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Abstract
Aiming at problems of low optimization accuracy and slow convergence speed in the gait optimization algorithm of
lower limb exoskeleton robot, a novel gait multi-objectives optimization strategy based on beetle swarm optimiza-
tion (BSO)-elite opposition-based learning (EOL) levy flight foraging (LFF) algorithm was proposed. In order to
avoid the algorithm from falling into the local optimum, the EOL strategy with global search capability, the LFF
strategy with local search capability and the dynamic mutation strategy with high population diversity were intro-
duced to improve optimization performance. The optimization was performed by establishing a multi-objectives
optimization function with the robot’s gait zero moment point (ZMP) stability margin and driving energy consump-
tion. The joint comparative tests were carried out in SolidWorks, ADAMS and MATLAB software. The simulation
results showed that compared with the particle swarm optimization algorithm and the BSO algorithm, the ZMP
stability margin obtained by the BSO-EOLLFF algorithm was increased, and the average driving energy consump-
tion was reduced by 25.82% and 17.26%, respectively. The human-machine experiments were conducted to verify
the effectiveness and superiority. The robot could realize stable and smooth walking with less energy consumption.
This research will provide support for the application of exoskeleton robot.

1. Introduction
The lower extremity exoskeleton robot could assist patients with mobility impairment [1]. Compared
with the traditional artificial rehabilitation training mode, rehabilitation robots have many advantages:
rehabilitation robots are more suitable for performing long-term simple and repetitive exercises; reha-
bilitation robots have programmable capabilities to provide personalized training [2, 3]. With the
development of research, there have been many mature lower limb rehabilitation robots, such as Rewalk
[4], Mina exoskeleton robot [5], MindWalker [6], and Vanderbilt [7]. Since the exoskeleton robot drives
wearers to move, the gait trajectory of the robot determines whether the wearer’s rehabilitation train-
ing is practical [8]. Therefore, maintaining a stable and smooth gait trajectory is one of the critical
technologies in rehabilitation robots.

Patients with lower limb movement disorder have a weak ability to control their balance during walk-
ing [9]. However, it is essential to ensure walking stability. Vukobratovic proposed the zero moment
point (ZMP) criterion in 1972 [10] and pointed out that when ZMP was located within the robot sup-
port polygon, the robot would not tip over. Researchers used the measured human ZMP as the reference
and controlled the ZMP of the exoskeleton robot to achieve stable walking [11–14]. However, when the
ZMP of the exoskeleton robot is located at the edge of the support polygon, the body with the exoskele-
ton robot will tilt, but it is still possible to achieve stable walking. This means that the ZMP criterion
is not necessary for stable walking, which is more suitable for a quasi-static situation. Wu introduced a
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ZMP dynamic stability evaluation method and tracking control algorithm to improve the stability of the
coronal plane and sagittal plane [15]. Feng proposed a dynamic optimization control method based on
ZMP, which used information about the ZMP position [16]. Literature [17] detected the state changes of
the robot’s center-of-mass (CoM) velocity and acceleration and mapped the error between the measured
ZMP and the predicted ZMP for the foothold adjustment. The linear predictive control strategy was used
to achieve foothold adjustment, but only adjusting the foothold has limited gait stability.

The literature [18] proposed an improved deep reinforcement learning algorithm based on the
robot inverted pendulum modeling method, which could effectively deal with the stability of the high-
dimensional state action space generated by robot walking while solving problems of large computation
and high storage requirements caused by too many robot parameters. Still, the algorithm simply con-
ducted the action space discretization when optimizing related problems with continuous domains,
leading to a partial loss of action information. The literature [19] solved the value of each joint vari-
able corresponding to each center of gravity position point by genetic algorithm based on the robot
center of gravity constraint and geometric constraint methods. The robot center of gravity trajectory
found by this method and the target center of gravity trajectory coincide, and the gait trajectory with the
maximum stability margin was obtained. Still, the algorithm cannot use the network’s feedback infor-
mation in time, which leads to a relatively slow search speed, and if a more accurate solution was to be
obtained, more training time was needed. The literature [20] combined virtual constraints and hybrid
zero-dynamic design to optimize stable gaits. Still, the ideal virtual completed constraints cannot be
obtained simply and must use the robot’s accurate kinematic-dynamic mathematical model.

The goals of exoskeleton robot walking control are, first, to ensure the stability of walking; second, to
make the gait conform to given conditions. When the stability index of the actual trajectory is consistent
with the reference trajectory, the motion state of the robot will conform to the goal of walking control.
Therefore, the goal could be described as reducing the error of stability index between the actual tra-
jectory and the reference trajectory with less energy consumption. The main contributions of the paper
are:

1. The impact of the robot ZMP on the gait stability was analyzed through robot dynamics
modeling, and a novel stability criterion was proposed to keep walking stability.

2. A multi-objectives optimization function was established with the gait ZMP stability margin and
the driving energy consumption to realize stable walking with less energy consumption.

3. The beetle swarm optimization (BSO) algorithm can overcome the problem of slow convergence.
However, the BSO algorithm was easy to fall into the local optimum. The elite opposition-
based learning (EOL) strategy, the levy flight foraging (LFF) strategy and the dynamic mutation
strategy were introduced to overcome the problems and improve the optimization performance.

The rest of the paper is organized as follows: Section 2 describes exoskeleton robot system. Section 3
illustrates the gait multi-objectives function design. The parameter optimization based on BSO-EOLLFF
algorithm is presented in Section 4. Section 5 describes simulation experiment results and analysis.
Section 6 describes the human-machine experiment and result analysis. Finally, the conclusion of this
work is given in Section 7.

2. Exoskeleton robot system
2.1. Exoskeleton robot
The developed lower limb exoskeleton is shown in Fig. 1. The exoskeleton robot designed in this paper
mainly considers the motion in the sagittal plane. For each leg, it has one active degree of freedom (DoF)
for the hip joint and knee joint, respectively, and one passive DoF for the ankle joint. The ankle joint
has a high structural complexity, and it has an important influence on human walking stability [30–32].
Most of existing exoskeleton robots are designed with passive DoF ankle joint, such as Rewalk robot
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Figure 1. (a) Overall structure diagram (1) back support; (2) actuators of hip joint; (3) hip joint com-
ponent; (4) brace of thigh; (5) actuators of knee joint; (6) brace of calf; (7) ankle joint component; (8)
flexible belt of waist; (9) waist component; (10) thigh component; (11) flexible belt of thigh; (12) knee
joint component; (13) calf component; (14) flexible belt of calf; (15) pedal; (b). Exoskeleton mechanical
diagram.

[4] and Mina exoskeleton robot [5]. On the one hand, it is to reduce the design difficulty and cost of
the exoskeleton robot; on the other hand, the study found that when the ankle joint motion is disturbed
by external interference, the walking stability of human body will be greatly reduced [32]. Hence, this
study makes full use of the free movable property of the ankle joint to improve the walking stability.

2.2 Dynamic modeling
Lower limb exoskeleton robots are nonlinear, strongly coupled and multiple DoFs. In order to facilitate
the completion of the center of gravity calculation and spatial state description, the structure needs to be
appropriately simplified. The human reference coordinate system was established based on the human
anatomical posture. The exoskeleton robot was simplified to a five-link model, just as shown in Fig. 2.
The white circle is the joint and the black solid circle is the CoM of the linkage.

The lower limb exoskeleton robot positional state is represented by a Cartesian coordinate system
and generalized coordinates. The robot is supposed to walk in the sagittal XZ plane, and the ankle
joint coordinates of the support leg and swing leg are (xa, za) and (xb, zb), respectively. (xci, zci) is the
CoM coordinate of the linkage i, i = 1, 2,. . ., 5. li is the length of each linkage of the lower limb; di

is the distance from the CoM of each linkage to the joint. mi is the sum of the mass of linkage i and
its corresponding human lower limb. θ 1, θ 2,. . ., θ 5 are the angles between each linkage and its vertical
direction, and clockwise direction is positive. M1, M2,. . ., M5 are the joint torques of each linkage.

According to the geometric relationship in Fig. 2, the CoM coordinates of each rod are⎧⎨
⎩

xci = ∑i−1
j=1

(
sjlj sin θj

) + di sin θi + xa

zci = ∑i−1
j=1

(
sjlj cos θj

) + di cos θi + za

(1)

where i = 3, sj = 0; i = 1, 2, 4, 5, sj = 1.
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Figure 2. Five-link model.

Differentiating Eq. (1) with respect to time t, the velocity of each linkage CoM is obtained:⎧⎨
⎩

ẋci = ∑i−1
j=1

(
sjlj cos θj

) + diθ̇i cos θi

żci = ∑i−1
j=1

(−sjlj sin θj

) − diθ̇i sin θi

(2)

The total potential energy Ep of the lower limb exoskeleton robot system is

Ep =
5∑

i=1

migzci =
5∑

i=1

{
mig

[
i−1∑
j=1

(
sjlj cos θj

) + di cos θi + za

]}
(3)

The total kinetic energy Ek of the system is

Ek = ∑5
i=1

{
1

2

[
mi

(
ẋ2

ci + ż2
ci

) + Iiθ̇
2
i

]} = ∑5
i=1

{
1

2
mi

[∑i−1
j=1

(
sjlj cos θj

) + diθ̇i cos θi

]2
}

+

∑5
i=1

{
1

2
mi

[∑i−1
j=1

(−sjlj sin θj

) − diθ̇i sin θi

]2
}

+ ∑5
i=1

{
1

2
mid2

iθ̇
2
i

∑i−1
j=1

[
sjljθ̇j cos

(
θi − θj

)]} (4)

where I i is the rotational inertia of the linkage i with respect to the CoM.
Substituting Eqs. (3) and (4) into the Lagrangian equation of the dynamical state of the lower limb

exoskeleton robot system, the joint torque Mi acting on joint i during robot walking is obtained from
Eq. (5).

Mi = d

dt

∂Ek

∂θ̇i

− ∂Ek

∂θi

+ ∂Ep

∂θi

, i = 1, 2, . . . , 5 (5)

3. Gait multi-objectives function design
In order to achieve stable walking of the lower limb exoskeleton robot, this paper abstracted the problem
as a multi-objectives function optimization problem and constructed the multi-objectives function with
the gait ZMP stability margin and the drive energy consumption per step. Since the hip joint is the closest
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Figure 3. ZMP stability margin diagram.

joint to the human CoM, the change of the hip joint motion trajectory can be regarded as the change
of the human CoM position, so the hip joint has a great influence on the ZMP trajectory and the gait
stability of the exoskeleton robot. Assuming that the wearer’s hip joint is positioned midway between
the two legs during walking, the constraint along the X-axis during a single step cycle is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xhip (0)= −S

xhip (T)= S

ẋhip (t)≥ 0, t ∈ [0, T]

xl < xzmp < xr

(6)

where xhip is the trajectory of the hip joint along the X-axis, and ẋhip () is the velocity of hip joint. T is
the gait cycle, S is the step length and xzmp is the component of ZMP on the X-axis. xl and xr are the left
and right boundaries of the support polygon, respectively.

And a fifth-order polynomial is used to represent the motion trajectory of the hip joint:

xhip = −S + at + bt2 + 1

2
ρ1t3 + ρ2t4 + 1

2
ρ3t5 (7)

where ρ1, ρ2, ρ3 are constant, a = 2S
T

+ 1
2
ρ1T2 + ρ2T3 + 2ρ3T4, b = 1

2

(−2ρ1T − 4ρ2T2 − 5ρ3T3
)
.

3.1. Stability criteria
In order to comprehensively measure the degree of stability during robot motion, the ZMP stability
margin Jz was used to characterize the degree of stability in the horizontal direction, and the expression
is shown in Eq. (8).

Jz = a
n∑

i=1

rx (i)+ b
n∑

i=1

ry (i) (8)

where rx (i) , ry (i) denote the distance from the ZMP point to the center of the foot in the x-axis and
y-axis, respectively. n is the total number of the rod of exoskeleton robot. a and b are the weighting
coefficients in the X-axis and Y-axis, respectively, and a + b = 1, a

b
= Lf

Wf
. Lf denotes foot length, and Wf

denotes foot width, just as shown in Fig. 3.
In the absence of external disturbance, exoskeleton robots mainly rely on the frictional torque to offset

the influence of the deflection torque and maintain the balance of the torque in the vertical direction.
Considering that the static friction torque is complicated to model and difficult to obtain accurately, the
square of the deflection torque is used to characterize the stability in the equilibrium direction.

Jb = ‖Mb‖2
2 (9)

where Mb is the deflection torque.
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The ZMP is an important criterion used to check the stability of the robot. According to the definition
of ZMP, the ZMP criterion can only ensure that the horizontal component of the torque around ZMP is
0, but its vertical component is generally not 0. As the torso and body parts will generate the swaying
torque around the support leg during the forward motion, when the swaying torque exceeds the maximum
frictional torque on the ground, the robot will rotate around the support leg, and the deflection caused by
the excessive swaying torque is more obvious, so it is necessary to consider the torque balance between
horizontal and vertical directions in the gait planning process. The Mb is defined as:

Mb =
n∑

i=1

miÿi

(
xi − xzmp

) −
n∑

i=1

miẍi

(
yi − yzmp

)
(10)

xzmp =
∑

i mi

(
z̈i + Gg

)
xi − ∑

i miẍizi∑
i mi

(
z̈i + Gg

) (11)

yzmp =
∑

i mi

(
z̈i + Gg

)
yi − ∑

i miÿizi∑
i mi

(
z̈i + Gg

) (12)

where (xi, yi, zi) is the coordinates of the CoM position of the i-th linkage, mi is the mass of the i-th
linkage, n is the total number of links in the robot model and (xzmp, yzmp) denotes the coordinates position
of the ZMP.

3.2. Power consumption analysis
In terms of energy consumption, the minimum input energy of the driving joint is taken as the goal
for the optimal solution of gait parameters. The average power method is an important measure of
energy consumption analysis. Considering that the power of the machine is the product of motor drive
torque and joint angular velocity, the average power Pave of the robot during a walking cycle can be
characterized as:

Pave = 1

T

5∑
i=1

∫ T

0

∣∣Mi (t) · θ̇i (t)
∣∣ dt (13)

where Mi(t) is the torque, θ̇i (t) is the joint velocity, and T is the gait cycle.
In the process of robot motion, the exoskeleton robot may be affected by external disturbances and its

own structural deformation, resulting in the instantaneous power approaching infinity, but the average
power at this time may be very small. The instantaneous power peak will reduce the stability of the
entire system. In response to this situation, this paper introduces the root mean square deviation of the
instantaneous power, which could accurately reflect the discrete degree between instantaneous power
and average power.

Pi =
5∑

i=1

∣∣Mi (t) · θ̇i (t)
∣∣ (14)

σ =
√

1

(T)

∫ T

0

(Pi − Pave)
2 dt (15)

where Pi is the instantaneous power. σ is root mean square deviation of instantaneous power.

3.3. The multi-objectives function design
We constructed the overall multi-objectives function F(x) for optimizing the exoskeleton robot system.

F(x)= αJz + βJb +μ (Pave + σ) F(x)= αJz + βJb +μ (Pave + σ) (16)
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where x is the vector, and x = [S, ρ1, ρ2, ρ3, θ2, θ3, θ4, θ5]. α, β, μ∈ [0,1], the value is set according to
the proportion of gait ZMP stability margin and driving energy consumption. The smaller the F(x),
the more stable and smooth the robot gait trajectory. In this study, the ideal gait could be obtained
through optimizing the gait parameters. Therefore, multi-objectives function F(x) can be expressed as
the optimized object function GoalF with gait parameters, and its expression is

GoalF = min [F(x)] (17)

4. Parameter optimization based on BSO-EOLLFF algorithm
4.1. Overview of BSO-EOLLFF algorithm
Based on the beetle antennae search algorithm and particle swarm optimization (PSO) algorithm, the
BSO algorithm was designed [21, 22]. The BSO algorithm has the characteristics of fast solving speed
and high accuracy and has been successfully applied in the fields of signal positioning [23] and data
classification [24]. However, the BSO algorithm is easy to fall into the local optimum when searching
in a high-dimensional space. In this regard, this paper introduced the EOL strategy, the LFF strategy
and the dynamic mutation strategy to improve the optimization performance. In this study, we used
EOL to initialize the population to promote a uniform distribution of initial population information and
improve search efficiency. In addition, the LFF strategy enables the individuals to learn both their own
and group experiences, allowing each individual to move purposefully and instructively and improving
the convergence performance of the algorithm. Finally, a dynamic mutation strategy was introduced to
increase the population diversity at the end of the iteration and prevent the algorithm from falling into
the local optimum.

4.2. Population initialization based on EOL strategy
Tizhoosh introduced the concept of opposition-based learning in 2005 and showed that the inverse solu-
tion has a nearly 50% higher probability of being close to the global optimum than the current solution
[25]. The main idea was that by generating reverse individuals in the area where the current individ-
ual was located and by competing for the reverse individuals with the current individuals, the best
individuals will enter the next generation.

Definition 1. (Inverse solution): Let there exists a real number xo on the interval [e, u], then the inverse
of x is defined as x′

o = e + u − xo. Based on this, it is assumed that there exists a certain n-dimensional
solution point on the R-domain p = (xo1, xo2, · · · , xon), and xoi ∈ [ei, ui]. The p′ = (x′

o1, x′
o2, · · · , x′

on) is
defined as the inverse solution of p, where x′

oi = λ ∗ (ei + ui)− xoi, λ is a random number uniformly
distributed in the interval [0,1], also known as the generalization factor.

Definition 2. (Optimization based on inverse solution). The problem to be optimized was a multi-
objectives optimization problem, and if there exists a current solution X and its inverse solution is X′,
the following update mechanism is applied to X and X′: (1) If X<X′, keep the current solution X; (2) If
X′<X, replace X′ with X; (3) If X and X′ are not dominated by each other, then choose one of them at
random.

Non-dominated solutions in multi-objectives optimization problems are generally considered elite
individuals, usually containing more helpful information to guide the population to converge to the
global optimum. The introduction of the inverse solution could expand the search area of the algorithm.
Still, the search domain should be enhanced for those individuals in which original solution fitness value
is greater than the inverse solution fitness value. For individuals whose original solution fitness value is
smaller than the inverse solution fitness value, the value of searching the reverse area for them is higher
than the value of developing their domain. Therefore, this paper took the individual whose original
solution fitness value is smaller than the inverse solution fitness value as the research object and found
its inverse solution, which could expand the search area and effectively avoid the time waste. If the final
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algorithm could converge globally, the search area formed by the elite individuals would converge to the
search area formed by the global optimal solution set. Therefore, strengthening the search of the spatial
neighborhood where the privileged individuals were located will increase the algorithm’s convergence
speed and improve the algorithm’s global convergence ability.

Definition 3. (Elite inverse solution). Let the inverse solution of an elite individual Xbest =
(xo1, xo2, · · · , xon) in a population p be X′

best = (x′
o1, x′

o2, · · · , x′
on) in an n-dimensional search space,

and the elite inverse solution could be defined as x′
oi = λ ∗ (dei + dui)− xoi. [dei, dui] is the dynamic

boundary of the population P in the i-th dimensional search space and could be calculated according
to (18).

dei = min
1≤j≤|P|

(xoi) , dui = max
1≤j≤|P|

(xoi) (18)

where |P| is the size of the current group.

The dynamic boundary of the search space was used instead of the fixed boundary to preserve the
search experience so that the generated inverse solutions could be located in the gradually shrinking
search space and promote the faster convergence of the algorithm. Since the elite inverse solution may
also jump out of the boundary [ei, ui] and become non-feasible, the method in the literature [26] was
used here to reset the transgressed values, as shown in (19):

x′
oi = rand (ei, ui) , ei < x′

oi or ui > x′
oi (19)

By forming the elite inverse solution, the detection of elite individuals’ neighborhoods can be
enhanced. The BSO algorithm performs reverse learning for the elite individuals of each iteration to
generate the reverse population of elite individuals and participate in the evolutionary competition.

4.3. LFF strategy
In the standard BSO algorithm, the search range of beetle individuals was limited, and it is difficult to
transfer the search position from the global optimal to the local optimal. Although the group search could
expand the search range, there is no information exchange and feedback between the individuals, which
will affect the convergence accuracy of the algorithm. The individuals in the group need to continuously
learn the experience of the historical information, which plays a decisive role in the improvement of the
algorithm’s convergence speed. Therefore, the LFF strategy was introduced. LFF strategy was proposed
by Levy in the 1930s, and Mandelbrotb described it in detail [27]. The strategy obeys the Levy distri-
bution. LFF strategy could increase the diversity of the population, expand the search range and prevent
the algorithm from falling into the local optimum. The Levy distribution satisfies:

The calculation formula of the step length s is

s = ψ

|ν| 1
ϕ

(20)

where ψ and ν obey normal distribution, μ, v ∼ N
(
0, σ 2

)
μ∼ N

(
0, σ 2

μ

)
, ν ∼ N

(
0, σ 2

ν

)
. ϕ is constant

σψ =

⎡
⎢⎢⎣

� (1 + ϕ) ∗ sin
πϕ

2

�

(
1 + ϕ

2

)
∗ ϕ ∗ 2

ϕ−1
2

⎤
⎥⎥⎦

1
ϕ

(21)

where �() is the standard gamma distribution.
The update rule of beetle direction is

d(t + 1)=ω ∗ d(t)+ C1 ∗ Levy(θ) ∗ (gbest (t)− X(t))+ C2 ∗ Levy(θ) ∗ (zbest(t)− X(t)) (22)
The update rule of beetle position is

X(t + 1)= X(t)+ k1 ∗ s ∗ d(t) ∗ sign(f (Xr(t))− f (Xl(t)))+ k2d(t) (23)
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where d(t) represents the movement direction of the t-th generation. X(t) represents the beetle position of
the t-th generation. gbest() represents the individual extreme value of the t-th generation beetle. zbest()
represents the global extreme value. ω is the inertia weight, and C1 and C2 are the learning factors.
Levy(θ ) is a Levy random number. f(xr(t)) and f(xl(t)) are the fitness function value of the right whisker
and left whisker of the t-th generation longhorn beetle. k1 and k2 are the scale factor. sign() is a sign
function.

4.4. Dynamic mutation strategy
In the later stage of the iteration, the population diversity of the BSO algorithm will become lower, which
will reduce the search ability of the algorithm. To avoid premature phenomena, a dynamic mutation
strategy was introduced to increase the diversity of the population and improve convergence accuracy.
At present, related scholars have proposed a variety of mutation algorithms, and the typical ones are
Gaussian mutation [28] and Cauchy mutation [29]. Compared with the Gaussian mutation, the Cauchy
mutation could generate a more extensive range of random numbers so that the algorithm has a greater
chance to jump out of the local optimum. Meanwhile, when the peak value is small, the Cauchy muta-
tion only takes less time to search nearby areas. The Cauchy mutation was selected for the second
optimization of the population, and the mutation operation was performed on X(t):

X∗(t)= X(t)+ ζ ∗ C(0, 1) (24)

ζ = e−γ t
H (25)

where ζ is the weight of mutation, which will decrease with increasing iteration. H is the maximum
number of iteration. γ is constant. C(0,1) is a random number generated by Cauchy operator.

4.5. The basic steps and verification of BSO-EOLLFF algorithm
Because of a large number of parameters to be optimized for the objective function in this paper, the
process of gradually approximating the optimal value is complicated, the accuracy of the optimized
solution is not high, and the convergence speed is relatively slow. During the search process of the tradi-
tional PSO algorithm, the position of each particle is approached toward the global optimal position in
a decreasing sine wave manner. During this process, a particle converges to the currently found global
optimum position, and the other particles will quickly converge to this local optimum solution. If this
optimal position is only a local optimal point, then most of the particles are confined by this local opti-
mal solution. To overcome the shortcomings of traditional algorithms, the BSO-EOLLFF optimization
algorithm is proposed in this paper. According to the gait parameters to be optimized, the population
individuals are selected as xp = [S, ρ1, ρ2, ρ3, θ2, θ3, θ4, θ5] in the improved algorithm. Since the ankle
joint has a passive DoF, θ 1 is not used as an optimization parameter. According to Eq. (16), the fitness
value corresponding to the multi-objectives function F(x) at each point xp was calculated.

4.5.1. The steps of BSO-EOLLFF algorithm
The specific steps of the BSO-EOLLFF algorithm are:

1. Initialize the algorithm parameters: the beetle scale, iterative step length and the maximum
number of iterations. Use the EOL strategy to initialize the beetle population and initialize the
direction.

2. Calculate the corresponding fitness function value of the beetle and determine the individual
extreme value and the global extreme value according to the fitness function value.

3. Use (22) and (23) to update the direction and position of the beetle individuals and perform
cross-border processing of beetle populations.
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Table I. Psedo code of BSO-EOLLFF algorithm.

BSO-EOLLFF algorithm pseudo code:
Input: population size N , initial step length s0, maximum number of iteration H,
dimension D, inertia weight w, learning factor C1, C2, ratio k1,k2, constant γ.
Output: best BSO zbest
1. Initialize the BSO population Xp(t) with EOL strategy, initialize the BSO toward d

with random solutions, initialize Levy flight factor Levy(θ );
2. Calculate fitness of X(t), find global best BSO as zbest, find local best BSO as

gbest;
3. for i = 1: H
4. d(i) =d(i)/norm(d(i));
5. Calculate the ζ using (25);
6. for j = 1:N
7. Xl(j)=X(j)+d(j)∗l; Xr(j)=X(j)-d(j)∗l;
8. Calculate fitness of Xl and Xr;

9. Update of BSO direction using (22);
10. Update of BSO position using (23);
11. Mutation of BSO population using (24);
12. Calculate fitness of new BSO, if new BSO are better, update it in the population

zbest and gbest.

End

Table II. Parameters setting of the two algorithms.

Population Initial step Number of Inertia Learning
Parameters size length iteration(max) weight factor Others
Values 300 10 500 0.8 C1=C2 = 2 k1 = 0.4

k2 = 0.6
γ = 10

4. Use (24) to perform mutation operation on population.
5. Determine whether the algorithm meets the iteration termination condition. If it is satisfied,

output the optimal global solution and its corresponding position, otherwise return to step 2.

The pseudo code of BSO-EOLLFF algorithm is shown in Table I.

4.5.2. Performance analysis of BSO-EOLLFF algorithm
In order to verify the performance of the BSO-EOLLFF algorithm, the Rastrigin function z =
−20e−0.2

√
0.5(x2+y2) − e0.5 cos(2πx)+cos(2πy) + 20 + 2.72 with lots of local solutions was selected to perform

function optimization and convergence test. The parameter setting of the two algorithms is shown in
Table II. The test results are shown in Fig. 4. The BSO-EOLLFF algorithm could accurately search
for the optimal solution and would not fall into the local optimization. The algorithm’s search time is
1.35 s. To verify the superiority of the BSO-EOLLFF algorithm, the PSO algorithm was used to per-
form parameter search for the same test function, and the experimental results are shown in Fig. 5. The
experimental results showed that although the PSO algorithm can eventually obtain the global optimal
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Figure 4. Optimization results of BSO-EOLLFF algorithm for the test functions. (a) Test function
diagram, (b) optimal trace of each test function, (c) the contour map of the search path and (d) the
convergence curves.

Figure 5. Optimization results of PSO algorithm on the test functions. From left to right: optimal trace
of each test function, the contour map of the search path, and the convergence curves.

solution as well, there are four local optimal solutions in the process of finding the optimal solution, and
the time to find the optimal solution is 5.73 s, which is significantly slower than the algorithm proposed
in this study. The experimental results showed that the algorithm proposed in this study has a significant
effect enhancement for the regular test function.
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Figure 6. The human-exoskeleton simulation process diagram.

5. Simulation experiment analysis
SolidWorks, ADAMS and MATLAB software were used to conduct a joint comparison test to verify
the performance of the optimization algorithm proposed in this paper. The 3D model of the lower limb
exoskeleton robot built in SolidWorks software was imported into ADAMS software for gait character-
istics analysis, and the parameter characteristics were passed to MATLAB software for gait optimization
through the relevant interface. MATLAB software imported the optimized multi-objectives gait infor-
mation into ADAMS software again through the control module to analyze the gait stability. The robot
virtual prototype and simulation environment are shown in Fig. 6.

5.1. Parameter setting
The mechanism parameters of the lower limb exoskeleton robot are set as: m1 = 2 kg, m2 = 2.5 kg,
L1 = 0.37 m, L2 = 0.4 m. The number of beetles n is 50, the maximum number of iterations H is 1000,
inertia weight w is 0.8, individual learning factor C1 is 1.8, and global learning factor C2 is 1.4. The
ratio k1 and k2 are 0.4 and 0.6, respectively. The initial weight of mutation is 0.7. The initial step length
s0 is 1. The gait cycle T is 1 s. The constant γ and ϕ are 10 and 1.5, respectively. In the iterative process,
the condition for the iteration termination is that the error of parameter optimization is less than 0.1. In
order to avoid the chance of experimental results, we conducted five simulation experiments and took
the average of the experimental results for analysis.

5.2. Convergence analysis
In order to avoid the BSO algorithm from falling into the local optimum, the EOL algorithm with global
search capability, the LFF algorithm with local search capability and the dynamic mutation strategy
with high population diversity were introduced to improve the optimization performance. To verify the
convergence of the BSO-EOLLFF algorithm, the convergence curves of each algorithm were compared
with the PSO algorithm and BSO algorithm, respectively, as shown in Fig. 7.

It can be seen from Fig. 7 that the traditional PSO algorithm stops searching after 40 iterations and
falls into the local optimum due to its weak global search ability [21]. When the BSO algorithm iterates
23 times, the function fitness value tends to be stable. However, it has three local optimal solutions (gray
square), which will affect the convergence. Although it is lower than the global optimal value found
by the PSO algorithm, the convergence speed is slower. The BSO-EOLLFF algorithm searches for the
optimal solution when iterated 8 times. The BSO-EOLLFF could find the only global optimal value,
which is the lowest. And the averaged convergence time is shown in Table III. The time consumption of
the algorithm is 9.76 s, which is significantly faster than the other two algorithms. After the comparative
analysis of the search time, the efficiency of the BSO-EOLLFF algorithm was not weakened after the
addition of the EOL algorithm and LFF algorithm, which indicates that the fit and conversion between
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Figure 7. Convergence curve of each algorithm.

the algorithms are good. The strategy proposed in this paper increases the diversity of the population,
which speeds up the algorithm search speed and further improves the optimization accuracy.

5.3. Stability analysis
To further verify the stability of the BSO-EOLLFF algorithm proposed in this paper, the gait ZMP
stability margin and joint driving energy consumption of the lower limb exoskeleton robot optimized
by the three algorithms were compared and analyzed. The exoskeleton robot’s ZMP stability margin
curves were optimized using the PSO algorithm, the BSO algorithm and the BSO-EOLLFF algorithm,
as shown in Fig. 8.

It can be seen from Fig. 8, in one gait cycle, after the optimization of the PSO algorithm, the gait
ZMP of the robot only passes through the stable center-line once. The trajectory of the center of gravity
of the robot deviates from the bipedal support area, and the human body is prone to fall when walking.
After optimizing by the BSO algorithm, the gait ZMP trajectory is close to the boundary. The minimum
distance between the gait ZMP trajectory and the upper boundary is 0.0063 m. There are two times
passing the stability center-line. The robot’s center of gravity trajectory is roughly distributed in the
middle of the bipedal support domain, which has an ideal stability margin. The ZMP optimized by the
BSO-EOLLFF algorithm has better performance. The closest gait ZMP point to the boundary line of
the support domain is 0.1272m. At this time, the minimum distance between the two is 0.0228 m. The
gait ZMP trajectory is uniformly in the middle of the support domain, which can realize stable walking.

5.4. Energy consumption analysis
As can be seen from Fig. 9, the drive energy consumption of the robot increases and then decreases with
each walking step, which is because the magnitude of the torque required by the joints in the oscillation
process is mainly determined by the work done by gravity. To thoroughly verify the effectiveness of
the proposed optimization algorithm, the minimum, maximum and average values of the drive energy
consumption of the robot in 100 walking cycles optimized by the three algorithms were selected for
comparison, and the algorithm energy consumption is shown in Table IV.
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Table III. The averaged convergence time.

Algorithm CPU time/s
PSO 67.53
BSO 35.31
BSO-EOLLFF 9.76

Figure 8. ZMP stability margin curve after algorithm optimization.

Figure 9. Gait drive energy consumption curve.

6. Human-machine experiments and results analysis
Human-machine experiments are conducted to demonstrate the functionality of the proposed control
method. The exoskeleton robot platform is shown in Fig. 10. The range of motion of the human hip
and knee joints is −40◦−145◦ and 0◦−145◦, respectively. The joint motion range of the exoskeleton
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Table IV. Energy consumption analysis.

Algorithm Minimum/W Maximum/W Average/W
PSO 28.58 139.77 97.46
BSO 26.37 127.86 83.77
BSO-EOLLFF 17.82 102.33 67.48

Figure 10. (a) Prototype of the proposed exoskeleton robot and (b) Human-machine experiment.

is 20◦ flexion and 40◦ extension for the hip joint, and 80◦ flexion and 0◦ extension for the knee joints.
According to refs. [33, 34], the designed exoskeleton robot in this paper conforms to the standardization
(ISO)13485. The actuator of the joint is independent and the motion speed is designed with a uniform
speed of 0.3 m/s. The control system consists of the data processor Raspberry Pi and the motion con-
troller STM32F103. Raspberry Pi is used to process data collected from angle sensors (AD36/1217AF.
ORBVB, Hengstler, Germany). The communication mode between the data processor and motion con-
troller is parallel port communication. The motion controller controls the motors through the controller
area network fieldbus. Encoder 1 and encoder 2 are used to acquire the movement data of the hip joint,
and encoder 3 and 4 together record the knee joint angle. For safety reasons, if the angle of the exoskele-
ton is greater than the allowable value, the exoskeleton will be forced to stop moving by software. In
addition, the subject could cut off the power through the emergency switch button.

The main goal of this paper is to make the gait generated by the exoskeleton more efficient and stable
through multi-objectives optimization. Therefore, the joint motion trajectory and ZMP trajectory(xref

ZMP ()

and yref
ZMP ()) of the human body need to be obtained and used as the reference trajectory. A healthy subject

with the age of 25, the weight of 68 kg and the height of 170 cm is recruited for the experiment, just as
shown in Fig 11. Before the gait experiment, the subject was given a detailed explanation of the test
content and signed a consent form for voluntary participation in the experiment. The subject had no
surgery, no history of lower extremity trauma, no balance problems or neural muscular disorders within
the past six months. A written consent is obtained from the subject. The test environment was a linear
walkway of 5 m in length and 1 m in width, just as shown in Fig 11. The kinematic parameters were
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Figure 11. Gait experiment diagram.

Figure 12. Comparative analysis of joint trajectories.

acquired by VICON acquisition system (Oxford Metrics Ltd, Oxford, UK). Ground reaction force was
recorded by two AMTI force plates (AMTI Corp, Newton, USA). The data acquisition frequency is
1200 Hz. The VICON system and AMTI system are time-synchronized.

The figure for the joint position of the hip joint and the knee joint is shown in the Fig. 12. The
agreement between the reference trajectory and the actual trajectory illustrates the effectiveness of the
control method. In general, comparisons between a pair of kinematic or kinetic curves are performed by
calculating the Pearson correlation coefficient (R), which quantifies the strength of the linear relationship
between the two curves (i.e. similarity of their shapes) [35]. The results of R are shown in Table V. The
experimental results show that the tracking performance of the BSO-EOLLFF controller designed in
this paper is good, and the overall average error of hip joint position and knee joint position is 0.669 and
0.877 deg, respectively. And the biggest error generated during the whole exercise of hip joint position
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Table V. Analysis of reliability: Results of R.

Joint Hip joint Knee joint
R 0.95 0.97

Figure 13. Comparison analysis of ZMP trajectory. (a) X-direction; (b) Y-direction.

and knee joint position is 1.981 and 1.319 deg, respectively, which meets the training requirements of
the lower limb rehabilitation robot.

R = cov(X, Y)

σXσY

(26)

cov(X, Y)= E [X − E(X) (Y − E(Y))] (27)

σX =
√∑n

i=1

(
X − X

)2

n
(28)

where E(X) and E(Y) are the expected value of variable X and Y , respectively. X and σX are the mean
value and standard deviation of the sample X. In this paper, X and Y represent the reference trajectory
and the actual trajectory, respectively.

We collected the energy consumption values for six gait cycles and take the average value to obtain
the average power consumption for a gait cycle. The average power value of the BSO-EOLLFF algorithm
for trajectory energy optimization is 65.8 W. Compared with the traditional PSO algorithm, the average
power value was decreased by 30.5 W.

Figure 13 gives a comparison of the actual ZMP trajectories for the two sets of experiments. The
magnitude of the ZMP tracking error in the X-direction and Y-direction is measured by Ex and Ey,
respectively:

Ex =
∫ tf

t0

[
xref

ZMP (t)− xZMP (t)
]2

dt (29)

Ey =
∫ tf

t0

[
yref

ZMP (t)− yZMP (t)
]2

dt (30)

where xref
ZMP () and yref

ZMP () are the ZMP reference value in X-direction and Y-direction, respectively. xZMP ()

and yZMP ()are the ZMP actual value in x-direction and y-direction, respectively. t0 and tf are start time
and end time of gait cycle, respectively.

Compared with the traditional method, Ex is reduced by 45.3%, and Ey is reduced by 52.7%. In
Fig. 13, it is evident that the exoskeleton robot system can effectively eliminate the disturbance during
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the walking process. In the X-direction, the reference ZMP trajectory can be tracked better, and the
oscillation phenomenon is not apparent. In the Y-direction, compared to the reference ZMP trajectory,
the method proposed in this study produces a specific deviation with an overall average error of 0.035m,
which is a significant progress compared to the traditional method.

7. Conclusion
A vital issue for exoskeleton robots is maintaining gait stability during walking to prevent the wearer
from falling. By reducing the minimum distance between the ZMP and the center of the foot, increasing
the number of intersections between the ZMP and the stability center-line and reducing the drive energy
consumption, it can be judged that the stability margin of the ZMP after the parameter optimization of the
BSO-EOLLFF algorithm has been improved considerably. The robot gait can achieve stable and smooth
walking with less energy consumption, which fully demonstrates the effectiveness of the BSO-EOLLFF
algorithm. The agreement between the reference trajectory and the actual trajectory illustrates that the
applicability of the proposed algorithm in robot walking is better, and the rationality and reliability
of planned walking are ensured. In the future, the exoskeleton will also consider additional movement
modes, such as climbing steep hills and running. In each motion mode, dynamic stability and exoskeleton
interference forces will be analyzed in detail, and adaptive control strategies adapted to each motion
mode will be designed.
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