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Reducing Spheres and Klein Bottles
after Dehn Fillings

Seungsang Oh

Abstract. Let M be a compact, connected, orientable, irreducible 3-manifold with a torus boundary.
It is known that if two Dehn fillings on M along the boundary produce a reducible manifold and a
manifold containing a Klein bottle, then the distance between the filling slopes is at most three. This
paper gives a remarkably short proof of this result.

Let M be a compact, connected, orientable 3-manifold with a torus boundary T.
A slope on T is the isotopy class of an essential simple loop. We assume that 7 and ~
are two slopes on T such that M () is a reducible manifold and M (+y) contains a Klein
bottle. A(m,~y) denotes their minimal geometric intersection number. It is proved in
[6] that the optimum upper bound of A(w, ) is 3, by using the representations of
types which come from the intersection of graphs. This paper gives a short proof of
this result based on a recent theorem of Jin, Lee, Oh and Teragaito [5].

Theorem 1  Let M be a hyperbolic 3-manifold. If M(m) is reducible and M(~y) con-
tains a Klein bottle, then A(w,y) < 3.

Assume for contradiction that A(w,y) > 4. Let 6 be a reducing sphere in M(7)
which intersects the filling solid torus V; in a family of meridian disks. We choose 6
so that g = |(§ N V| is minimal over all reducing spheres in M(7). And choose K
among all Klein bottles in M(7y) so that k = |I? NV, |is minimal. Let Q = QNM and
K=KNM. By an isotopy of Q, we may assume that Q and K intersect transversely,
and Q N K has the minimal number of components. Then as described in [6], we
obtain graphs G in Q and Gy in K. We use the definitions and terminology of [6].

Lemma2  Suppose k > 3. Then Gq has at most HTZ (resp. @ ) mutually parallel
edges connecting parallel vertices if k is even (resp. odd).

Proof In [5] a graph Gp on a projective plane has this property by Lemma 5.1(4).
This can be applied to the graph G in exactly the same way. ]

Lemma 3

(1) Gk cannot contain Scharlemann cycles on distinct label pairs.
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(2) Gk cannot contain an S-cycle.

Proof (1) Thisis [2, Theorem 2.4].
(2) If Gk contains an S-cycle, then M () contains a projective plane [3]. But this
contradicts [5, Theorem 1.2]. [ |

Proof of Theorem 1 We assume hereafter that g > 3 by [1, Lemma 2.3].

Claim There is no vertex x of Gg such that more than 3k edges connect x to an-
tiparallel vertices.

Suppose not, then there exist more than %k positive x-edges in Gg. Consider the
subgraph of G consisting of all vertices and all x-edges of Gx. An Euler character-
istic count gives that this subgraph contains more than 1k disk faces whose bound-
aries are x-edge cycles of Gx. Each disk face contains a Scharlemann cycle by [4,
Proposition 5.1]. And all these Scharlemann cycles are, say, 12-Scharlemann cycles
by Lemma 3 (1).

Construct a graph I' in K as follows. Choose a dual vertex in the interior of each
face of Gx bounded by a 12-Scharlemann cycle, and let the vertices of I" be the vertices
of Gx together with these dual vertices. The edges of I are defined by joining each
dual vertex to the vertices of the corresponding Scharlemann cycle in the obvious
way. Let n be the number of 12-Scharlemann cycles. Then n > 1k. T hask + n
vertices and at least 31 edges because each Scharlemann cycle has order at least 3 by
Lemma 3 (2). Again an Euler characteristic count guarantees that I' has a disk face E.
But E determines a 1-edge cycle bounding a disk face in E which, as long as g > 3,
contains a Scharlemann cycle, contradicting the definition of I'. This completes the
proof of Claim.

Therefore each vertex x of G has at least (A — 3)k labels where edges connecting
parallel vertices are incident. Let G, be the subgraph of Gq consisting of all vertices
and edges connecting parallel vertices of Gq. Then every vertex of G}, has valency at
least (A — %)k. If k > 3, by Lemma 2, any vertex has valency at least 3 in its reduced
graph 65. So, we can choose a block A of an extremal component of 65 with at most
one cut vertex. Let A be the subgraph of G, corresponding to A. Notice that A has
an interior vertex by [7, Lemma 3.2].

Let v, eand f be the numbers of vertices, edges and faces of A which is regarded as
a graph in a disk. Denote by v;, vy and v, the numbers of interior vertices, boundary
vertices and cut vertices. Hence v = v; + v and v, = 0 or 1. Since each face of A is
a disk with at least 3 sides, we have 2e > 3f + vy. Combined with 1 = x(disk) =
v—e+ f,wegete < 3v— vy — 3 =3v;+2vy — 3.

Suppose that every interior vertex of A has valency at least 6 and that every bound-
ary vertex except a cut vertex has valency at least 4. Then we have 2e > 6v;+4(vyp—v.).
These two inequalities give us that 2v. > 3, a contradiction.

Therefore either some interior vertex has valency at most 5, or some boundary
vertex has valency at most 3 and is not a cut vertex. Thus we have, in A, either
4k < Ak < 5(% +1)or %k <(A- %)k < 3(’5‘ + 1) by Lemma 2. Either case implies
that k < 3 and k # 3 (use the stronger inequalities of Lemma 2 for odd k).
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For the remaining cases k = 1 and 2, we refer to [6, Section 4].
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