',
Equation (2.135) becomes

hz(k, P, p/, t) :hz(k, p; P/, O) e—ik-wt

! . d 0
+f dte"""”¢(k)ik-<— — —,)(f1 p.t—0fi(p,1). (2.136)
0 dp op
We note that T > 0 is always causal. With (2.136) used for /4, (2.131) becomes
3 d d’k .
— i) =—- &Ip/ (—ik)p* (k) hy(k, p, p'; 0) e *" 4 . 2.137
> fies ) p /(2n)3 p'(—ik)¢*(k)hy(k, p, p'; 0) (2.137)

We wish to show that the effect of initial correlations (the first term for /4, in (2.136)
used in (2.137)) falls off rapidly and only the second term in (2.136), i.e., recent
collisions, persists.
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LEMMA (Riemann-Lebesgue): The Fourier transform of an L' function vanishes at
infinity. The Fourier transform of a smooth function falls off rapidly in transform
space, e.g., the transform of h, falls off for large wt.

For a system at or near thermal equilibrium #, — 8 ¢ (k) fi(p, 0) f1(p', 0). Thus,
we need only show

a{ &k

i U 2oy |6 (k) \ze”"m} — 0 rapidly. (2.138)

EXAMPLE: For  ¢(s) ~ e — (k) ~ e« and [dk e Wa/2-ikm

e~("/4%  From this last expression we conclude that the characteristic time 7 in
which the correlation falls off is set by ¢ ~a/|w| ~a/v where a is the range of
the interaction, which is typically a small microscopic distance. Hence, the initial
correlations disappear rapidly. For particles with w ~ 0, co-traveling with the test
particle, their contribution to f;(v) is small. Furthermore, three-particle correlations
will destroy this special case.

We conclude that the contribution to /4, from the initial correlation, the first term
on the right-hand side of (2.135) is subdominant to the second term in contributing
to the right-hand side of (2.137); hence, (2.137) becomes

a
Efl(pv t)

_i 3 ' d3k 2 —ikwt <i_i) e ’
= /dp/o dT/(zn)3k|¢(k)| ek op op (it =@, D).
(2.139)

The integrand in (2.139) falls off for T >> a/v, which allows us to extend the integral
[ dt — [ dr. Equation (2.139) is a closed kinetic equation for f;. It is irreversible
and depends only on earlier times. Equation (2.139) with the time integral extended
to oo is

a 't
gfl(P’ )

_ i . 3 /00 / d3k 2 —ik-wt (i _ 9 ) s /
= d'p i dr (2n)3k|¢(k)| ek op (it =D fip. D).
(2.140)

We argue that only present times matter in f; f; and f; can be expanded in time:
filp;t —1)= fi(p; t) — T (3f1/0t)(p; t) subject to T < Teop ~a/v which is a small
collision duration. We note that df; /9t ~ f,/t; where 7, is a very large time cor-
responding to the time between collisions, 7, ~ £/v. Once again there are two time
scales present and 7.i/7; < 1. Hence, fi(p;t —1) i@, t — 1) = fi(p; 1) 1P, 1).

LEMMA: We have [dt e *"* =78§(k-w)+ P/(ik-w), where P denotes the prin-
cipal value. We use this lemma to evaluate the right-hand side of (2.140). We note
that the second term in the lemma is an odd function of k and will never lead to a
contribution.
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We arrive at the Landau equation

3, 3 s, [ &k ) 3 9 . ,
o= [ @ [ o Prstew (2= 2 ) (w0 ).

(2.141)
Let us recap the assumptions in arriving at the Landau equation. The simplifying
assumptions are spatial uniformity, no external forces, and a single species. The
essential assumptions are weak coupling (¢ < T') leading to two disparate time scales
(fast collision time and slower relaxation time), and the kinetic equation describes
an initial-value problem.

2.4.2. Elaboration of the Landau equation and derivation of an H-theorem
In § 2.2.3 we analyzed the continuity equation for the phase-space density:

o e Fp
o0 =—g T, (2.142)

where I is the particle flux. The ordinary number density is

n(t) = / Epfp; ). (2.143)

Conservation of particles in phase space derives from the time derivative of (2.143)
and the application of boundary conditions:

dn (5,2 @0 Fo = — & do-Fm: 1) =
E—fdpat@,t)— /dpap e o= fdar(p,t)_o (2.144)

assuming I'|;,_.. =0. In this case the flux has been assumed to vanish on the sys-
tem boundaries. If instead I'|;, # 0, then there is a flow into or out of the region
bounded by §o. The continuity equation (2.142) is a statement of continuous flow in
momentum space. In the Boltzmann collision equation there are large-angle scatters
(= strong interactions), in which case there is no continuous flow in momentum
space. In a collision a particle will disappear from one position in momentum space
and appear instantaneously elsewhere (unless the collision process is time-resolved
on a microscopic time scale). From § 2.4.1

Fp; 1= / d*p'O(w) (aip/ - %) fp; 1) f(p/; t) , w=v—7v, (2.145)
&’k 5
Oo(w) =/ sl (k)| "kkmd(k-w). (2.146)
2m)

In (2.146) ¢ (k) is the Fourier transform of the interaction potential. Note: An alter-
native derivation using the Born approximation and the Fermi golden rule yields
exactly the same results.

LEMMA: Q(w) is manifestly symmetric, w- Q(w) =0, and is positive-semi-definite

(=a-Qw)-a=>0). (2.147)
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We now derive an explicit expression for Q(w). We begin with the decompo-

sition k=k-ww+k- (I —ww). By choosing w=7% and using spherical coor-
dinates (k, 6, ¢), then k(k, 0, ¢)-w=kwcos6, so that §(k-w)=25(cos0)/(kw),
and k(k,0 =m/2, ) =kp, where p = cos ¢x + sin ¢p. Equation (2.146), therefore,
becomes

&k - 2
On) = / (27)3\4)(@{ ek 3K - w)

> k2dk 2k [T . S
= |¢( )| — §(cosH)sin 6 do p pdo
o (@2m)’ 0 0

:[L /oolé\(;?(k) \zdk] RX4pp) = g(T—@ﬂ), (2.148)
8rw J, w

where (77 p pdp = (X X+ ).

An aside on the initial-value versus final-value problem: Consider the initial-
value problem for a nonsingular f (z > 0) given /,(=0). We note that we might
instead wish to solve a final-value problem for f (¢ { 0) given &, (t=0). Then the
only change would be that for the initial-value problem I'(p; ) = [ d’p’ ... versus
I'(p;t)=— [ d’p ... for the final-value problem.

At this point we have laid the groundwork for deriving an H-theorem for the
Landau equation. Consider the expression for the entropy:

S(t)E—/dSp f:t) In f(p;t). (2.149)

Using (2.142) and (2.145), the time derivative of (2.149) is

S __ g, [X T ey = @pmrl i
P /dp|: In f+ ]/dpatlnf_fdplnfapf

/d3p—— L

1 afp) 1 afQ)
—__ d3 d3/ _
2/ pf p[f(p) op f@) op ]

- Q(w) - <———)f(p N fp's1)

=3[ [ er s Gy ) o )]

) [(i - —) f@in £ )}

1
=— [ & /d3 . a>0, 2.150
2/ D pf;)f:')a Ow) -a> ( )
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where

a9 N
“E(a_ly_a_p) fp 0 f(pst). (2.151)

Equation (2.150) demonstrates the H-theorem for the Landau equation.
THEOREM: We have
ds

E:O iff a=wg(p,p) (2.152)

where g is any smooth function of p and p'.

Now instead of a as defined in (2.151) consider

0

/ 9 ,
a E(a—p, — 5) In [fp:0) F(p's1)], (2.153)

thus @' can be recast in the same form a'= wg(p, p’) as in (2.152), i.e.,

_olnf(pi) B dlnf(p; 1)

'=(v—7v 2.154
a=-v)g op op ( )
with which dS/dt = 0.
THEOREM: The only solution of (2.152) has the form
In f(p)=Ci+C>-p+Csp’. (2.155)

We can assign C, = u, a mean drift of the velocity distribution, and invert (2.155)
to obtain the solution for the velocity distribution f that satisfies dS/dt =0, i.e., the
equilibrium distribution:

n

N 2mmT

Equation (2.156) is the formula for a drifting Maxwellian distribution. We have
(dS/dt) > 0 if f is not a Maxwellian, and f will relax to an asymptotic equilibrium
that is a Maxwellian.

f) = e~ Pim-w? (2.156)

DEFINITION: Define the kinetic energy

2
K1) z/d3p 2p—mf(p; 0, (2.157)

since the interaction energy is higher order.

EXERCISE: Using the Landau equation (2.141) show that the kinetic energy is
conserved, i.e., (dK/dr) =0.

DEFINITION: Define the momentum moment of f

g = f Eppf @ 1). (2.158)

EXERCISE: Using the Landau equation show that (dg/dr) =0.
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2.4.3. Irreversibility
Here we present a discussion and precise definition of irreversibility.

REVERSIBILITY:

DEFINITION (REVERSIBILITY): If v — —v and r— —¢ without changing the
physics except for merely duplicating the trajectory of the process x(f) — x(—1),
ending up with the initial conditions defines a reversible process.

From the perspective of the BBGKY hierarchy consider ((p; 1), hy(s,p,p’; t))
defined at t=0. Solve the equations in § 2.2.1 to obtain (fi, k) at t =¢; > 0. Now
instead introduce

ha(s, p, p's 1) = ha(s, —p, —p's 1) (2.159)
and solve for (fj, fzz) for t > t; up to t — t, = 2t; which yields

ho(s, p, p's ) = ha(s, —p, —p'; 0) and  fi(t,) = £1(0) (2.160)

if the system is reversible. We have assumed weak coupling and no time ordering.

Alternatively we could integrate the kinetic equations forward in time, use the
solutions at #; for initial conditions, then integrate backward in time to recover the
initial conditions at =0 once again, if the system is reversible.

IRREVERSIBILITY: Given (fi(p; 1), hy(s, p, p’; t)) defined at =0, solve the kinetic
equations for (fi, h,) at ¢t > 0. Given the solutions, calculate the entropy (2.149):
S(ty=—[d’p f(p; 1) In f(p; t). The system is irreversible if for any t,, S(t) is asym-
metric about #, i.e., S(¢) is growing for increasing ¢. In making these arguments,
there must arise a distinction between the microscopic evolution of the system which
includes fluctuations and the macroscopic evolution as dictated by a kinetic equa-
tion such as the Landau equation in which ensemble averages have smoothed over
the microscopic fluctuations. The Landau macroscopic evolutionary equation has a
discontinuity in slope at t=0. Of course this is not a problem because the Landau
equation only applies for ¢ > 0.

EXAMPLE: Consider the simple one-dimensional diffusion equation as an example
of an irreversible process:

2

d 3
—p(x;t)=D—p(x; 1) . 2.161
o P ) a2 P ) ( )

If t - —1, the left-hand side of (2.161) changes sign but the right-hand side does
not. Given p(x; 0) we can find p(x; ¢) for t Z 0 by separating variables and Fourier

analyzing:

dk
o(x;1) E/ Ee””,o(k; 1), (2.162a)

9 2
ap(k; ty=—-Dkp(k; 1), (2.162b)
pk; 1) = p(k; 0) e, (2.162¢)

< dk .
p(x;t) = / 2—p(k; 0) k=DK1, (2.162d)
oo 2T
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We see in (2.162¢) and (2.162d) that the solution for p decays for ¢ > 0 and blows
up for ¢t < 0. Moreover, the integral over k in (2.162d) does not exist for t <0 as
k — to00 because the integral diverges; so there is no solution for p for t < 0.

EXAMPLE: Suppose the initial condition for p in the preceding example is p(x; 0) =
1/(v/2w2)e~**/>*" Then the solution of (2.162d) is given by

plxir) = f B s 0y eie-de-vit (2.163)
oo 2T

We observe that the integral in (2.163) converges as long as —Dt < (1/2)0?, i.e.,

there is a nonsingular solution for p(x; ) for a finite interval of negative times. At

t =—(0?/(2D)) we have a §-function solution for p. In terms of a Green’s function

we find that (e’

e~ 4pT

Jar Dt

For ¢t <0, the ~/47 Dt in the denominator is imaginary; and the exponential in the
numerator blows up with large |x — x’|. However, the integral in (2.164) may still
converge for a finite interval of negative times if p(x’; 0) falls off with |x'| fast
enough. That +/4m Dt is imaginary is not fatal for obtaining a solution for negative
times in the interval where the integral in (2.164) converges.

olx; )= / dx’'p(x"; 0) (2.164)

EXERCISE: For the Gaussian initial condition used in obtaining (2.163) show that
the Green’s function method in (2.164) can recover the same solution as in (2.163).

2.5. Markov processes and the Fokker—Planck equation

DEFINITION: A Markov process has no memory.

|Editor’s Note: The definition in Wikipedia is “A Markov chain or Markov process
is a stochastic model describing a sequence of possible events in which the probability
of each event depends only on the state attained in the previous event.”|

Processes, random, stochastic, or otherwise, fall into a few categories. There are
Markov and non-Markov processes. Within Markov processes there are continu-
ous and discontinuous processes. An example of a continuous Markov process
is Brownian motion with Gaussian statistics. Large-angle collisions described by
the Boltzmann equation fall into the discontinuous Markov process category. The
Landau equation can describe a continuous Markov process with non-Gaussian
statistics. There are examples of generalized Brownian motion that are non-Markov
processes. Processes can also be characterized as ergodic, stationary, Gaussian, and
SO on.

Suppose there is a random process with probability distribution:

,O(XI, xza AR xn) :p(xlv x27 AR ’xn) p(xn|xn—l’ xn—27 .. ')v (2165)

where x (t;) = x; measured at successive times. A Markov process corresponds to the
condition

p(xnlxn—laxn—2a .. -):p(-xmxn—l) . (2166)
A classical random walk is an example of a Markov process.
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DEFINITION: Define A, =x, — x,,_;.

We note p(A,|X,—1, Xp—2, ...) = p(A,|x,_1) also defines a Markov process.
Consider
P Xy Xty + vy X0) = P(Xp]X0-1) P(Xp—1|X5-2) -« . p(X53]X2) p(x2|x1) p(x1]X0) P(X0) -
(2.167)

Divide both sides of (2.167) by p(x,) to obtain
P Xy Xn—ts + - 1X0) = P(Xn|Xn—1) P(Xp—1]Xn-2) - . . p(x3]2%2) p(X2|X1) p(x1]x0) (2.168)
The Chapman-Kolmogorov equation is:
p(x2, x1]x0) = p(x2|x1) p(x1]x0) - (2.169)

Equation (2.168) is the Chapman-Kolmogorov equation for any three times. We
can integrate (2.169) [ dx to obtain

p(x2]x0) :/dxlp(lexl) P (x1|xo) (2.170)
which is true only for Markov processes. More generally, x, would appear in
p (X2, X1|xo) -

LEMMA: We have
(e, = [ dritaa), pa ) @.171)

LEMMA: We recall the definition of the normalized correlation function R(t) from
(2.45) and use (2.170) and (2.171) to obtain

(Xn) 1, = Xm Rty — ) (2.172)

to represent the average value of (x) at time t, following the precise value x,, at
tn, and

xo R(|t2 —1]) = / dxix; R(1ta —t1]) p(xilxe) = R([ta — t1]) (x1)),- (2.173)

For a stationary Gaussian process the correlation function can be built up in
multiplicative pieces
R(tz—to):R(tz—tl) R(tl —to). (2174)

For a stationary Gaussian Markov process the correlation function has the form
R(t) =" (2.175)
to be consistent with (2.174), and with Gaussian statistics and stationarity.
2.5.1. Expansion of the Chapman-Kolmogorov equation to derive the Fokker-Planck
equation
Consider a continuous Markov process. Initial conditions become implicit, and we

change the notation. For the probability distribution as a function of x at time ¢,,
p(x; t,) given p(x; ty)) =8(x — xo) is

p(xn;tn)=/dxn_lp(xnlxn_l)p(xn_l;tn_l):de’p(XIx’)p(X’; i) . (2.176)
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DEFINITION: We introduce the transition probability
YU(Ax|x — Ax; t — At, At) = p(x < x5 t — At, At). (2.177)
Then

olx; )= f dx/,o(x <~ x';t — At At),o(x/; t— At)
= / d(AX)Y(Ax|x — Ax; t — A, At)p(x — Ax; t — At), (2.178)

where Ax = x — x’. Note that ¢ is discrete and x is continuous. Assume Ax, the step
size, is small so we can Taylor-series expand:

14
p(x: t)_/d(Ax)Z( A’ 8— U (Axlx: £ — AL, A1) p(x: t — AL, (2.179)

Now we change the notation by shifting ¢, t — r + At, so that

plx;t+ At)= / d(Ax) Y (Ax|x — Ax; t, At)p(x — Ax; 1)

. ¢
/d(A )Z( Ax)' a_ (Ax|xit, Af) p(x:t).  (2.180)

If the series expansion in (2.180) is uniformly convergent, then we can commute the
integration and series summation to obtain

/d(Ax)(Ax) Y(Ax|x;t, At) p(x;t)

=0

p(x;t+ Ar) = i

(- a‘f
= e (AL A prin). (2.181)
2

Next we subtract p(x; t), which is just the £ =0 term on the right-hand side, from
both sides of (2.181) and then divide both sides of the resulting equation by Ar to

obtain
= [y (A0 1 AD
Z( D= [AHO AP r)]

- p(x 1)

)4

d
(=D [P np(ri )]

I
Me I

(=1

9 ik
—o= [0V 0 ps D]+ o [P 1) pls 1)]

+Z( 1) - [DO®x, Hp(x; 1] (2.182)
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£ .
DO, )= lim AN )L A (2.183)

At—0 2 At
Equation (2.182) is the generalized Fokker-Planck equation. It is useful if we can
truncate the equation after the first two terms on the right-hand side: D, D® #0;
DY =0, £ > 2. We then rewrite the truncated version of (2.182) in the conventional

form.
Fokker-Planck Equation:

O pen=—2 2 ol b pon s 2.184
EP(X’ )__a_x [T,O(X» )i|+@[ (x,1) p(x; 1)] (2.184)

The first term on the right-hand side of (2.184) is defined as the dynamic friction. In
the following two examples we show how the Langevin equation model for Brownian
motion and the Landau equation can lead to the Fokker-Planck equation.

[Reviewer Dominique Escande’s Comments: The passage to the derivative in
(2.182) can be further discussed. See, for instance, Ryskin (1997) The generalized
Fokker-Planck equation (2.182) is called Kramers-Moyal expansion, or van Kampen's
system-size expansion (see the corresponding Wikipedia articles for original references).
Equation (2.184) is not a theorem by Fokker-Planck, but by Ryskin (1997). The
Pawula theorem (Pawula 1967) might be referenced here, since it shows that the
only truncation of the expansion, which ensures solutions to be physically meaningful
(e.g., positive everywhere) is that to the second order.]

EXAMPLE: Brownian motion. Consider the Langevin equation for a particle with
unit mass (M =1):

v=—yv+4§F. (2.185)
Here the velocity v(z) is the random variable of interest in the Langevin equation.
Integrate in time over At < y ! but At > 15 the characteristic time for fluctuations
in the forces. Here vy = y using our previously introduced notation:

At
Av:—yvAt—i—/ dt §F(¢). (2.186)
0
Taking the ensemble average over fluctuations in 6 F, (2.186) becomes
At
(Av):—yvAt—l—f dr (5F)(1) (2.187)
0

assuming there is no correlation between the velocity and the fluctuating force,
1.e., (§F)=0. Hence,
(Av) = —yvAt (2.188)

and
2

9 B 9
F” p(v; 1) = mr [—yvo(x; )]+ 70 [D(v, 1) p(v; D)]. (2.189)

Now calculate the ensemble average of the square of (2.186):

At At
<(Av)2>=y2v2m2+f fdtdt’(SF(t)(SF(t’)) —2yvAtf dt(8F)(t) (2.190)
0 0
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but (6F)=0and (§F(t)3F (")) =Cr(|t —t']). With At > 157, (2.190) becomes

(AV)?) = y2v?Ar? + At /oo dr Cr(7). (2.191)

We divide (2.191) by 2At and take the limit as At — 0 to obtain
(Av)?)  y2?Ar 1 /°°

+

lim AL 2 7 dr Cr(7). (2.192)

[e.¢]

At this point we recall that At < y~! and At > 15 which allows us to argue that
the first term on the right-hand side of (2.192) is small compared with the second
term and is negligible.

From (2.192) we conclude that

o ((Awy) 1
DU=A1}I_1)10 TAs _5/ dr Cr (7). (2.193)

—00

From expressions we derived in § 2.2.1 for Brownian motion,

55/ dr Cr(1) =S(@=0)=yT, (2.194)

which recovers the Einstein relation. Note that Ar — 0 only on the slow time scale.

[Reviewer Dominique Escande’s Comment: Ryskin (1997) can be referenced with
respect to At — 0 only on the slow time scale.)

We can now identify terms in the Fokker-Planck equation (2.189):

D pwiny= =L yupl s ol =y (p + 722 (2.195)
— p(v; ) =——[—ypv — =y—|v — . )
T vt VPTG WEPIEY AT
This is a universal Fokker-Planck equation, a property of any one-dimensional
Gaussian Markov process.

EXAMPLE: Landau equation. In this example x — p(t) and p — f. The Fokker-
Planck equation is

O = —2L | im 2P _ 9
o [0 =—5 [ m @0 =5 Dp.n [ t))} (2.196)
where (ApAp)
PAD
D(p, t)_AlHO AL (2.197)
The Landau equation asserts
0 J =
5 @ t)=—a—p -I(p;1). (2.198)

Can we show that the right-hand side of (2.196) is equal to —(3/dp) - ['(p; 1)? In
§ 2.4.1 we derived (2.145)

Fon=[ @ Q(W)<———)f(pt)f(p) w=v—7.

(2.199)
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Inside the square bracket in (2.196) the two terms can be expressed as

. (Ap) 0 ad a
lim —— —-D—— -(Df)— f—-D. 2.200
Jim == f+f8p o (Df) fap (2.200)
The first two terms in (2.200) can be identified with the 9/dp’ on the right-hand side
of (2.145) and the third and fourth terms in (2.200) can be identified with d/dp:

D(p, 1) = f dp'omw) (s 1). (2.201)
DEFINITION: We have
. (Ap) NN .
lim = = (F)(p; 1) = 2a_p -D(p; 1). (2.202)

With the use of (2.200), (2.145), (2.201), and (2.202) the Fokker-Planck equation
(2.196) is recovered. The Landau equation is a particular Fokker-Planck equa-
tion for a Markov process. On an appropriate time scale the transition probability
Y (Ap|p; t, At) has no dependence of the jump Ap on the past history. Weak cou-
pling has been assumed, and the effects of large-angle collisions are neglected. The
Boltzmann equation can accommodate large-angle scatters.

[Reviewer Dominique Escande’s Comment: The consequences of large-angle
collisions are overlooked. The latter may have a large effect: see Shoub (1987).]

To summarize, the Landau equation written in the form of the Fokker-Planck
equation is

a d d
3 f; t)=—'[—<F)(p; D f+—-Dp1) f)] (2.203)
t ap ap
where from (2.201),
D(p, 1) = / d*p'O(w) fst), w=v—0v. (2.204)

For v« v, D(p,t) — DI, i.c., the diffusion is isotropic in certain situations. The
friction or drag term is

(F)(p; 1) = P -D(p; 1). (2.205)
ap
From § 2.4.1
O(w) = %(I—fvﬁ)), W 0=0, (2.206)
where from (2.148)
0=_L / U GO a0 a=2@ —(a-#)})=0. (2.207)
8 w

EXAMPLE: Consider ¢(r) = tpoe~ /2" attractive or repulsive. Calculate the
. L= 3 .
Fourier transform to obtain ¢ (k) = (/27 a) ¢ee~*«*e*/?, from which
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3.6 )
Q:%/dk Bdw| = (2”) a ¢0f e dk

1 o0
= n2¢§a2(§ f dr tef> = ”Tpgaz. (2.208)
0

We can now find an expression for the Fokker-Planck equation:

I NP s I N O PO
Ef—@‘[— f+5'( f)]_ﬁ'[_i f+ gf]

R % 9 (9 Pf
‘_E(ap )” opop [a_p'(ap ﬂ” wpop 2

where we have used the relation (valid for a single-species plasma)

Fo= [ d /[— 00m) - (W)}f(p) 2000 @210

between the friction vector and the momentum diffusion (dyadic) tensor. Since
(2.161) yields the definition

<—>
ww

o) = [ arem 1) =0 [ @+ -2 ) 7). @21

LG ol (o o

Next, using (2.148) and w = v-»’, we first calculate (note that Q is a constant)

we obtain

9 (T wi 200 209 /1
0w )___ om=22 L _»¥ :__913:_9_(_),
m ov w w m w m ov

(2.213)
so that we obtain the friction vector from (2.205):

9 2
F=2-. D—m/d3/[— Q(w):|f(p) —?Q d’p’ [

}f(P)

/4 —v'3
(2.214)
which naturally satisfies Newton’s Third Law. Lastly, using the definition of the
Dirac delta function, V2|r — ¥| ™' = —4783(r — r'), we find
0 200 0 o1y 80 , 3 ,
> ( Q0w )) = (=) == (v ) = =87 oms (p — p).
(2.215)

Hence, we conclude
9 0 , ) )
- [8—17.(5-0)]:—[&,) [-87Om&* (p—p)| f(p)) =87 Omf(p). (2.216)
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EXAMPLE: Despite the long-range interactions in a plasma, assume the plasma is
sufficiently tenuous so that weak coupling prevails. Debye shielding affects the
interactions:

2

ie— (s < 50), T
P(s) = eszo Ap = yr— (2.217)
+—e 0 (s>5), e

N

where s, determines a cutoff of the potential at short distances such that (e?/sy) < T
and A =Ap/(e*/T) >1 to be consistent with the weak coupling assumption. In this
example, Q =2me* In A; In A =3-15. At distances s > A, the plasma screens the
potential, and the potential decays exponentially in s /A ,. Hence, Trep ~ 1/0 ~ 1/¢5.
0 only affects the time scale for the relaxation of the distribution function, not the
form of the solution.

EXAMPLE: Multispecies Landau equation. Having two or more species only appears
in the interaction potential. The Fokker-Planck equation becomes

P 3 B}
EW )= e [—<F>“(p; N+ — (D@, t) fS)] , (2.218)
P ap
where
Dp.n=Y / S0 ) ) wep—v =L 2 (2.219)
s’ m my
and ;
(FY'(p; ) =2—-D'(p; 1), (2.220)
ap
where ,
o (w)=Q7(1—w). (2.221)

2.5.2. Discontinuous Markov process and derivation of a master equation
We reconsider the Chapman-Kolmogorov equation in the context of discrete steps
in x:

p(-xn|-x0) = / dxn—lp(-xn|xn—l) p(xn—l-XO) ’ (2222)

which we recast in the form
ptrs ) = [ d¥p(xs 1) p(e' ) (2.223)

where x is discrete with index m and tr — t + Ar. The Chapman-Kolmogorov
equation becomes

Pt + A=Y (1, AD (1) (2.224)

m
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and we have suppressed the initial condition x, in the notation. Define the tran-
sition probability V. = Pmem (t, At), XY =1. Using the identity p,, (1) =
Zm’v/mm’pm’(t) and (2224)

Pt + A = P (1) =Y [Yoo) o (1) = Vi 0 ()]

= Z (W50 o (1) — W0 (1) (2.225)
m'#£=m
since the m = m'’ term cancels. We next divide (2.225) by At and take the limit
At — 0:
- pu(t+ AD = pu (1) Vi V'
1 — mm m/ t _ m-m » t
Y P vl I

d
gpm (t) = ; [anzm’pm/(t) — Aw/m Pm (t)]

= Z [amm’pm’ (t) — A/ m Pm (t)], (2226)

m

where a,,,, = lim A,ﬁo(wﬁfrf} /At) the transition probability per unit time which is non-
negative. Thus, the rate of change of probability for a discrete state m is just a
function of the present time, due to Af << Tevoltion 1he process becomes explicitly
Markovian. The master equation (2.226) has not been derived from first principles:
the derivation has used the Chapman-Kolmogorov equation.

DEFINITION: A master equation as in (2.226) is a set of first-order differential
equations describing the time evolution of the probability of a system to occupy
each one of a discrete set of states with regard to a continuous time variable z. Pauli,
Tolman, and Van Hove are among those credited with presenting master equations.

Rate equation for probability:
d
PO =D L ur (1) = G ()] (2.227)

Using the lemmas %, 0,,(t) =1 and (d/df) X, 0,,(¢) =0, and the definition for the
entropy S(t) = —%,,0,(t) In p, (), we calculate the time derivative of the entropy:

d

1 2 m 'm’ m'mMm mm’ Pm’ )+ .
t . p /0 a p a ,O

At this point we must assume something about a,,,, Versus d,,, .

POSTULATE: Assume detailed balance (a la Boltzmann), but not microscopic
reversibility:
Ay = Ay’ + (2.229)
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Detailed balance means that the probability of the process has the same probability
as does the inverse process. In some instances detailed balance does not hold, but
states can be grouped into superstates where detailed balance does hold.

Using (2.229), (2.228) yields an ‘H-theorem’:

d

1
5=3 Z (10 P — 10 ) (P — Pr) = 0. (2.230)

THEOREM: We have (d/dt)S =0 if and only if nn,, = p,, i.e., all states are equally
probable, which defines equilibrium. The concept of equal a priori probabilities is
synonymous with equilibrium. Moreover, as t — oo, (d/dt)S — 0 and p,, = pu.

2.6. Linear response theory, linear Boltzmann equation, and transport theory

2.6.1. Evolution of velocity angle probability distribution due to scattering

Consider a system of scatterers, e.g., neutrons being scattered by point scatterers
or light being scattered. For specificity, consider a neutron in a uniform system of
scatterers (at least statistically uniform).

DEFINITION: Define a scattering direction 2, /' d = 4, and the velocity direction
probability function p(2; 7). We assume that the magnitude of the velocity |v]is
unaffected by the scattering off recoilless particles.

A
%p(ﬂ; 0 :/ dQv(2 < @) [p(R; 1) — p(R; 1], (2.231)
4

where v is the probability per unit time for scattering from € to £’ or the reverse
Q' to : v ~nyvo (O) where o is the differential cross-section through the angle ®
between scattering directions £ and ', n is the number density of scatterers, and
v is the relative velocity between the neutron and the scatterer.

The differential cross-section can be decomposed into a series expansion separat-
ing its angular dependence from its dependence on speed:

2041
4

o(®) = Pi(cos ®)

£=0

o¢(v), (2.232)

where P, are Legendre polynomials. We decompose (2.231) into spherical harmonics
and solve the linear equation to obtain

p(R: )= ¥ (R)p; (t =0)e (0", (2.233)

4,m

where v, = nyvo,. In going from (2.232) to (2.233) it is useful to employ the addition
theorem for spherical harmonics:

m=~£

4
P((COSJ/) P E— [m(elv ¢1)Yé71*(92’ ¢)2>7 (2234)
2€ + 1 m=—{
where cos y = cos 0,cos 6, + sin 6;sin 6, cos (¢, — ¢,). We note that 1/0,.9 > 1/0y
and the £ =0 term in right-hand side of (2.233) does not vanish as t — oo.
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Suppose that the scattering is isotropic, 1.e., 0 (®) =0y and o,y = 0. In this case
(2.233) becomes

PR =Y Y/ (R) p(t=0)e " + pl(r=0) (2.235)

££0,m

Thus, any initial anisotropy will decay away exponentially. The physical mecha-
nism is that random scattering causes a loss of order and structure. These results
require o,z <0y to be physical; otherwise any initial anisotropy would grow.
Equation (2.233) can be rewritten as

oo m={

1
PR D= D V(R pf (0 e (2.236)

=1 m=—¢

with v, < v, for all £ > 0, v, = ngvo, and o (®) given in (2.232).

2.6.2. Linear response fundamentals

Before discussing the analysis of the linear Boltzmann equation we first introduce
some necessary definitions and properties associated with linear response functions.
Consider the linear response J(¢) of a system due to an external agency F (¢).

POSTULATE: Assume linearity, causality, and stationarity.
Given the postulated assumptions, quite generally one can write

J (1) =/ dt'R(z, 1) F(t) =f dtR(r=t—1)F(t —1). (2.237)
—00 0
DEFINITION: The response or transfer function R satisfies
R(1)= R@ - w=0 2.238
“=o T <0. (2.238)
With (2.238), the integral in (2.237) can be extended:
J (@) :f dtR(r)F(t — 7). (2.239)
DEFINITION: Define the Fourier transform g(w) = /*,_ dr g(z) ¢''.
We use the convolution theorem and (2.239) to obtain
J(w) = R(w) F(w), (2.240)

where F(w)=f%_dt F(r) e with F(t)|_, =0 (F is turned on at a finite
time) and F ()| = finite; R(w)= /3 dr R(¢) €’; and J(w) = [ dr J (1) & =
S, dr J(1) €Ty > 0 for convergence.

We note that () is a causal function and is analytic in the upper half of the
complex w plane, which follows from R(t) =0 for 7 <0; and R(—w) = R*(w) for
real w.

EXAMPLE 1: R(t) =e¢™ — R(w)=1/(v —iw) which has a simple pole at
w=—iv.
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EXAMPLE 2: R(7) =sinwyT = R(w) = 0y /(0] — @) (0 # ) .

EXAMPLE 3: R(7)=/%_ dve ™™ g(v), 0 <vy <v(v) <v;, = R(w) = [ dv(g(v)/
(v(v) — iw)) There is a branch cut for -ivy < w < —iv;.

If we evaluate R(w) on the real w axis we note that R(w) = R'(w) + i R'(w) where
R'(w) is an even function of w and i R'(w) is an odd function. The Kramers-Kronig
relations assert that R'(w) and R'(w) are Hilbert transforms of one another.

Kramers—Kronig relations: R'(w) and R"(w) satisfy

1 oo R/ 1 o0 /
R’(w):;p.v./ dés_(s) R’(a)):—;p.v./ d";‘é (s), (2.241)

where p.v. [ d& is the Cauchy principal-value integral.

|Editor’s Addendum: The Kramers-Kronig relations are derived as an application
of the Cauchy residue formula for a function f(z)=u(z)+iv(z) that is analytic
in the upper half-plane (Im 7>0). Under this assumption, the contour integral
$. f(2)dz/(z — &) =0 vanishes for any real variable ¢ along a closed contour C that
is composed of four segments: two segments along the real axis (from -R to { — € and
¢ + € to +R), a semicircular segment in the clockwise direction (from { — € to ¢ + €),
and a semi-circular segment in the counter-clockwise direction (from +R to -R). In the
limits R — o0 and € — 0, we therefore obtain

0= pvf dx ”(XH’U(X) 7 [1(C) +iv(0)] (2.242)

where

> f(x) . * fx) /{6 f(x) }
. d =1 dx ——— dx 2.243
p-v /—oo * (x - é‘) 615)1(1) |: e (x - é‘) + —00 (x - é‘) ( )

denotes the Cauchy principal-value integral. Hence, we obtain the dual relations

1 o0
w0 = po [ ar 2 S HIIE) and we)

o0

=L po. f°° & M e, (2.244)
2 —00 X = ;

which are expressed in terms of the Hilbert transform H [ f1(¢) = (1/m)p.v. o dx
f(x)/(x — ). We note that these relations are completely general for the real and
imaginary parts of an analytic function in the upper half-complex plane.|

EXAMPLE: For atomic spectra, absorption can occur at a particular frequency:

(O

2
R (w) =686(w —wy) — 8(w+ wy), R'(w)= — S, 0 F w. (2.245)
W) —

Thus, dissipation implies dispersion; and dispersion implies absorption.

EXAMPLE: R(7) =sin(wyt) > R(w) =wy/(w] — »*) which is wrong. The correct
result is

R(w) = zaj’wz +i%(8(a)—w0) — 8(w+wy)) , (2.246)
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which we should have caught when we performed the Cauchy integral carefully.
Thus, the Kramers-Kronig relations provide a valuable check.

EXERCISE: Include damping in a model response function R(t). Use Kramers—
Kronig to determine R”.

[Editor’s Solution: Consider the model response function which includes damping
R(t) = A exp(—vt)sin(Q + «), (2.247)

that is a solution (fort > 0) of the damped oscillator equation ié(t) + 2UR(Z‘)+
@}R(1) =0, where Q> = o} — v > 0 and the constants (A,&) are determined from the
initial conditions R(0) and R(0). The Fourier transform R(w) = [ o dtR(t) exp(iwt)
is expressed as a complex-valued function

R(a)):é[ exp(ia) exp(—ia)

2 [(w+Q+iv) (0—Q+iv)

which has poles in the lower half-complex w plane at w =+ —iv, with R'(w) =
Re[Rl(w) and R"(w) = Im[R](w) for real w. Hence, the real and imaginary parts of
R(w) are guaranteed to be related by the Kramers-Kronig relations (2.241)

R"(§) R'(§)
£E—w E—w’

which hold for arbitrary constants (A,«). For example, we consider the case (4, a) =
(1, 0) , which yields the double Lorentzian distributions (centered at +w,)

Q0] — @?)
(? — w§)2 + 4v2w?
2Qwv
(0? — a)(z))2 + 4v20?

where R’ (w) and R"(w) are even and odd functions of w, respectively. At resonance
w==xwy (for v #0), we find R'(£wy,) =0 and R'(£wy) = 2/ Rvwy). Lastly, in the
limit v — 0, we find

] =R/ (0) +iR" (), (2.248)

R'(w) = %p.v. /Oo dé& , R(o)= —%PJ}' /Oo dg (2.249)

R (w) =

(2.250)

R"(w) = (2.251)

R(w) = —2

n i%((S(a) — @) — (o + wy)) (2.252)

2 2
Wy — w

which is given by (2.246).

2.6.3. Linear Boltzmann equation

Consider a system comprised of an electron gas with electron charge e, immersed
in a gas of neutrals in which the electrons scatter. If there is an externally applied
electric field E(z), the current in response to the electric field is

jt = / s () E - 1) (2.253)
0
and -
J(w)=0(v) - E(w) (2.254)

We use the linear Boltzmann equation to describe the scattering of the electrons by
the surrounding neutrals.
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POSTULATE: Assume conditions such that v, peygais > Vee With Debye shielding,
i.e., the electron—neutral collisions are dominant.

Before linearization the scattering equation for the electron velocity probability
distribution is

i,o(v; D +v- i,o(v; ) :/ dQ'v(®, v) [p(v; 1) — p(v; 1], (2.255)
ot ov 4

where v = (¢/m)E and v ~nyo (®, v) v which depends on the particular neutral
atoms. Equation (2.255) is not linear in p, E, etc. To justify linearization we require
that E is weak and produces a small perturbation in p:

p(v; )= pP ) +3p(v; 1), 8p K p, (2.256)

where p? (v) is isotropic and only depends on the electron speed, e.g., a Maxwellian.
To first order (2.255) becomes

9 . i i 0raye ¢y — ’ /. _ .
55p(v,t)+mE 8v,o(v,t)_/4ndﬂv(®,v)[8p(v,t) sp(w; ). (2.257)

Equation (2.257) is a linear Boltzmann equation. Now solve the linear integrodiffer-
ential equation.

DEFINITION: Introduce the notation
f dQ'v(©, v) [6p(v'; 1) — Sp(v; ] = —Dép(v; 1), (2.258)
4

where v is a positive-definite operator operating on dp inside the integral on the
right-hand side of (2.257). The operator v is elaborated on in the rest of this section
and, in particular, (2.266)—(2.269).

With the use of (2.258), (2.257) becomes

e o0
—iwdp(v; w) + —E(w) - —— = —vép(v; w)
m v
(@4 iD) 8p(v; ) = —i S E(w) - - (2.259)
m

The current is related to the electron charge density and fluid velocity:

jt) =n.e(v)(t) =en, / dvo (o (v) +8p(v; 1)), (2.260)

where p is normalized to unity, n, is the unperturbed electron density normalization
factor, and only the §p term on the right-hand side leads to a finite current. Using
(2.259) and (2.260) the Fourier-transformed linearized current density is

) n.e* 3 v 9p?

J@)=|—() | dv—e—— |- E(w) =0 (0)E(®). (2.261)
m (w+iv) odv

The quantity inside the square bracket in (2.261) is the conductivity tensor

o =0 1 which is isotropic due to the assumed isotropy of p® and has positive-

definite eigenvalues:
e’ 1 p
o(w)=— | 2 /d%va Loy (2.262)
m v —iw) wvov

This is a universal result.
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For v(v; ®) =ngvo (v; ®) (here o is the scattering cross-section, not to be
confused with other definitions of o) the linear Boltzmann equation derived from
(2.231) is

D F(R; t)=/d252’v(v; Q) [f (01— f(R;0]. (2.263)

From the Landau and Boltzmann equations one can write a generic kinetic equation
for the electron velocity distribution in a spatially uniform medium:

d 0 . .
Wi+ CE@) - fei 1) = C(f<, £+ C(f°, £, (2.264)
m ov

where f¢(v; 1) = Q) +8f(v;t). In (2.264) f¢(v;t) =n°p(v;t), and the right-
hand side can be linearized

Cee(fe, fe) + Cei (fe’ fz) — _ﬁeegfe _ "}eiafe = _ﬁSfe (2265)

so that (2.264) has the same form as the kinetic equation (2.257) after linearization.
The eigenfunctions of v are Y;"(£2):

= 2041
v (v; ®):Z2:0:Pg(cos 0)——w(v), (2.266)
w(v)E/dZQPg(cos 0) v(v; ®)§/d29v(v; ) =, (v), (2.267)

where vy(v) =v(v) is the “total” rate, vy(v) =nyo (v) v, and we note that v, > 0.
Using (2.263), (2.266), (2.267), and the addition theorem mentioned after (2.233), it
can be shown that

VY () = (vg — 1) Y," (), (2.268)

where on the left-hand side of (2.268) ¥ operates on Y;". Thus, vy — v, is the positive
eigenvalue of v operating on the eigenvector Y;". Hence, any function of the operator
F(v) operatingon Y, F(v)Y;" will yield F(vy — v,)Y,". To illustrate the operator v,
for £ =1 these relations imply

Vo — Efdzﬁv(v; 0)(1 —cos@):/dZQ novo (v; ®)(1 —cosh),  (2.269)

where o(v; ®) is the differential cross-section and o, (v) =/ d’Qo(v; ®)
(1 —cos ) = (vy — v1)/ngv is the transport cross-section.

2.6.4. Collision models and conductivity
We can now apply (2.269) to the conductivity tensor in (2.262) for the £ =1,
m = =+1, 0 terms.

In the expression for the conductivity () —iw) ' — (vy — v} —iw)”! and using
(2.262) and (2.269) we obtain

PN . 2 1 9 (0)
o(@ =0l =" /d3vv ey (2.270)
m

Downloaded from https://www.cambridge.org/core. IP address: 10.3.209.135, on 15 Jul 2025 at 01:16:16, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377825000042


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000042
https://www.cambridge.org/core

110 A.N. Kaufman and others
With p© ~ efm*/2 (2.270) becomes

1
o, (2.271)
(Vi —iw)

o(w)=0(w) I = Bn.e /d vpy—
<>
Using the definition of the average over the velocity distribution and # 1 =3, (2.271)
becomes

1 2 .o -1
o (@) =3pn.e (W, (V) —iw) '), (2.272)

EXAMPLE: Consider a single electron in the presence of an atom. The atom feels
the electric field of the electron E = (e/r*)# which induces a dipole moment in the
atom, Il =«E. The interaction energy of the atom’s dipole with the electron is
ep =ell - V1/r— a(e?/r*). A model for the interaction of the electron with the
dipole might be ¥ = —(3/93r)(—(ae?/m)/r*) = —V,e¢/m, with & ~ O (volume) . The

interaction of an electron with an ion is ¥ = —(9/9r)(—(Ze*/m)/r). In general, the
interaction of the electron with scattering center can be modeled as
d (a
b= ——(a—) : (2.273)
ar \rs

where s =4 for the dipole interaction and s =1 for the interaction with the ion. The
quantity @, has units a, ~ (velocity - L/time)L*. The transport cross-section has units
of L? with functional dependence

Cla [

vl‘l

o (v, a,) = (2.274)

Hence, from (2.274) L> =(1 /Velocity”)(VelocityzL‘Y)q; and 2¢g = n and 2 = sq from
which we conclude that ¢ =2/s and n=4/s:

2
C,la,|*”

(&)(v ax) e

(2.275)

EXAMPLE: For s =1 and interaction of electrons with an ion,

C (2 7%
o) = v4( © ) :cl2—z4, (2.276)
m m

which we recognize as C; multiplied by the Rutherford cross-section for the
Coulomb interaction.

EXERCISE: Derive the expression for o;,. for a Debye-shielded electron-ion interac-
tion based on the analysis in § 1.4.6

EXAMPLE: Electron interaction with a neutral atom.

From the literature we find the transport cross-section

1
2\ 2
0, (v) = Cv“(%) . cs=1.1052, (2.277)

and « is the polarizability. From (2.277) the scattering rate is

1

ae?)?
Vv, (V) = ng0, (V) v = ”004(—) , (2.278)
m
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which is independent of speed. From (2.272) we solve for the conductivity

2 w?
o (@) =< / i . (2.279)
Vv, —iw  4r (v, —iw)
and there is a pole at w = —iv,,. After Fourier transforming,
neez 0
o(r)y=——=e"",j(t)= / dro(v)E(t — 7). (2.280)
m 0

EXERCISE: Sketch o’ (0) = Re (@}, /(47 (v, —iw))) and 0 (w) = Im (@}, /(47 (v;, —
iw))) using the estimate

2\ 1/2

e 1 p

a(a):O):n—(e—) ~ 102 61 0~ 10" em™?,
nog \m

Vi ~nol0 8 em® s ~ 10" 571 (2.281)

Using Maxwell’s equation (electrostatic limit) (47j/c) 4+ (1/c)(0E/dt) =0 and

Jw) = (c})(a)) - E(w), we obtain the dispersion relation for electron plasma waves with
collisional damping:

2
drn.e”

=w (2.282a)

pe’

a)(a) + ivtr) =

w=w +iw ~w, —i%. (2.282b)

The generalization of (2.280) for o (r) when v, (v) is a function of v is

l’le€2 <efv,,-(v)r U2)
(v?)

EXAMPLE: Useful formulas for a linear Boltzmann model of a plasma include

o(t) = (2.283)

(=0) 8 n.e’ hore no
oc'(w=0)=———, where v=——

VT mv @mT3)'"?
where o'(w=0) is the dc plasma conductivity. The linear Boltzmann model for
plasma collisions is equivalent to a Lorentz model. A linear Landau equation plasma
model yleldS U/Landau (0= 0) = 1~980/linear Boliz. (0 = O)

Q0 and O=2we*ln A, (2.284)

2.6.5. Linear response theory and Kubo formulae

Green (1954) and Kubo (1957) derived relations that give exact mathematical expres-
sions for transport coefficients in terms of integrals of time correlation functions.
These relations lead to a powerful fluctuation-dissipation theorem.

We posit a system that can be described with a Hamiltonian and obeys the
Liouville equation. We further assume that the system possesses a small parame-
ter that allows one to expand the Hamiltonian and the probability distribution to
first order in the time-dependent perturbations:

H=HyI)+38H(;1), T'=(p;.q)- (2.285)
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The system being Hamiltonian can be represented by the Liouville equation. For

p(I; 1) = po(I)+Sp(I; 1), (2.286)
the Liouville equation is
dp dp
== ,H} =0, 2.287
T {p, H} ( )

where {f,g} is the Poisson bracket. The equilibrium distribution p, is time
independent and satisfies

{0, Ho} =0 (2.288)
and the ergodic hypothesis applies:
e~ PHO()
po(Hoy) = (2.289)
Z
The linearized version of (2.287) is
ds a6
0 2% L 1sp, Hol + {po, SH} =0. (2.290)
dt ot
DEFINITIONS: We make the following definitions:
_ 00 (09
Ly ={,H}=4¢"—+p"—, (2.291a)
dgq dp
.0 .0
8Lt ={,8H(t)}=86¢—+p—. (2.291b)
dgq ap
Equation (2.290) can be integrated by introducing an integrating factor as
d
e%oa(e'ﬂoap(z)) =— 8L(t)po, (2.292)
which can be integrated from —oo to #:
/_ t ,
Sp(the 0|~ =8p(t)e "C0=— / dt’e L8 £(1') po (2.293)
=— f dre "TVRSL(t — 1) po, (2.294)
0

where the last expression is obtained with the substitution t'=¢ — t. Hence, the
solution for 8p(t) is given by

Sp(I, 1) = — /Oo dre ™8 L(t — 1) po(T). (2.295)
0

LEMMA: Using (2.291a), Hamilton’s equations of motion and (2.289),

SL(t)po = —PBpodL(t) Hy=—PBpo {Hy, SH(t)} = Bpo {SH (t) , Hy} = BpoLo 81(3@96)

Hence, 8 L(t)py = BooLy SH(2) .
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Given (2.296), §L(t — 1) po(I') = Bpo(I')Ly SH (t — 7), (2.295) is equivalent to

8p(L, 1) = —Bpo() / N dre 0Ly S H (t — ). (2.297)
0

We assume that the linear perturbation to the Hamiltonian can be expressed as a
sum over terms that can be decomposed into products of spatial and temporal phase
factors:

SH(I,t)=— Z A, (T)SF,(1). (2.298)

n

EXAMPLE: Electrons subject to externally imposed fields

SH = / d’x {lj(xll") CSATNX, 1) — Paec (X, 18P (x, z)}. (2.299)
C

Here x denotes the field position in configuration space, distinct from I' which is the
phase space of all the particle positions and momenta. This is the classical perturbed
Hamiltonian for electromagnetic forces. Here

pace =Y _e8(x—r), j=) evd(x—r). (2.300)
Using (2.298) in (2.297) the perturbed probability distribution becomes

sp(T'.1)=Ppo(F) /w dr8F,(t — T)e 0Ly A, (). (2.301)
PRRAL

Since A, (I") has no explicit time dependence, its total time derivative along the zero
order particle trajectory is given by

dVA,(I") 04, dA ,
= 7O 4 T E O —fA H il =A, (). 2.302
dr 3q q + op p { n 0} u( ) ( )

EXAMPLE: A, =r;, i1 ={r;, H)} =v,.

We introduce
o0

B(I', 1) =" B(IN) = Z

n=0

(tLo)"

n!

B(I). (2.303)

EXAMPLE: B(I', t) = r; Hence, r;(¢) is the position r;(¢) at time ¢ given r; (0) at 1 =0.
COROLLARY: e %0 LA, (T) =e*’£°A#(F)=AM(F, —1) and thus (2.301) becomes

Sp(I, t) = Bpy(I') Z/ dtéF,(t — r)AM(I‘, —1). (2.304)
0
m
Consider a set {B,(I')} from which we calculate an average value at a given time:

(Bv)(t)E/dFBv(F)p(F, t)ZdeBv(F)(poJrSp) (2.305)
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and

5<Bu)(t)E/dFBu(F)5/>(F, )

:/32/‘” dréFM(t—r)depo(F)Bv(F)AM(F, —7)
P4
:,32/ dt8F,(t — 1)(B,A,(-1)),

P4

252/000 A8 F, (1 — T)(By(1) A, (t — T))o. (2.306)

Here (BVAM(—r))O is a correlation function and can be shown to be stationary
(B,A,(=7)),= (B,() A,(t — T)),, which is a ‘cross-correlation function.’

DEFINITION: We make the following definition:

CEA D) = (B, (1) A, (t — 1)), (2.307)

VL
Hence,

5B)O)=PY /OO drCPA(1)8F, (1 — 7). (2.308)
R4l

The integrals over time in (2.304), (2.306), (2.307), and (2.308) follow the same
convention as in (2.295) with respect to the limits of the integrations given the
actual initial conditions.

Equation (2.308) gives the response of the system at thermal equilibrium to an
external field based just on the unperturbed system. This is a fluctuation response
theorem describing the linear response of a system in thermal equilibrium to a small-
amplitude external (nonequilibrium) field.

Because (2.308) is a convolution, we can Fourier analyze and use the convolution
theorem to obtain

5B @)=Y Chl@)SF, (@), (2.309)
n
where
CP(w) = /0 h dre' " CF(z) (2.310)
is complex and satisfies the Kramers—Kronig relations. However,
S(w) E/OO dre' " C(7) (2.311)

is real, positive, and an even function of w; and
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C(a)):foo dteiwr /00 %efiw/r
0 —00 2
S( ,)_/w do’ S( )/ood i(w—w')T
w )= o Te
-1 (w)__y{ gS(g) 2.312)

using (1/2)m [ drel@ )" = (1/2)8(w — ') — (i /27) (P /(@' — w)). Thus,
2Re C(w)=S(w) and C'(w)=Im C(w)=—(1/7)fdEC'(§)/(& — '), which
verifies the Kramers-Kronig relations.

The generalization of the linear response of the system at thermal equilibrium to
an external field in three dimensions is

SH =—A-SF, (2.313)

8(BU)(I)E,8/.OO dt C(v) - 8F(t — 1), (2.314)
0

(B)(w) = BC(w) - F(w), (2.315)

Clw) = / dre"C(1), (2.316)

2C (0) = S(w) = / dre" C(), (2.317)

where S'(w) is Hermitian (real, symmetric) and positive-definite, and C(w) is complex
and non-Hermitian.

Hence,
c,+cC c, —C

(), = % (€, = % (2.318)

The real part is Hermitian and the imaginary part is anti-Hermitian.
EXERCISE: Prove (2.318) using C(7) is real.
EXAMPLE: Consider Brownian motion with the perturbed Hamiltonian

SH =eS¢(X, 1) =—XeSE(t). (2.319)

Here A(I') = —X and § F = e§ E (¢) to touch base with (2.313), and B = v to connect
with (2.314) and (2.315). Hence,

(V) (w) = BCY(w)ed E(w) (2.320)

We use knowledge of the fluctuations § E(w) to obtain the response (v)(w), or vice
versa. Recall from § 2.2 that

T/M
') = e v=2 & vy = M (2.321)
M V—iw
From (2.320) and (2.321) it follows that
SE
W) (@) = LE@ (2.322)
y —iMw
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This agrees with the Langevin equation (2.60) suitably ensemble averaged:

(Mi + y) (VY1) = (F)(t) = e SE(t) or (—iwM +y) (V)(w) = (§F)(w) = eS E(w).

dr
(2.323)
EXAMPLE: Consider the current response to an external electric field turned on
from zero.
We choose the gauge E = —V¢. The perturbed Hamiltonian is
SH(I',t) = f d’x p%° (x| T)8p™ (x, ). (2.324)

Relative to our previous notation for the linear response:
nw—>x'" p—>A, 8¢™— —8F B,—j(x) B,—jkx) (2.325)

Then using earlier results

S()(x,t)=—B / d*x / drC?,(1)8¢™ (', t — 1), (2.326)
0
where N
C’,(v) = (x|, )™ &|T, t — 7))y, (2.327)
~elec(/ 0 ./
P (xll",t—r)z—F-J(xIF,t—t). (2.328)
X

The ensemble average of (2.326) for the internal current removes the fluctuations
from the current response. The internal current is the current carried by the charged
particles within the system in response to fields but not including externally imposed
currents in wires, say.

We use (2.328) and (2.327) in (2.326) and integrate with respect to d’x’ by parts
so that 3/9x’- operates on 8¢ with a sign change to obtain

() (x, 1) = / d’x /00 dro™(1) - E*(¥, t — 1), (2.329)
0

where o is the response tensor
o™ (x, X, T) = BYIT, )j(x|T, 1t — 1)), (2.330)

Equation (2.329) is nonlocal and involves a two-point correlation function for the
fluctuating current density j.

Discussion of special cases:

~If 6*'(x, X', T) = 0™ (x — X/, T); perhaps this is good only for a uniform infinite
medium based on a translational invariance argument.

- If 6™ (x, ¥/, T) = 0*'(]x — x|, 7), i.e., an isotropic conductivity, then

0™ =0,(s, ) [ +05(5,7)85, s=x—x. (2.331)

~ If o™'(x, ¥/, 7) is rotationally symmetric about a preferred direction, e.g.,
with respect to an applied magnetic field, the equation J(w) =0 (w) - E(w) can be
written as

J(w)=0(w) E(w)=0(w) E|(®) + 0, (0) E; () +0\(w) E, () . (2.332)
where E, = (E -b)b, E, =E —E,, and E, =E x b.
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EXAMPLE: The most general external electromagnetic field can be expressed as

laAeXt
c ot

EX = —V¢™ — (2.333)
EXAMPLE: The inclusion of thermal fluctuations in a system with nontrivial bound-
ary conditions is considered in Landau & Lifshitz (1963). This is a very difficult
calculation.

Note that the linear response calculations presented here insist that the unper-
turbed system is in thermal equilibrium before the external field is turned on, and
the theory is linear.

EXAMPLE: Consider the linear response of the current in a uniform medium. Let

s=x—Xx,
(G (x, t) = / d3x’/ dro™(s, 1) - E(x —s5,t — 1), (2.334)
0
5(j) (k, w) = ™ (k, @) -E™(k, w), (2.335)
gk, w) = / dr / d’x g(x, r)e’ k=, (2.336)
o (k, w) E/ dr / d*s (s, 1) 0T, (2.337)

and §(j) — {j) subsequently in the notation. Now what about the conventional
conductivity?

DEFINITION: We make the following definition:
() (k, w) = o (k, w) -E°'(k, w) and E®' = E™ + (E™). (2.338)

This includes the internal electric field with the fluctuation field averaged out. In
the limit that k — 0, (j)(w) =0 (w) -E*(w) for A > d usually. Maxwell’s equations

tell us
int 1 aEim 4 «int . int 1w int 4n «int
V x (B™) — — =—({") > ikxB"+ —E™=—j", (2.339)
c\ ot c c c
4 1 9B™ ‘ A
VxE"=—-22_ L kxEn=2pgm (2.340)
c c
The Maxwell equations being linear, one can use the superposition principle and
decompose.

DEFINITION: Define I' =1 — (k*c*/o®) I — k k).
Then given (2.335) and (2.338), and recognizing that §(j) (k, ) and {j)(k, w) are
equal to the internal current

4r iw

lw _jint _ 4_1 '(Etot _Eext) —o - E© :o,ext.Eexl’ (2'341)
C T

_I ’Eint —
C

where o is the Kubo conductivity given by the fluctuations and

i(,() ! ext l(,() / tot
—I - E*=|o6 - —1I)- E“. (2.342)
c 4
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Then using V x (B*') — (1/¢)(3E™"/dt) = (47 /c) (" =™ + j™) and (2.341)

] 4 4
ik x B + e (I — ,—na) CE° = —nje’“. (2.343)
c iw c
We note that the dielectric function is
4
e = <1 — ,—”a> (2.344)
iw
and (2.341) can be rewritten as
. —1 .
e E =g . E%=g(o — 21 (=2)r.E~ (2.345)
47 4

Solving for ¢ in (2.345) one obtains the relation between the Kubo o and the
conventional conductivity o

k22 R
oo =a-<s — (- kk)) 8 (2.346)
w

EXAMPLE: For an isotropic uniform medium we can separate longitudinal and
transverse components of the conductivity tensor:

ok, w)=0c'(k, w) kk+o'(k, o) I —kk). (2.347)
From (2.344) e = (I — (4 /iw)o"") which is used on the right-hand side of (2.346)
to obtain
7 . kZCZ
Choy= () o k= (1Y (e
w0 = (gf(k, ) 1) om0 = <1 o Nor ez 71
(2.348)
It follows that
1
Re o' (k, w) = —Z Im and
4 etk, w)
Re o (ko) = —2 (1=K 1 ! 2.349
eam(,w)——E —7 mm ( )

We recall from (2.327) and (2.330) that
o™(s, )= B(x|T, 1) jex—s|T,t — 1))y =pC' (s, 7), T>0, (2.350)

where the ‘0’ subscript denotes thermal equilibrium. We take the Fourier transforms
of the longitudinal part of (2.350) to obtain

o (k, w) = BC|(k, w). (2.351)
Next take the real Hermitian part of (2.351)
He o (k, w) =p He C{(k, w) = g S (k, w). (2.352)
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From (2.349) and (2.352)

i =T (= Zam (2.353)
W lew = ar ek w)) '
Charge conservation asserts that p=—V -j— —iwp = —ik -j=—ikj*, which we

use in conjunction with (2.353) to obtain the following result.
The fluctuation—dissipation relation obtained (Kubo 1966) is

w\ 2 IV _2 !
(;> (,o,o)kw—UJ)k,w—ZT( 47_[Im etk, 60))

— SP(k, w) = (pp) Tkzlm !
el. , W) = 0w =" .

PPle = e " ek, w)
EXAMPLE: Scattering of radio-frequency waves off the ionosphere. To understand
the scattering experiments people calculated the conductivity and then inferred the
Sﬂel, (k’ a)) .

(2.354)

EXAMPLE: In the very long wavelength limit, we claim that for k — 0,0’ =0‘=0

from (2.348) and (2.349). Using ¢ = 1 — 47 /iwo and o (w) = o = (n.e*/m)(1/(v,, —
iw)) from (2.354) one obtains

@, o Uy 1

Sl (k, w) = —Tk —. (2.355)
2 V2Z4w? w5 o

r |C() w+ive |

We note that S (k—0,w=0)=(T/27)k’(v,/w}) and o(w=0)=
w’ /(4mv,) =1/n(w =0); hence, $* (k — 0, w~0) = (1/87*)Tk*n(w=0), which
is the Johnson-Nyquist noise spectrum result. The resistivity at w =0 has been
introduced here as the inverse of o (w =0) . As a function of frequency w, S has
a peak at w,with a width of order v,, with the implicit assumption v, K w,.

There are symmetry conditions pertinent to the two-time correlation function
(recall the relations introduced in (2.316), (2.317), and (2.318)). Associated with
stationarity in time we have

Co(@=(A 0 AE—1)=(A,t+7)A, 1) =(A,1) At +7))=C,,(—T)
(2.356)

and

S,w(a))E/ dze'"C,, (1)

00
/ ,—iwT
:/ dr* Cuv(_f/) , T= —'L'/,
—00

=8, (~w) = 5%, (@), (2.357)

due to the reality of C,,(tr). From (2.357) we deduce that S,, () is Hermitian.
Now we assume time reversibility, and we will prove that C,, is symmetric.

Consider the phase space I'(r;, v;) which becomes r (r;, —v;) under time reversal.
Assume a model Hamiltonian with unit mass, m = 1, and no magnetic effects:

H:va—i—q&(ri — 1)+ e (1) . (2.358)
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Assume further that po(H) : po(I') = po(I'). Given the assumptions, we have
A (M) =%A,(T), A, I71)==%A,(T,—1). (2.359)
For example, j(x) = X;v;6(x — r;) > —X,;v;6(x — r;) under time reversal. Under

time reversal the correlation function becomes

Cu(v) E/deO(F)AM(I’, A, t—r1)

:/dfpo(f)AM(IN", DAL, —t + 7). (2.360)

We note that with »;(r;, v;, T) =r;, + v;T = r;(r;, —v;, —7) =¥; + (—v;)(—71) under
time reversal.
From (2.356) and (2.360) we conclude the proof of the symmetry of C,,(7)

Cun()=C,(=1) and C,,(7)=C,,(1). (2.361)

Thus, C,,(t) is symmetric as is S,,(w); and both are real. Hence, both C,,(tr) and
S, (w) are Hermitian.
We now return to the electrical conductivity. Recall from (2.329) that

8()(x, 1) = / d*x /oo dro™(x, x; 1) - EM(X,t —1). (2.362)
0

Using the symmetry relations for o we have

g?’“(x, X 7:) = J]‘?;‘t(x/, X; ‘17) . (2.363)

1y

In (2.363) the (x, x') dependence is (x — x’). For no magnetic field B, =0, (2.363)
leads to
ok w) =0 (—k; w) . (2.364)

With a magnetic field, Onsager & Fuoss (1932), making no assumption about
isotropy, showed that

0;j(k, ; By) = 0i;(—k, w; —By) (2.365)

if By — —B, under time reversal. Equation (2.365) was discovered experimentally
around 1900.

For future use, keep in mind that C,,(tr) and S,,(w) are real and symmetric, but
C,, () is not real.

2.6.6. Relation of entropy production to electrical conductivity
In this section we derive a relation between the entropy production and the electrical
conductivity tensor. First consider a general form of the system Hamiltonian:

H(T,t)=Hy(I') + 8H(T, 1), (2.366)

from which we deduce

.9 d
H:ESH(F,I):—XM:AM(F)EFMO), (2.367)
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using the notation in (2.298) to separate phase factor components. We form the
ensemble average and perform the time integral of (2.367):

A(H) =/Oo dr (H(1))

o0

0 d

=_Z/oo dr (AM(F))EFMU)

:_Z/ dr { (t) F(t)

-3 / dr Fﬂ(t)aM)(f)
P —00

=> / T F(t) (A,)(0), (2.368)
w v

integrating by parts with vanishing contributions at the endpoints ¢t = 00 and using
earlier results. Equation (2.368) can be expressed in alternative form using Parseval’s

theorem:
* dw
/ 2 L F0 (@)
* dw . g
=B /_w o Z ) Z CAVF, (o)
o dw A
=6 [ PF@ ¢ Fe
oo 2T

=8 / T @) () - F ()
oo 2T

©° dw ~ Ax
=ﬁ/ 2—F*(a))-C () - F(w)
oo 2T

=B /oo d—wF*(a)) . CAT(a)) -F(w). (2.369)
oo 2T

We comment that Parseval’s theorem involves integrals over the infinite domains in
both time and frequency. Hence, from the different forms of the right-hand side of
(2.369) it follows that

,3/ —F*(w) Ci () - F(w)
:8 * A
f —F( ) S%(w) - F(w)

_p / —‘”F*(w)-wzsA(w)-F(w), (2.370)
2 ) 27
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where Cﬁle denotes the Hermitian part of the tensor and the Wiener-Khinchin
theorem (2.53) has been used.

DEFINITION: The entropy is given by AS = BA(H) from (1.112).
For the specific example of the electrical conductivity (2.370) becomes

00 dw 3 . exx
A(H) = / o / X {fe) (5, ©) 67 (x, )
/OO dCl) f 3 . exk
=— — | d°xV - (j)(x, w) 7" (x, w)
oo 2T

*d
- / &« / Ex() (x, @) - B (x, ), (2.371)
oo 2T
using charge continuity and integrating by parts. We use
() (x, w) - E™(x, w) = / &xo - (E°) (¥, ®) - (E° — E™)"(x, w) (2.372)
to express (2.371) as

" do 3 ] ext*
A<H>=/ E/dx@)(x,w)E (x, )
=/'°O (21_: / d3x/ d3x/<EtOt>(x’ w) -0'(x, x/’ a)) . (Et0t>*(x/, a))

- / " do / &Ex () (x, 0) - (E™) (x, w). (2.373)
oo 2T

However, conservation of energy derived for Maxwell’s equations using Parseval’s
theorem for the [ dvolj - E term yields

* dw s . -
/ —/d"x () (x, @) - (E™) (x, @)
oo 2T

00 8 E2 BZ
e S(EEE) v S ExBy =0 (2.374)
o ot 8 4

with no sources and suitable boundary conditions, so that (2.373) becomes
0 d .
A(H)= f 2—‘” / d’x / &X' (E) (x, ®) -0 (x, ¥, 0) - (E°) (¥, ®)
oo 2T

® d .
=/ 2—w / Ex(EY(x, w) -0 (x, w) - (E°Y (x, w). (2.375)
o0 2T
If the media is isotropic, then can be (2.375) simplified as

A(H) = / ) j_: / dxo(x, o) [Ex, o)

:/w j—:/d3xRea(x, ) {EYY (x, w) | (2.376)
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because there is no contribution to the integral from Im o (x, ®). We note that
Re o (x, 0) [{E™)(x, w) | = 1(x, ) |§) (x, ) [, (2.377)

which is just the i*R resistive heating source for the entropy production
(AS = BA(H)).

2.6.7. Transport relations and coefficients

What if there is a temperature gradient VT'? Temperature gradients tend to be
accompanied by a heat flow (Newton, Maxwell, etc.): Q=—K VT, where K is
the heat-flow tensor, i.e., the thermal conductivity (Mori 1965; Kubo 1966). In the

presence of a gradient in flow velocity there can arise a viscous stress: I = —uVu,
where p is the viscosity coefficient in this equation. In the presence of a density
gradient there can arise a particle-flux density as a result of diffusion, I' = —D - Vn;

or, more generally, a diffusive flux driven by the gradient in the chemical potential,
I' =—D-Vpu, where u is the chemical potential. The current density is another
example of diffusive transport: j=—0 - V¢p =0 - E.

DEFINITION: Thermodynamic forces E, Vu,Vn, VT, Vu all give rise to thermody-
namic fluxes.

EXAMPLE: Onsager showed Q= —K VT < j=o0 - E, i.c., in appropriate units
these are the same relation.

In this section we present a few derivations of transport equations. An example
of a model system that leads to kinetic transport equations is the derivation due to
Chapman and Enskog (1911) (see also Reif (1965) and Liboff (1969)). We derive
kinetic transport equations from the linear Boltzmann equation. We also start from
the Liouville equation and identify a small parameter, e.g., the magnitude of the
gradient relative to the inverse of a characteristic length in the system, to facilitate
the derivation of kinetic transport equations; Mori (1965) used this approach.

Consider the linear Boltzmann equation for the probability density:

d ad
_,O(V, v,t)+v-—p(r, vat):_f)lo(r7 v’t)s (2378)
at ar

where v = v where R is a unit vector defining the direction of v. We define the v
operator:

DAR) =vf(R) — / Q' F(R@)(O = (2; X)). (2.379)

For elastic scattering of the particles the speed v remains constant. We drop v as an
independent variable for constant speed and use € instead. We Fourier transform

/d3r e * pr, v t) = pk, v; 1) (2.380)

to obtain 5
5p(k, v,0)+ik-vplkk v t)=—vplk, v,1). (2.381)
Representing the time dependence as p(k, v, 1) = e ' p, (k, v) we get

(—o+k-v) poi(R)=—Vp,(8), (2.382)
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with v =vR. With use of (2.379), (2.382) becomes an eigenfunction-eigenvalue
problem in time where w is complex:

(k1) pus(R) = — vpu (@) + f L, (@(O).  (2383)
Next we simplify by assuming that the scattering is isotropic to obtain v(®) = v/4mr
so that
3 , deY , _
L, @WO) = | Tovp,4(R) =D (2.384)

Hence, (2.383) becomes
i(—0+ k- v) P i(R) = (B — pu(R). (2.385)
With k- v = kv cos0, (2.385) is

—i(w+iv —kvcosd) p,i(0,p)=vp. (2.386a)
or o
ivp

wi(0, @)= . 2.386b

Por (0. 9) w+iv— kv cosb ( )

Let u = cos 6 and integrate (2.386b) over 6 and ¢ to obtain the average p:
! 1 2r  ivp (! 1
o=ivp | dy —— — = — dy ——— 2.387
P zv,o/_l Mw—i—iv—kv,u4n 2 J. Mw—i—iv—kvu ( )

We obtain a dispersion relation from (2.387) by dividing out p from both sides:

=y ! (2.388)
2 ), 'ua)—l—iv—kv,u’ '

The denominator vanishes at w = —iv 4+ kvu. In the complex w plane there are
branch points at w = —iv & kv and a branch cut between. We do the integral in
(2.388) carefully to obtain the result

kv — (@ +i k
KL= @TD) N o (KU Zoike, (2.389)
—kv—(w+iv) v
which yields
w=—iv(l —kbcotkl), kb <m/2, (2.390)

where £ = v /v is the mean-free path. Equation (2.390) is valid if and only if k¢ < /2
and there is no solution of (2.388) for k¢ > w/2. Thus, there is the one solution
(2.390) for the dispersion relation given by (2.388). We note that klcot k¢ equals 1
for k€ =0, decreases as 1 —(k¢)*/3 for small k¢, and equals 0 at k¢ = /2. Using
(2.390) in (2.386), we obtain

const

w 9’ =—.’
Pox(®, @) cotkf +1 cosO

(2.391)

where the constant in the numerator is a normalization constant. Equation (2.391)
reflects that there is only one eigenvalue given in (2.390) as all the other possible
eigenvalues are on the branch cut.
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We return to (2.386b) to consider the eigenvalues on the branch cut, i.e., the
contributions to the probability density from the frequencies on the branch cut.
(2.386b) has the form p(y) =a/y if y #0. If y =0 is possible, then we must include

A8(y), ie
o(y) =P<%) FAS(y), (2.392)

where the first term is the principal value and the second involves a d-function. We
are reminded of Van Kampen’s analysis of the linearized Vlasov equation in which
he obtained singular eigenfunctions.

Equation (2.386b) becomes

Poi(@, P) = P( - add ) + X(@)é(w+iv — kv cos 6) = p,, (). (2.393)
w —+iv — kv cosf

The relation (2.387) becomes

Y d¢ v dp

X ivp 1 | —1—u, w+1iv

= My = , —1 o <1 2.394
2kv+2kvn1—/1,w H kv = Ho = ( )

Note that if we substitute u, = (w +iv)/kv = cot(k€) consistent with the disper-
sion relation in (2.390), then the solution to (2.394) dictates that A = 0; and (2.390)
is recovered.

Let po(k, v) =1/(cotkf 4+ iu) for the w = 0 mode, where u =cosf and £ =v/v.
We transform (2.393) back from the w domain to the time domain separating out
the w = 0 mode contribution:

k, !
p(k, v; 1) = eV {I-kteotkr cci—olfﬁ v:' +/lduw - *”‘”“‘“’p’;ﬁl’(sz)a,w(k, v),
(2.395)

where ay(k, v) and a,,,(k, v) are Fourier coefficients associated with a normalization
constant and initial conditions. (2.395) is the solution of the linearized Boltzmann
equation for the probability distribution in phase space. We note that the first term
in (2.395) dominates at long time because 1 — k€ cot k¢ < 1, so it does not drop off
as rapidly as the second term.

For long times #v/¢ > 1, the dominant solution for the probability distribution is

then . v)
ke, v; 1) = i keeokor S0 8 2396
plk vy =e cotkl +in ( )

Next we Fourier transform p(k, v; t) back to p(r, v; 1):

3
p(r v, t) :/ d_keik"'e—v(l—kicotk&t M
k

<1 (27r)3 cotkl +ipm
&k, k,
%/ —3e’k"e—%€vk2t a—l(’( 'v)’ (2.397)
ke<xy2 (277) o tin
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where we have used kfcotkl ~ 1 —(k€)2/3 for k¢ <« 1, ay(k, v) — ay(k, v) cannot
depend on the direction of v, v is constant in time, and #v/£ > 1. We next make

use of . re P
L. %ke(l - i;") (2.398)
g tin  1+ipkl v

in (2.397) to obtain

&Ik k-
o(r, v; 1) %/ 36”‘"6_5[”"2%6(1 — z—v> ao(k, v). (2.399)
ke<ny2 (27) v

Now we calculate the average flux density:

L t)=pr;t) (v)(r, t):/d3v o(r, v; 1) v, (2.400)

where we note that v = vQ and v is constant. If we take the time derivative of
(2.399), we easily obtain

p 0 &Ik &Ik,
9w _9 [ — e””ekazt(. . .)i| = —D/ — e’k"ekaZ’(. ..)=DV?p
ot ot ) (2m)

(2.401)
in which we identify D =£v/3 from inside the exponential in (2.399), and p(r; 1) =
[ d&*v p(r, v; ). Given that dp/dt = —V - T = DV?p, it follows that

I'=—DV p(r;1). (2.402)
No knowledge of (...) in (2.401) is required to obtain (2.402).

EXAMPLE: Anisotropic scattering. In the limit of small k¢ the eigenfunction can be
shown to have the same form as the isotropic scattering limit. The other terms that
are not retained are different in the anisotropic case, but it does not matter. In the
anisotropic scattering case

dQ
V=, = / ™ v(®)(1 —cosO) = nyo,,v. (2.403)
T
We can generalize the analysis leading to (2.400) and (2.401) to all transport phe-

nomena. Consider any density field: A(x|I') where A is the momentum, energy,
current, etc., scalar or vector field and I' is the total system ‘phase.’

EXAMPLE: Let K =X,K;, K; =1/2m;v} = p?/2m;. Then the kinetic energy
density is
K| I = Z K;:8(x —x;) (2.404)
and the number density is
nx|IN = Z(S(x—x,-). (2.405)

We assert that the general conservation law for any density field A(x|I") is

A = —% T4+ Ay, (2.406)
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where the first term on the right-hand side is minus the divergence of the flux asso-
ciated with the density field A and the second term is a source/sink term (if finite).
Remember from (2.107) that

%p([’; )+ {p, H =0, (2.407)

involving the Poisson bracket of p with H the Hamiltonian, as a consequence of
Liouville’s theorem in the absence of explicit sources and sinks.

LEMMA: Any function A(T") satisfies
(A)z/dF p(L,t){A, H}=—/dF A(T) {p, H}=/dF A(F)%,o(l",t)

d d
= / dr AD)p(T. 1) = (A). (2.408)

using (2.107) and integrating by parts.
Hence, from (2.406) and (2.408), the volume integral of the ensemble average of

(2.406) is
4 / Ex (A) (e = — f do (T (x,t) + / dx (Z A> (x.0). (2.409)
dr
EXAMPLE: Returning to our example of the kinetic energy density (2.404), (2.406)
becomes
KxM)==V-) vimv s(x—x)+ ) v -f'8(x—x). (2.410)

where the second term on the right-hand side of (2.409) is the power due to the work
done on the particle by the force f' on it. In the absence of external forces, the force
on particle i is just the sum over j of the force of particle j on particle i:

F= ==Y o), (2.411)

i jE

where ¢ (r;;) is a potential energy. The first term on the right-hand side of (2.409) is
just minus the divergence of the kinetic energy flux.

In the potential introduced in (2.411) where does the potential energy reside,
at what location? If the potential energy resides in the particles, then an arbitrary
designation is necessary. For example, is the potential energy shared equally by the
two particles that define r;; or perhaps can the potential energy be assigned to the
midpoint of the two particle locations along r;;? The latter implies

Fior j =R £ %Vij, (2.412)
which defines R;; the midpoint between particles 7 and j. We take the midpoint and
write

O(x|F) =) ()8 (x— Ry)) (2.413)
i<j
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and

dIr)=-V- Z Vi (ri)8(x — Ry;) + Z dri)8(x —R;)), (2.414)

i<j i<j

where V;; =;;. In the absence of any explicit source or sink of particle energy, we
expect relations of the form

ExIN =K+, ExIMN=-V - {V[K + D]} (2.415)

We flesh out (2.415) in the following. In the analysis we symmetrize

Y Viufisx—r)—> 1Y [VisGe—r) +V;8(x— ;)] f] (2.416)
ij ij
and
S(x—r)~3(x—Ryj) —ir;V-S(x—Ry) +... (2.417a)
8(x— Vj) Q/8(.‘7—131']') + %rijV . B(X—Rij) +... (2417b)

(Irving & Kirkwood 1950).
We use (2.410)-(2.417a) to obtain, after cancellations,

E=-V. |:F1< +F¢+Z”ijyij'f;8(x_Rij)i| , (2.418)

i<j

where 'y is the kinetic energy flux density [first term on the right-hand side of
(2.410)], I'  is the potential energy flux density of the moving midpoint [first term
on the right-hand side of (2.414)], and the third term on the right-hand side of (2.418)
is the work done on the moving midpoint.

DEFINITION: Equation (2.418) is in the form
E=—V. -S|, (2.419)

where S is the total energy flux density given by the sum of the three terms on the
right-hand side of (2.418) and is analogous to the Poynting vector in electromagnetic
theory.

EXAMPLE: Temperature evolution. Given T (x) at t=0, find (3/0¢)T (x, t) . Recall
that the temperature is related to the entropy by the relation 8 = (dS/9E) which
can be used to measure 7 in a very small volume. We note that matter may not
flow, but energy can and will. The probability distribution function in phase space
consistent with the definition of a local temperature can be expressed as

P~ e P — %e‘f Pxp@EAD) 7 = / dle/ &XA0ExD), (2.420)

Following Mori
Z(t) = e—fd3xﬂ(x,t)[(£)(x,z)—T(x.t)S(x,t)]. (2.421)
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Here (£)(x, t) is not really a function of time. We expand p(I', t) around a local
thermal equilibrium for which the entropy is a maximum with respect to the internal
energy

1
p(L,t)=po(L,t)+8p(L, 1),  po(I,1)= %e_f Fxp.0ED). (2.422)
We use the Liouville equation dp/dr =0, then using (2.419) and (2.420), integrate
by parts, and use the chain rule d/d¢ applied to p(I", t) to obtain

dép B d,Oo_

7 el / d&xB (x, 1) Ex|T) = —py / d&*xB (x,1) V- S(x|T')

= 0y / d*xSx|T) - VB(x, 1). (2.423)

We integrate (2.423) with respect to time noting that only § varies rapidly with time
so one can set everything else to its value at t = 0:

sp(T, 1)~ py / d’x / dtS(|T,7) - VB(x, 0). (2.424)
0

Going back to (2.419) we can take the ensemble average (£)(x,t) = —V - (S)(x,t), but
the average energy flux density is

0= (S)(x, t)E/de(F,t) S(x, I‘)=/dl‘ [po(IT, 1) +8p(I, 1)] S(x, T')
:/drap(r,t) S(x, F):/d3x/ dt/dI"pO(F)S(x|F)S(x’F,r)-V,B(x/,x)
0

:/d3x// dtCo(x, x'; 1) - (—B*VT (x, 1)), (2.425)
0

where we have used that § is odd in I' while p, is even, have assumed that ¢ >
1/veon, have let x — x’ so no macroscopic correlations for large |x-x'|, and used the
analysis and notation in § 2.6.5 The result in (2.425) can be rewritten as (Mori 1965;
Kubo 1966)

O0=—-K-VT (2.426a)

with the thermal conduction K defined by (Mori 1965)

Kx, t)=p° / d’s’ / drC3(|x' — x|; x; t)e ¥+ = B2CS(x, =0, k=0: 1),
0
(2.426b)
where s =x' — x, and k = w =0 in the complex exponential.

[Editor’s Note: The inclusion of the complex exponential in (2.426b) is artificial,
because with k=w =0 the complex exponential is equal to unity. The presence of
the complex exponential foreshadows the Fourier transform introduced subsequently in
(2.428b) and (2.429).]

From time reversibility, there is an Onsager symmetry: K is symmetric, K,, =
K,.. To recap, the results in (2.425) and (2.426a)

0=(S)x,t)=—K(x,1)- VT (x,1) (2.427)
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and

K(x,1)= B> / h dr / Es(Sx, 1) S(x—s; 1 —1)). (2.428)
0

due to Mori. Here S(x, t) is the microscopic heat flux in the absence of VT, whereas
(S)(x, t) is the macroscopic heat flux. The correlation C* does not fall off expo-
nentially; it only obeys a power law, and convergence is marginally obtained. The
process is not Markov which puts the Onsager approach in trouble.

[Editor’s Note: Professor Kaufman’s remarks about the fall off of C° were not
explained nor was a reference provided. However, these remarks have no bearing on
the subsequent analysis.|

Suppose we insert the exponential phase factor e/“*~** inside the two integrals
on the right-hand side of (2.428) which then yields the Fourier transform K(k, w)
and

which is good for a stationary, uniform medium. From (2.427) and (2.419)
(S)(x,t)=—K -VT(x,1), (E)x)=—=V (S)(x,)

(&) _ _9(E)
— F(x,t) =V-(K-VT)= 3T

9T ,
Iy (e ) =K VT, (2.430)

assuming VK = 0 and isotropy.

DEFINITION: Cy = 9(£)/dT |y, and Dy = K/Cy ~ £v (Reif 1965; Liboff 1969).
From the definitions of the heat capacity Cy and Dy, and (2.430), we obtain the
diffusion equation for the temperature:

aT ,
o =D:VT. (2.431)

EXAMPLE: Momentum density evolution. Consider the evolution of the momentum
density in a one-species system with point particles and central forces. We define the
momentum density as

gl =) "pdx—r), p=my, (2.432)

with evolution equation
g(x|IN)=—-V-T* +F, (2.433)

where the force density F is defined by the sum of forces on the particles

Fx|IN) = Z fiox—r) (2.434)

and the momentum flux density IT¥ is defined by

D0 =) vpsx—r). (2.435)
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The force F can be related to an interaction stress tensor II” using (2.434):

F(x|IN)=-Vv -1~ (2.436a)

N7 (x| ) =) " ryf 14 8 —ry). (2.436bh)
iJ

We define a total stress tensor as follows
N=n*+m’. (2.437)
The evolution equation (2.433) then becomes
g=-Vv.-I (2.438)

and from (2.419) we have & =—V -S(x|T'). In addition to the momentum and
energy relations we also include conservation of particle number density as expressed
in the continuity equation:

n=-V.r, (2.439a)
where the flux density I is defined by
Fan=> vsx—r). (2.4395)
From (2.439a) and the definitions it follows that the fluid flow velocity is
given by 5
(I')(x, 1)
ulx,t) = —= (2.440)
(n)(x, 1)

and the continuity equation for the macroscopic fluid quantities can then be
expressed as

0 -
%(x, ==V - (I'Y=-V-((nu) . (2.441)
From (2.432)-(2.441) the fluid equation of motion is obtained:
]
m(n) (5 +u- V) ulx,t)=-V.P, (2.442)
where the pressure tensor P is
P= (M) — m{n)uu = P* + PF (2.443)

with the kinetic stress tensor P

PX=> "m —u)(v; —u)8(x —r,) (2.444)

and the interaction stress tensor P”

PF=(I"). (2.445)
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EXERCISE: Fill in the steps in deriving (2.443)—(2.445).
In thermal equilibrium for an isotropic medium, the pressure tensor P can be
simplified, P =PI:

21

PX =TI, P'=-— 3

(n)? f h s3ds(ji—fg2(s) I, (2.446)
0

where g,(s) is the two-particle correlation function (see § 1.2.1).
In a nonequilibrium system one has

P=IP((n)(x,1), T(x, 1)) +P"™(x,1), (2.447)

if one can define a local temperature. In the nonequilibrium system (2.442) becomes

at

Using group theory or Mori’s approach, one can show for an isotropic fluid:

m(n) (3 +u- v) u(x, 1) = —VP — VP, (2.448)

P =—¢IV-u—nu(Va) , (2.449)

where ¢ is the bulk viscosity, u or n is the shear viscosity, and we define
~ 2 :
(Va) =Vu+uv —gv cu=2(Vu)™ (2.450)

associated with the shear and note that (Vu)' is traceless. The shear stress is associ-
ated with a change in shape due to a change in volume or a rotation. The bulk stress
is associated with a change volume without a change in shape.

[Editor’s Note: We assume that Professor Kaufman deemed the detailed considera-
tion of the viscous stress tensor was more appropriate for lectures on fluid mechanics
and did not have the time to take it up in detail here. A good reference for the viscous
stress tensor is Landau & Lifshitz (1987).]

EXAMPLE: (Vu)' in Cartesian two dimensions is(Vu)' = (3/9x)u,p + (3/3y)u.x.
Now we pause and make some order of magnitude estimates of the transport
coefficients in which we relate them to other quantities:

thermal conduction K ~ ({(v)/o.n) ~nD where the diffusion coefficient D ~
£(v),
shear viscosity u ~ (P/v) ~ (T /o (v)) ~ (m{v)/o) ~mK,
0 for a dilute gas of particles,

bulk viscosity £ ~ { P/v.a for a dense gas or liquid with internal degrees of
freedom.

NOTE: The bulk viscosity coefficient for a dense gas or liquid depends on the degrees
of freedom (Landau & Lifshitz 1987).
We return to (2.442) rewritten as

m(n)%u(x, l) = —VP(I’l, T) —-V. [—{(l’l, T) IV -u— 2“(”4 T)(Vu)shear] ’
(2.451)
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where D/Dt=9/3t +u-V. From &= —V -S(x|I'), (2.419), and the definition of
the specific internal energy U,, = (energy/mass),

m(n)Uy, = (€) — tm(n) |ul?, (2.452)

which is just the energy in the moving frame. The internal heat flow is the heat flow
in the moving frame of the flow, i.e., the internal heat flow is the heat flow in the
laboratory frame with flow terms subtracted off:

0" =(S)—u() —P-u=—KVT. (2.453)
It then follows that D
m(n)EUm =-V.0"—~P:Vu (2.454)
and
—P:Vu=—PV u+(V-u)’ 4+ 2u(Vu)™ :(Vu)™e, (2.455)

where the first term on the right-hand side of (2.455) is the adiabatic cooling or
heating, the second term is the heating due to bulk viscosity, and the third term is
the heating due to shear viscosity (’:* denotes the sum of squares of all components,

Vlztij Vlziij).
The specific entropy is S,,(U,, V,,) where V,,=1/p=(1/m(n)) satisfies an
equation
ds,, = gdu,, + pprPdv, (2.456)
from which it follows that
D D P D
—Sp=BU, — L s —(n) (2.457)
Dt Dt m(n)~ Dt

and with use of (2.453) and (2.454),

D .

ES'" =—8V.-Q— BP"™:Vu, (2.458)
where 4:B = A;;B,;. Defining the entropy density Sy =m(n)S,, one can show

%Sv(x, N=-V-@Sy + Q) + Sy, (2.459)

where
rs=uSy+p0 and Sy=pBK(VT)*+ BV -u)* + 2,3u(|Vu|She‘“)2. (2.460)

To be consistent with the second law of thermodynamics the source term SV > 0;
thus, ¢, 4, and K are all nonnegative. Necessarily 8 > 0 in this classical theory.

2.6.8. Normal mode solutions of the transport equations

We next analyze the linear normal modes supported by the transport equations. For
this purpose we assume that the system is uniform and isotropic in space stretch-
ing to infinity. We assume infinitesimal-amplitude perturbations and examine both
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microscopic and macroscopic modes. Perturbed amplitudes will all have the form
A(x, t) = Ae'kx—ion,

DEFINITIONS: Polarizations. Longitudinal modes have k and velocity perturbation
u parallel to one another. Moreover, a purely longitudinal mode is irrotational (curl
free) and has a divergence. A compressional wave is a longitudinal wave and has
a finite density perturbation. A transverse wave has K and velocity perturbation
u perpendicular to one another. A purely transverse wave has a finite curl and
is divergence free. In a uniform, isotropic medium there is no coupling between
longitudinal and transverse waves.

In the macroscopic theory all equations are for mean values (ensemble averages
have removed random fluctuations). An example of a simple linear equations set is
as follows.

og

g=mnoyu = pou, ll()=0 E——VSH, H=H0+3H (2461)

After Fourier analyzing in time and space, (2.461) becomes
—iwg=—ik-8ll — wpyu=k-8I1 - wpyu=k-3P, (2.462)
using P =TI — puu~ PI + P"* because puu is higher order.

EXAMPLE: Shear mode. A shear mode is a transverse wave, for which k- all of the
perturbed quantities in (2.462) vanish. However, kx on (2.462) yields

wpok X u=kx8P" - k. (2.463)

However, from (2.449) §P** = —¢IV - u — (Vu)'. The bulk viscosity term does not
contribute because kxk = 0, which leaves the shear viscosity term:

wpok x u=—ipok x uk*. (2.464)

Hence, the dispersion relation for the shear wave is

w=—i%% = _ip, i, (2.465)
Lo

where we have introduced Dy, = (wo/po) Which is called the kinematic viscosity and
has units of spatial diffusivity. Thus, the shear mode just decays. The vorticity V x
u =  is a shear mode which just decays in a liquid: (38/3t) = D, V* (Helmholtz).
In a solid, vorticity may propagate. Note that the transport coefficients here have
been assumed to be frequency independent. The correction for shear viscosity that
has dependence on frequency and wavenumber is po(k, ) — wy(k, o) +ipg(k, o),
which will allow Re w #0; and then the shear mode may be able to propagate as
well as just damp out.

EXAMPLE: Compressional wave — To analyze the compressional wave we take the
dot product of (2.462) with k

2
wpou-k:k-8H-k:k28P +k- [—;Iik‘u—u(iku—i—iuk—gliku):| -k

=k*(8P —ik-u(¢ +%pn)), (2.466)
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which has the solution

k*sp
u= _ - (2.467)
wpo + 1k* (& + 31)
DEFINITION: Let D, = €242,
Hence,
k*s P
k-uwp) = ————. (2.468)
1+iLD,
From the linearized continuity equation to lowest order:
ap . .
vl V.-(pu)=pV-u+u-Vp=p,V-u— iwdp = pyik-u. (2.469)
Combining (2.468) and (2.469,)
wép 6P k? P o? K
kw=—=——>F7—> —=—(1+i—-D|. (2.470)
pPo wpl+iSD, ok a)

From the entropy equation (2.458) (D/D1)S,, =—BV -Q — BP":Vu and from
(2.453) Q= —KVT. We linearize and keep only lowest-order terms:

§T
po(—iw) 8S,, = —Poik -(—K) ikST = —szT, (2.471)
0
from which we have
k*K 8T k*D;\ Cy8T
88, = — — = —L ) =X—=, (2.472)
iwpy To iw Ty

where we introduce the definition Dy = (K /Cy po). Next we supplement (2.471) with
the basic thermodynamic relation

S, 0S,
Su(p, T)— 385, = 3o + oT, (2.473)
a0 |y aT |,

where S, =—0F(p, T)/dT and dF(p, T)=-38,dT — Pdp/p?, ie., P(p,T)=
—p?dF(p, T) /dp. In addition, the specific heat at constant volume is defined as
Cy =T(3S,,/3T), so that (2.473) yields

S, Cy3T
8S,(p, T) = —="1 §p 4 —~ (2.474)
8,0 T TO
and by equating expressions for §S,, we obtain
aS,, k*D;\ Cy8T
—_n 5,0:—(1— : T) Uy (2.475)
ap |r iw Ty
which implies
k2D KDy 38,
58S, = —— T/1— : T) 5p. (2.476)
io \ iw o |y
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From the equation of state for P(S,,, p)

oP oP
SP = 8S, +—| p, (2.477)
88’" P a’o Sm
which now yields
5P ap| P | 3S,| K oo\
—=C!|1- L i —Dg 11— ,—DT) , (2.478)
3p AP |5, 0S|, dp |piw iw

where we have introduced the square of the sound speed C2=09P/dp| s, Lastly,
using the Maxwell identity (A.4) shown in the Appendix (Editor’s Addendum),

(2.478) becomes
5P 1 &2 oo\
—:cj[1+<1——),—Dr<1—,—DT> ] (2.479)
8p yJiw iw

where y =C,/Cy.
Equating the expressions for 6 P/§p in (2.470) and (2.479) one obtains the
dispersion relation for compressional waves:

w? k> 1 &2 2o\
—2(1+i—D§):cz[1+(1——),—DT<1—,—DT) ] (2.480)
k w y Jiw iw

We solve (2.480) analytically in two simple limits.

EXAMPLE: High-frequency sound waves in which @ >> k> Dygun4, 1.€., the wave oscil-
lation period is short compared with the characteristic diffusion time for the sound
wave: )

_c-Lp (2.481)

k 2 sound» .
where Dgoyna = D, + (1 — l/y)DT. The —(i/2)k Dyyung term in (2.481) sets the tem-
poral or spatial damping rate. The expansion of (2.480) leading to the solution in
(2.481) is valid if the wavelength is long compared to the mean free path; the wave
attenuation rate must be weak.

EXAMPLE: Low-frequency thermal mode w < kC. We solve (2.480) by successive
approximations to obtain
—ik*D
w=_""T (2.482)
Y
EXERCISE: Show that the sound wave is isentropic. Show that the thermal wave is
approximately isobaric. Show that the shear mode is isochoric.

2.6.9. Generalized Langevin method for transport relations: a sketch

Here we present a sketch of a generalized Langevin method for obtaining the trans-
port relations. References for the formalism are found in Landau & Lifshitz (1969,
§§ 121-124 and 126-127), and Landau & Lifshitz (1987, ch. XVII).
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We begin with g = —V - II, (2.438), which we expand as follows:

% _v.m
2 —-_V. X
ot

=—V . [(II(x|0) + (x| )] ==V - [(T), + 8 (I) + T (x|)].  (2.483)
Just to simplify the analysis we replace V - I with V P and pretend this is valid, i.e.,

0
8—‘f=—V(<P> +5P). (2.484)
Suppose for a linear sound wave g = pou with V x u =0 and u = —V¢, where ¢ is

the fluid velocity scalar potential function, then

A dp
po— =8(P)+8P=—| &(p)+4dP, (2.485)
ot dp |,
where §(P) is that part of (P) that varies in space and time. We Fourier analyze
and obtain
—i0P0Pko = C*(P) 1 + 8 P (2.486)
From continuity
AL : = pok*d 2.487
—W—Po U= 10(P) g, = POk Prwrs (2.487)
we solve for ¢y, and reduce (2.486) to
k*8 Py,
(Pl = 207" (2.488)
In terms of spectral densities (2.488) leads to
k*S? (k,
SP(k, w) = %“’)2 (2.489)
(wZ _ kZCZ)

In (2.489) £kC are eigenfrequencies wy for the linear modes. We claim that with
dissipation included, the right-hand side of (2.489) can be generalized to the form

const
Z P (2.490)
k

for complex wj. This analysis and expressions obtained are the analog of the
Langevin method used for Brownian motion in §§ 2.2.1 and 2.2.2. We can argue
using Rayleigh-Jeans that the density fluctuations have an energy spectrum k7 per
mode and evaluate the constant in (2.490) indirectly.

In the Kubo/Mori approach (§ 2.6.5) we used a Hamiltonian

H=H,+ / d*x n(x|I) ¢ (x, 1) =H, + / d’x Z S(x—r) @™ (x, 1) (2.491)
and obtained a kinetic equation for the response

S(n)(x, 1) = / d*x f dr'Ge™(x, 1), (2.492)
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where G is a Green’s function. We then obtained a fluctuation-dissipation theorem
relating G to the spectral density $* having derived G from just the linearized
hydrodynamic equations (linearized with respect to the external field strength).

2.7. Nonequilibrium quantum statistical mechanics

References for this discussion of nonequilibrium quantum statistical mechanics is
Tolman (1938); Kubo (1965, ch. 2), de Boer & Uhlenbeck (1962); Cohen (1962);
and de Groot & Suttorp (1972). We begin by introducing a representation of the
state function |y (7)) in terms of a decomposition in terms of basis functions that are
assumed to be a complete set

W)= e [¥a). Y leal = 1. (2.493)
DEFINITION: Consider any Hermitian operator 4
(A) = (Ylaly) =) chealPulalyn) = chcuAm. (2.494)
DEFINITION: The ensemble average of (A), i.e., the quantum statistical average, is
defined as
(A)) =[laly) =) e (Oea() A (2.495)

m,n

DEFINITION: The density matrix is defined by

Pun () = ¢ (1)C, (2). (2.496)

We note p,,,(t) has the properties that it is Hermitian, positive-definite, and
Tr(lomn) =1

<<A>>=men(t)Amn and (A)(1) =Tr(p()A). (2.497)

How p(t) varies in time is determined by the Hamiltonian H(?):
ap 1
ot ih

Equation (2.498) is the quantum mechanical analog of the Liouville equation.

Remember that for A a time-independent operator A = —(1/(ih))[A4, H]; and if 4

is time dependent, then we include dA4/09¢ additively.
It follows that

[p, H]. (2.498)

d Y] . .
a(A)(z) :Tr<§A) =Tr(pA) = (A). (2.499)

Correspondence due to Wigner and Weyl:
h
H(P,Q); [P,Q]l= - (2.500)

for one degree of freedom. In (2.500), P and Q are operators. The phase-space
coordinates are denoted by p and g. We next define the Weyl transform | A(P,Q)|but
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first note that

/ " n n / ﬁ a " n "
(q'lalq >Equ 5(q _CI)A(ZTqu )8(61 —-q") (2.501)

for 4 in the ¢ representation.

DEFINITION: The Weyl transform is defined

a(p, q) =/dse%“<q — 15|A(P, Q) lg + 1) (2.502)

and its inverse (Wigner transform) is

92
1. 0= [ ap [ a5 - 050~ Pt apg) (2.503)
with the following prescriptions on the correspondence of independent variables:
p < P, (2.504a)
pq < %(PQ +QP), (2.504b)
1

pq* < Z(PZQ2 + Q*P*+2PQ’P), (2.504¢)

2. hf0adb 09baa 1
—|sin= | —————] |« —IA, B], (2.504d)

h 2 \dgdp dqip ih

where da/dq is the partial derivative with respect to ¢ operating on a. We note that
as h — 0 the left-hand side of (2.504d) recovers the Poisson bracket {a, b}.

DEFINITION: The Wigner function is defined as the Weyl transform of p(¢), i.e.,
Weyl transform of p(¢) density matrix — pV'&" (p, g; 1). (2.505)

The Wigner function is like a density in phase space:
plg: )= / dpp™ei(p, g; 1). (2.506)

Here pVie'(p, g; t) is real and normed, but can be negative. p(q; t) is the correct
quantum mechanical probability distribution with respect to ¢. Similarly,

p(p; 1) = / dg o™ (p, q; 1) (2.507)

is the correct quantum mechanical probability distribution with respect to p.
Furthermore, it can be show that pV&*" is bounded:

. 2
1PN (p, g5 )] < ; (2.508)
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and using the Wigner function

h
0,0, > 5 (2.509)

The equation of evolution for the Wigner function using the Weyl transformation is

d 4 2 . mfanoa” 90" oM w

5P (Pai) = |sino | o — o L H(p. g 0)p 7 (p.gi 1), (2.510)
where the superscripts on the partial derivatives give guidance on what functions
the partial derivatives operate in the expression that follows, H is the Weyl trans-
form of the quantum mechanical Hamiltonian H, and only leading terms have been
retained, which means only slow variations in H(p, q; t) p" (p, ¢; t) are kept. In the
limit # — 0 (2.510) becomes (3/01)p™ = — {p", H}. Equation (2.510) is a Liouville
equation that allows us to do everything on the Wigner function that we did on the
classical probability distribution in § 2 of these lecture notes: all of the methods go
through.

[Editors’ Note: This was an elegant conclusion to Kaufman's graduate statistical
mechanics lectures.|
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Editor’s Addendum: Appendix - Thermodynamic potentials, maxwell relations, and
identities
A.1. Thermodynamic potentials

Classical thermodynamics is expressed in terms of four variables: Pressure P
and Volume V' as one conjugate pair, Temperature 7" and Entropy S as a second
conjugate pair. Much of the thermodynamic analysis is based on which pair of ther-
modynamic variables are considered independent, and which pair of thermodynamic
variables are considered dependent. Each pair of independent thermodynamic vari-
ables (X, Y) is associated with a thermodynamic potential ¥ (X, Y), with its defining
differential relation d¥ (X, Y) = (0¥/0X), dX + (0W/3Y), dy, as follows

Internal Energy U(S, V) —

dU=T(S,V)dS — P(S,V)dV, (A.1)
Helmholtz Free Energy F(T,V)=U — ST —
dF(T,V)=-8(T,V)dT — P(T,V)dV (A.2)
Enthalpy H(S, P)=U + PV —
dH(S, P)=T(S, P)dS+V(S, P)dP (A.3)
Gibbs free energy G(T, P)=U + PV — ST —
dG(T, P)=—-S(T, P)dT + V(T, P)dP, (A4)

where the thermodynamic potentials (U, F, H, G) are related by Legendre trans-
formation associated with the substitution S — T, or V — P, or both. Hence, the
thermodynamic variables (S, T'; P, V) can be seen to be either independent variables
or dependent functions.
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A.2. Maxwell relations

Because of the symmetry of partial derivatives 0°W(X,Y)/0XdY =
0*W (X, Y)/0YdX, we naturally arrive at the Maxwell relations

oT 92U oP
— ] = =—(—) , (A.5)
v /), dVas s/,
0S8 0°’F oP
— | =- =—], (A.6)
ov ), ovaT oT /,,
oT 0’H oV
— ) = =[—] , (A7)
oP /), 0POS s/,
0S 9’°G oV
— ) =- =——), (A.8)
oP ), oPoT oT /,
where (0X/dY), denotes the partial derivative of X (Y, Z) with respect to Y at

constant Z.

A.3. Maxwell identities
The Maxwell relations lead to the following identity involving three thermody-

namic variables (X, Y, Z):
X oY 0Z
— — — ) =-1. (A.9)
Y J,\0Z ) \3X ),

For example, consider the identity

(5#),(5), (%), = 1
ap ) \oas ) \ov ),

which can be proved from the Maxwell relations as follows. First we use the Maxwell
relation (0 P/9S), = —(0T /dV)g so that

(L. GG (), o
oP ) \0S )/, aP J \oV /, aP /g

which makes use of the identity (dX/dY), (3Y/0Z), = (0X/9Z),. Next, we use the
Maxwell relation (3S/9V), = (3P/3T)g, and we obtain

oT aS oT apP
— = — ) =—( — — ) =-1 (A.12)
oP ) \0V /g oP ) \OoT )
which makes use of the identity (0X/dY), (3Y/3X), = 1.

A.4. Equations (2.478)—(2.479)
In (2.478), we find the triple product (returning to V = p~')

(.66, () .5,
(.6,

Downloaded from https://www.cambridge.org/core. IP address: 10.3.209.135, on 15 Jul 2025 at 01:16:16, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377825000042


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000042
https://www.cambridge.org/core

142 A.N. Kaufman and others

where we wuse a Maxwell identity for (p, P,S) with the identity
(0S/0p)p (0p/3S)p = 1. Next we use the partial derivative identity

() () () () (), w
o/ r ap T op /) p aP /), \dp )

so that (A.14) becomes
() (28 () [(#5) (25 (2*
s/, \op /) \oS/),|\op/, \oP/) \dp/,
-—-(%),(%),(%), @19
a8 ) p\oP ), \dp /),

where we have used the identity (3S5/0p)p (dp/0S)p, = 1 again. We now intro-
duce the specific heat capacities at constant volume Cy =T(9S/3T), and constant
pressure Cp =T (3S/0T)p, so that we obtain

(0,50, ), () -0 () o
os) \op), — c.\or ) \oar),~ y\or),\oP),

where ¥ = Cp/Cy denotes the ratio of specific heat capacities and (A.15) becomes

_1_(%) (ﬁ) (E) :_1_l<3_p) (E) (E) . (A1)
as),\oP ) \dp /; y \oT J,\aP /) \dp /;

Lastly, we use the Maxwell identity for (p, T, P), so that (A.1)-(A.3) are

combined to yield
d P aS 1
AN (2) =—(1-= (A.18)
aP Js\9S ), \dp /), 4

which is now inserted into (2.478) to obtain (2.479).
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