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Abstract

We consider the Dirichlet problem for p(x)-Laplacian equations of the form

−Δp(x)u + b(x)|u|p(x)−2u = f (x, u), u ∈ W1,p(x)
0 (Ω).

The odd nonlinearity f (x, u) is p(x)-sublinear at u = 0 but the related limit need not be uniform for x ∈ Ω.
Except being subcritical, no additional assumption is imposed on f (x, u) for |u| large. By applying Clark’s
theorem and a truncation method, we obtain a sequence of solutions with negative energy and approaching
the zero function u = 0.
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1. Introduction

Let Ω ⊂ RN be a bounded smooth domain, p : Ω→ R be Lipschitz continuous and

1 < p− := inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) =: p+ < N. (1.1)

We consider the Dirichlet problem for the p(x)-Laplacian equation
{−Δp(x)u + b(x)|u|p(x)−2u = f (x, u) in Ω,

u = 0 on ∂Ω, (1.2)

where Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)-Laplacian of u and b ∈ LN/p(x)(Ω). The
definition of the space LN/p(x)(Ω) is given in the next section. Note that b can be
sign-changing. Let

p∗(x) =
N p(x)

N − p(x)
.
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We assume the following conditions on the nonlinearity f (x, u):

(f1) f : Ω × R→ R satisfies the Carathéodory condition and

| f (x, t)| ≤ C1 + C2|t|q(x)−1 for all (x, t) ∈ Ω × R,

where q ∈ C(Ω) and 1 < q(x) < p∗(x) for all x ∈ Ω;
(f2) there is a ball Br(a) ⊂ Ω such that

lim
|t|→0

F(x, t)
|t|p− = +∞ for almost every (a.e.) x ∈ Br(a), where F(x, t) =

∫ t

0
f (x, ·).

(1.3)

When p(x) ≡ 2 (thus p− = 2) and f (x, ·) is sublinear at zero, then (1.3) holds with
p− = 2. For this reason, we say that our problem (1.2) is p(x)-sublinear at zero. We
emphasise that the limit (1.3) is a pointwise limit, while condition ( f1) means that
the nonlinearity f (x, u) is subcritical. Under these mild conditions, we shall prove the
following theorem.

THEOREM 1.1. Suppose that the conditions ( f1) and ( f2) hold. If f (x, ·) is odd for all
x ∈ Ω, then (1.2) has a sequence of solutions un such thatΦ(un) ≤ 0,Φ(un)→ 0; where
Φ is the energy functional given in (3.1).

This theorem generalises a recent result of He and Wu [5], where the semilinear
case p(x) ≡ 2, namely

{−Δu + b(x)u = f (x, u) in Ω,
u = 0 on ∂Ω, (1.4)

is considered assuming b ∈ LN/2(Ω) and f (x, u) is subcritical. In particular, He and Wu
assumed the pointwise limit

lim
|t|→0

F(x, t)
|t|2

= +∞ for x ∈ Ω. (1.5)

However, in their argument, to verify the condition (1.6) in Proposition 1.2 below, they
need the inequality

F(x, t) ≥ c−2
k |t|2 for |t| ≤ r and a.e. x ∈ Ω.

This could not be true unless the limit (1.5) holds uniformly. In the proof of our
Theorem 1.1, we fill this gap (see Lemma 3.4) and generalise their result to the
quasilinear variable exponent case. Moreover, the verification of the (PS)c condition,
which is crucial for applying variational methods, has been greatly simplified (see
Remark 3.3).

Both [5] and our result are based on a new version of Clark’s theorem recently
proved by Liu and Wang [8]. Our Theorem 1.1 is motivated by [5].
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PROPOSITION 1.2 [8, Theorem 1.1]. Let W be a Banach space and Φ ∈ C1(W,R) be
an even coercive functional satisfying the (PS)c condition for c ≤ 0 andΦ(0) = 0. If for
any k ∈ N there are a k-dimensional subspace Wk and δk > 0 such that

sup
Wk∩Sδk

Φ < 0, (1.6)

where Sr = {u ∈ W : ‖u‖ = r} for r > 0, then Φ has a sequence of critical points uk � 0
such that Φ(uk) ≤ 0, uk → 0.

Variable exponent variational problems appear in many applications (see [2, 6, 9]).
In particular, there has been great interest in elliptic boundary value problems involv-
ing the p(x)-Laplacian in the last two decades. In [7], a sequence of negative energy
solutions of the p(x)-Laplacian equation in (1.2) subject to a nonlinear boundary con-
dition is obtained; in addition to ( f1) and ( f2), it is assumed that (1.3) holds uniformly
for x ∈ Ω and that the nonlinearity is p(x)-sublinear at infinity. In [10], the existence
of positive solutions of (1.2) with concave and convex nonlinearities is studied via
Nehari’s method. For other recent results, we refer to [11] for p(x)-Laplacian systems
and to [1] for (p(x), q(x))-Laplacian problems.

2. Variable exponent spaces

To study the problem (1.2), we recall the variable exponent Lebesgue space
and Sobolev space (see [4] for more details). For a Lipschitz continuous function
p : Ω→ R satisfying (1.1), let

Lp(x)(Ω) =
{
u : Ω→ R : u is measurable and

∫
|u|p(x) < ∞

}
.

Here and below, all integrals are taken over Ω. Equipped with the Luxemburg norm,

|u|p(x) = inf
{
λ > 0 :

∫ ∣∣∣∣∣uλ
∣∣∣∣∣
p(x)
≤ 1
}
,

Lp(x)(Ω) becomes a separable uniformly convex Banach space.
The variable exponent Sobolev space W1,p(x)

0 (Ω) is the completion of C∞0 (Ω) under
the norm

‖u‖ = |∇u|p(x) = inf
{
λ > 0 :

∫ ∣∣∣∣∣∇u
λ

∣∣∣∣∣
p(x)
≤ 1
}
,

which is also a separable uniformly convex Banach space.
From now on, we denote W = W1,p(x)

0 (Ω). The functional ρ : W → R defined by

ρ(u) =
∫

1
p(x)
|∇u|p(x)

is crucial for investigating p(x)-Laplacian equations like (1.2).
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LEMMA 2.1 [3, Theorem 3.1]. The functional ρ is of class C1. Moreover, the functional
ρ′ : W → W∗ is of type (S+). Thus, if un ⇀ u in W and

lim
n→∞
〈ρ′(un), un − u〉 ≤ 0,

then un → u in W.

From the definition of the norm ‖ · ‖, it is easy to see that:

(1) if ‖u‖ ≥ 1, then

‖u‖p− ≤
∫
|∇u|p(x) ≤ ‖u‖p+ ;

(2) if ‖u‖ ≤ 1, then

‖u‖p+ ≤
∫
|∇u|p(x) ≤ ‖u‖p− .

The following lemma is an easy consequence because p− ≤ p(x) ≤ p+.

LEMMA 2.2

(1) If ‖u‖ ≥ 1, then

1
p+
‖u‖p− ≤ ρ(u) ≤ 1

p−
‖u‖p+;

(2) if ‖u‖ ≤ 1, then

1
p+
‖u‖p+ ≤ ρ(u) ≤ 1

p−
‖u‖p− .

3. Proof of Theorem 1.1

For the variable exponent Sobolev space W = W1,p(x)
0 (Ω), it is well known that weak

solutions of (1.2) are precisely critical points of the C1-functional Φ : W → R,

Φ(u) =
∫ ( 1

p(x)
(|∇u|p(x) + b(x)|u|p(x))

)
−
∫

F(x, u). (3.1)

At first glance, because b may be sign-changing, the principle part (the first term) of
Φ appears to be indefinite. We observe that if we set

f̃ (x, t) = f (x, t) − b(x)|t|p(x)−2t,

then the problem (1.2) becomes
{−Δp(x)u = f̃ (x, u) in Ω,

u = 0 on ∂Ω,
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in which the new nonlinearity f̃ (x, u) satisfies the same conditions ( f1) and ( f2), and

lim
|t|→0

F̃(x, t)
|t|p− = lim

|t|→0

(F(x, t)
|t|p− −

b(x)
p(x)
|t|p(x)

|t|p−
)
= lim
|t|→0

F(x, t)
|t|p− = +∞

for almost every x ∈ Br(a), because p(x) ≥ p−. Here, F̃(x, t) =
∫ t

0 f̃ (x, ·).
In other words, to prove Theorem 1.1, it suffices to consider the case b(x) = 0.

The reason that we state our problem (1.2) with the term b(x)|u|p(x)−2u is to allow
comparison with the results of [5, 7, 10].

Therefore, in what follows, we assume b(x) = 0 so that the functional given in (3.1)
becomes Φ : W → R,

Φ(u) = ρ(u) −
∫

F(x, u) =
∫

1
p(x)
|∇u|p(x) −

∫
F(x, u),

whose critical points are solutions of (1.2) with b(x) = 0. To prove Theorem 1.1, we
shall apply Proposition 1.2 to find a sequence {un} of critical points for Φ.

Since we have not assumed any conditions on the nonlinearity f (x, t) for |t| large
(except the subcritical growth condition ( f1)), it is not possible to verify the (PS)c
condition for Φ. To overcome this difficulty, we adopt the truncation method of He
and Wu [5].

Let φ : [0,∞)→ [0, 1] be a decreasing C∞-function such that |φ′(t)| ≤ 2,

φ(t) = 1 for t ∈ [0, 1] and φ(t) = 0 for t ∈ [2,∞).

We consider the truncated functional Ψ : W → R,

Ψ(u) = ρ(u) − φ(ρ(u))
∫

F(x, u).

The derivative of Ψ is given by

〈Ψ′(u), v〉 = 〈ρ′(u), v〉 − φ(ρ(u))
∫

f (x, u)v −
( ∫

F(x, u)
)
φ′(ρ(u))〈ρ′(u), v〉

=

(
1 −
( ∫

F(x, u)
)
φ′(ρ(u))

)
〈ρ′(u), v〉 − φ(ρ(u))

∫
f (x, u)v (3.2)

for u, v ∈ W.

LEMMA 3.1. The functional Ψ is coercive.

PROOF. We note that by Lemma 2.2, for ‖u‖ ≥ 1 + (2p+)1/p− ,

ρ(u) ≥ 1
p+
‖u‖p− ≥ 2.

Hence, φ(ρ(u)) = 0 and

Ψ(u) = ρ(u) ≥ 1
p+
‖u‖p− .

This implies that Ψ is coercive. �
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LEMMA 3.2. The functional Ψ satisfies (PS)c for c ≤ 0.

PROOF. Let {un} be a (PS)c sequence of Ψ with c ≤ 0, that is, Ψ(un)→ c, Ψ′(un)→ 0.
Then for n large,

−φ(ρ(un))
∫

F(x, un) = Ψ(un) − ρ(un) ≤ 1
2
− ρ(un). (3.3)

We claim that

1 −
( ∫

F(x, un)
)
φ′(ρ(un)) ≥ 1. (3.4)

For this purpose, we consider two cases. If ρ(un) < 1, then φ′(ρ(un)) = 0 and (3.4) is an
equality. If ρ(un) ≥ 1, then the right-hand side of (3.3) is negative. Noting φ(ρ(un)) ≥ 0,
we have ∫

F(x, un) ≥ 0. (3.5)

So we also have (3.4) because φ′(ρ(un)) ≤ 0.
The coerciveness of Ψ implies that the (PS)c sequence {un} is bounded in W. We

may assume that un ⇀ u in W. Since f is subcritical (condition ( f1)), by the compact
embedding W ↪→ Lq(x)(Ω), Hölder’s inequality and the boundedness of the Nemytsky
operator

N f : Lq(x)(Ω)→ Lq(x)/(q(x)−1)(Ω), (N f u)(x) = f (x, u(x)),

(as shown in [4]), it is well known that up to a subsequence,∣∣∣∣∣
∫

f (x, un)(un − u)
∣∣∣∣∣ ≤ 2| f (x, un)|q(x)/(q(x)−1)|un − u|q(x) → 0. (3.6)

Setting v = un − u in (3.2), from 〈Ψ′(un), un − u〉 → 0, (3.6) and the boundedness of
φ(ρ(un)), we obtain(

1 −
( ∫

F(x, un)
)
φ′(ρ(un))

)
〈ρ′(un), un − u〉

= 〈Ψ′(un), un − u〉 + φ(ρ(un))
∫

f (x, un)(un − u)→ 0. (3.7)

We deduce from this and (3.4) that

〈ρ′(un), un − u〉 → 0.

It follows from Lemma 2.1 that un → u in W. �

REMARK 3.3. Although our problem (1.2) is much more general than the problem (1.4)
considered in [5], our verification of the (PS)c condition is much simpler than in [5],
where the convergence of {un} is deduced by estimating ‖un − u‖2 by the sum of
〈Ψ′(un) − Ψ′(u), un − u〉 and four additional complicated terms (see [5, (2.20)]). The
key points in our proof are the (S+) property of ρ′ and the observation (3.4).
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We should also point out that the verification of (PS)c for c = 0 in [5] contains a gap.
For the (PS)0 sequence {un}, [5, (2.19)] is derived from 2Ψ(un) − ‖un‖2 ≤ 0. However,
this may be false because Ψ(un) may be positive, even though Ψ(un)→ 0.

LEMMA 3.4. For any k ∈ N, there are a k-dimensional subspace Wk of W and δk > 0,
such that

sup
Wk∩Sδk

Ψ < 0.

PROOF. Let X = {u ∈ W : supp u ⊂ Br(a)}, Wk be a k-dimensional subspace of X. If
the result is not true then, for all n ∈ N,

sup
Wk∩S1/n

Ψ ≥ 0.

This implies that there is a sequence {un} ⊂ Wk ∩ S1/n, such that

‖un‖ =
1
n
→ 0, Ψ(un) ≥ − 1

np−
. (3.8)

Since all norms on Wk are equivalent, from ‖un‖ → 0, we deduce |un|∞ → 0.
Let η : Ω→ [−∞,∞] be defined by

η(x) = lim
n→∞

F(x, un(x))
‖un‖p−

.

Then η is measurable. For x ∈ Br(a), from the pointwise limit (1.3) in ( f2), there
is rx > 0 such that F(x, t) ≥ 0 for t ∈ [−rx, rx]. Hence, if n � 1, then |un|∞ ≤ rx and
F(x, un(x)) ≥ 0, and so η(x) ≥ 0 for a.e. x ∈ Br(a). Consequently, η(x) ≥ 0 for a.e.
x ∈ Ω, because supp un ⊂ Br(a).

Let vn = ‖un‖−1un. Since dim Wk < ∞, we have vn → v in Wk for some v ∈ Wk, note
that ‖v‖ = 1. For x ∈ {v � 0}, using (1.3) again,

η(x) = lim
n→∞

F(x, un(x))
‖un‖p−

= lim
n→∞

F(x, un(x))
|un(x)|p− |vn(x)|p− = +∞.

By Fatou’s lemma, since {v � 0} has positive Lebesgue measure,

lim
n→∞

∫
F(x, un)
‖un‖p−

≥
∫

lim
n→∞

F(x, un)
‖un‖p−

=

∫
η ≥
∫

v�0
η = +∞. (3.9)

Because ‖un‖ ≤ 1, we have (see Lemma 2.2)

ρ(un) ≤ 1
p−
‖un‖p− ≤ 1.

Thus, φ(ρ(un)) = 1 and

https://doi.org/10.1017/S0004972723001405 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723001405


[8] Multiple solutions for p(x)-Laplacian equations 353

Ψ(un) = Φ(un) = ρ(un) −
∫

F(x, un)

≤ 1
p−
‖un‖p− −

∫
F(x, un)

= ‖un‖p−
( 1

p−
−
∫

F(x, un)
‖un‖p−

)
=

1
np−

( 1
p−
−
∫

F(x, un)
‖un‖p−

)
.

Now, from (3.9), we deduce np−Ψ(un)→ −∞, contradicting (3.8). �

PROOF OF THEOREM 1.1. Lemmas 3.1, 3.2 and 3.4 permit us to apply Proposition
1.2, and deduce that Ψ has a sequence of critical points uk � 0 such that Ψ(uk) < 0 and
uk → 0 in W. For some K ∈ N, if k ≥ K,

ρ(uk) ≤ 1
p−
‖uk‖p− < 1.

Since Ψ(u) = Φ(u) for u ∈ ρ−1[0, 1), we see that uk with k ≥ K are critical points of Φ
as well, satisfying Φ(uk) < 0 and uk → 0 in W. �

REMARK 3.5. Liu and Wang [8, Theorem 3.1] treat the case in which p(x) is a constant
p > 1. Assuming that f (x, ·) is odd only in (−δ, δ) for some δ > 0, and

lim
|t|→0

F(x, t)
|t|p = +∞ (3.10)

uniformly on some small ball Br(x0) ⊂ Ω, a sequence of negative energy solutions
approaching zero is obtained. Liu and Wang truncated the nonlinearity f (x, t) for
|t| > δ/2, resulting in a new nonlinearity f̂ (x, t) = 0 for |t| > δ. Then Proposition 1.2
is applied to get a sequence of solutions un for the truncated problem. Since un → 0
in W1,p

0 (Ω), a regularity argument then yields |un|∞ < δ/2 for large n. Such un are then
solutions of the original problem.

To the best of our knowledge, a suitable L∞-regularity theory is not available for
the p(x)-Laplacian operator and, at present, we can only deal with the case in which
f (x, ·) is globally odd and subcritical, as we have done in Theorem 1.1. Our argument
in proving Lemma 3.4 can be used to slightly improve [8, Theorem 3.1], requiring only
that the limit (3.10) holds pointwise in Br(x0).
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