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We explored the instability dynamics of the viscous fingering interaction in
dual displacement fronts by varying the viscosity configuration. Four regimes of
rear-dominated fingering, front-dominated fingering, dual fingering and stable were
identified. By using the breakthrough time, which refers to the breakup of the dual
displacement fronts, the instability dynamics were modelled, and a regime map was
developed. These serve as a tool for effectively harnessing the dual displacement fronts
for various applications, such as hydrogeology, petroleum, chemical processes and
microfluidics.
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1. Introduction

Viscous fingering (VF) or Saffman–Taylor instability (Saffman & Taylor 1958) occurs
when a less viscous fluid displaces a more viscous fluid in porous media, Hele-Shaw
cells or microfluidic cells. Since it was first reported by Hill (1952), extensive research
investigations have been performed due to its widespread applications (Homsy 1987; De
Wit 2020). Most of the reported works, however, are mainly on a single displacement front.
Interests given to dual displacement fronts, in which two fluid interfaces are formed, are
still limited despite their importance for various applications. Given the characteristics of
dual displacement fronts, it can be harnessed in two opposite ways. The first is to generate
efficient fluid displacement processes in reservoir treatment (Paraskeva et al. 2000;
Talaghat, Esmaeilzadeh & Mowla 2009), enhanced oil recovery (Le Van & Chon 2017;
Vishnudas & Chaudhuri 2017; Afzali, Rezaei & Zendehboudi 2018; Chaudhuri &
Vishnudas 2018; Bakharev et al. 2022), in situ groundwater remediation (Wood, Simmons
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Figure 1. Sketch of the fluid configuration system.

& Hutson 2004) and column chromatography (Mayfield et al. 2005; Shalliker et al.
2007; Shalliker & Guiochon 2010) for hydrogeology, petroleum and chemical processes.
The second is to induce fluid mixing in a confined fluid system with a small Reynolds
number for microdroplet generation (Cardoso & Woods 1995; Hashimoto et al. 2008) and
microflow mixing (Glasgow & Aubry 2003; Coleman & Sinton 2005; MacInnes, Chen
& Allen 2005) for various biological and chemical syntheses. To generate efficient fluid
displacement, stable displacement should be maintained by avoiding VF (Yuan & Azaiez
2014; Sharma et al. 2021). In contrast, VF is desirable for enhancing the mixing process
by breaking the stability (Jha, Cueto-Felgueroso & Juanes 2013; Chen et al. 2015). To the
best of our knowledge, the exploration of these strategies is still an open question.

The first work on the dual displacement fronts was performed by De Wit, Bertho &
Martin (2005), and afterwards, a series of similar studies were reported (Mishra, Martin
& De Wit 2008, 2009, 2010; Hota, Pramanik & Mishra 2015). Some experimental studies
have also been performed by utilizing micropillar array columns (De Malsche et al. 2009;
Haudin et al. 2016). However, the analyses were mainly focused on the VF structure,
the linear stability analysis and the mixing process, whereas analysis of the interaction
dynamics of VF has never been discussed. In this paper, we explored the interaction
dynamics of VF in dual displacement fronts through numerical simulation by varying the
viscosity configuration. By using each interface onset time, finger velocity and the finite
slice breakthrough time, we modelled and mapped the interaction dynamics of VF in dual
displacement fronts with various viscosity configurations of the finite slice and bulk fluid.

2. Mathematical formulation and numerical solution

We consider miscible fluids A, B and C placed from left to right, forming two-fluid
interfaces of AB and BC, referred to as the rear interface and the front interface,
respectively. The fluid flow is considered in a two-dimensional porous medium with
uniform porosity and constant permeability κ . Fluid A then flows to the right, pushing
the dual displacement front configuration, as shown in figure 1.

With the assumptions that the system is incompressible, neutrally buoyant and first
contact miscible, the governing equations are

∇ · u = 0, ∇p = −μ
κ

u, (2.1a,b)

∂a
∂t

+ u · ∇a = DA∇2a, (2.2)

∂b
∂t

+ u · ∇b = DB∇2b, (2.3)

∂c
∂t

+ u · ∇c = DC∇2c. (2.4)
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Instability dynamics of dual displacement fronts

In the above expressions, the fluid flow velocity u = (u, v), p is the pressure, μ is
the fluid viscosity, t is time, a, b and c are the concentration of the fluids A, B and C,
respectively. It is assumed that the diffusion coefficients of fluids A, B and C are the same,
i.e. DA = DB = DC = D. The initial concentration value of a is a0, and subscripts A, B and
C represent the parameters of fluids A, B and C, respectively. The viscosity concentration
relation is considered as Arrhenius type (Hejazi et al. 2010; Hejazi & Azaiez 2012),

μ = μA exp
((

RB
b
a0

+ RC
c
a0

))
, (2.5)

where, RB = ln(μB/μA), and RC = ln(μC/μA) are the log mobility ratios between
the viscosity of B, C with A, respectively. The governing equations above were then
non-dimensionalized by using injection velocity (U), hydrodynamical time (τh = D/U2)
and length (Lh = D/U). Viscosity and pressure are normalized by μA and μAD/κ ,
respectively. The concentration of species A, B and C are also scaled by a0 (initial
concentration of A). A reference frame moving with the injection velocity was used to
focus on the dual displacement front dynamics. Afterwards, introducing a stream function
ψ(x, y) such that u = ∂ψ/∂y and v = −∂ψ/∂x, the model equations can be written in the
stream function–vorticity formulation (Tan & Homsy 1988; De Wit et al. 2005), as

∇2ψ = −RB(ψxbx + ψyby + by)− RC(ψxcx + ψycy + cy), (2.6)

at + axψy − ayψx = ∇2a, (2.7)

bt + bxψy − byψx = ∇2b, (2.8)

ct + cxψy − cyψx = ∇2c, (2.9)

μ = eRBb+RCc. (2.10)

For the numerical simulation, dimensions of Ly = 1024, Lx = 5120 and W = 1024
(figure 1) were used. This slice width was selected because it gives enough space for
the fingering development without the disturbance from the periodic boundary layer. In
addition, it gives a reasonable computational time to observe the breakthrough time. We
consider periodic boundary conditions in both the axial and transverse directions to avoid
disturbances to the fluid flow. They do not affect the dual displacement front dynamics
at the centre. An initial random disturbance was introduced to induce the instability. As
reported by De Wit et al. (2005), this random disturbance magnitude mainly affects the VF
onset time. Smaller random disturbance magnitude leads to longer onset time, resulting in
unnecessarily longer computational time. Therefore, to ensure similar initial conditions
and reasonable computational time, a constant value of random disturbance of O(10−2)
was selected throughout this work. Further, (2.6)–(2.10) are numerically solved using a
Fourier pseudospectral method introduced by Tan & Homsy (1988), which has been shown
to successfully model various numerical studies of VF (De Wit & Homsy 1999; Nagatsu
& De Wit 2011).

For the quantitative evaluation, parameters based on the transverse average fluid
concentration profile

iavg,y(x, t) = 1
Ly

∫ Ly

0
i(x, y, t) dy, (2.11)

with i corresponding to the concentrations (a, b and c) of fluid A, B or C were used (see
figure 2). First, the mixing length (ML) in red of the fluids A and C defined as the length
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Figure 2. Sketch of the onset and breakthrough concepts.

between the transverse average fluid concentration of ε and (ε − 1) with ε = 0.01 was
obtained. Next, the deformation of the rear interface (τons,R) and the front interface (τons,F)
were measured by comparing the mixing length with the pure diffusion case. The onset
time is determined as the time when the mixing length starts deviating from the pure
diffusive interface value by 10. Lastly, we introduced the breakthrough time τbk that was
determined when any transverse average fluid concentration contained concentrations of
both fluid A and C larger than ε, indicating the breakthrough of fluid B slice (see figure 2).
Once the fluid B slice has broken through, the dual displacement fronts become inefficient
for displacement (Paraskeva et al. 2000; Wood et al. 2004; Mayfield et al. 2005; Shalliker
et al. 2007; Talaghat et al. 2009; Le Van & Chon 2017; Vishnudas & Chaudhuri 2017;
Afzali et al. 2018; Chaudhuri & Vishnudas 2018; Bakharev et al. 2022) but effective for
fluid mixing (Coleman & Sinton 2005; MacInnes et al. 2005; Jha et al. 2013; Chen et al.
2015). Therefore, this parameter is used as the main indicator in characterising the dual
displacement fronts instability dynamics.

3. Results and discussion

Simulations with RC = 2, RC = 0 and RC = −1, representing the condition of RC > 0,
RC = 0 and RC < 0 were performed with varied RB. This helps to compare the results
when the viscosity of displacing fluid A is more, the same or less than the viscosity of
displaced fluid C. Simulations are performed for five different random numbers generated
for the seeding of the instability in each set of parameters. In order to find the onset of
deformation, we computed the evolution of mixing length for several RB and RC = 2, 0
and −1, with the same initial condition and plotted in figure 3. The examples of mixing
length development for all RB and RC at one randomness case are shown. The onset of
instabilities of both frontal–front and rear–front can be seen in figures 3(a–c) and 3(d–f ),
respectively, when the mixing length departs from the respective pure diffusive mixing
lengths (stable case). As seen from figure 3(a), for RC = 2, and for increasing of RB from
−1 until RB = 0.7 onset of instability at the AB front delayed and after a critical RB �
0.8 (star-marked curve in figure 3a), the onset of instability reversed and became early.
A similar trend occurs at the BC front as depicted in figure 3(d), i.e. the reversal of delayed
onset to early onset occurs when RB � 1.4 (star-marked curve in figure 3d). However, for
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Figure 3. Mixing length of fluid (a–c) A and (d–f ) C at RC of 2, 0 and −1 for various values of RB from one of
the randomness case. The bottom black dashed line shows the pure diffusive mixing length of stable interfaces.

RC = 0 and −1 when log mobility ratios |RB| increase and get farther away from RA and
RC, the early onset is observed, and no reversal behaviour is seen on the onset of instability.

Further, the numerical simulation results for RC = 2 with RB of −0.4, 0.4, 1.0, 1.6
and 2.4 are depicted in figure 4 through the density plot of concentrations of species
B. Initially, the frontal interface was unstable (e.g. see Supplementary movie 1 available
at https://doi.org/10.1017/jfm.2024.670, with RB = 0.4,RC = 2.0), followed by the dual
front (e.g. Supplementary movie 2, with RB = 1.0,RC = 2.0) and then the rear interface
became unstable (e.g. Supplementary movie 3, with RB = 1.6,RC = 2.0). At a specific
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Figure 4. Numerical simulation results of RC = 2 with various value RB corresponding to the (a–e) τon,R or
τon,F and τbk ( f –j). Here RB of −0.4 and 0.4 demonstrated a front-dominated fingering, whereas RB of 1.6 and
2.4 demonstrated a rear-dominated fingering. Here RB of 1.0, on the other hand, demonstrated a dual fingering.

time, the plots are shown representing the onset of VF front τons,R, τons,F and breakthrough
time τbk, which were chosen from the mixing length shown in figure 3.

With RB of −0.4 (figure 4a, f ), the rear interface is stable, whereas the front interface
is unstable. As a result, the VF developed at the front interface and then disturbed the
stable rear interface. For the RB of 0.4 (figure 4b,g), similar phenomena with RB of −0.4
also occur, but later. Even though both interfaces are unstable, the rear interface is more
stable than the front interface due to the higher viscosity contrast between fluids B and C
than fluids A and B. As a result, VF at the front interface occurred earlier and disturbed
the rear interface before the instability grew. Similar but opposite phenomena also occur
with RB of 1.6 and 2.4 (figure 4d,e,i, j), in which the VF at the rear interface grew earlier
and disturbed the front interface. These four cases demonstrate a single instability case
with the RB of −0.4 and 0.4 exhibiting front-dominated fingering and RB of 1.6 and 2.4
exhibiting rear-dominated fingering, respectively. Although in RB of 0.4 and 1.6, both
interfaces are unstable, the more unstable interface disturbs the less stable interface before
the instability at the less stable interface is developed. On the other hand, in the case
RB of 1.0 (figure 4c,h), both interfaces are equally unstable from the double instability.
As a result, the VF started growing at the same time and finally collided, resulting in
dual fingering. These instability dynamics can be divided into two types. The first type
is the ordinary VF initiated by the interface viscosity contrast. The second type is not an
instability (because the interface is stable) but rather a deformation initiated from VF of
the other interface. Therefore, for this type, the onset time and the finger velocity of the
other interface govern the onset of this instability mechanism.

Plotting τons,R, τons,F and τbk with RB in figure 5 provides a comprehensive point of
view on the instability dynamics. By gradually increasing RB from −1.0, τons,F increases
because the front interface is becoming more stable. Because this condition demonstrates

995 A5-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.670


Instability dynamics of dual displacement fronts

0

1000

2000

3000

4000

5000

t

–1.0 –0.5 0

Front-dominated

fingering Dual

fingering
Rear-dominated

fingeringμA = μB μB = μC

RB,crit,1 RB,crit,2

RC

0.5 1.0

RB

1.5 2.0 2.5 3.0

τons,R
τons,F

τons,R model
τons,F model
τbk model

τbk

Figure 5. The τons,R, τons,F and τbk of RC = 2 at various RB. Data points correspond to the averaged value
from five simulations, and the colour-shaded area represents the data scattering of the five simulations. The
solid lines represent the model from (3.1), (3.2) and (3.6). The green and the cyan dashed lines correspond to
μA = μB and μB = μC, respectively, whereas the red dashed lines correspond to both RB,crit,1 and RB,crit,2.

front-dominated fingering, τons,R and τbk coincide, in which they also increase with RB due
to the delay in τons,F. When RB is higher than 0.7, the delay on τons,F provides sufficient
time for the rear interface to develop instability. As a result, τons,R becomes smaller than
τbk, commencing the dual fingering regime. As τons,F is getting delayed, when RB is 1.0,
τons,R and τons,F occur at relatively the same time. However, at RB of 1.3, τons,F and τbk
start coinciding, marking the beginning of the rear-dominated fingering regime. Past this
point, τons,R keeps decreasing because the rear interface is getting less stable, and thus
τons,F and τbk also keep decreasing. Given these fingering dynamics, the τbk of 0.7 and 1.3
can be identified as the critical fluid B viscosity RB,crit,1 and RB,crit,2, in which the regime
transition occurs.

These instability dynamics maps can be modelled by first generating the model for the
onset time of both interface (τons,R and τons,F), diffusion propagation (XD) and both finger
downstream and upstream velocities (V+ and V−). For the onset time, it decreases with
the interface viscosity ratio by following the power function of minus two (Tan & Homsy
1988; De Wit et al. 2005) (figure 6a) as follows:

τons,R = 2215R−2
B for RB > 0, (3.1)

τons,F = 2215(RC − RB)
−2 for RC − RB > 0. (3.2)

These models fit well with the data with a coefficient of determination (r2) of 0.991 (see
figure 6a). The green and blue solid lines in figure 5 clearly depict these models. The
propagation of the diffusion fronts is modelled with a time square-root model by using
the data of interface propagation at a stable state (figure 6b). The data fit well with a
coefficient of determination (r2) of 0.993. The corresponding model for the case of a pure
diffusion front is given in (3.3) with the proportionality constant α as 3.29 when ε is
chosen as 0.01. For the finger velocity, the upstream and downstream directions need to
be modelled separately because the upstream finger velocity tends to be slower than the
downstream finger velocity (Mishra et al. 2010; Nijjer, Hewitt & Neufeld 2018) (figure 6c).
The finger velocity was calculated by measuring the required time for the finger to reach
the other interface from its onset to its breakthrough, which can be obtained in the regimes
of the front-dominated fingering and rear-dominated fingering by taking into account
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Figure 6. (a) The model formulation for τons,R and τons,F as shown in (3.1) and (3.2). (b) The model
formulation for XD as in (3.3). (c) The model formulation for (V+) and (V−) as shown in (3.4) and (3.5)
and (d,e) the iteration process for τbk at (3.6)–(3.9) for RC of 2 and 0.

the diffusion propagation as well. Because the diffusion propagation is independent of
viscosity ratio but the finger velocity is a function of viscosity ratio (Nijjer et al. 2018), the
following models were generated:

XD(t) = Xε = X1−ε = αt0.5 with α = f (ε) = 3.29, (3.3)

V+ = 0.285RB for RB > 0, (3.4)

V− = 0.197(RC − RB) for RB > 0, (3.5)

where Xε and X1−ε are the locations of the maximum and minimum threshold
concentration for mixing length, which is at ε = 0.01. From these model equations
((3.3)–(3.5)), the breakthrough time τbk, as depicted by the solid red line in figure 5 on
the three regimes of fingering dynamics, can be modelled with an equation as follows:

τbk = W − XD(t)+ τons,RV+ + τons,FV−
V+ + V−

(3.6)

with

V+ = 0 if τons,R � W − XD

V−
+ τons,F at RB,crit,1, (3.7)

V− = 0 if τons,F � W − XD

V+
+ τons,R at RB,crit,2, (3.8)

τbk =
(

W
2α

)2

if W � 2XD. (3.9)
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Figure 7. Onset and breakthrough time, τons,R, τons,F and τbk of (a) RC = 0 and (b) RC = −1 at various RB.
Data points correspond to the average value of five simulations with the standard deviation. The solid lines
represent the generated model from (3.1), (3.2) and (3.6). The green and the cyan dashed line correspond to
μA = μB and μB = μC, respectively, whereas the purple area corresponds to the stable regime.

Given the time variable presented in XD at (3.3), which also contributes to breakthrough
time τbk, hence, we calculate the breakthrough time τbk given in (3.6) using an iterative
process with XD(t) given in (3.3) and defined as

τ
j

bk = W − α(t j)0.5 + τons,RV+ + τons,FV−
V+ + V−

, (3.10)

τ
j+1
bk = W − α(τ

j
bk)

0.5 + τons,RV+ + τons,FV−
V+ + V−

. (3.11)

We performed iterations considering the initial time as t = 0, and with three iterations,
we achieved the convergence with a relative error of O(10−4). The result of the
breakthrough time obtained from the iteration process is shown in figures 6(d) and 6(e) for
RC of 2 and 0. We found that the value of τbk only changes slightly during each iteration.
As for the pure diffusion condition given in (3.9), since it is only a function of the diffusion
coefficient with a constant slice width of 1024, the τbk value is always fixed at 24 219 as
also shown in figure 6(e).

As shown in figure 5, these models can predict the dynamics accurately. The τons,R
follows the model for RB � RB,crit,1, and the τons,F follows the model for RB � RB,crit,2.
The onset time beyond this condition no longer follows the model because the instability is
not governed by viscosity contrast but by the disturbance from the other unstable interface.
These models can also predict both RB,crit,1 and RB,crit,2 as the boundary between the three
fingering regimes. The higher peak of τbk located at RB,crit,1 corresponds to the slower V−
than the V+, leading to later disturbance to the rear interface. The least accurate prediction
is in the dual-fingering regime. Because the finger velocity models are based on the fully
developed finger, these models cannot catch the early nonlinear finger dynamics near the
onset. Given that two fingers were developing, this effect becomes more significant.

Now, for RC = 0, the stability can also be divided into three regimes (figure 7a), but
instead of dual fingering regime, a stable regime was found. Supplementary material
(movie 4) provides the animations of stable flow dynamics with the condition of RB =
−0.5 and RC = −1.0, which also helps to compare the different unstable regimes. At
RB < 0, the rear interface is stable, but the front interface is unstable, resulting in
front-dominated fingering, whereas RB > 0 shows the opposite, in which the rear interface
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Figure 8. The regime map complemented with the τbk prediction for RB of −5 to 5 and RC between −5 and
5. The black dashed lines correspond to the regime boundary. The pink dotted lines correspond to the RC = 2,
RC = 0 and RC = −1, whereas the brown dotted lines correspond to RB = −1 and RB = 0.8.

is unstable, but the front interface is stable, corresponding to the rear dominated fingering.
At RB = 0, on the other hand, both interfaces are stable, resulting in a stable regime
without τons,R and τons,F. However, τbk can still occur due to the diffusion propagation,
although at a much slower rate. Therefore, with RB closing to 0, τbk increase sharply
until it reaches a plateau of pure diffusion, spanning beyond the stable regime because
breakthrough by diffusion propagation is still possible when the τons,R and τons,F occur
late. This also serves as the τbk limit of the dual displacement system when τbk occurs due
to diffusion propagation instead of VF interaction, as also given in (3.6). For RC = −1,
instability dynamics similar to those of RC = 0 were also observed (figure 7b). The
generated models of τons,R, τons,F and τbk also demonstrate satisfying agreement with the
data. The only difference is that the stable regime expands to RB between 0 and −1.

Based on the developed models, the regime map complemented with the prediction of
τbk can be created by extending the calculation for various RB and RC as shown in figure 8.
Four regimes of rear-dominated fingering, dual fingering, front dominated fingering and
stable are given. A stable regime is bound by the lines of RB = RC and RB = 0 and
surrounded by the region of pure diffusion, as shown by the white-coloured area. The
dual fingering regime is bound by the lines of RB,crit,1 and RB,crit,2 as given in (3.7) and
(3.8). The remaining area corresponds to the front-dominated fingering at the left and
rear-dominated fingering at the right.

In addition, further classification can be performed by fixing either RB or RC. The system
with RC < 0 is inherently stable because the system can become stable by changing RB in
between RC and 0. In contrast, for RC > 0, the configuration is inherently unstable because
the system can never be stable unless the viscosity differences are very small, resulting in
more dominant diffusion propagation than fingering. Similarly, by changing RC, RB < 0 is
also inherently stable because it can be stable when RC is lower than RB, whereas RB > 0 is
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Instability dynamics of dual displacement fronts

inherently unstable because there is no possibility of stable condition unless the viscosity
differences are also very small. These conditions are also shown as pink and brown dotted
lines in figure 8.

4. Conclusion

We modelled and mapped the stability dynamics of the VF interaction in dual
displacement fronts. Four regimes were identified, and the τbk can be predicted in each
regime. The models and map serve as design tools for harnessing the dual displacement
fronts effectively, either for fluid displacement or fluid mixing, depending on its broad
applications. We also believe that the models and map can be further developed in
the future to explore the instability dynamics of the dual displacement fronts with
other configurations. For example, with the different widths of the middle slice, the
breakthrough time will be affected due to longer or shorter distances for finger movement
and diffusion propagation. Although similar behaviour will still be observed, the regime
map will change based on the width slice. Another example is chemical reactions at the
interface since they can destabilize the interface or suppress finger development at one of
the interfaces. Therefore, this work serves as the first exploration and findings on such an
instability dynamics model and map from VF interaction.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.670.
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