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Abstract  

The design field encompasses aspects of culture, thought, and, ultimately, can appropriate 

other disciplines like biology and engineering. One of the potentials of biodesign is the 

replacement of current materials for more sustainable ones. Bacterial cellulose (BC) is a 

biopolymer that is produced by microorganisms such as Komogataeibacter spp. and has been 

recently explored for applications in fashion, architecture and material science receiving 

global media attention. In this impact paper, it is assessed the challenges of producing BC 

through analysis of its production and chemistry. Through a critical analysis of applied case 

studies, it is argued that it is yet work to be done to allow a widespread use of BC. In 

conclusion, the increased understanding of the acetic acid bacteria (AAB) genetic landscape 

and biochemistry will potentiate the education, research, development, manufacture, and 

market implementation of more feasible and sustainable cellulose-based products. 
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1. Introduction  

What if designers and fabricators did too much? Despite the need of an enhanced design 

practice, specifically in the prototyping and post-making phases, as Song and Paulos (2021) 

assume, we are in an era of the built environment. Manmade environments are massified and 

the civilisation is entirely and completely represented by artificial objects accompanied by the 

domestication of other-than-humans’ beings. Makers must go beyond the traditional 

anthropocentric perspective, and not neglect relevant knowledge by quickly appropriating 

novel and innovative creations that might not be scientifically rigorous, ecologically 

sustainable, and ethically sound. 

“The access and growing ubiquity of digital fabrication has ushered in a celebration of 

creativity and ‘making’. However, the focus is often on the resulting static artifact or the 

creative process and tools to design it. We envision a post-making process that extends past 

these final static objects — not just in their making but in their ‘unmaking’.” (Song and 

Paulos, 2021).  

To merge the gap between humans and nature and to project other ways of 

manufacturing, designers and engineers are experimenting with biological materials. They are 

expanding the materials’ arsenal and changing the paradigm from a top-down and humanised 

creation to a co-creation approach with living organisms (Dade-Robertson & Davies, 2023; 

Hénaff, 2023; Diniz, 2023). This new paradigm is influencing makers to introduce novel 

methodologies coming from disciplines usually apart from the design field. Therefore, 

biodesign is a promising field in this new landscape, where the crossing-over between the 

biological sciences and the design, creative, and artistic disciplines, happen. Additionally, the 

biodesign discipline is emerging as a strong educational tool, holding promise to tackle 

several challenges in architecture – e.g., more resilient materials to reduce the negative 

ecological impact of construction (Andréen & Goidea, 2022); design – e.g., sustainable 

manufacture of products (Camere & Karana, 2018); materials science – e.g., reduce waste 

(Mcmeeking et al., 2024); fashion – sustainable raw materials to reduce the negative impact 

of production processes (Ng & Wang, 2016; Rathimanoorthy & Kiruba 2020); and visual 

communication – widespread acceptance of new materials (D’Olivo & Karana, 2021).  

Specifically, bacterial cellulose (BC) is a biomaterial that has recently grabbing the 

attention of the mass media and the broader audience (e.g., Suzanne Lee, Modern Synthesis, 

Polybion-Gani partnership). Research-wise, BC is an interesting material to investigate due to 

its low-cost and relatively easy production, treatment, and design (Ng et al., 2016; Ng, 2017; 
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Bastida & Peirano, 2020; Kapsali, 2022; Bell et al., 2023a; Bell et al., 2023b; Nicolae et al., 

2023). For its better comprehension a proper investigation of the BC-producing 

microorganisms and their respective biochemical pathways is required to reach the 

expectations drawn to this biopolymer.  

The aim of this work is to describe why there is a need to better comprehend the biology 

(taxonomy and genetics) and structure (biochemistry) of BC production. The research goal is 

to improve the biodesign practicalities calling for more focus on the BC productivity, 

treatment, and functionalisation. Through a narrative review analysis, an overview and 

critique of current BC production is performed. Additionally, approaches like genome 

sequencing are highlighted and discussed to help biodesigners in generating crucial insights 

for a more sustainable and realistic use of BC (Singhania et al., 2021; Manan et al., 2022). In 

the next sections it is provided the biological context of BC, including its genomic and 

biochemical nuances. Lastly, biodesign educational and professional examples are discussed 

in order to achieve a successful interdisciplinary approach. 

 

2. Background and related work 

2.1 Bacterial cellulose producers 

The best studied BC producers are the acetic acid bacteria (AAB). They are gram-

negative and obligate aerobic bacteria found in a variety of natural sources that are rich in 

sugar and alcohols (e.g., fruits and fermented foods) (Yang et al., 2022). AAB phenotypes 

relate to the acetic acid production, nitrogen fixation (Fuentes-Ramírez et al., 2001), pigment 

production (Malimas et al., 2009) and exopolysaccharides generation (Tonouchi, 2016; La 

China et al., 2018; Barja et al., 2021). These microorganisms are also known for producing 

several aldehydes, ketones, and other organic acids through oxidative fermentation (Mamlouk 

& Gullo, 2013; Lynch e al., 2019). Besides producing these compounds AAB can also 

accumulate a large amount of them extracellularly as happens with BC (Mamlouk & Gullo, 

2013; Lynch et al., 2019). The most prolific AAB in terms of BC production is 

Komagataeibacter xylinus (Römling & Galperin, 2015; Gullo et al., 2017). During the past 

years, several reviews have been published to elucidate the details of AAB taxonomy (Trček 

& Barja, 2015; Yamada, 2016), biotechnological applications (Saichana et al., 2015), 

resistance mechanisms (Nakano & Ebisuya, 2016; Qiu et al., 2021) and BC production (Gullo 

et al., 2018; De Amorim et al., 2020; Barja, 2021), however there are yet research questions 
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in need to be answered. These questions relates simultaneously to the diversity of BC 

producers and their asosicated BC biosynthesis pathways. 

Apart from K. xylinus, several AAB species are also known to produce BC. Among them 

are members of the genera Komagataeibacter, Acetobacter, Gluconacetobacter, Rhizobia, 

Rhodobacter, Agrobacterium, and Sarcina (Delmer, 1999; Brown, 2004; Morgan et al., 2013, 

Matsutani et al., 2015). Other non-AAB species can also produce BC such as 

Achromobacter, Alcaligenes, Aerobacter, Azotobacter, Pseudomonas, Dickeya, and 

Lactobacillus (Deinema & Zevenhuizen, 1971; Brown, 2004; Jahn et al., 2011; Morgan et 

al., 2013; Khan et al., 2020). As an example, Khan and colleagues (2020), characterised a 

Lactobacillus hilgardii strain capable of producing BC in high quantities. Using a fructose-

rich medium, they observed that L. hilgardii was able to produce immensely pure and 

crystalline BC with a yield of 7.23 g/ L after 16 days of incubation. Hence, the plethora of 

organisms able to produce BC represent novel routes of research to detect, engineer, 

characterise, and standardise the best possible BC producer. 

One of the easiest ways of producing BC is through kombucha fermentation. Kombucha 

is a slightly alcoholic and carbonated beverage resulting from the fermentation of a tea-based 

aqueous solution and sugar by a symbiotic culture of bacteria and yeast (SCOBY) (Villareal-

Soto et al., 2018). At the aqueous-air interface there is the deposition of BC that forms a layer 

at the surface of the liquid. This pellicle can be collected by hand for further treatment 

without any intricate technique. Microbiologically, kombucha is constituted by the AAB such 

as Gluconobacter sp., Acetobacter sp., Komagataeibacter sp. (de Roos & de Vuyst, 2018), 

lactic acid bacteria such as Lactococcus sp. and Lactobacillus sp. Yeasts such as 

Zygosaccharomyces bailii, Saccharomyces cerevisae, Schizosaccharomyces pombe, 

Saccharomycodes ludigii, Kloeckera apiculata, Torulaspora delbrueckii, and Brettanomyces 

bruxellensis have also been detected (Coton et al., 2017; Laavanya et al., 2021). 

A recent study by Keating and colleagues (2023) has argued for a formation of a new 

taxonomy – Novacetimonas hansenii – to incorporate a BC overproducer strain (N. hansenii 

NQ5) due to insights gained from whole genome analysis. In support of this taxonomical 

rearrangement, Ryngajłło and colleagues (2019) investigated 19 Komagataeibacter genomes 

and concluded that there was sufficient evidence to distinguish between the K. xylinus and K. 

hansenii clades. They found variance in the genomic traits related to the carbohydrate uptake 

and regulation of its metabolism, exopolysaccharide synthesis, plasmid DNA content, and the 

c-di-GMP signaling network that explain the phenotypic diversity found in these clades. This 
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new knowledge represents research routes yet to be explored that directly and indirectly 

influence BC generation.  

 

2.2 Bacterial cellulose biochemistry and synthesis limiting factors 

BC possesses better physico-mechanical properties than the plant-derived cellulose due 

to its nanofibrous 3D structure (Ul-Islam et al., 2012). Additionally, BC has a high purity and 

crystallinity, mechanical strength, jellified appearance, porous geometry, biocompatibility, 

and easy mouldability representing a promise material for designers (Khan et al., 2022). BC 

is synthesised through four main sequential enzymatic steps:  

i) Phosphorylation of glucose by the glucokinase; 

ii) Glucose-6-phosphate isomerises into glucose-1-phosphate by the effect of the 

phosphoglucomutase,  

iii)UDP-glucose is synthesised by the UDP-glucose pyrophosphorylase, and  

iv) Cellulose synthase reaction (Yoshinaga et al., 1997; Shingania et al., 2022).  

 

In the last step, UDP-glucose polymerases into cellulose by the activity of a membrane 

protein complex called cellulose synthase which is an unstable high molecular mass protein 

that is also responsible to cellulose secretion to the extracellular matrix (El-Saied et al., 

2004). The cellulose synthase consists of four core proteins that are encoded by the cellulose 

synthase operon containing the genes bcsABCD (Yoshinaga et al., 1997). However, the 

operon is not equally observable among the Komagataeibacter species (Saxena and Brown, 

1995; Matsutani et al., 2015).  

In general, cellulose producers are a relatively well studied group of microbes but the 

high cost and low yield of BC production makes it necessary to increase the depth of research 

and characterisation. Specifically, it is necessary to clarify the potential genotype-phenotype 

dualism related to the BC synthesis, secretion machineries, and other relevant cellular 

processes (Ryngajłło et al., 2019). One example is the high phenotypic variability of 

Komagataeibacter (Gullo et al., 2018).  Since different strains can be recovered throughout 

the fermentation and BC production experiments (Valera et al., 2014; La China et al., 2018) 

it is possible that a microbial consortium is needed for achieving the best results. The 

hypothesis is that different strains prefer different growth conditions within the same 

production cycle, potentiating a “cascade” effect that results in high BC yields. Therefore, BC 

production is strain-dependent, differing in the yields, structure, and strain stability (Fang & 
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Catchmark, 2015; Chen et al., 2018; Ryngajłło et al., 2019). Moreover, the fermentation 

substrate, the culture media, and the genetic organisation of the cellulose synthase and its 

related genes can also account for the detected phenotypic variability (La China et al., 2020; 

Singhania et al., 2022). 

Depending if BC is produced by a SCOBY or through pure culture of strains, the 

substrate requirements might differ as well as other factors related to the equipment and post-

production treatments (Fernandes et al., 2020; Laavanya et al., 2022; Rathinamoorthy & 

Kiruba, 2022; Singhania et al., 2022). The leading factors contributing to the BC production 

are the type and concentration of the nitrogen (e.g., peptone) and carbon source (e.g., glucose, 

sucrose), the dissolved oxygen in suspension (~10-15%), the pH (~4-6) and temperature 

(~25-35 °C). Various types of wastes and byproducts (both having complex chemical 

compositions) have been tried to grow BC, but the best results observed are from the 

experiments where additional nutrient sources are supplemented (Fernandes et al., 2020; 

Nascimento et al., 2021; da Silva et al., 2021). Other relevant factors are the proportion 

(~1:15-1:10) and age (~3-30 days) of the inoculation, and the co-substrate concentration (e.g., 

ethanol, vitamins) (Fernandes et al., 2020; Singhania et al., 2022). Alterations in the 

biochemical pathways for microbial growth and cellulose synthesis differ between strains 

(Masaoka & Sakota, 1993; Toyosaki et al., 1995; Czaja et al., 2007; Ochaikul et al., 2013; 

Zeng et al., 2014; Fang & Catchmark, 2015).  Other soluble exopolysaccharides like acetan 

and its derivatives, and levan that indirectly affect BC production also vary among BC 

producing strains (Ryngajłło et al., 2019). In summary, the genetic instability of the cellulose 

synthase, its differential presence in AAB and the paraphernalia of other factors directly and 

indirectly affecting BC synthesis makes its production an extremely hard experimental setup. 

This constitutes a major challenge for biodesigners which would benefit from a 

standardisation of BC producing experimental protocols. 

 

2.3 Bacterial cellulose, genomics, and proteomics 

About the genomic features of Komagataeibacter genus, Matsutani and colleagues 

(2015) analysed the whole genome of Komagataeibacter medellinensis NBRC 3288 and 

found the particular genetic conditions that makes this strain lose and regain the ability to 

synthetise BC. They also found other mutations associated with such phenotypic variance. 

Together, this genetic instability and easiness to lose and regain abilities related to cellulose 

production constitute a risk of using this strain in a standard routine. Such risk can be 
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extrapolated to other strains belonging to the Komagataeibacter genus since these bacteria 

are known to have transient phenotypes in their essential metabolism (Beppu, 1994; 

Coucheron, 1991; Takemura et al., 1991; Sokollek et al., 1998; Azuna et al., 2009; Castro et 

al., 2013; La China et al., 2020). For instance, Florea and colleagues (2016a) found and 

described two additional cellulose synthase operons in Gluconacetobacter hansenii and 

several previously unknown genes related to BC production. Recently, Bimmer and 

colleagues (2023) performed a proteomic analysis on the same strain (Komagataeibacter 

hansenii ATCC 53582) and their characterisation of the regulatory diguanylate cyclases 

(dgcA and dgcB deleterious mutants) suggested a new regulatory mechanism of cellulose 

synthesis in K. hansenii.  

Recent studies have shown the extensive involvement of the operon bcsABCD in the 

biosynthesis, extracellular transport, and assembly of cellulose (Manan et al., 2022). The 

cellulose synthase enzyme is encoded by two types of operons, and both types consists of 

four genes:  

i) Type I:  bcsA-D (Matsutani et al., 2015), and; 

ii) Type II: bcsABII, bcsX, bcsY, and bcsCII (Ryngajłło et al., 2019).  

 

These two types of operons are subjected to mutations. Specifically, the bcsC subunits 

(related to the cellulose export through the membrane) are prone to disruption, suggesting 

that cellulose export is subject to evolutionary forces (Ryngajłło et al., 2019). However, the 

cellulose synthase is a complex enzyme and other descriptions have been referred including a 

third type of operon and the presence of more related genes (Römling & Galperin, 2015; La 

China et al., 2020; Manan et al., 2022). Despite the well conserved function of the BcsA and 

BcsB (responsible for cellulose synthesis activity and β-glucan chain formation, respectively 

(Ross et al., 1991; Yoshinaga et al., 1997; Park et al., 2009; Römling & Galperin, 2015; 

Morgan et al., 2016)), the function of BcsC and BcsD is still under debate (Saxena et al., 

1994; Hu et al., 2010, Iyer et al., 2011). Regarding the genomic instability of the AAB there 

is also the insertion sequences that cause disruptions in essential biochemical mechanisms 

and also hamper cellulose synthesis (Asai, 1968; Valla et al., 1987; Coucheron, 1991; 

Takemura et al., 1991; Beppu, 1993; Coucheron, 1993; Sokollek et al., 1998; Steiner and 

Sauer, 2001; Matsutani et al., 2015; Ryngajłło et al., 2019). So, the genomic landscape of 

AAB represents a plethora of challenges to be addressed to reach a stable and efficient BC 

production.  
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Therefore, it is questionable that BC can be assumed as a definitive solution for more 

sustainable manufacturing practices, despite the intellectual property protection efforts 

attempted in the recent years (Da Silva et al., 2021). Another relevant limitation regarding the 

use of Komagataeibacter spp. is that only a limited fraction of their already identified 

proteins possesses assigned functional categories (ca. 30% for K. xylinus E25 (Ryngajłło et 

al., 2019). Such lack of knowledge regarding protein function represents an opportunity for 

further exploration of proteomics (Zhang et al., 2010).  

Such instability represents a risk for prototyping research and the effort to get outside-of-

the lab is substantial (Bernstein et al., 2017). The only way to mitigate these risks is to 

increase the effort to decipher the genomic and biochemical details of AAB BC-producers. 

Ultimately, only after that effort will be possible to obtain a standard framework to be utilised 

across disciplines and outside-of-the-lab. 

 

2.4 Bacterial cellulose and genetic engineering 

Several attempts to genetically engineer AAB to generate higher yields of BC have also 

been investigated. Jang and colleagues (2019) engineered a K. xylinus strain and were able to 

more than double the yield of BC production (3.15 g/ L) by overexpressing the heterologous 

pgi and gnd genes from Escherichia coli or Corynebacterium glutamicum. To increase the 

ability of K. xylinus to use mannose as a carbon source, Yang and colleagues (2023) 

engineered a strain capable of better using mannose-rich biomass as a sole carbon source 

through the expression of the mannose kinase (mak) and phosphomannose isomerase (pgi) 

genes from E. coli. Their results showed that the yield almost doubled while improving BC 

tensile strength and elongation potential. Since the yield is not the only feature relevant for 

BC generation, Huang and colleagues (2020) used the Clustered Regularly Interspaced Short 

Palindromic Repeats interference (CRISPRi) system to test and control the BC mechanical 

characteristics such as porosity and crystallinity by overexpressing the galU gene 

(responsible for controlling the carbon metabolic flux between BC synthesis and the pentose 

phosphate pathway). They found that the galU is positively associated with the BC 

crystallinity and negatively associated with the porosity. To allow a standard genetic 

engineering approach, Florea and colleagues (2016a) developed a modular toolkit to guide 

the genetic engineering of K. rhaeticus aiming a high BC yield. Their toolkit works twofold, 

being applied to genetically engineer K. rhaeticus and applying extracted proteins to the BC 

itself. However, the toolkit is tailored specifically to this strain and optimised protocols must 
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be tested to every other strain. Additionally, the BC mechanical properties (e.g., tensile, 

stiffness, viscoelasticity, porosity) have also to be studied to achieve a usable biomaterial (see 

Chen et al., 2018, where they analysed the mechanical properties of six different 

Komagataeibacter strains, five K. xylinus and one K. hansenii). 

 

3. Real world implications for bacterial cellulose 

BC represents an interesting material due to its malleability, biocompatibility, and 

strength (Florea et al., 2016b). Up until now BC has been explored to a varied range of 

applications such as cosmeceuticals, mining and refinery, textiles, sewage treatment, foods, 

paper industry, biomedical apparel, electronics, etc (Singhania et al., 2021). According to 

Manan and colleagues (2019) and Rathinamoorthy and Kiruba (2022) the main limitations for 

BC production for mundane and technical applications can be summarised as related to the:  

i) Culture media required for production: since different strains show different 

nutritional needs and phenotypes;  

ii) Post-treatment processes: since every treatment is tailored for its application and so a 

high degree of specialisation is necessary in research, development, and industrial 

manufacture of every unique appliance, and;  

iii) Scaling-up: since it is not trivial how to produce high amounts of BC in a stable, 

controlled, and cost-effective manner.  

 

The argument is that only possessing a full comprehension of the BC biodesigners can 

approach BC as an innovative and sustainable polymer. The BC-producers’ phenotypic 

variation and how this plasticity correspond to the different BC chemical and functional 

features constitute additional challenges for biodesigning.  

 

3.1 Practical and industrial biodesign applications 

To address the complex nature of BC, professionals are pushing the boundaries of 

knowledge, bringing other disciplines to their practice. Neri Oxman’s and Suzanne Lee’s 

works represent the next paradigm shift in biotechnological engineering, biofabrication, 

augmented architecture, and biomaterials. 

Oxman’s Aguahoja project focused on developing a robotic platform for 3D printing 

biomaterials, including cellulose (Duro-Royo et al., 2018). It is a five-meters tall 

biocomposite structure, composed by several biopolymers such as BC. Aquahoja was 
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developed through a computationally driven approach through additive manufacturing (Guzzi 

& Tibbitt, 2020), and its design was intended to allow temporality, being able to sense, 

inform the user of, and adapt to changes in the surrounding ecosystem. The team behind 

Aquahoja found that shape and materiality are directly informed by physical properties (e.g., 

stiffness and opacity), environmental conditions (e.g., temperature and relative humidity), 

and fabrication technical constraints (e.g., arm speed and nozzle pressure). Such structure 

aims at optimised structural stability, flexibility, and visual connectivity. Designed for 

biodegradability, Aquahoja’s exposure to environmental conditions like rainwater, will 

disassembly its structure until disappearance, giving back the biological building blocks to 

the natural nutrient cycle.  

As a pioneer in merging biology and design, Suzanne Lee has been working on removing 

the boundaries within the two disciplines. As the CEO of Biofabricate
1
 (hosting, consulting, 

and education company for biology-led innovation), she argues that “we have the tools to 

make the same things [as Nature] – without killing the animal, without cutting down the tree. 

We can programme biology to do it in a much more efficient way using minimal and 

renewable resources”
2
. Suzanne Lee’s prediction is that the fourth industrial revolution will 

be a material one, led by biology. Developing BC-based fashion prototypes for 20 years she 

recalls that “the technology was absolutely right [20 years ago] but people just weren’t 

ready”
1
. 

Biodesigners have also explored BC as a design material. Carolina De Lara (2024) 

developed BC-based composite textiles to be applied in footwear designs while defining the 

work methods tailored for designers with a non-biological background. Fiona Bell and 

colleagues developed an interactive breastplate biofabricated by SCOBY (2023a), and a non-

invasive bio-digital calendar that focus on the SCOBY’s wellbeing (2024). Ofer & Alistar 

(2023), created an immersive learning experience for biodesigning with kombucha. They 

focused on the sensory experience of designing with livingness, and reporting through an 

autoethnographic research method. In practice, a lab journal was used for documentation, 

including writings on the reflective sensory engagement experience through the in-person 

contact with kombucha and SCOBY (sewing and embroidering, layering, laser cutting and 

engraving, and molding). Interestingly, Netta Ofer (2023) offers a personal and non-

scientifically take on growing BC while there is enough knowledge to grow it with more 

confidence: “how and when to feed it, what a healthy layer looks like, when a new layer 

                                                 
1 https://www.biofabricate.co/about 
2 https://www.sleek-mag.com/article/the-material-revolution-with-suzanne-lee/ 
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should be expected, etc. All these nuances in the Scoby’s growth were difficult to predict 

reliably, as each microbial culture and each grown layer had different behaviour and 

timelime. However, within that uncertainty, during the research team’s meetings, [Netta 

Ofer] would describe the growth from her own sensory point of view.” Despite the relevance 

of reflecting on the experience of designing with living microorganisms, the rigor of the 

current knowledge on growing and AAB and SCOBY and produce BC cannot be neglected. 

Both can be achieved together. When not performed simultaneously, it constitutes an 

exemple of the need for a more robust interdisciplinarity approach. 

Regarding the industrial and commercial applications Polybion
TM3

 is a company that aims 

to source bio-based materials to the market, and Celium
TM

 is their first biomaterial, formed 

by “premium cultivated cellulose”. Despite Polybion’s promises and media attention in the 

leather-alternatives’ sector, Celium’s features still requires further development before being 

presented as a more sustainable solution. This occurs because the material still requires a 

polyurethane coating for durability, and it works in combination with synthetic polymers. To 

achieve a more sustainable biomaterial, the approach must deviate from the reliance on 

petroleum-based plastics. It is urgent to explore other materials that do not hinders the 

biodegradability potential.  

Consequently, the manufacture of BC is questionable and must be challenged in terms of 

its sustainable promises. The company assumes the compromise of durability in detriment of 

the biodegradability and sustainability by arguing that a long-lasting feature reduces frequent 

replacements, minimising waste generation and the associated environmental footprint 

(personal communication). The dilemma deserves a more critical view and justify the 

continue research and development of better solutions to assure the sustainability and 

durability of biomaterials. Interestingly, the product is already being marketed as a whole 

solution through a partnership with Gani
4
, while there are several questions to be answered. 

Therefore, the research purpose is to continue to elucidate, clarify, and further explore the 

potential of novel solutions in addressing world problems (Popper, 1959). Thus, biodesigners 

must take these cautionary notions into account when performing industrial-led briefings.  

 

3.2 New curricula for biodesign 

Questioning the participation of non-human organisms in research, Chen and colleagues 

(2024) argues for a “microbial revolt”. To activate it they developed a workshop that “invites 

                                                 
3 https://www.polybion.bio 
4 https://www.vogue.co.uk/article/ganni-bacteria-leather-celium-aw24 
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designers and biologists to reflect upon the invisible labour of lab organisms that support 

their research.” As often seen in BC experiments, contaminations hinder the laboratory work 

and increases the challenges for research. According to Chen and colleagues (2024), 

microbial cell death and contaminations constitute microbial forms of resistance, refusal, and 

non-cooperation to human activities. The workshop designs comprise the following steps:  

i) Microbial embodiment and role-play;  

ii) Journaling and group sharing;  

iii)Artifacts/ revolts creation (“Chindōgus”);  

iv) Sketching/ illustrating the results; and  

v) Group sharing of the results.  

 

By carrying out interviews to workshop participants, Chen and colleagues (2024) were 

able to find bottlenecks to interdisciplinarity related to main themes such as the power 

dynamics inside the lab, care ecologies, and research creative freedom. Such creative 

freedom can be tackled by blurring the boundaries between the learning, the making, and the 

growing (Correa & Holbert 2021). Correa and Holbert (2021) proposed the concept of 

“interspecies creative learning” that aims to foster the work with more-than-humans. So, their 

Myco-kit represents a biodesign toolkit to allow the learning and prototyping explorations for 

a more ecologically conscious practice. Despite being developed for young children, it may 

be potentially useful for older audiences. Therefore, by creating liminal spaces where those 

boundaries can be contested (Chen et al., 2024), “interspecies creative learning” (Correa & 

Holbert, 2021), and creative discovery that respects the more-than-humans’ agency can 

potentially give rise to a more robust interdisciplinarity. Additionally, it can also be 

considered incorporating themes in the more-than-humans’ agenda like their temporalities 

(Oktay et al., 2023), representation as participatory decision makers
5
, values and perspectives 

(Bekker et al., 2023), and engagement and embodying (Light, 2024).  

Light (2024) argues for “approaches that involve people in being-with, designing-with 

and participating-as non-humans” (p. 2). These three aspects should be inserted in the 

biodesign curriculum, to allow a more non-anthropogenic curriculum. This calls for the more 

creative tools to be explored, such as imagination – “imagination is invoked to bring in non-

human actors; the humans ‘becoming’ other beings to do tasks.” (Light, 2024, p. 3). 

Assuming that it is challenging to speak of or from the more-than-humans’ experience, the 

                                                 
5 https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1826944 
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exercise stimulates different non-human perspectives and phenomenological possibilities. At 

least, biodesigners need improved and complete design representations, that allow the 

development of more representative biological metaphors encompassing the appropriate 

more-than-humans’ agency (Dade-Robertson et al., 2024). 

Bekker and colleagues (2023) defined challenges in teaching more-than-human 

perspectives in the field of Human-Computer Interactions. Despite not be directly aimed to 

biodesigners, the focus on practitioners coming from non-biological backgrounds can relate 

to design as well. They defined three main themes relevant to the more-than-humans’ 

perspectives: species, things, and designers, and from their experience, the identified 

challenges are (Bekker et al., 2023, p. 57): 

i) Representation: “who might speak on behalf of whom”; 

ii) Inclusion: “how can students make sure to include all the relevant perspectives – 

including the more-than-human”; 

iii)Human and non-human designers: “if the designer is a non-human (…) how might 

this influence the design process”; 

iv) Outcome and effect: “what are the success criteria for working on a project with more-

than-human players”; 

v) Role of (bio) technology: “if/ how/ when technologies are necessary, or whether it is 

more fruitful to develop tools with no technologies involved”; 

vi) Bias: how to go beyond “western thinking, and the hegemony of modernist paradigms 

(…) to bring in perspectives from other cultures that are more aligned with a more-

than-human ecological worldview” (p. 57). 

 

The use of biological probes can facilitate and enhance the experience of teaching and 

learning biodesign maintaining the care for the more-than-perspectives. Briefly, biological 

probes “are intended to provide the setting in which it is possible to engage with biological 

systems from a design perspective” (Ramirez-Figueroa, 2017, p. 8). They allow the 

engagement with other organisms and their phenotypes. Therefore they:  

i) Enable open-ended, non-deterministic design outcomes;  

ii) Operate within rigorous domains and objectives;  

iii)Articulate throughout direct engagements with living systems and;  

iv) Operate as inspirations for critical thinking.  
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Ultimately, deployment of biological probes can extend the biodesign teaching practice to 

outside of the lab and formal educational spaces. As Chappell and colleagues (2023) 

observed, “informal learning spaces can empower multidirectional and multigenerational 

knowledge exchange and advance a more diverse, inclusive, and innovative biodesign 

enterprise” (p. 1). Their work shows the benefits for biodesign education of bringing other 

actors. Artists, teachers, activists, and researchers can activate creativity, playfulness, 

storytelling, and ancestral scientific knowledge to informal learning spaces such as 

community bio-labs, summer camps, art-based maker spaces (Chappell, Perez, & Takara, 

2023). 

 

4. Interdisciplinarity for biodesign bacterial cellulose 

The weak link between the genetics and the biochemistry surrounding BC production 

and the design setup is hindering the proper transfer of knowledge between microbiologists, 

engineers, designers, and manufacturers (Bernstein et al., 2017; Chen et al., 2018; Zhou et 

al., 2020; Da Silva et al., 2021; Kapsali, 2022; Pereira et al., 2022).  

Taking advantage of interdisciplinary approaches, such ambitions can be achieved 

through research combining different disciplines. Importantly, it is urgent that genomic 

analysis, and other ‘omics’ approaches are included in the biodesign practice (Zhang et al., 

2010; Misra et al., 2019; Ryngajłło et al., 2020). This effort has the potential to allow the 

development and use of standard design and bioengineering prototyping protocols (Table 1). 

These recommendations are aligned with the activities proposed by Chappell and colleagues 

(2023) for community biodesign and can complement them in the particular case of studying 

BC as a biological probe. 

Recently Brooks and Alper (2021) argued that synthetic biology needs to step outside of 

the lab. They pointed the challenges of storage and stability of the biological and 

computational resources for use in other-than-research contexts. Therefore, they suggest the 

development of platforms suitable for three main outside-the-lab scenarios:  

i) bioproduction on remote and non-conventional contexts;  

ii) biosensing, and; 

iii) closed-loop systems (e.g., therapeutics and drug delivery).  

Such scenarios would potentially help to mitigate the technical challenges occurring 

outside-of-the-lab like genetic stability of the biological material, economics related to 

resources and infrastructure, and feasibility of the technical operations. Still, the multiple 
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disciplines and competences needed to the proper transfer of knowledge for outside-of-the-

lab constitute a barrier. Additionally, these barriers potentiate the appearance of a “inside-the-

lab-syndrome” (Bernstein et al., 2016; Flink & Rüffin, 2019; Zhou et al., 2020; Pereira et al., 

2021). Therefore, such boundaries must be removed to increase interdisciplinarity and allow 

a more robust research and prototyping of innovative, sustainable, and attainable solutions. 

Still, such effort must be accomplished taking into consideration the rigorous knowledge 

coming from the involved disciplines. As an example, the “Microbial Revolt” workshop 

attempted by Chen and colleagues (2024) allowed the observation of “key epistemic 

differences between designers and biologists, mapped different approaches to more-than-

human care and ecologies, and revealed the potential for design to challenge the secluded and 

productionist culture in biological laboratories.” So, a revolt can be seen simultaneously as a 

creative method and for more-than-human designs and a enacting tool for interdisciplinarity. 

Since the synthetic biology possesses several tools for interdisciplinary projects between 

biologists and engineers, a stronger connection and share of data, and tools and frameworks 

are essential. According to Tang and colleagues (2020), “synthetic biology applies genetic 

tools to engineer living cells and organisms analogous to the programming of machines (…) 

[it] aims to program biological systems to perform user-defined functions.” Its engineering 

principle has paved the way for its establishment as a proper engineering field. To meet this 

end, Florea and colleagues (2016b) reported a genetic engineering toolkit for 

Komagataeibacter consisting of experimental protocols, modular plasmids, promoters to 

target, reporter proteins, and inducible constructs that allow external gene expression control. 

Singhania and colleagues (2021) reviewed and presented the mechanisms of and for genetic 

engineering aiming at BC production. They included the “heterologous overexpression of 

glucose 6-phosphate isomerase pgi gene from Escherichia coli”, the “gdh knock down”, and 

“crdS gene introduction and expression to simultaneous synthesise cellulose/ curdlan” 

(Singhania et al., 2021, p. 6798).  

Led by the example of biomineralisation, Dade-Robertson and colleagues (2015) 

questioned the synthetic biology approaches in the design realm. They argued that synthetic 

biology can be employed as a design approach to: simplify the engineering design cycle; 

describe DNA sequences and their products as design building blocks; and overcome 

complex laboratory practices of recombinant DNA. Additionally, biodesigners can engage 

with the biological media settings, the working strain itself through genetic manipulation, or a 

combination of both (Dade-Robertson et al., 2024). However, it is also important to assure 
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that the more-than-human agency is taken into consideration during synthetic biology 

experiments.  

Incorporating knowledge from the biological sciences into the design practice expands 

the idea of making and prototyping. Biopolymers like BC are alive, unpredictable and they 

can be programmable if a deep understanding is set beforehand and tried thereafter. Hence, 

the skillset of biodesigners deserves a shift towards a mediating and open-minded approach 

of the design process to allow a co-performance with nature (Camere & Karana, 2018; Dade-

Robertson & Davies, 2023; Diniz, 2023; Hénaff, 2023).  

The non-anthropogenic concerns are becoming increasingly important in this new design 

approach. They relate to the more-than-humans agency and embodiment (Light, 2024), and 

temporalities (Oktay et al., 2023). Therefore, this change potentially allows the development 

of a wealthier society and a more balanced interpretation of being. Ultimately, an enhanced 

awareness about the nature interests promotes the construction of a society that goes beyond 

humans, relying in post-humanist theories interpretation of being (Camere & Karana, 2018; 

Neimanis, 2017). Hence, to promote proper interdisciplinarity setups in the biodesign realm 

the general and practical biology of the organisms under study cannot be neglected. To erase 

the barriers of interdisciplinarity, other disciplines and more creative approaches surrounding 

the design process of prototyping with living materials must be included in the education and 

practice of biodesign at a regular basis (Parkes & Dickie, 2013; Gome et al., 2019; Da Silva 

et al, 2021; Kim et al., 2021; Andréen and Goidea, 2022). 

Quoting Suzanne Lee, the future for interdisciplinarity in biodesign will be a space 

“where empirical data-based, evidence-tested, hypothesis-focused science meets hunch-

driven, intangible and tacit ideation”
1
. There a just collaboration between humans and nature 

can be achieved, with time, investment, and multistakeholders’ acceptance. 

 

5. Limitations and future steps 

The dynamism of the biodesign field is pushing the boundaries of disciplines that now are 

merging. The updated educational curricula are empowering biodesigners to get comfortable 

with more technical approaches coming from genomics and computational technology. In this 

study it was highlighted key aspects for BC production specifically in the perspective of its 

biological and biochemical features.  

The work from Huang et al. (2020), Jang et al. (2019), and Yang et al. (2023) exemplifies 

that BC synthesis is not trivial, and an interdisciplinary effort needs to be seriously 
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implemented. However, there is still challenges to be addressed that were not included in this 

paper such as the effects of epigenetics on BC production (Dade-Robertson et al., 2024; 

Orlovska et al., 2021).  

The first limitation of this study is that the BC producers’ biodiversity and biochemistry 

was not fully detailed. The second regards the limited review of the design and industrial 

whole body of work performed in this study. However, the objective was not to perform an 

in-depth literature review, but to inform biodesigners about the complexity of experimenting 

with BC.  

The challenge to map, detail, and standardise concepts and tools in biodesign is clear and 

it would be interesting if the biodesign community could join forces to address such tasks. 

One way would be to create regional networks of interdisciplinary biodesigners. One of the 

first activities delivered by such networks could be the creation of biodesign experimental 

guidelines, as the ones developed by Florea and colleagues (2016b) for guiding genetic 

modifications in K. rhaeticus. Guidelines for selecting the right BC producing strains, 

delineate their growth conditions, and post-treatments protocols for several artistic and 

applicable uses are also crucial. Additionally, it is also urgent refocus on guaranteeing 

scientific rigour and safety procedures for laboratory work. Performing it at the regional level 

would increase the locally anchored robustness of local communities. 

Interdisciplinarity involves different actors to negotiate and agree. However, to transfer 

the knowledge and results coming from interdisciplinary projects requires a communication 

effort and biodesigners need to practice it. The “inside-the-lab-syndrome” is an issue, and 

biodesign schools should expose students to real-world scenarios, bridging the gap between 

theory, prototyping, and artistic and industrial applications and challenges. 

 

Conclusions and Impact statement 

One of the issues of the BC production is the reporting of experiments without taking a 

rigorous stance on the complexity related to the biology (e.g., investigating the bcsABCD 

operon (Wong et al., 1990; Yoshinaga et al., 1997) and biochemistry of its production (e.g., 

Ng and Wang, 2016)). Practitioners in general, and biodesigners in particular, need to have a 

greater understanding in terms of the supplies necessary to grow microorganisms such as BC-

producers, their genetic background, and the post-treatment methodologies available to 

produce, treat, and prototype cellulose and other biopolymers at reasonable yields. Since 
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prototyping is one of the last stages of a design setup, it is essential to expand the boundaries 

of research to implement the interdisciplinary mindset.  

Still, the genetic landscape of BC producers needs to be further studied, catalogued, and 

experimented, to allow a robust design practice (Singhania et al., 2021). The diversity of 

strains like K. hansenii, K. xylinum, and K. ucaveti, confirms the urgent need for the full 

comprehension of the complete array of factors that affects BC production. 

Finally, more effort must be put into the exploration of appropriate cultivation methods, 

including the optimised and cost-effective substrates and tailored equipment to increase the 

productivity of BC. Then, it is necessary to develop and disseminate micro and large-scale 

protocols to allow the fine tuning and the proper transfer of knowledge and results associated 

with BC production across fields and organisations. However, these recommendations might 

not be enough to fully deploy sustainable and widespread solutions to the market. 

Interdisciplinarity and frequent discussions inside and outside the lab can be key.  

Consequently, the ethical compromise towards a more sustainable future must be taken 

seriously for all biomaterials since it is not an exclusive feature of BC. Lastly, only adding an 

enhanced design practice, together with the application of quality and safety standards to 

grow target microorganisms and handle cellulose, biodesigners can expect to have a say in 

researching, applying, and deploying solutions to the environmental, industrial, and artistic 

challenges where BC can be applied. 
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Table 1 – Main challenges for biodesigning BC. Referred current laboratory norm, and 

recommended actions. 

Challenge Current practice Recommendation 

BC producer 

selection 

Neglecting strains’ 

specificities by using 

SCOBY. 

Include microbial taxonomy into the biodesign 

research. This can be accomplished by having 

a microbiologist as a team member, or by 

studying the AAB taxonomy and biochemistry. 

Growth 

conditions 

Using general recipes 

sourced from 

unrigorous references. 

Perform literature reviews on what type of 

growth conditions are suitable for the selected 

BC-producer strain. Be rigorous on quantities 

and quality controls to check effective 

microbial growth. This can be accomplished 

by analysing growth curves (e.g., at time 

intervals, count growing colonies on solid 

culture medium or measuring optical density). 

Genetic 

instability 

(cellulose 

synthase, acetan 

and levan 

variations) 

Not addressed. To stabilise a bacterial strain, it may be 

necessary to genetically engineering it. As 

seen in this work, this challenge is not easily 

solved and so the recommendation is to 

consult an experienced synthetic biologist for 

advice. It may include working with a 

particular known strain or pursuing the work 

despite the genetic instability.  

Equipment Directly coupled with 

the end use (e.g., BC-

sheets, or more 

intricate molds). 

Simpler the better. Biodesigners should 

decouple the BC growing from the intended 

application. This means that BC yields can be 

increased by optimising growth conditions and  

equipment. The recommendation is to check in 

the literature for the best equipment to grow 

BC using the bacterial strain under study. 

Post-treatment Exploratory and not 

fully addressed (e.g., 

impermeabilisation, 

adding technological 

feature). 

Seeking advice from chemical engineers can 

provide insights for treat the biomaterial (e.g., 

clean, purify, composite). If more creative uses 

are intended, artists can also be called in. 

Scaling-up Usually out of scope 

of biodesign. 

Assemble an interdisciplinary team, including 

designers, biotechnologists (microbiologists, 

synthetic biologists), chemical and biological 

engineers, managers, and supply chain 

specialists, to delineate a scaling-up plan. 
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