Reducing Spheres and Klein Bottles after Dehn Fillings

Seungsang Oh

Abstract. Let *M* be a compact, connected, orientable, irreducible 3-manifold with a torus boundary. It is known that if two Dehn fillings on *M* along the boundary produce a reducible manifold and a manifold containing a Klein bottle, then the distance between the filling slopes is at most three. This paper gives a remarkably short proof of this result.

Let M be a compact, connected, orientable 3-manifold with a torus boundary T. A slope on T is the isotopy class of an essential simple loop. We assume that π and γ are two slopes on T such that $M(\pi)$ is a reducible manifold and $M(\gamma)$ contains a Klein bottle. $\Delta(\pi,\gamma)$ denotes their minimal geometric intersection number. It is proved in [6] that the optimum upper bound of $\Delta(\pi,\gamma)$ is 3, by using the representations of types which come from the intersection of graphs. This paper gives a short proof of this result based on a recent theorem of Jin, Lee, Oh and Teragaito [5].

Theorem 1 Let M be a hyperbolic 3-manifold. If $M(\pi)$ is reducible and $M(\gamma)$ contains a Klein bottle, then $\Delta(\pi, \gamma) \leq 3$.

Assume for contradiction that $\Delta(\pi, \gamma) \geq 4$. Let \widehat{Q} be a reducing sphere in $M(\pi)$ which intersects the filling solid torus V_{π} in a family of meridian disks. We choose \widehat{Q} so that $q = |\widehat{Q} \cap V_{\pi}|$ is minimal over all reducing spheres in $M(\pi)$. And choose \widehat{K} among all Klein bottles in $M(\gamma)$ so that $k = |\widehat{K} \cap V_{\gamma}|$ is minimal. Let $Q = \widehat{Q} \cap M$ and $K = \widehat{K} \cap M$. By an isotopy of Q, we may assume that Q and K intersect transversely, and $Q \cap K$ has the minimal number of components. Then as described in [6], we obtain graphs G_Q in \widehat{Q} and G_K in \widehat{K} . We use the definitions and terminology of [6].

Lemma 2 Suppose $k \geq 3$. Then G_Q has at most $\frac{k+2}{2}$ (resp. $\frac{(k+1)}{2}$) mutually parallel edges connecting parallel vertices if k is even (resp. odd).

Proof In [5] a graph G_P on a projective plane has this property by Lemma 5.1(4). This can be applied to the graph G_Q in exactly the same way.

Lemma 3

(1) G_K cannot contain Scharlemann cycles on distinct label pairs.

Received by the editors June 4, 2001.

This work was supported by grant No. R05-2001-000-00015-0 from the Basic Research Program of the Korea Science & Engineering Foundation.

AMS subject classification: 57M50.

Keywords: Dehn filling, reducible, Klein bottle.

© Canadian Mathematical Society 2003.

266 Seungsang Oh

(2) G_K cannot contain an S-cycle.

Proof (1) This is [2, Theorem 2.4].

(2) If G_K contains an S-cycle, then $M(\pi)$ contains a projective plane [3]. But this contradicts [5, Theorem 1.2].

Proof of Theorem 1 We assume hereafter that $q \ge 3$ by [1, Lemma 2.3].

Claim There is no vertex x of G_Q such that more than $\frac{3}{2}k$ edges connect x to antiparallel vertices.

Suppose not, then there exist more than $\frac{3}{2}k$ positive x-edges in G_K . Consider the subgraph of G_K consisting of all vertices and all x-edges of G_K . An Euler characteristic count gives that this subgraph contains more than $\frac{1}{2}k$ disk faces whose boundaries are x-edge cycles of G_K . Each disk face contains a Scharlemann cycle by [4, Proposition 5.1]. And all these Scharlemann cycles are, say, 12-Scharlemann cycles by Lemma 3 (1).

Construct a graph Γ in \widehat{K} as follows. Choose a dual vertex in the interior of each face of G_K bounded by a 12-Scharlemann cycle, and let the vertices of Γ be the vertices of G_K together with these dual vertices. The edges of Γ are defined by joining each dual vertex to the vertices of the corresponding Scharlemann cycle in the obvious way. Let n be the number of 12-Scharlemann cycles. Then $n>\frac{1}{2}k$. Γ has k+n vertices and at least 3n edges because each Scharlemann cycle has order at least 3 by Lemma 3 (2). Again an Euler characteristic count guarantees that Γ has a disk face E. But E determines a 1-edge cycle bounding a disk face in E which, as long as E 3, contains a Scharlemann cycle, contradicting the definition of Γ . This completes the proof of Claim.

Therefore each vertex x of G_Q has at least $(\Delta - \frac{3}{2})k$ labels where edges connecting parallel vertices are incident. Let G_Q^+ be the subgraph of G_Q consisting of all vertices and edges connecting parallel vertices of G_Q . Then every vertex of G_Q^+ has valency at least $(\Delta - \frac{3}{2})k$. If $k \geq 3$, by Lemma 2, any vertex has valency at least 3 in its reduced graph \overline{G}_Q^+ . So, we can choose a block $\overline{\Lambda}$ of an extremal component of \overline{G}_Q^+ with at most one cut vertex. Let Λ be the subgraph of G_Q^+ corresponding to $\overline{\Lambda}$. Notice that $\overline{\Lambda}$ has an interior vertex by [7, Lemma 3.2].

Let v, e and f be the numbers of vertices, edges and faces of $\overline{\Lambda}$ which is regarded as a graph in a disk. Denote by v_i , v_∂ and v_c the numbers of interior vertices, boundary vertices and cut vertices. Hence $v = v_i + v_\partial$ and $v_c = 0$ or 1. Since each face of $\overline{\Lambda}$ is a disk with at least 3 sides, we have $2e \ge 3f + v_\partial$. Combined with $1 = \chi(\text{disk}) = v - e + f$, we get $e \le 3v - v_\partial - 3 = 3v_i + 2v_\partial - 3$.

Suppose that every interior vertex of Λ has valency at least 6 and that every boundary vertex except a cut vertex has valency at least 4. Then we have $2e \ge 6\nu_i + 4(\nu_\partial - \nu_c)$. These two inequalities give us that $2\nu_c \ge 3$, a contradiction.

Therefore either some interior vertex has valency at most 5, or some boundary vertex has valency at most 3 and is not a cut vertex. Thus we have, in Λ , either $4k \le \Delta k \le 5(\frac{k}{2}+1)$ or $\frac{5}{2}k \le (\Delta-\frac{3}{2})k \le 3(\frac{k}{2}+1)$ by Lemma 2. Either case implies that $k \le 3$ and $k \ne 3$ (use the stronger inequalities of Lemma 2 for odd k).

For the remaining cases k = 1 and 2, we refer to [6, Section 4].

References

- [1] S. Boyer and X. Zhang, Reducing Dehn filling and toroidal Dehn filling. Topology Appl. **68**(1996), 285–303
- [2] C. Gordon and J. Luecke, Reducible manifolds and Dehn surgery. Topology 35(1996), 385-409.
- [3] C. Gordon and R. Litherland, *Incompressible planar surfaces in 3-manifolds*. Topology Appl. 18(1984), 121–144.
- [4] C. Hayashi and K. Motegi, Only single twists on unknots can produce composite knots. Trans. Amer. Math. Soc. 349(1997), 4465–4479.
- [5] G. T. Jin, S. Lee, S. Oh and M. Teragaito, *P*²-reducing and toroidal Dehn fillings. Math. Proc. Camb. Phil. Soc., to appear.
- [6] S. Oh, Dehn filling, reducible 3-manifolds, and Klein bottles. Proc. Amer. Math. Soc. 126(1998), 289–296.
- [7] Y. Q. Wu, Dehn fillings producing reducible manifolds and toroidal manifolds. Topology 37(1998), 95–108.

Department of Mathematics Korea University 1, Anam-dong Sungbuk-ku Seoul 136-701 Korea

email: soh@math.korea.ac.kr