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Reducing Spheres and Klein Bottles
after Dehn Fillings

Seungsang Oh

Abstract. Let M be a compact, connected, orientable, irreducible 3-manifold with a torus boundary.

It is known that if two Dehn fillings on M along the boundary produce a reducible manifold and a

manifold containing a Klein bottle, then the distance between the filling slopes is at most three. This

paper gives a remarkably short proof of this result.

Let M be a compact, connected, orientable 3-manifold with a torus boundary T.

A slope on T is the isotopy class of an essential simple loop. We assume that π and γ

are two slopes on T such that M(π) is a reducible manifold and M(γ) contains a Klein

bottle. ∆(π, γ) denotes their minimal geometric intersection number. It is proved in

[6] that the optimum upper bound of ∆(π, γ) is 3, by using the representations of

types which come from the intersection of graphs. This paper gives a short proof of

this result based on a recent theorem of Jin, Lee, Oh and Teragaito [5].

Theorem 1 Let M be a hyperbolic 3-manifold. If M(π) is reducible and M(γ) con-

tains a Klein bottle, then ∆(π, γ) ≤ 3.

Assume for contradiction that ∆(π, γ) ≥ 4. Let Q̂ be a reducing sphere in M(π)

which intersects the filling solid torus Vπ in a family of meridian disks. We choose Q̂

so that q = |Q̂ ∩ Vπ| is minimal over all reducing spheres in M(π). And choose K̂

among all Klein bottles in M(γ) so that k = |K̂ ∩Vγ | is minimal. Let Q = Q̂∩M and

K = K̂ ∩ M. By an isotopy of Q, we may assume that Q and K intersect transversely,

and Q ∩ K has the minimal number of components. Then as described in [6], we

obtain graphs GQ in Q̂ and GK in K̂ . We use the definitions and terminology of [6].

Lemma 2 Suppose k ≥ 3. Then GQ has at most k+2
2

(resp. (k+1)
2

) mutually parallel

edges connecting parallel vertices if k is even (resp. odd).

Proof In [5] a graph GP on a projective plane has this property by Lemma 5.1(4).

This can be applied to the graph GQ in exactly the same way.

Lemma 3

(1) GK cannot contain Scharlemann cycles on distinct label pairs.
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(2) GK cannot contain an S-cycle.

Proof (1) This is [2, Theorem 2.4].

(2) If GK contains an S-cycle, then M(π) contains a projective plane [3]. But this

contradicts [5, Theorem 1.2].

Proof of Theorem 1 We assume hereafter that q ≥ 3 by [1, Lemma 2.3].

Claim There is no vertex x of GQ such that more than 3
2
k edges connect x to an-

tiparallel vertices.

Suppose not, then there exist more than 3
2
k positive x-edges in GK . Consider the

subgraph of GK consisting of all vertices and all x-edges of GK . An Euler character-

istic count gives that this subgraph contains more than 1
2
k disk faces whose bound-

aries are x-edge cycles of GK . Each disk face contains a Scharlemann cycle by [4,

Proposition 5.1]. And all these Scharlemann cycles are, say, 12-Scharlemann cycles

by Lemma 3 (1).

Construct a graph Γ in K̂ as follows. Choose a dual vertex in the interior of each

face of GK bounded by a 12-Scharlemann cycle, and let the vertices of Γ be the vertices

of GK together with these dual vertices. The edges of Γ are defined by joining each

dual vertex to the vertices of the corresponding Scharlemann cycle in the obvious

way. Let n be the number of 12-Scharlemann cycles. Then n > 1
2
k. Γ has k + n

vertices and at least 3n edges because each Scharlemann cycle has order at least 3 by

Lemma 3 (2). Again an Euler characteristic count guarantees that Γ has a disk face E.

But E determines a 1-edge cycle bounding a disk face in E which, as long as q ≥ 3,

contains a Scharlemann cycle, contradicting the definition of Γ. This completes the

proof of Claim.

Therefore each vertex x of GQ has at least (∆− 3
2
)k labels where edges connecting

parallel vertices are incident. Let G+
Q be the subgraph of GQ consisting of all vertices

and edges connecting parallel vertices of GQ. Then every vertex of G+
Q has valency at

least (∆ − 3
2
)k. If k ≥ 3, by Lemma 2, any vertex has valency at least 3 in its reduced

graph G
+

Q. So, we can choose a block Λ of an extremal component of G
+

Q with at most

one cut vertex. Let Λ be the subgraph of G+
Q corresponding to Λ. Notice that Λ has

an interior vertex by [7, Lemma 3.2].

Let v, e and f be the numbers of vertices, edges and faces of Λ which is regarded as

a graph in a disk. Denote by vi , v∂ and vc the numbers of interior vertices, boundary

vertices and cut vertices. Hence v = vi + v∂ and vc = 0 or 1. Since each face of Λ is

a disk with at least 3 sides, we have 2e ≥ 3 f + v∂ . Combined with 1 = χ(disk) =

v − e + f , we get e ≤ 3v − v∂ − 3 = 3vi + 2v∂ − 3.

Suppose that every interior vertex of Λ has valency at least 6 and that every bound-

ary vertex except a cut vertex has valency at least 4. Then we have 2e ≥ 6vi +4(v∂−vc).

These two inequalities give us that 2vc ≥ 3, a contradiction.

Therefore either some interior vertex has valency at most 5, or some boundary

vertex has valency at most 3 and is not a cut vertex. Thus we have, in Λ, either

4k ≤ ∆k ≤ 5( k
2

+ 1) or 5
2
k ≤ (∆ − 3

2
)k ≤ 3( k

2
+ 1) by Lemma 2. Either case implies

that k ≤ 3 and k 6= 3 (use the stronger inequalities of Lemma 2 for odd k).
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For the remaining cases k = 1 and 2, we refer to [6, Section 4].
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